LncRNA-mediated Modulation of Endothelial Cells: Novel Progress in the Pathogenesis of Coronary Atherosclerotic Disease


Дәйексөз келтіру

Толық мәтін

Аннотация

Coronary atherosclerotic disease (CAD) is a common cardiovascular disease and an important cause of death. Moreover, endothelial cells (ECs) injury is an early pathophysiological feature of CAD, and long noncoding RNAs (lncRNAs) can modulate gene expression. Recent studies have shown that lncRNAs are involved in the pathogenesis of CAD, especially by regulating ECs. In this review, we summarize the novel progress of lncRNA-modulated ECs in the pathogenesis of CAD, including ECs proliferation, migration, adhesion, angiogenesis, inflammation, apoptosis, autophagy, and pyroptosis. Thus, as lncRNAs regulate ECs in CAD, lncRNAs will provide ideal and novel targets for the diagnosis and drug therapy of CAD.

Авторлар туралы

Shao Ouyang

Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China

Email: info@benthamscience.net

Zhi-Xiang Zhou

Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China

Email: info@benthamscience.net

Hui-Ting Liu

Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China

Email: info@benthamscience.net

Zhong Ren

Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China

Email: info@benthamscience.net

Huan Liu

Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China

Email: info@benthamscience.net

Nian-Hua Deng

Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China

Email: info@benthamscience.net

Kai-Jiang Tian

Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China

Email: info@benthamscience.net

Kun Zhou

Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China

Email: info@benthamscience.net

Hai-lin Xie

Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China

Email: info@benthamscience.net

Zhi-Sheng Jiang

Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Sun, S.; Cao, W.; Ge, Y.; Ran, J.; Sun, F.; Zeng, Q.; Guo, M.; Huang, J.; Lee, R.S.Y.; Tian, L.; Wellenius, G.A. Outdoor light at night and risk of coronary heart disease among older adults: a prospective cohort study. Eur. Heart J., 2021, 42(8), 822-830. doi: 10.1093/eurheartj/ehaa846 PMID: 33205210
  2. Peters, S.A.E.; Colantonio, L.D.; Dai, Y.; Zhao, H.; Bittner, V.; Farkouh, M.E.; Dluzniewski, P.; Poudel, B.; Muntner, P.; Woodward, M. Trends in recurrent coronary heart disease after myocardial infarction among us women and men between 2008 and 2017. Circulation, 2021, 143(7), 650-660. doi: 10.1161/CIRCULATIONAHA.120.047065 PMID: 32951451
  3. Zeitouni, M.; Nanna, M.G.; Sun, J.L.; Chiswell, K.; Peterson, E.D.; Navar, A.M. Performance of guideline recommendations for prevention of myocardial infarction in young adults. J. Am. Coll. Cardiol., 2020, 76(6), 653-664. doi: 10.1016/j.jacc.2020.06.030 PMID: 32762899
  4. Deal, B.J.; Huffman, M.D.; Binns, H.; Stone, N.J. Perspective: childhood obesity requires new strategies for prevention. Adv. Nutr., 2020, 11(5), 1071-1078. doi: 10.1093/advances/nmaa040 PMID: 32361757
  5. Li, J.J.; Li, S.; Zhu, C.G.; Wu, N.Q.; Zhang, Y.; Guo, Y.L.; Gao, Y.; Li, X.L.; Qing, P.; Cui, C.J.; Xu, R.X.; Jiang, Z.W.; Sun, J.; Liu, G.; Dong, Q. Familial hypercholesterolemia phenotype in chinese patients undergoing coronary angiography. Arterioscler. Thromb. Vasc. Biol., 2017, 37(3), 570-579. doi: 10.1161/ATVBAHA.116.308456 PMID: 27932355
  6. Mulders, T.A.; Sivapalaratnam, S.; Stroes, E.S.G.; Kastelein, J.J.P.; Guerci, A.D.; Pinto-Sietsma, S.J. Asymptomatic individuals with a positive family history for premature coronary artery disease and elevated coronary calcium scores benefit from statin treatment: a post hoc analysis from the St. Francis Heart Study. JACC Cardiovasc. Imaging, 2012, 5(3), 252-260. doi: 10.1016/j.jcmg.2011.11.014 PMID: 22421169
