The methods of antibacterial activity investigation and mechanism of antimicrobial action of drug molecules encapsulated in delivery systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Due to the diversity of the structure and supramolecular architecture of existing antibacterial drug delivery systems, the question of choosing methods for in vitro properties research of the proposed drug forms (DF) and determining the effect of the carrier on the antimicrobial properties of the drug in the research laboratory is especially relevant. The review examines the main microbiological methods of antimicrobial activity investigation that are used in the study of DF, and provides recommendations for choosing a research method in accordance with the type and chemical nature of drug carrier. In addition, instrumental methods and experimental techniques for studying the mechanism of antimicrobial action of DF, as well as in vitro effects, which are most often observed in the literature when the drug is encapsulated in a carrier, are discussed. This review provides the researcher with a strategy for analyzing the antimicrobial properties of the DF based on the system’s physico-chemical properties that allows a more comprehensive assessment of the future prospects of drugs.

Full Text

Restricted Access

About the authors

A. A. Skuredina

Lomonosov Moscow State University

Author for correspondence.
Email: anna.skuredina@yandex.ru

Department of Chemistry

Russian Federation, Moscow, 119991

N. G. Belogurova

Lomonosov Moscow State University

Email: anna.skuredina@yandex.ru

Department of Chemistry

Russian Federation, Moscow, 119991

E. V. Kudryashova

Lomonosov Moscow State University

Email: anna.skuredina@yandex.ru

Department of Chemistry

Russian Federation, Moscow, 119991

References

  1. Damian F., Harati M., Schwartzenhauer J., Van Cauwenberghe O., Wettig S.D. // Pharmaceutics. 2021. V. 13. № 2. P. 214. https://doi.org/10.3390/pharmaceutics13020214
  2. Pradal J. // J. Pain Res. 2020. V. 13. P. 2805–2814. https://doi.org/10.2147/JPR.S262390
  3. Veiga M.-D., Ruiz-Caro R., Martín-Illana A., Notario-Pérez F., Cazorla-Luna R. // Polymer Gels. 2018. P. 197–246. https://doi.org/10.1007/978-981-10-6083-0_8
  4. Adepu S., Ramakrishna S. // Molecules. 2021. V. 26. № 19. P. 5905. https://doi.org/10.3390/molecules26195905
  5. Sultana A., Zare M., Thomas V., Kumar T.S.S., Ramakrishna S. // Med. Drug Discov. 2022. V. 15. P. 100134. https://doi.org/10.1016/j.medidd.2022.100134
  6. Shirley M. // Drugs. 2019. V. 79. № 5. P. 555–562. https://doi.org/10.1007/s40265-019-01095-z
  7. Adler-Moore J., Proffitt R.T. // J. Antimicrob. Chemother. 2002. V. 49. P. 21–30. https://doi.org/10.1093/jac/49.suppl_1.21
  8. Liu P., Chen G., Zhang J. // Molecules. 2022. V. 27. № 4. P. 1372. https://doi.org/10.3390/molecules27041372
  9. Park H., Otte A., Park K. // J. Control. Release. 2022. V. 342. P. 53–65. https://doi.org/10.1016/j.jconrel.2021.12.030
  10. Gao W., Chen Y., Zhang Y., Zhang Q., Zhang L. // Adv. Drug Deliv. Rev. 2018. V. 127. P. 46–57. https://doi.org/10.1016/j.addr.2017.09.015
  11. Devnarain N., Osman N., Fasiku V.O., Makhathini S., Salih M., Ibrahim U.H. et al. // Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021. V. 13. № 1. https://doi.org/10.1002/wnan.1664
