Spinal Muscular Atrophy Treatment: The MTOR Regulatory Intervention


Цитировать

Полный текст

Аннотация

Spinal muscular atrophy (SMA) is a hereditary disorder affecting neurons and muscles, resulting in muscle weakness and atrophy. Most SMA cases are diagnosed during infancy or early childhood, the most common inherited cause of infant mortality without treatment. Still, SMA might appear at older ages with milder symptoms. SMA patients demonstrate progressive muscle waste, movement problems, tremors, dysphagia, bone and joint deformations, and breathing difficulties. The mammalian target of rapamycin (mTOR), the mechanistic target of rapamycin, is a member of the phosphatidylinositol 3-kinase-related kinase family of protein kinases encoded by the mTOR gene in humans. The mTOR phosphorylation, deregulation, and autophagy have shown dissimilarity amongst SMA cell types. Therefore, exploring the underlying molecular process in SMA therapy could provide novel insights and pave the way for finding new treatment options. This paper provides new insight into the possible modulatory effect of mTOR/ autophagy in SMA management.

Об авторах

Naser-Aldin Lashgari

Department of Toxicology & Pharmacology, Faculty of Pharmacy,, Tehran Medical Sciences, Islamic Azad University

Email: info@benthamscience.net

Nazanin Roudsari

Department of Toxicology & Pharmacology, Faculty of Pharmacy,, Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

Email: info@benthamscience.net

Maryam Shayan

Department of Pharmacology, School of Medicine,, Tehran University of Medical Sciences,

Email: info@benthamscience.net

Sadaf Eshraghi

Department of Toxicology & Pharmacology, Faculty of Pharmacy,, Tehran Medical Sciences, Islamic Azad University

Email: info@benthamscience.net

Saeideh Momtaz

GI Pharmacology Interest Group (GPIG),, Universal Scientific Education and Research Network (USERN)

Автор, ответственный за переписку.
Email: info@benthamscience.net

Tannaz Jamialahmadi

Surgical Oncology Research Center,, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Amir Abdolghaffari

Department of Toxicology & Pharmacology, Faculty of Pharmacy,, Tehran Medical Sciences, Islamic Azad University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Amirhossein Sahebkar