  7. Bai, Y.; Zhang, Q.; Su, Y.; Pu, Z.; Li, K. Modulation of the proliferation/apoptosis balance of vascular smooth muscle cells in atherosclerosis by lncRNA-MEG3 via regulation of miR-26a/Smad1 Axis. Int. Heart J., 2019, 60(2), 444-450. doi: 10.1536/ihj.18-195 PMID: 30745534
  8. Taheri, M.; Shoorei, H.; Dinger, M.E.; Ghafouri-Fard, S. Perspectives on the role of non-coding RNAs in the regulation of expression and function of the estrogen receptor. Cancers (Basel), 2020, 12(8), 2162. doi: 10.3390/cancers12082162 PMID: 32759784
  9. Jackson, C.L.; Keeton, J.Z.; Eason, S.J.; Ahmad, Z.A.; Ayers, C.R.; Gore, M.O.; McGuire, D.K.; Sayers, M.H.; Khera, A. Identifying familial hypercholesterolemia using a blood donor screening program with more than 1 million volunteer donors. JAMA Cardiol., 2019, 4(7), 685-689. doi: 10.1001/jamacardio.2019.1518 PMID: 31116347
  10. Sun, H.; Wang, J.; Que, J.; Peng, Y.; Yu, Y.; Wang, L.; Ye, H.; Huang, K.; Xue, Y.; Zhou, Y.; Ji, K. RNA sequencing revealing the role of AMP-activated protein kinase signaling in mice myocardial ischemia reperfusion injury. Gene, 2019, 703, 91-101. doi: 10.1016/j.gene.2019.04.010 PMID: 30974198
  11. Forini, F.; Nicolini, G.; Kusmic, C.; D’Aurizio, R.; Mercatanti, A.; Iervasi, G.; Pitto, L. T3 critically affects the Mhrt/Brg1 axis to regulate the cardiac MHC switch: role of an epigenetic cross-talk. Cells, 2020, 9(10), 2155. doi: 10.3390/cells9102155 PMID: 32987653
  12. Xu, S.; Xu, Y.; Liu, P.; Zhang, S.; Liu, H.; Slavin, S.; Kumar, S.; Koroleva, M.; Luo, J.; Wu, X.; Rahman, A.; Pelisek, J.; Jo, H.; Si, S.; Miller, C.L.; Jin, Z.G. The novel coronary artery disease risk gene JCAD/KIAA1462 promotes endothelial dysfunction and atherosclerosis. Eur. Heart J., 2019, 40(29), 2398-2408. doi: 10.1093/eurheartj/ehz303 PMID: 31539914
  13. Park, S.H.; Belcastro, E.; Hasan, H.; Matsushita, K.; Marchandot, B.; Abbas, M.; Toti, F.; Auger, C.; Jesel, L.; Ohlmann, P.; Morel, O.; Schini-Kerth, V.B. Angiotensin II-induced upregulation of SGLT1 and 2 contributes to human microparticle-stimulated endothelial senescence and dysfunction: protective effect of gliflozins. Cardiovasc. Diabetol., 2021, 20(1), 65. doi: 10.1186/s12933-021-01252-3 PMID: 33726768
  14. Boulberdaa, M.; Scott, E.; Ballantyne, M.; Garcia, R.; Descamps, B.; Angelini, G.D.; Brittan, M.; Hunter, A.; McBride, M.; McClure, J.; Miano, J.M.; Emanueli, C.; Mills, N.L.; Mountford, J.C.; Baker, A.H. A role for the long noncoding RNA sencr in commitment and function of endothelial cells. Mol. Ther., 2016, 24(5), 978-990. doi: 10.1038/mt.2016.41 PMID: 26898221
  15. Thomas, A.A.; Biswas, S.; Feng, B.; Chen, S.; Gonder, J.; Chakrabarti, S. lncRNA H19 prevents endothelial–mesenchymal transition in diabetic retinopathy. Diabetologia, 2019, 62(3), 517-530. doi: 10.1007/s00125-018-4797-6 PMID: 30612136
  16. Dieci, G.; Fiorino, G.; Castelnuovo, M.; Teichmann, M.; Pagano, A. The expanding RNA polymerase III transcriptome. Trends Genet., 2007, 23(12), 614-622. doi: 10.1016/j.tig.2007.09.001 PMID: 17977614
  17. Holoch, D.; Moazed, D. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet., 2015, 16(2), 71-84. doi: 10.1038/nrg3863 PMID: 25554358
  18. St Laurent, G.; Wahlestedt, C.; Kapranov, P. The Landscape of long noncoding RNA classification. Trends Genet., 2015, 31(5), 239-251. doi: 10.1016/j.tig.2015.03.007 PMID: 25869999
  19. Jiang, S.; Cheng, S.J.; Ren, L.C.; Wang, Q.; Kang, Y.J.; Ding, Y.; Hou, M.; Yang, X.X.; Lin, Y.; Liang, N.; Gao, G. An expanded landscape of human long noncoding RNA. Nucleic Acids Res., 2019, 47(15), 7842-7856. doi: 10.1093/nar/gkz621 PMID: 31350901