  12. Zhang W., Hu E., Wang Y., Miao S., Liu Y., Hu Y. et al. // Int. J. Nanomedicine. 2021. V. 16. P. 6141–6156. https://doi.org/10.2147/IJN.S311248
  13. Mohapatra A., Harris M.A., LeVine D., Ghimire M., Jennings J.A., Morshed B.I. et al. // J. Biomed. Mater. Res. Part B Appl. Biomater. 2018. V. 106. № 6. P. 2169–2176. https://doi.org/10.1002/jbm.b.34015
  14. Eskitoros-Togay Ş.M., Bulbul Y.E., Tort S., Demirtaş Korkmaz F., Acartürk F., Dilsiz N. // Int. J. Pharm. 2019. V. 565. P. 83–94. https://doi.org/10.1016/j.ijpharm.2019.04.073
  15. Güncüm E., Bakırel T., Anlaş C., Ekici H., Işıklan N. // J. Vet. Pharmacol. Ther. 2018. V. 41. № 4. P. 588–598. https://doi.org/10.1111/jvp.12505
  16. Que Y., Yang Y., Zafar H., Wang D. // Front. Pharmacol. 2022. V. 13. https://doi.org/10.3389/fphar.2022.993095
  17. Abou Assi R., M. Abdulbaqi I., Seok Ming T., Siok Yee C., A. Wahab H., Asif S.M. et al. // Pharmaceutics. 2020. V. 12. № 11. P. 1052. https://doi.org/10.3390/pharmaceutics12111052
  18. Методические Указания. 2004. № ББК 52.64. 1–91 p.
  19. Balouiri M., Sadiki M., Ibnsouda S.K. // J. Pharm. Anal. Elsevier, 2016. V. 6. № 2. P. 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
  20. Li J., Rong K., Zhao H., Li F., Lu Z., Chen R. // J. Nanosci. Nanotechnol. 2013. V. 13. № 10. P. 6806–6813. https://doi.org/10.1166/jnn.2013.7781
  21. Guo L., Gong S., Wang Y., Sun Q., Duo K., Fei P. // Foodborne Pathog. Dis. 2020. V. 17. № 6. P. 396–403. https://doi.org/10.1089/fpd.2019.2713
  22. Ando Y., Miyamoto H., Noda I., Miyaji F., Shimazaki T., Yonekura Y. et al. // Biocontrol Sci. 2010. V. 15. № 1. P. 15–19. https://doi.org/10.4265/bio.15.15
  23. Mohammadi G., Valizadeh H., Barzegar-Jalali M., Lotfipour F., Adibkia K., Milani M. et al. // Colloids Surfaces B Biointerfaces. Elsevier B.V., 2010. V. 80. № 1. P. 34–39. https://doi.org/10.1016/j.colsurfb.2010.05.027
  24. Mostafa A.A., Al-Askar A.A., Almaary K.S., Dawoud T.M., Sholkamy E.N., Bakri M.M. // Saudi J. Biol. Sci. 2018. V. 25. № 2. P. 361–366. https://doi.org/10.1016/j.sjbs.2017.02.004
  25. Liu X., Cai J., Chen H., Zhong Q., Hou Y., Chen W. et al. // Microb. Pathog. 2020. V. 141. P. 103980. https://doi.org/10.1016/j.micpath.2020.103980
  26. Dev A., Mohan J.C., Sreeja V., Tamura H., Patzke G.R., Hussain F. et al. // Carbohydr. Polym. 2010. V. 79. № 4. P. 1073–1079. https://doi.org/10.1016/j.carbpol.2009.10.038
  27. Uyen Thanh N., Abdul Hamid Z., Thi L., Ahmad N. // J. Drug Deliv. Sci. Technol. 2020. V. 58. P. 101796. https://doi.org/10.1016/j.jddst.2020.101796
  28. Chao Y., Zhang T. // Langmuir. 2011. V. 27. № 18. P. 11545–11553. https://doi.org/10.1021/la202534p
  29. Naveed M., Tianying H., Wang F., Yin X., Chan M.W.H., Ullah A. et al. // Curr. Res. Biotechnol. 2022. V. 4. P. 290–301. https://doi.org/10.1016/j.crbiot.2022.06.002
  30. Skuredina A.A., Tychinina A.S., Le-Deygen I.M., Golyshev S.A., Kopnova T.Y., Le N.T. et al. // Polymers. 2022. V. 14. P. 4476. https://doi.org/10.3390/ polym14214476
  31. Kavanagh A., Ramu S., Gong Y., Cooper M.A., Blaskovich M.A.T. // Antimicrob. Agents Chemother. 2019. V. 63. № 1. https://doi.org/10.1128/AAC.01760-18
  32. Bock L.J., Hind C.K., Sutton J.M., Wand M.E. // Lett. Appl. Microbiol. 2018. V. 66. № 5. P. 368–377. https://doi.org/10.1111/lam.12863