Applied Biomedical Research Center,, Mashhad University of Medical Sciences

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Verhaart, I.E.C.; Robertson, A.; Wilson, I.J.; Aartsma-Rus, A.; Cameron, S.; Jones, C.C.; Cook, S.F.; Lochmüller, H. Prevalence, incidence and carrier frequency of 5q–linked spinal muscular atrophy – a literature review. Orphanet J. Rare Dis., 2017, 12(1), 124. doi: 10.1186/s13023-017-0671-8 PMID: 28676062
  2. Markowitz, J.A.; Singh, P.; Darras, B.T. Spinal muscular atrophy: A clinical and research update. Pediatr. Neurol., 2012, 46(1), 1-12. doi: 10.1016/j.pediatrneurol.2011.09.001 PMID: 22196485
  3. Ramdas, S.; Servais, L. New treatments in spinal muscular atrophy: An overview of currently available data. Expert Opin. Pharmacother., 2020, 21(3), 307-315. doi: 10.1080/14656566.2019.1704732 PMID: 31973611
  4. Schorling, D.C.; Pechmann, A.; Kirschner, J. Advances in treatment of spinal muscular atrophy–new phenotypes, new challenges, new implications for care. J. Neuromuscul. Dis., 2020, 7(1), 1-13. doi: 10.3233/JND-190424 PMID: 31707373
  5. Wang, T.; Long, K.; Zhou, Y.; Jiang, X.; Liu, J.; Fong, J.H.C.; Wong, A.S.L.; Ng, W.L.; Wang, W. Optochemical control of mTOR signaling and mTOR-dependent autophagy. ACS Pharmacol. Transl. Sci., 2022, 5(3), 149-155. doi: 10.1021/acsptsci.1c00230 PMID: 35311017
  6. Magri, F.; Vanoli, F.; Corti, S. miRNA in spinal muscular atrophy pathogenesis and therapy. J. Cell. Mol. Med., 2018, 22(2), 755-767. PMID: 29160009
  7. Rodriguez-Muela, N.; Parkhitko, A.; Grass, T.; Gibbs, R.M.; Norabuena, E.M.; Perrimon, N.; Singh, R.; Rubin, L.L. Blocking p62-dependent SMN degradation ameliorates spinal muscular atrophy disease phenotypes. J. Clin. Invest., 2018, 128(7), 3008-3023. doi: 10.1172/JCI95231 PMID: 29672276
  8. Wang, Y.; Shao, Y.; Gao, Y.; Wan, G.; Wan, D.; Zhu, H.; Qiu, Y.; Ye, X. Catalpol prevents denervated muscular atrophy related to the inhibition of autophagy and reduces BAX/BCL2 ratio via mTOR pathway. Drug Des. Devel. Ther., 2018, 13, 243-253. doi: 10.2147/DDDT.S188968 PMID: 30643390
  9. Wirth, B.; Mendoza-Ferreira, N.; Torres-Benito, L. Spinal muscular atrophy disease modifiers. Spinal muscular atrophy; Elsevier, 2017, pp. 191-210. doi: 10.1016/B978-0-12-803685-3.00012-4
  10. Laplante, M; Sabatini, DM mTOR signaling at a glance. J. Cell Sci., 2009, 122(20), 3589-3594.
  11. Weichhart, T; Hengstschläger, M; Linke, M Regulation of innate immune cell function by mTOR. Nature Reviews Immunology, 2015, 15(10), 599-614. doi: 10.1038/nri3901
  12. Lashgari, N.A.; Roudsari, N.M.; Momtaz, S.; Abdolghaffari, A.H. Mammalian target of rapamycin; novel insight for management of inflammatory bowel diseases. World J. Pharmacol., 2022, 11(1), 1-5. doi: 10.5497/wjp.v11.i1.1
  13. Lashgari, N.A.; Roudsari, N.M.; Momtaz, S.; Ghanaatian, N.; Kohansal, P.; Farzaei, M.H.; Afshari, K.; Sahebkar, A.; Abdolghaffari, A.H. Targeting mammalian target of rapamycin: Prospects for the treatment of inflammatory bowel diseases. Curr. Med. Chem., 2021, 28(8), 1605-1624. doi: 10.2174/1875533XMTA2jMzE32 PMID: 32364064
  14. Yip, CK; Murata, K; Walz, T; Sabatini, DM; Kang, SA Structure of the human mTOR complex I and its implications for rapamycin inhibition. Molecular Cell, 2010, 38(5), 768-774.
  15. Scaiola, A.; Mangia, F.; Imseng, S.; Boehringer, D.; Berneiser, K.; Shimobayashi, M The 3.2-Å resolution structure of human mTORC2. Science Advances, 2020, 6(45)