  20. Wang, C.; Wang, L.; Ding, Y.; Lu, X.; Zhang, G.; Yang, J.; Zheng, H.; Wang, H.; Jiang, Y.; Xu, L. LncRNA structural characteristics in epigenetic regulation. Int. J. Mol. Sci., 2017, 18(12), 2659. doi: 10.3390/ijms18122659 PMID: 29292750
  21. Liu, J.; Li, Y.; Tong, J.; Gao, J.; Guo, Q.; Zhang, L.; Wang, B.; Zhao, H.; Wang, H.; Jiang, E.; Kurita, R.; Nakamura, Y.; Tanabe, O.; Engel, J.D.; Bresnick, E.H.; Zhou, J.; Shi, L. Long non-coding RNA-dependent mechanism to regulate heme biosynthesis and erythrocyte development. Nat. Commun., 2018, 9(1), 4386. doi: 10.1038/s41467-018-06883-x PMID: 30349036
  22. Sun, Q.; Hao, Q.; Prasanth, K.V. Nuclear long noncoding RNAs: Key regulators of gene expression. Trends Genet., 2018, 34(2), 142-157. doi: 10.1016/j.tig.2017.11.005 PMID: 29249332
  23. Yubero-Serrano, E.M.; Fernandez-Gandara, C.; Garcia-Rios, A.; Rangel-Zuñiga, O.A.; Gutierrez-Mariscal, F.M.; Torres-Peña, J.D.; Marin, C.; Lopez-Moreno, J.; Castaño, J.P.; Delgado-Lista, J.; Ordovas, J.M.; Perez-Martinez, P.; Lopez-Miranda, J. Mediterranean diet and endothelial function in patients with coronary heart disease: An analysis of the CORDIOPREV randomized controlled trial. PLoS Med., 2020, 17(9), e1003282. doi: 10.1371/journal.pmed.1003282 PMID: 32903262
  24. Latorre, E.; Pilling, L.C.; Lee, B.P.; Bandinelli, S.; Melzer, D.; Ferrucci, L.; Harries, L.W. The VEGFA156b isoform is dysregulated in senescent endothelial cells and may be associated with prevalent and incident coronary heart disease. Clin. Sci. (Lond.), 2018, 132(3), 313-325. doi: 10.1042/CS20171556 PMID: 29330351
  25. Zhou, H.; Simion, V.; Pierce, J.B.; Haemmig, S.; Chen, A.F.; Feinberg, M.W. LncRNA-MAP3K4 regulates vascular inflammation through the p38 MAPK signaling pathway and cis -modulation of MAP3K4. FASEB J., 2021, 35(1), e21133. doi: 10.1096/fj.202001654RR PMID: 33184917
  26. Radhakrishnan, R.; Kowluru, R.A.; Long Noncoding, R.N.A. Long noncoding RNA MALAT1 and regulation of the antioxidant defense system in diabetic retinopathy. Diabetes, 2021, 70(1), 227-239. doi: 10.2337/db20-0375 PMID: 33051272
  27. Liao, B.; Chen, R.; Lin, F.; Mai, A.; Chen, J.; Li, H.; Xu, Z.; Dong, S. Long noncoding RNA HOTTIP promotes endothelial cell proliferation and migration via activation of the Wnt/β-catenin pathway. J. Cell. Biochem., 2018, 119(3), 2797-2805. doi: 10.1002/jcb.26448 PMID: 29058802
  28. Wu, Z.; He, Y.; Li, D.; Fang, X.; Shang, T.; Zhang, H.; Zheng, X. Long noncoding RNA MEG3 suppressed endothelial cell proliferation and migration through regulating miR-21. Am. J. Transl. Res., 2017, 9(7), 3326-3335. PMID: 28804550
  29. Li, P.; Li, Y.; Chen, L.; Ma, X.; Yan, X.; Yan, M.; Qian, B.; Wang, F.; Xu, J.; Yin, J.; Xu, G.; Sun, K. Long noncoding RNA uc003pxg.1 regulates endothelial cell proliferation and migration via miR-25-5p in coronary artery disease. Int. J. Mol. Med., 2021, 48(2), 160. doi: 10.3892/ijmm.2021.4993 PMID: 34212983
  30. Shang, J.; Li, Q.Z.; Zhang, J.Y.; Yuan, H.J. FAL1 regulates endothelial cell proliferation in diabetic arteriosclerosis through PTEN/AKT pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(19), 6492-6499. PMID: 30338819
  31. Wang, X.; Zhao, Z.; Zhang, W.; Wang, Y. Long noncoding RNA LINC00968 promotes endothelial cell proliferation and migration via regulating miR-9-3p expression. J. Cell. Biochem., 2018. PMID: 30485507
  32. Du, H.; Yang, L.; Zhang, H.; Zhang, X.; Shao, H. LncRNA TUG1 silencing enhances proliferation and migration of ox-LDL-treated human umbilical vein endothelial cells and promotes atherosclerotic vascular injury repairing via the Runx2/ANPEP axis. Int. J. Cardiol., 2021, 338, 204-214. doi: 10.1016/j.ijcard.2021.05.014 PMID: 33971184