  33. Lahuerta Zamora L., Pérez-Gracia M.T. // J.R. Soc. Interface. 2012. V. 9. № 73. P. 1892–1897. https://doi.org/10.1098/rsif.2011.0809
  34. Schug A.R., Bartel A., Scholtzek A.D., Meurer M., Brombach J., Hensel V. et al. // Vet. Microbiol. 2020. V. 248. P. 108791. https://doi.org/10.1016/j.vetmic.2020.108791
  35. Pinna A., Donadu M.G., Usai D., Dore S., Boscia F., Zanetti S. // Cornea. 2020. V. 39. № 11. P. 1415–1418. https://doi.org/10.1097/ICO.0000000000002375
  36. Lozano G.E., Beatriz S.R., Cervantes F.M., María G.N.P., Francisco J.M.C. // African J. Microbiol. Res. 2018. V. 12. № 31. P. 736–740. https://doi.org/10.5897/AJMR2018.8893
  37. Rodríguez-López M.I., Mercader-Ros M.T., Pellicer J.A., Gómez-López V.M., Martínez-Romero D., Núñez-Delicado E. et al. // Food Control. 2020. V. 108. P. 106814. https://doi.org/10.1016/j.foodcont.2019.106814
  38. Darbasizadeh B., Fatahi Y., Feyzi-barnaji B., Arabi M., Motasadizadeh H., Farhadnejad H. et al. // Int. J. Biol. Macromol. 2019. V. 141. P. 1137–1146. https://doi.org/10.1016/j.ijbiomac.2019.09.060
  39. Kamimura J.A., Santos E.H., Hill L.E., Gomes C.L. // LWT — Food Sci. Technol. 2014. V. 57. № 2. P. 701–709. https://doi.org/10.1016/j.lwt.2014.02.014
  40. Natsaridis E., Gkartziou F., Mourtas S., Stuart M.C.A., Kolonitsiou F., Klepetsanis P. et al. // Pharmaceutics. 2022. V. 14. № 2. P. 370. https://doi.org/10.3390/pharmaceutics14020370
  41. García-González C.A., Barros J., Rey-Rico A., Redondo P., Gómez-Amoza J.L., Concheiro A. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 4. P. 3349–3360. https://doi.org/10.1021/acsami.7b17375
  42. Kucukoglu V., Uzuner H., Kenar H., Karadenizli A. // Int. J. Pharm. 2019. V. 569. P. 118578. https://doi.org/10.1016/j.ijpharm.2019.118578
  43. Aytac Z., Yildiz Z.I., Kayaci-Senirmak F., Tekinay T., Uyar T. // Food Chem. 2017. V. 231. P. 192–201. https://doi.org/10.1016/j.foodchem.2017.03.113
  44. Jug M., Kosalec I., Maestrelli F., Mura P. // J. Pharm. Biomed. Anal. 2011. V. 54. № 5. P. 1030–1039. https://doi.org/10.1016/j.jpba.2010.12.009
  45. Bhuyan S., Yadav M., Giri S.J., Begum S., Das S., Phukan A. et al. // J. Microbiol. Methods. 2023. V. 207. P. 106707. https://doi.org/10.1016/j.mimet.2023.106707
  46. Thomas P., Sekhar A.C., Upreti R., Mujawar M.M., Pasha S.S. // Biotechnol. Reports. 2015. V. 8. P. 45–55. https://doi.org/10.1016/j.btre.2015.08.003
  47. Boukouvalas D.T., Belan P., Leal C.R.L., Prates R.A., de Araújo S.A. 2019. P. 410–418. https://doi.org/10.1007/978-3-030-13469-3_48
  48. Chen C., Qu F., Wang J., Xia X., Wang J., Chen Z. et al. // J. Therm. Anal. Calorim. 2016. V. 123. № 2. P. 1583–1590. https://doi.org/10.1007/s10973-015-4999-9
  49. EUCAST Definitive Document E.DEF 3.1, June 2000: Determination of Minimum Inhibitory Concentrations (MICs) of Antibacterial Agents by Agar Dilution. // Clinical Microbiology and Infection. 2000. V. 6. № 9. P. 509–515. https://doi.org/10.1046/j.1469-0691.2000.00142.x
  50. Mączyńska B., Paleczny J., Oleksy-Wawrzyniak M., Choroszy-Król I., Bartoszewicz M. // Pathogens. 2021. V. 10. № 5. P. 512. https://doi.org/10.3390/pathogens10050512
  51. Huang D., Zuo Y., Zou Q., Zhang L., Li J., Cheng L. et al. // J. Biomater. Sci. Polym. Ed. 2011. V. 22. № 7. P. 931–944. https://doi.org/10.1163/092050610X496576