  16. Rehorst, WA; Thelen, MP; Nolte, H; Türk, C; Cirak, S; Peterson, JM Muscle regulates mTOR dependent axonal local translation in motor neurons via CTRP3 secretion: Implications for a neuromuscular disorder, spinal muscular atrophy. Acta Neuropathol. Commun., 2019, 7(1)
  17. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: A. D - 101572336 2015, 57
  18. Ferri, N.; Siegl, P.; Corsini, A.; Herrmann, J.; Lerman, A.; Benghozi, R. Drug attrition during pre-clinical and clinical development: Understanding and managing drug-induced cardiotoxicity. Pharmacol. Ther., 2013, 138(3), 470-484. doi: 10.1016/j.pharmthera.2013.03.005 PMID: 23507039
  19. Granato, M.; Rizzello, C.; Gilardini Montani, M.S.; Cuomo, L.; Vitillo, M.; Santarelli, R.; Gonnella, R.; D’Orazi, G.; Faggioni, A.; Cirone, M. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J. Nutr. Biochem., 2017, 41, 124-136. doi: 10.1016/j.jnutbio.2016.12.011 PMID: 28092744
  20. Säemann, M.D.; Haidinger, M.; Hecking, M.; Hörl, W.H.; Weichhart, T. The multifunctional role of mTOR in innate immunity: Implications for transplant immunity. Am. J. Transplant., 2009, 9(12), 2655-2661. doi: 10.1111/j.1600-6143.2009.02832.x PMID: 19788500
  21. Allan, S. Seeing mTOR in a new light. Nature Reviews Immunology, 2008, 8(12), 904. doi: 10.1038/nri2457
  22. Arumugam, S. A study on the role of nf-kb signaling pathway members in regulating survival motor neuron protein level and in the pathogenesis of spinal muscular atrophy: Universitat de lleida 2017.
  23. Ji, Y.; Li, M.; Chang, M.; Liu, R.; Qiu, J.; Wang, K.; Deng, C.; Shen, Y.; Zhu, J.; Wang, W.; Xu, L.; Sun, H. Inflammation: Roles in skeletal muscle atrophy. Antioxidants, 2022, 11(9), 1686. doi: 10.3390/antiox11091686 PMID: 36139760
  24. Weichhart, T.; Costantino, G.; Poglitsch, M.; Rosner, M.; Zeyda, M.; Stuhlmeier, K.M. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity, 2008, 29(4), 565-577.
  25. Lefebvre, S.; Sarret, C. Pathogenesis and therapeutic targets in spinal muscular atrophy (SMA). Archives de Pédiatrie, 2020, 27(7), 7S3-7S8.
  26. Kolb, S.J.; Kissel, J.T. Spinal muscular atrophy: A timely review. Arch Neurol., 2011, 68(8), 979-984. doi: 10.1001/archneurol.2011.74
  27. Hensel, N.; Kubinski, S.; Claus, P. The need for SMN-independent treatments of spinal muscular atrophy (SMA) to complement SMN-enhancing drugs. Front. Neurol., 2020, 11, 45. doi: 10.3389/fneur.2020.00045 PMID: 32117013
  28. Deguise, M.-O.; Kothary, R. New insights into SMA pathogenesis: Immune dysfunction and neuroinflammation. Ann. Clin. Transl. Neurol., 2017, 4(7), 522-530. doi: 10.1002/acn3.423
  29. Mena, T. Spinal Muscular Atrophy (SMA) Nemours KidsHealth 2018. Available From: https://kidshealth.org/en/parents/sma.html#:~:text=Type%20I%2C%20sometimes%20called%20infantile,7%20and%2018%20months%20old
  30. Bowerman, M.; Becker, C.G.; Yáñez-Muñoz, R.J.; Ning, K.; Wood, M.J.A.; Gillingwater, T.H.; Talbot, K. Therapeutic strategies for spinal muscular atrophy: SMN and beyond. Dis. Model. Mech., 2017, 10(8), 943-954. doi: 10.1242/dmm.030148 PMID: 28768735
  31. Soler-Botija, C.; Cuscó, I.; Caselles, L.; López, E.; Baiget, M.; Tizzano, E.F. Implication of fetal SMN2 expression in type I SMA pathogenesis: Protection or pathological gain of function? J. Neuropathol. Exp. Neurol., 2005, 64(3), 215-223.
  32. Aslesh, T.; Yokota, T. Restoring SMN expression: An overview of the therapeutic developments for the treatment of spinal muscular atrophy. Cells, 2022, 11(3), 417. doi: 10.3390/cells11030417 PMID: 35159227
  33. Yeo, C.J.J.; Simmons, Z.; De Vivo, D.C.; Darras, B.T. Ethical perspectives on treatment options with spinal muscular atrophy patients. Ann. Neurol., 2022, 91(3), 305-316. doi: 10.1002/ana.26299 PMID: 34981567