  33. Zhang, S.; Xie, B.; Wang, L.; Yang, H.; Zhang, H.; Chen, Y.; Wang, F.; Liu, C.; He, H. Macrophage-mediated vascular permeability via VLA4/VCAM1 pathway dictates ascites development in ovarian cancer. J. Clin. Invest., 2021, 131(3), e140315. doi: 10.1172/JCI140315 PMID: 33295887
  34. Simion, V.; Zhou, H.; Pierce, J.B.; Yang, D.; Haemmig, S.; Tesmenitsky, Y.; Sukhova, G.; Stone, P.H.; Libby, P.; Feinberg, M.W. LncRNA VINAS regulates atherosclerosis by modulating NF-κB and MAPK signaling. JCI Insight, 2020, 5(21), e140627. doi: 10.1172/jci.insight.140627 PMID: 33021969
  35. Li, Y.; Cho, H.; Wang, F.; Canela-Xandri, O.; Luo, C.; Rawlik, K.; Archacki, S.; Xu, C.; Tenesa, A.; Chen, Q.; Wang, Q.K. Statistical and functional studies identify epistasis of cardiovascular risk genomic variants from genome-wide association studies. J. Am. Heart Assoc., 2020, 9(7), e014146. doi: 10.1161/JAHA.119.014146 PMID: 32237974
  36. Arnold, L.; Weberbauer, M.; Herkel, M.; Fink, K.; Busch, H.J.; Diehl, P.; Grundmann, S.; Bode, C.; Elsässer, A.; Moser, M.; Helbing, T. Endothelial BMP4 promotes leukocyte rolling and adhesion and is elevated in patients after survived out-of-hospital cardiac arrest. Inflammation, 2020, 43(6), 2379-2391. doi: 10.1007/s10753-020-01307-9 PMID: 32803667
  37. Cho, H.; Shen, G.Q.; Wang, X.; Wang, F.; Archacki, S.; Li, Y.; Yu, G.; Chakrabarti, S.; Chen, Q.; Wang, Q.K. Long noncoding RNA ANRIL regulates endothelial cell activities associated with coronary artery disease by up-regulating CLIP1, EZR, and LYVE1 genes. J. Biol. Chem., 2019, 294(11), 3881-3898. doi: 10.1074/jbc.RA118.005050 PMID: 30655286
  38. Cho, H.; Li, Y.; Archacki, S.; Wang, F.; Yu, G.; Chakrabarti, S.; Guo, Y.; Chen, Q.; Wang, Q.K. Splice variants of lncRNA RNA ANRIL exert opposing effects on endothelial cell activities associated with coronary artery disease. RNA Biol., 2020, 17(10), 1391-1401. doi: 10.1080/15476286.2020.1771519 PMID: 32602777
  39. Leisegang, M.S.; Bibli, S.I.; Günther, S.; Pflüger-Müller, B.; Oo, J.A.; Höper, C.; Seredinski, S.; Yekelchyk, M.; Schmitz-Rixen, T.; Schürmann, C.; Hu, J.; Looso, M.; Sigala, F.; Boon, R.A.; Fleming, I.; Brandes, R.P. Pleiotropic effects of laminar flow and statins depend on the Krüppel-like factor-induced lncRNA MANTIS. Eur. Heart J., 2019, 40(30), 2523-2533. doi: 10.1093/eurheartj/ehz393 PMID: 31222221
  40. Lyu, Q.; Xu, S.; Lyu, Y.; Choi, M.; Christie, C.K.; Slivano, O.J.; Rahman, A.; Jin, Z.G.; Long, X.; Xu, Y.; Miano, J.M. SENCR stabilizes vascular endothelial cell adherens junctions through interaction with CKAP4. Proc. Natl. Acad. Sci. USA, 2019, 116(2), 546-555. doi: 10.1073/pnas.1810729116 PMID: 30584103
  41. Petre, A.; Balta, C.; Herman, H.; Gharbia, S.; Codreanu, A.; Onita-Mladin, B.; Anghel-Zurbau, N.; Hermenean, A.G.; Ignat, S.R.; Dinescu, S.; Urzica, I.; Drafta, S.; Oancea, L.; Hermenean, A. A novel experimental approach to evaluate guided bone regeneration (GBR) in the rat femur using a 3D-printed CAD/CAM zirconia space-maintaining barrier. J. Adv. Res., 2021, 28, 221-229. doi: 10.1016/j.jare.2020.07.012 PMID: 33364058
  42. Zhu, Q.M.; MacDonald, B.T.; Mizoguchi, T.; Chaffin, M.; Leed, A.; Arduini, A.; Malolepsza, E.; Lage, K.; Kaushik, V.K.; Kathiresan, S.; Ellinor, P.T. Endothelial ARHGEF26 is an angiogenic factor promoting VEGF signaling. Cardiovasc. Res., 2021.
  43. Tsai, W.C.; Chiang, W.H.; Wu, C.H.; Li, Y.C.; Campbell, M.; Huang, P.H.; Lin, M.W.; Lin, C.H.; Cheng, S.M.; Chang, P.C.; Cheng, C.C. miR-548aq-3p is a novel target of Far infrared radiation which predicts coronary artery disease endothelial colony forming cell responsiveness. Sci. Rep., 2020, 10(1), 6805. doi: 10.1038/s41598-020-63311-1 PMID: 32322002