  52. Taha M., Chai F., Blanchemain N., Neut C., Goube M., Maton M. et al. // Int. J. Pharm. 2014. V. 477. № 1–2. P. 380–389. https://doi.org/10.1016/j.ijpharm.2014.10.026
  53. Orszulik S.T. // Expert Rev. Mol. Diagn. 2020. V. 20. № 3. P. 277–283. https://doi.org/10.1080/14737159.2020.1719070
  54. Orszulik S.T. // J. Microbiol. Methods. 2022. V. 200. P. 106538. https://doi.org/10.1016/j.mimet.2022.106538
  55. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Routine and Extended Internal Quality Control for MIC Determination and Disk Diffusion as Recommended by EUCAST. Version 9.0. 2019. http://www.eucast.org
  56. Missoun F., Ríos A.P. de los, Ortiz-Martínez V., Salar-García M.J., Hernández-Fernández J., Hernández-Fernández F.J. // Processes. 2020. V. 8. № 9. https://doi.org/10.3390/PR8091163
  57. Li Y., Zhou J., Gu J., Shao Q., Chen Y. // Colloids Surfaces B Biointerfaces. 2022. V. 215. P. 112514. https://doi.org/10.1016/j.colsurfb.2022.112514
  58. Skuredina A., Le-Deygen I., Belogurova N., Kudryashova E. // Carbohydr. Res. 2020. P. 108183. https://doi.org/10.1016/j.carres.2020.108183
  59. Azhdarzadeh M., Lotfipour F., Zakeri-Milani P., Mohammadi G., Valizadeh H. // Adv. Pharm. Bull. 2012. V. 2. № 1. P. 17–24. https://doi.org/10.5681/apb.2012.003
  60. Almekhlafi S., Thabit A.A.M. // J. Chem. Pharm. Res. 2014. V. 6. № 3. P. 1242–1248.
  61. Valizadeh H., Mohammadi G., Ehyaei R., Milani M., Azhdarzadeh M., Zakeri-Milani P. et al. // Pharmazie. 2012. V. 67. № 1. P. 63–68. https://doi.org/10.1691/ph.2012.1052
  62. Jabir M.S., Taha A.A., Sahib U.I. // Artif. Cells, Nanomedicine, Biotechnol. 2018. V. 46. P. 345–355. https://doi.org/10.1080/21691401.2018.1457535
  63. Furneri P.M., Fresta M., Puglisi G., Tempera G. // Antimicrob. Agents Chemother. 2000. V. 44. № 9. P. 2458–2464. https://doi.org/10.1128/AAC.44.9.2458-2464.2000
  64. Le-Deygen I.M., Mamaeva P.V., Skuredina A.A., Safronova A.S., Belogurova N.G., Kudryashova E.V. // J. Funct. Biomater. 2023. V. 14. № 7. P. 381. https://doi.org/10.3390/jfb14070381
  65. Klančnik A., Piskernik S., Jeršek B., Možina S.S. // J. Microbiol. Methods. 2010. V. 81. № 2. P. 121–126. https://doi.org/10.1016/j.mimet.2010.02.004
  66. Arasoglu T., Derman S., Mansuroglu B., Yelkenci G., Kocyigit B., Gumus B. et al. // J. Appl. Microbiol. 2017. V. 123. № 6. P. 1407–1419. https://doi.org/10.1111/jam.13601
  67. Hoang Thi T.H., Chai F., Leprêtre S., Blanchemain N., Martel B., Siepmann F. et al. // Int. J. Pharm. 2010. V. 400. № 1–2. P. 74–85. https://doi.org/10.1016/j.ijpharm.2010.08.035
  68. Houdkova M., Rondevaldova J., Doskocil I., Kokoska L. // Fitoterapia. 2017. V. 118. P. 56–62. https://doi.org/10.1016/j.fitote.2017.02.008
  69. Liang H., Yuan Q., Vriesekoop F., Lv F. // Food Chem. 2012. V. 135. № 3. P. 1020–1027. https://doi.org/10.1016/j.foodchem.2012.05.054
  70. Skuredina A.A., Yakupova L.R., Le-Deygen I.M., Kudryashova E.V. // Lomonosov Chem. J. 2023. V. 64. № №5, 2023. P. 441–459. https://doi.org/10.55959/MSU0579-9384-2-2023-64-5-441-459
  71. Harish Prashanth K.V., Tharanathan R.N. // Trends Food Sci. Technol. 2007. V. 18. № 3. P. 117–131. https://doi.org/10.1016/j.tifs.2006.10.022
  72. Chen C.Z., Cooper S.L. // Biomaterials. 2002. V. 23. № 16. P. 3359–3368. https://doi.org/10.1016/S0142-9612(02)00036-4