  34. López-Cortés, A.; Echeverría-Garcés, G.; Ramos-Medina, M.J. Molecular pathogenesis and new therapeutic dimensions for spinal muscular atrophy. Biology (Basel), 2022, 11(6), 894. doi: 10.3390/biology11060894 PMID: 35741415
  35. Reilly, A.; Chehade, L.; Kothary, R. Curing SMA: Are we there yet? Gene Ther., 2022, 1-10. PMID: 35614235
  36. Zettler, B.; Estrella, E.; Liaquat, K.; Lichten, L. Evolving approaches to prenatal genetic counseling for Spinal Muscular Atrophy in the new treatment era. J. Genet. Couns., 2022, 31(3), 803-814. doi: 10.1002/jgc4.1549 PMID: 35037741
  37. Brakemeier, S; Stolte, B; Kleinschnitz, C; Hagenacker, T. Treatment of adult spinal muscular atrophy: Overview and recent developments. Curr. Pharma. Design, 2022.
  38. Guo, B.; Zhuang, T.; Xu, F.; Lin, X.; Li, F.; Shan, S.K.; Wu, F.; Zhong, J.Y.; Wang, Y.; Zheng, M.H.; Xu, Q.S.; Ehsan, U.M.H.; Yuan, L.Q. New insights into implications of CTRP3 in obesity, metabolic dysfunction, and cardiovascular diseases: Potential of therapeutic interventions. Front. Physiol., 2020, 11, 570270. doi: 10.3389/fphys.2020.570270 PMID: 33343381
  39. Rehorst, WA Muscle-secreted factors in spinal muscular atrophy: CTRP3 at the interface of muscle and neuron. 2019.
  40. Singh, N.N.; Hoffman, S.; Reddi, P.P.; Singh, R.N. Spinal muscular atrophy: Broad disease spectrum and sex-specific phenotypes. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(4), 166063. doi: 10.1016/j.bbadis.2020.166063 PMID: 33412266
  41. Custer, S.K.; Androphy, E.J. Autophagy dysregulation in cell culture and animals models of spinal muscular atrophy. Mol. Cell. Neurosci., 2014, 61, 133-140. doi: 10.1016/j.mcn.2014.06.006 PMID: 24983518
  42. Piras, A.; Schiaffino, L.; Boido, M.; Valsecchi, V.; Guglielmotto, M.; De Amicis, E.; Puyal, J.; Garcera, A.; Tamagno, E.; Soler, R.M.; Vercelli, A. Inhibition of autophagy delays motoneuron degeneration and extends lifespan in a mouse model of spinal muscular atrophy. Cell Death Dis., 2017, 8(12), 3223. doi: 10.1038/s41419-017-0086-4 PMID: 29259166
  43. Sansa, A.; Hidalgo, I.; Miralles, M.P.; de la Fuente, S.; Perez-Garcia, M.J.; Munell, F. Spinal Muscular Atrophy autophagy profile is tissue-dependent: Differential regulation between muscle and motoneurons. Acta Neuropathol. Commun., 2021, 9(1)
  44. Zhang, Q. Role of mTOR kinase activity in skeletal muscle integrity and physiology: Ecole normale supérieure de lyon-ENS LYON. East China Normal University, 2015.
  45. Tang, H.; Inoki, K.; Lee, M.; Wright, E.; Khuong, A.; Khuong, A.; Sugiarto, S.; Garner, M.; Paik, J.; DePinho, R.A.; Goldman, D.; Guan, K.L.; Shrager, J.B. mTORC1 promotes denervation-induced muscle atrophy through a mechanism involving the activation of FoxO and E3 ubiquitin ligases. Sci. Signal., 2014, 7(314), ra18. doi: 10.1126/scisignal.2004809 PMID: 24570486
  46. Wang, P.; Kang, S.Y.; Kim, S.J.; Park, Y.K.; Jung, H.W. Monotropein improves dexamethasone-induced muscle atrophy via the AKT/mTOR/FOXO3a signaling pathways. Nutrients, 2022, 14(9), 1859. doi: 10.3390/nu14091859 PMID: 35565825
  47. Millino, C.; Fanin, M.; Vettori, A.; Laveder, P.; Mostacciuolo, M.L.; Angelini, C. Different atrophy-hypertrophy transcription pathways in muscles affected by severe and mild spinal muscular atrophy. BMC Med., 2009, 7(1)
  48. Yin, D.; Lin, D.; Xie, Y.; Gong, A.; Jiang, P.; Wu, J. Neuregulin-1β alleviates sepsis-induced skeletal muscle atrophy by inhibiting autophagy via akt/mtor signaling pathway in rats. Shock: Injury, Inflammation, and Sepsis. Shock, 2022, 57(3), 397-407. doi: 10.1097/SHK.0000000000001860 PMID: 34559744