  44. Ouyang, S.; Li, Y.; Wu, X.; Wang, Y.; Liu, F.; Zhang, J.; Qiu, Y.; Zhou, Z.; Wang, Z.; Xia, W.; Lin, X. GPR4 signaling is essential for the promotion of acid-mediated angiogenic capacity of endothelial progenitor cells by activating STAT3/VEGFA pathway in patients with coronary artery disease. Stem Cell Res. Ther., 2021, 12(1), 149. doi: 10.1186/s13287-021-02221-z PMID: 33632325
  45. Mushimiyimana, I.; Tomas Bosch, V.; Niskanen, H.; Downes, N.L.; Moreau, P.R.; Hartigan, K.; Ylä-Herttuala, S.; Laham-Karam, N.; Kaikkonen, M.U. Genomic landscapes of noncoding RNAs regulating VEGFA and VEGFC expression in endothelial cells. Mol. Cell. Biol., 2021, 41(7), e00594-20. doi: 10.1128/MCB.00594-20 PMID: 33875575
  46. Zhang, M.; Wang, X.; Yao, J.; Qiu, Z. Long non-coding RNA NEAT1 inhibits oxidative stress-induced vascular endothelial cell injury by activating the miR-181d-5p/CDKN3 axis. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3129-3137. doi: 10.1080/21691401.2019.1646264 PMID: 31352814
  47. Huang, P.; Wang, L.; Li, Q.; Tian, X.; Xu, J.; Xu, J.; Xiong, Y.; Chen, G.; Qian, H.; Jin, C.; Yu, Y.; Cheng, K.; Qian, L.; Yang, Y. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc. Res., 2020, 116(2), 353-367. doi: 10.1093/cvr/cvz139 PMID: 31119268
  48. Kong, C.; Lyu, D.; He, C.; Li, R.; Lu, Q. Dioscin elevates lncRNA MANTIS in therapeutic angiogenesis for heart diseases. Aging Cell, 2021, 20(7), e13392. doi: 10.1111/acel.13392 PMID: 34081836
  49. Hosen, M.R.; Li, Q.; Liu, Y.; Zietzer, A.; Maus, K.; Goody, P.; Uchida, S.; Latz, E.; Werner, N.; Nickenig, G.; Jansen, F. CAD increases the long noncoding RNA PUNISHER in small extracellular vesicles and regulates endothelial cell function via vesicular shuttling. Mol. Ther. Nucleic Acids, 2021, 25, 388-405. doi: 10.1016/j.omtn.2021.05.023 PMID: 34484864
  50. Kai, H.; Wu, Q.; Yin, R.; Tang, X.; Shi, H.; Wang, T.; Zhang, M.; Pan, C. LncRNA NORAD Promotes vascular endothelial cell injury and atherosclerosis through suppressing VEGF gene transcription via enhancing H3K9 deacetylation by recruiting HDAC6. Front. Cell Dev. Biol., 2021, 9, 701628. doi: 10.3389/fcell.2021.701628 PMID: 34307380
  51. Noerman, S.; Kokla, M.; Koistinen, V.M.; Lehtonen, M.; Tuomainen, T.P.; Brunius, C.; Virtanen, J.K.; Hanhineva, K. Associations of the serum metabolite profile with a healthy Nordic diet and risk of coronary artery disease. Clin. Nutr., 2021, 40(5), 3250-3262. doi: 10.1016/j.clnu.2020.10.051 PMID: 33190988
  52. Lin, A.; Kolossváry, M.; Yuvaraj, J.; Cadet, S.; McElhinney, P.A.; Jiang, C.; Nerlekar, N.; Nicholls, S.J.; Slomka, P.J.; Maurovich-Horvat, P.; Wong, D.T.L.; Dey, D. Myocardial infarction associates with a distinct pericoronary adipose tissue radiomic phenotype. JACC Cardiovasc. Imaging, 2020, 13(11), 2371-2383. doi: 10.1016/j.jcmg.2020.06.033 PMID: 32861654
  53. Shirai, T.; Nazarewicz, R.R.; Wallis, B.B.; Yanes, R.E.; Watanabe, R.; Hilhorst, M.; Tian, L.; Harrison, D.G.; Giacomini, J.C.; Assimes, T.L.; Goronzy, J.J.; Weyand, C.M. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J. Exp. Med., 2016, 213(3), 337-354. doi: 10.1084/jem.20150900 PMID: 26926996
  54. Molina, E.; Chew, G.S.; Myers, S.A.; Clarence, E.M.; Eales, J.M.; Tomaszewski, M.; Charchar, F.J. A novel Y-specific long non-coding RNA associated with cellular lipid accumulation in HepG2 cells and atherosclerosis-related genes. Sci. Rep., 2017, 7(1), 16710. doi: 10.1038/s41598-017-17165-9 PMID: 29196750
  55. Lei, D.; Lv, L.; Yang, L.; Wu, W.; Liu, Y.; Tu, Y.; Xu, D.; Jin, Y.; Nong, X.; He, L. Genome-wide analysis of mRNA and long noncoding RNA profiles in chronic actinic dermatitis. BioMed Res. Int., 2017, 2017, 7479523. doi: 10.1155/2017/7479523 PMID: 29359156