  73. He M., Wu T., Pan S., Xu X. // Appl. Surf. Sci. 2014. V. 305. P. 515–521. https://doi.org/10.1016/j.apsusc.2014.03.125
  74. Kochan K., Perez-Guaita D., Pissang J., Jiang J.H., Peleg A.Y., McNaughton D. et al. // J.R. Soc. Interface. 2018. V. 15. № 140. https://doi.org/10.1098/rsif.2018.0115
  75. Wongthong S., Tippayawat P., Wongwattanakul M., Poung-ngern P., Wonglakorn L., Chanawong A. et al. // World J. Microbiol. Biotechnol. 2020. V. 36. № 2. P. 22. https://doi.org/10.1007/s11274-019-2788-5
  76. Yakupova L.R., Skuredina A.A., Kopnova T.Y., Kudryashova E.V. // Polysaccharides. 2023. V. 4. № 4. P. 343–357. https://doi.org/10.3390/polysaccharides4040020
  77. Dillen K., Bridts C., Van der Veken P., Cos P., Vandervoort J., Augustyns K. et al. // Int. J. Pharm. 2008. V. 349. № 1–2. P. 234–240. https://doi.org/10.1016/j.ijpharm.2007.07.041
  78. Skuredina A.A., Tychinina A.S., Le-Deygen I.M., Golyshev S.A., Belogurova N.G., Kudryashova E.V. // React. Funct. Polym. 2021. V. 159. № 498. P. 104811. https://doi.org/10.1016/j.reactfunctpolym.2021. 104811
  79. Camacho-Cruz L.A., Velazco-Medel M.A., Cruz-Gómez A., Bucio E. // Advanced Antimicrobial Materials and Applications. 2021. P. 1–42. https://doi.org/10.1007/978-981-15-7098-8_1
  80. Vaara M. // Microbiol. Rev. 1992. V. 56. № 3. P. 395–411.
  81. Rybal’chenko O.V. // Microbiology. 2006. V. 75. № 4. P. 476–480. https://doi.org/10.1134/S0026261706040187
  82. Ulvatne H., Haukland H.., Olsvik Ø., Vorland L. // FEBS Lett. 2001. V. 492. № 1–2. P. 62–65. https://doi.org/10.1016/S0014-5793(01)02233-5
  83. Geilich B.M., van de Ven A.L., Singleton G.L., Sepúlveda L.J., Sridhar S., Webster T.J. // Nanoscale. 2015. V. 7. № 8. P. 3511–3519. https://doi.org/10.1039/C4NR05823B
  84. Skuredina A.A., Kopnova T.Y., Tychinina A.S., Golyshev S.A., Le-deygen I.M., Belogurova N.G. et al. // Molecules. 2022. V. 27. P. 8026. https://doi.org/10.3390/molecules27228026
  85. Nicolosi D., Scalia M., Nicolosi V.M., Pignatello R. // Int. J. Antimicrob. Agents. 2010. V. 35. № 6. P. 553–558. https://doi.org/10.1016/j.ijantimicag.2010.01.015
  86. Song J., Han B., Song H., Yang J., Zhang L., Ning P. et al. // J. Environ. Radioact. 2019. V. 208–209. P. 106027. https://doi.org/10.1016/j.jenvrad.2019.106027
  87. Kumar Tyagi A., Bukvicki D., Gottardi D., Veljic M., Guerzoni M.E., Malik A. et al. // Evidence-Based Complement. Altern. Med. 2013. V. 2013. P. 1–7. https://doi.org/10.1155/2013/382927
  88. Jaiswal S., Mishra P. // Med. Microbiol. Immunol. 2018. V. 207. № 1. P. 39–53. https://doi.org/10.1007/s00430-017-0525-y
  89. Fahimmunisha B.A., Ishwarya R., AlSalhi M.S., Devanesan S., Govindarajan M., Vaseeharan B. // J. Drug Deliv. Sci. Technol. Elsevier, 2020. V. 55. № November 2019. P. 101465. https://doi.org/10.1016/j.jddst.2019.101465
  90. Ishwarya R., Vaseeharan B., Subbaiah S., Nazar A.K., Govindarajan M., Alharbi N.S. et al. // J. Photochem. Photobiol. B Biol. 2018. V. 183. P. 318–330. https://doi.org/10.1016/j.jphotobiol.2018.04.049
  91. Dufrêne Y.F., Viljoen A., Mignolet J., Mathelié‐Guinlet M. // Cell. Microbiol. 2021. V. 23. № 7. https://doi.org/10.1111/cmi.13324
  92. Zamani E., Johnson T.J., Chatterjee S., Immethun C., Sarella A., Saha R. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 44. P. 49346–49361. https://doi.org/10.1021/acsami.0c12038