  49. Valionyte, E.; Yang, Y.; Griffiths, S.A.; Bone, A.T.; Barrow, E.R.; Sharma, V.; Lu, B.; Luo, S. The caspase-6–p62 axis modulates p62 droplets based autophagy in a dominant-negative manner. Cell Death Differ., 2022, 29(6), 1211-1227. doi: 10.1038/s41418-021-00912-x PMID: 34862482
  50. Darbar, I.A.; Plaggert, P.G.; Resende, M.B.D.; Zanoteli, E.; Reed, U.C. Evaluation of muscle strength and motor abilities in children with type II and III spinal muscle atrophy treated with valproic acid. BMC Neurol., 2011, 11(1), 36. doi: 10.1186/1471-2377-11-36 PMID: 21435220
  51. Jablonka, S.; Sendtner, M. Developmental regulation of SMN expression: Pathophysiological implications and perspectives for therapy development in spinal muscular atrophy. Gene Ther., 2017, 24(9), 506-513. doi: 10.1038/gt.2017.46 PMID: 28556834
  52. Rocchi, A.; Milioto, C.; Parodi, S.; Armirotti, A.; Borgia, D.; Pellegrini, M.; Urciuolo, A.; Molon, S.; Morbidoni, V.; Marabita, M.; Romanello, V.; Gatto, P.; Blaauw, B.; Bonaldo, P.; Sambataro, F.; Robins, D.M.; Lieberman, A.P.; Sorarù, G.; Vergani, L.; Sandri, M.; Pennuto, M. Glycolytic-to-oxidative fiber-type switch and mTOR signaling activation are early-onset features of SBMA muscle modified by high-fat diet. Acta Neuropathol., 2016, 132(1), 127-144. doi: 10.1007/s00401-016-1550-4 PMID: 26971100
  53. Walter, L.M.; Deguise, M.O.; Meijboom, K.E.; Betts, C.A.; Ahlskog, N.; van Westering, T.L.E.; Hazell, G.; McFall, E.; Kordala, A.; Hammond, S.M.; Abendroth, F.; Murray, L.M.; Shorrock, H.K.; Prosdocimo, D.A.; Haldar, S.M.; Jain, M.K.; Gillingwater, T.H.; Claus, P.; Kothary, R.; Wood, M.J.A.; Bowerman, M. Interventions targeting glucocorticoid-krüppel-like factor 15-branched-chain amino acid signaling improve disease phenotypes in spinal muscular atrophy mice. EBioMedicine, 2018, 31, 226-242. doi: 10.1016/j.ebiom.2018.04.024 PMID: 29735415
  54. Tseng, Y.T.; Chen, C.S.; Jong, Y.J.; Chang, F.R.; Lo, Y.C. Loganin possesses neuroprotective properties, restores SMN protein and activates protein synthesis positive regulator Akt/mTOR in experimental models of spinal muscular atrophy. Pharmacol. Res., 2016, 111, 58-75. doi: 10.1016/j.phrs.2016.05.023 PMID: 27241020
  55. Kye, M.J.; Niederst, E.D.; Wertz, M.H.; Gonçalves, I.C.G.; Akten, B.; Dover, K.Z.; Peters, M.; Riessland, M.; Neveu, P.; Wirth, B.; Kosik, K.S.; Sardi, S.P.; Monani, U.R.; Passini, M.A.; Sahin, M. SMN regulates axonal local translation via miR-183/mTOR pathway. Hum. Mol. Genet., 2014, 23(23), 6318-6331. doi: 10.1093/hmg/ddu350 PMID: 25055867
  56. Ning, K.; Drepper, C.; Valori, C.F.; Ahsan, M.; Wyles, M.; Higginbottom, A.; Herrmann, T.; Shaw, P.; Azzouz, M.; Sendtner, M. PTEN depletion rescues axonal growth defect and improves survival in SMN-deficient motor neurons. Hum. Mol. Genet., 2010, 19(16), 3159-3168. doi: 10.1093/hmg/ddq226 PMID: 20525971
  57. Gabanella, F.; Barbato, C.; Fiore, M.; Petrella, C.; de Vincentiis, M.; Greco, A.; Minni, A.; Corbi, N.; Passananti, C.; Di Certo, M.G. Fine-tuning of mTOR mRNA and nucleolin complexes by SMN. Cells, 2021, 10(11), 3015. doi: 10.3390/cells10113015 PMID: 34831238
  58. Liu, X.; Joshi, S.K.; Samagh, S.P.; Dang, Y.X.; Laron, D.; Lovett, D.H.; Bodine, S.C.; Kim, H.T.; Feeley, B.T. Evaluation of Akt/mTOR activity in muscle atrophy after rotator cuff tears in a rat model. J. Orthop. Res., 2012, 30(9), 1440-1446. doi: 10.1002/jor.22096 PMID: 22378614

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024