  56. Wang, Q.C.; Wang, Z.Y.; Xu, Q.; Chen, X.L.; Shi, R.Z. lncRNA expression profiles and associated ceRNA network analyses in epicardial adipose tissue of patients with coronary artery disease. Sci. Rep., 2021, 11(1), 1567. doi: 10.1038/s41598-021-81038-5 PMID: 33452392
  57. Li, P.; Xing, J.; Zhang, J.; Jiang, J.; Liu, X.; Zhao, D.; Zhang, Y. Inhibition of long noncoding RNA HIF1A-AS2 confers protection against atherosclerosis via ATF2 downregulation. J. Adv. Res., 2020, 26, 123-135. doi: 10.1016/j.jare.2020.07.015 PMID: 33133688
  58. Guo, F.; Tang, C.; Li, Y.; Liu, Y.; Lv, P.; Wang, W.; Mu, Y. The interplay of Lnc RNA ANRIL and miR-181b on the inflammation-relevant coronary artery disease through mediating NF -κB signalling pathway. J. Cell. Mol. Med., 2018, 22(10), 5062-5075. doi: 10.1111/jcmm.13790 PMID: 30079603
  59. Bai, J.; Liu, J.; Fu, Z.; Feng, Y.; Wang, B.; Wu, W.; Zhang, R. Silencing lncRNA AK136714 reduces endothelial cell damage and inhibits atherosclerosis. Aging (Albany NY), 2021, 13(10), 14159-14169. doi: 10.18632/aging.203031 PMID: 34015766
  60. Wang, Y.; Yang, X.; Jiang, A.; Wang, W.; Li, J.; Wen, J. Methylation-dependent transcriptional repression of RUNX3 by KCNQ1OT1 regulates mouse cardiac microvascular endothelial cell viability and inflammatory response following myocardial infarction. FASEB J., 2019, 33(12), 13145-13160. doi: 10.1096/fj.201900310R PMID: 31625414
  61. Jaeschke, H.; Adelusi, O.B.; Akakpo, J.Y.; Nguyen, N.T.; Sanchez-Guerrero, G.; Umbaugh, D.S.; Ding, W.X.; Ramachandran, A. Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharm. Sin. B, 2021, 11(12), 3740-3755. doi: 10.1016/j.apsb.2021.09.023 PMID: 35024303
  62. Sun, J.; Singh, P.; Österlund, J.; Orho-Melander, M.; Melander, O.; Engström, G.; Edsfeldt, A. Hyperglycaemia-associated Caspase-3 predicts diabetes and coronary artery disease events. J. Intern. Med., 2021, 290(4), 855-865. doi: 10.1111/joim.13327 PMID: 34309093
  63. Jayasuriya, R.; Ganesan, K.; Xu, B.; Ramkumar, K.M. Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomed. Pharmacother., 2022, 145, 112421. doi: 10.1016/j.biopha.2021.112421 PMID: 34798473
  64. Ni, J.; Huang, Z.; Wang, D. LncRNA TP73-AS1 promotes oxidized low-density lipoprotein-induced apoptosis of endothelial cells in atherosclerosis by targeting the miR-654-3p/AKT3 axis. Cell. Mol. Biol. Lett., 2021, 26(1), 27. doi: 10.1186/s11658-021-00264-x PMID: 34103010
  65. Zhang, H.; Ji, N.; Gong, X.; Ni, S.; Wang, Y. NEAT1/miR-140-3p/MAPK1 mediates the viability and survival of coronary endothelial cells and affects coronary atherosclerotic heart disease. Acta Biochim. Biophys. Sin. (Shanghai), 2020, 52(9), 967-974. doi: 10.1093/abbs/gmaa087 PMID: 32844995
  66. Wu, L.; Tan, G.; Li, X.; Jiang, X.; Run, B.; Zhou, W.; Liao, H. LncRNA TONSL-AS1 participates in coronary artery disease by interacting with miR-197. Microvasc. Res., 2021, 136, 104152. doi: 10.1016/j.mvr.2021.104152 PMID: 33662410
  67. You, G.; Long, X.; Song, F.; Huang, J.; Tian, M.; Xiao, Y.; Deng, S.; Wu, Q.; Long Noncoding, R.N.A. Long Noncoding, R.N.A. Long noncoding RNA EZR-AS1 regulates the proliferation, migration, and apoptosis of human venous endothelial cells via SMYD3. BioMed Res. Int., 2020, 2020, 1-11. doi: 10.1155/2020/6840234 PMID: 32596350
  68. Sun, Y.; Huang, S.; Wan, C.; Ruan, Q.; Xie, X.; Wei, D.; Li, G.; Lin, S.; Li, H.; Wu, S. Knockdown of lncRNA ENST00000609755.1 confers protection against early oxLDL-induced coronary heart disease. Front. Cardiovasc. Med., 2021, 8, 650212. doi: 10.3389/fcvm.2021.650212 PMID: 34095248