  93. Guo R., Li K., Qin J., Niu S., Hong W. // Nanoscale. 2020. V. 12. № 20. P. 11251–11266. https://doi.org/10.1039/D0NR01366H
  94. Kochan K., Peleg A.Y., Heraud P., Wood B.R. // J. Vis. Exp. 2020. № 163. https://doi.org/10.3791/61728
  95. Duverger W., Tsaka G., Khodaparast L., Khodaparast L., Louros N., Rousseau F. et al. // J. Nanobiotechnology. 2024. V. 22. № 1. P. 406. https://doi.org/10.1186/s12951-024-02674-3
  96. Gollwitzer H., Ibrahim K., Meyer H., Mittelmeier W., Busch R., Stemberger A. // J. Antimicrob. Chemother. 2003. V. 51. № 3. P. 585–591. https://doi.org/10.1093/jac/dkg105
  97. Jeong Y. Il, Na H.S., Seo D.H., Kim D.G., Lee H.C., Jang M.K. et al. // Int. J. Pharm. 2008. V. 352. № 1–2. P. 317–323. https://doi.org/10.1016/j.ijpharm.2007.11.001
  98. Baghdan E., Raschpichler M., Lutfi W., Pinnapireddy S.R., Pourasghar M., Schäfer J. et al. // Eur. J. Pharm. Biopharm. 2019. V. 139. P. 59–67. https://doi.org/10.1016/j.ejpb.2019.03.003
  99. Скуредина А.А., Ле-Дейген И.М., Кудряшова Е.В. // Коллоидный журнал. 2018. V. 80. № 3. P. 330–337. https://doi.org/10.7868/s0023291218030102
  100. Mousavian D., Mohammadi Nafchi A., Nouri L., Abedinia A. // J. Food Meas. Charact. 2021. V. 15. № 1. P. 883–891. https://doi.org/10.1007/s11694-020-00690-z
  101. Wang H., Hao L., Wang P., Chen M., Jiang S., Jiang S. // Food Hydrocoll. 2017. V. 63. P. 437–446. https://doi.org/10.1016/j.foodhyd.2016.09.028
  102. Banoee M., Seif S., Nazari Z.E., Jafari‐Fesharaki P., Shahverdi H.R., Moballegh A. et al. // J. Biomed. Mater. Res. Part B Appl. Biomater. 2010. V. 93B. № 2. P. 557–561. https://doi.org/10.1002/jbm.b.31615
  103. Chotitumnavee J., Parakaw T., Srisatjaluk R.L., Pruksaniyom C., Pisitpipattana S., Thanathipanont C. et al. // J. Dent. Sci. 2019. V. 14. № 1. P. 7–14. https://doi.org/10.1016/j.jds.2018.08.010
  104. Queiroz V.M., Kling I.C.S., Eltom A.E., Archanjo B.S., Prado M., Simão R.A. // Mater. Sci. Eng. Elsevier B.V. 2020. V. 112. P. 110852. https://doi.org/10.1016/j.msec.2020.110852

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the results of the spot analysis method. Application of a drop of sample in (a) several repetitions and (b) once; (c) in the form of lines. ×1–6 dilution of the culture.

Download (183KB)
3. Fig. 2. Schematic diagram of the results of the experiment using the serial dilution method (a) and testing the sensitivity of several strains (b). The arrow shows the direction of increasing concentration of the drug contained in the Petri dishes.

Download (272KB)
4. Fig. 3. Scheme of the results of the study of antibacterial activity by the Kirby-Bauer method (a) and the agar diffusion method (b). The zones of bacterial growth inhibition are shown in white. The diameters of the inhibition zones are shown by dotted arrows. The direction of increasing concentration of the drug in the sample is shown by a rounded arrow.

Download (296KB)
5. Fig. 4. Scheme of the results of the study of samples by the Kirby-Bauer method (a) and E-test (b) when individual CFU appear in the growth inhibition zones. The arrow shows the correct determination of the diameter of the bacterial growth inhibition zone.

Download (419KB)

Copyright (c) 2025 Russian Academy of Sciences