  69. Li, W.; He, P.; Huang, Y.; Li, Y.F.; Lu, J.; Li, M.; Kurihara, H.; Luo, Z.; Meng, T.; Onishi, M.; Ma, C.; Jiang, L.; Hu, Y.; Gong, Q.; Zhu, D.; Xu, Y.; Liu, R.; Liu, L.; Yi, C.; Zhu, Y.; Ma, N.; Okamoto, K.; Xie, Z.; Liu, J.; He, R.R.; Feng, D. Selective autophagy of intracellular organelles: Recent research advances. Theranostics, 2021, 11(1), 222-256. doi: 10.7150/thno.49860 PMID: 33391472
  70. Wang, L.; Xu, C.; Johansen, T.; Berger, S.L.; Dou, Z. SIRT1 – a new mammalian substrate of nuclear autophagy. Autophagy, 2021, 17(2), 593-595. doi: 10.1080/15548627.2020.1860541 PMID: 33292048
  71. Nnah, I.C.; Wang, B.; Saqcena, C.; Weber, G.F.; Bonder, E.M.; Bagley, D.; De Cegli, R.; Napolitano, G.; Medina, D.L.; Ballabio, A.; Dobrowolski, R. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy, 2019, 15(1), 151-164. doi: 10.1080/15548627.2018.1511504 PMID: 30145926
  72. Chao, T.; Shih, H.T.; Hsu, S.C.; Chen, P.J.; Fan, Y.S.; Jeng, Y.M.; Shen, Z.Q.; Tsai, T.F.; Chang, Z.F. Autophagy restricts mitochondrial DNA damage-induced release of ENDOG (endonuclease G) to regulate genome stability. Autophagy, 2021, 17(11), 3444-3460. doi: 10.1080/15548627.2021.1874209 PMID: 33465003
  73. Hwang, H.Y.; Shim, J.S.; Kim, D.; Kwon, H.J. Antidepressant drug sertraline modulates AMPK-MTOR signaling-mediated autophagy via targeting mitochondrial VDAC1 protein. Autophagy, 2021, 17(10), 2783-2799. doi: 10.1080/15548627.2020.1841953 PMID: 33124469
  74. Meng, Q.; Li, Y.; Ji, T.; Chao, Y.; Li, J.; Fu, Y.; Wang, S.; Chen, Q.; Chen, W.; Huang, F.; Wang, Y.; Zhang, Q.; Wang, X.; Bian, H. Estrogen prevent atherosclerosis by attenuating endothelial cell pyroptosis via activation of estrogen receptor α-mediated autophagy. J. Adv. Res., 2021, 28, 149-164. doi: 10.1016/j.jare.2020.08.010 PMID: 33364052
  75. He, L.; Chen, Y.; Hao, S.; Qian, J. Uncovering novel landscape of cardiovascular diseases and therapeutic targets for cardioprotection via long noncoding RNA–miRNA–mRNA axes. Epigenomics, 2018, 10(5), 661-671. doi: 10.2217/epi-2017-0176 PMID: 29692219
  76. Liang, W.; Fan, T.; Liu, L.; Zhang, L. Knockdown of growth-arrest specific transcript 5 restores oxidized low-density lipoprotein-induced impaired autophagy flux via upregulating miR-26a in human endothelial cells. Eur. J. Pharmacol., 2019, 843, 154-161. doi: 10.1016/j.ejphar.2018.11.005 PMID: 30468731
  77. Wang, K.; Yang, C.; Shi, J.; Gao, T. Ox-LDL-induced lncRNA MALAT1 promotes autophagy in human umbilical vein endothelial cells by sponging miR-216a-5p and regulating Beclin-1 expression. Eur. J. Pharmacol., 2019, 858, 172338. doi: 10.1016/j.ejphar.2019.04.019 PMID: 31029709
  78. Zhu, Y.; Yang, T.; Duan, J.; Mu, N.; Zhang, T. MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway. Aging (Albany NY), 2019, 11(4), 1089-1109. doi: 10.18632/aging.101766 PMID: 30787203
  79. Xiao, J.; Lu, Y.; Yang, X. THRIL mediates endothelial progenitor cells autophagy via AKT pathway and FUS. Mol. Med., 2020, 26(1), 86. doi: 10.1186/s10020-020-00201-2 PMID: 32907536
  80. You, G.; Long, X.; Song, F.; Huang, J.; Tian, M.; Xiao, Y.; Deng, S.; Wu, Q. Metformin activates the AMPK-mTOR pathway by modulating lncRNA TUG1 to induce autophagy and inhibit atherosclerosis. Drug Des. Devel. Ther., 2020, 14, 457-468. doi: 10.2147/DDDT.S233932 PMID: 32099330
  81. Jin, H.; Zhu, Y.; Wang, X.; Luo, E.; Li, Y.; Wang, B.; Chen, Y. BDNF corrects NLRP3 inflammasome-induced pyroptosis and glucose metabolism reprogramming through KLF2/HK1 pathway in vascular endothelial cells. Cell. Signal., 2021, 78, 109843. doi: 10.1016/j.cellsig.2020.109843 PMID: 33253911
  82. McCarty, M.F.; Iloki Assanga, S.B.; Lewis Luján, L.; O’Keefe, J.H.; DiNicolantonio, J.J. Nutraceutical strategies for suppressing NLRP3 inflammasome activation: pertinence to the management of COVID-19 and beyond. Nutrients, 2020, 13(1), 47. doi: 10.3390/nu13010047 PMID: 33375692
  83. Wu, P.; Chen, J.; Chen, J.; Tao, J.; Wu, S.; Xu, G.; Wang, Z.; Wei, D.; Yin, W. Trimethylamine N-oxide promotes apoE −/− mice atherosclerosis by inducing vascular endothelial cell pyroptosis via the SDHB/ROS pathway. J. Cell. Physiol., 2020, 235(10), 6582-6591. doi: 10.1002/jcp.29518 PMID: 32012263
  84. Yang, M.; Lv, H.; Liu, Q.; Zhang, L.; Zhang, R.; Huang, X.; Wang, X.; Han, B.; Hou, S.; Liu, D.; Wang, G.; Hou, J.; Yu, B. Colchicine alleviates cholesterol crystal-induced endothelial cell pyroptosis through activating AMPK/SIRT1 pathway. Oxid. Med. Cell. Longev., 2020, 2020, 9173530. doi: 10.1155/2020/9173530 PMID: 32733639
  85. Zhang, Y.; Liu, X.; Bai, X.; Lin, Y.; Li, Z.; Fu, J.; Li, M.; Zhao, T.; Yang, H.; Xu, R.; Li, J.; Ju, J.; Cai, B.; Xu, C.; Yang, B. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/ miR-223/NLRP3 axis. J. Pineal Res., 2018, 64(2), e12449. doi: 10.1111/jpi.12449 PMID: 29024030
  86. Song, B.; Dang, H.; Dong, R. Differential expression of LOXL1-AS1 in coronary heart disease and its regulatory mechanism in ox-LDL-induced human coronary artery endothelial cell pyroptosis. Cardiovasc. Drugs Ther., 2021. Online ahead of print. doi: 10.1007/s10557-021-07274-z PMID: 34633594
  87. Wu, L.M.; Wu, S.G.; Chen, F.; Wu, Q.; Wu, C.M.; Kang, C.M.; He, X.; Zhang, R.Y.; Lu, Z.F.; Li, X.H.; Xu, Y.J.; Li, L.M.; Ding, L.; Bai, H.L.; Liu, X.H.; Hu, Y.W.; Zheng, L. Atorvastatin inhibits pyroptosis through the lncRNA NEXN-AS1/NEXN pathway in human vascular endothelial cells. Atherosclerosis, 2020, 293, 26-34. doi: 10.1016/j.atherosclerosis.2019.11.033 PMID: 31830726
  88. Song, Y.; Yang, L.; Guo, R.; Lu, N.; Shi, Y.; Wang, X. Long noncoding RNA MALAT1 promotes high glucose-induced human endothelial cells pyroptosis by affecting NLRP3 expression through competitively binding miR-22. Biochem. Biophys. Res. Commun., 2019, 509(2), 359-366. doi: 10.1016/j.bbrc.2018.12.139 PMID: 30591217
  89. Zhang, X.; Chen, Z.; Zang, J.; Yao, C.; Shi, J.; Nie, R.; Wu, G. LncRNA-mRNA co-expression analysis discovered the diagnostic and prognostic biomarkers and potential therapeutic agents for myocardial infarction. Aging (Albany NY), 2021, 13(6), 8944-8959. doi: 10.18632/aging.202713 PMID: 33668039
  90. Chen, Z.; Zhou, D.; Zhang, X.; Wu, Q.; Wu, G. Diagnostic biomarkers and potential drug targets for coronary artery disease as revealed by systematic analysis of lncRNA characteristics. Ann. Transl. Med., 2021, 9(15), 1243. doi: 10.21037/atm-21-3276 PMID: 34532380
  91. Zuo, J.; Xu, M.; Wang, D.; Bai, W.; Li, G. Role of competitive endogenous RNA networks in the pathogenesis of coronary artery disease. Ann. Transl. Med., 2021, 9(15), 1234. doi: 10.21037/atm-21-2737 PMID: 34532371
  92. Zhao, Z.; Sun, W.; Guo, Z.; Liu, B.; Yu, H.; Zhang, J. Long noncoding RNAs in myocardial ischemia-reperfusion injury. Oxid. Med. Cell. Longev., 2021, 2021, 8889123. doi: 10.1155/2021/8889123 PMID: 33884101
  93. Boon, R.A.; Jaé, N.; Holdt, L.; Dimmeler, S. Long noncoding RNAs. J. Am. Coll. Cardiol., 2016, 67(10), 1214-1226. doi: 10.1016/j.jacc.2015.12.051 PMID: 26965544
  94. Qian, X.; Zhao, J.; Yeung, P.Y.; Zhang, Q.C.; Kwok, C.K. Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem. Sci., 2019, 44(1), 33-52. doi: 10.1016/j.tibs.2018.09.012 PMID: 30459069
  95. Ali, T.; Grote, P. Beyond the RNA-dependent function of LncRNA genes. eLife, 2020, 9, e60583. doi: 10.7554/eLife.60583 PMID: 33095159

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024