Chemical Strategies towards the Development of Effective Anticancer Peptides
- Authors: Li C.1, Jin K.2
-
Affiliations:
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, Shandong University
- Issue: Vol 31, No 14 (2024)
- Pages: 1839-1873
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/644351
- DOI: https://doi.org/10.2174/0929867330666230426111157
- ID: 644351
Cite item
Full Text
Abstract
Cancer is increasingly recognized as one of the primary causes of death and has become a multifaceted global health issue. Modern medical science has made significant advancements in the diagnosis and therapy of cancer over the past decade. The detrimental side effects, lack of efficacy, and multidrug resistance of conventional cancer therapies have created an urgent need for novel anticancer therapeutics or treatments with low cytotoxicity and drug resistance. The pharmaceutical groups have recognized the crucial role that peptide therapeutic agents can play in addressing unsatisfied healthcare demands and how these become great supplements or even preferable alternatives to biological therapies and small molecules. Anticancer peptides, as a vibrant therapeutic strategy against various cancer cells, have demonstrated incredible anticancer potential due to high specificity and selectivity, low toxicity, and the ability to target the surface of traditional "undruggable" proteins. This review will provide the research progression of anticancer peptides, mainly focusing on the discovery and modifications along with the optimization and application of these peptides in clinical practice.
About the authors
Cuicui Li
Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University
Email: info@benthamscience.net
Kang Jin
Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, Shandong University
Author for correspondence.
Email: info@benthamscience.net
References
- Luan, X.; Wu, Y.; Shen, Y.W.; Zhang, H.; Zhou, Y.D.; Chen, H.Z.; Nagle, D.G.; Zhang, W.D. Cytotoxic and antitumor peptides as novel chemotherapeutics. Nat. Prod. Rep., 2021, 38(1), 7-17. doi: 10.1039/D0NP00019A PMID: 32776055
- Xie, M.; Liu, D.; Yang, Y. Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification. Open Biol., 2020, 10(7), 200004. doi: 10.1098/rsob.200004 PMID: 32692959
- Felício, M.R.; Silva, O.N.; Gonçalves, S.; Santos, N.C.; Franco, O.L. Peptides with dual antimicrobial and anticancer activities. Front Chem., 2017, 5, 5. doi: 10.3389/fchem.2017.00005 PMID: 28271058
- Pan, X.; Xu, J.; Jia, X. Research progress evaluating the function and mechanism of anti-tumor peptides. Cancer Manag. Res., 2020, 12, 397-409. doi: 10.2147/CMAR.S232708 PMID: 32021452
- Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov., 2021, 20(4), 309-325. doi: 10.1038/s41573-020-00135-8 PMID: 33536635
- Mullard, A. 2021 FDA approvals. Nat. Rev. Drug Discov., 2022, 21(2), 83-88. doi: 10.1038/d41573-022-00001-9 PMID: 34983958
- Chai, T.T.; Ee, K.Y.; Kumar, D.T.; Manan, F.A.; Wong, F.C. Plant bioactive peptides: Current status and prospects towards use on human health. Protein Pept. Lett., 2021, 28(6), 623-642. doi: 10.2174/18755305MTEygMzc63 PMID: 33319654
- Li, X.; Guo, M.; Chi, J.; Ma, J. Bioactive peptides from walnut residue protein. Molecules, 2020, 25(6), 1285. doi: 10.3390/molecules25061285 PMID: 32178315
- Kaneko, K. Appetite regulation by plant-derived bioactive peptides for promoting health. Peptides, 2021, 144, 170608. doi: 10.1016/j.peptides.2021.170608 PMID: 34265369
- Chigumba, D.N.; Mydy, L.S.; de Waal, F.; Li, W.; Shafiq, K.; Wotring, J.W.; Mohamed, O.G.; Mladenovic, T.; Tripathi, A.; Sexton, J.Z.; Kautsar, S.; Medema, M.H.; Kersten, R.D. Discovery and biosynthesis of cyclic plant peptides via autocatalytic cyclases. Nat. Chem. Biol., 2022, 18(1), 18-28. doi: 10.1038/s41589-021-00892-6 PMID: 34811516
- Hitotsuyanagi, Y.; Ishikawa, H.; Hasuda, T.; Takeya, K. Isolation, structural elucidation, and synthesis of RA-XVII, a novel bicyclic hexapeptide from Rubia cordifolia, and the effect of side chain at residue 1 upon the conformation and cytotoxic activity. Tetrahedron Lett., 2004, 45(5), 935-938. doi: 10.1016/j.tetlet.2003.11.112
- Hitotsuyanagi, Y. Design and synthesis of analogues of RA-VII-an antitumor bicyclic hexapeptide from Rubiae radix. J. Nat. Med., 2021, 75(4), 752-761. doi: 10.1007/s11418-021-01542-w PMID: 34244894
- Aaghaz, S.; Gohel, V.; Kamal, A. Peptides as potential anticancer agents. Curr. Top. Med. Chem., 2019, 19(17), 1491-1511. doi: 10.2174/1568026619666190125161517 PMID: 30686254
- Han, B.; Goeger, D.; Maier, C.S.; Gerwick, W.H. The wewakpeptins, cyclic depsipeptides from a Papua new Guinea collection of the marine cyanobacterium Lyngbya semiplena. J. Org. Chem., 2005, 70(8), 3133-3139. doi: 10.1021/jo0478858 PMID: 15822975
- Luesch, H.; Moore, R.E.; Paul, V.J.; Mooberry, S.L.; Corbett, T.H. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J. Nat. Prod., 2001, 64(7), 907-910. doi: 10.1021/np010049y PMID: 11473421
- Pettit, G.R.; Kamano, Y.; Herald, C.L.; Tuinman, A.A.; Boettner, F.E.; Kizu, H.; Schmidt, J.M.; Baczynskyj, L.; Tomer, K.B.; Bontems, R.J. The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J. Am. Chem. Soc., 1987, 109(22), 6883-6885. doi: 10.1021/ja00256a070
- Yang, K.; Chen, B.; Gianolio, D.A.; Stefano, J.E.; Busch, M.; Manning, C.; Alving, K.; Gregory, R.C.; Brondyk, W.H.; Miller, R.J.; Dhal, P.K. Convergent synthesis of hydrophilic monomethyl dolastatin 10 based drug linkers for antibodydrug conjugation. Org. Biomol. Chem., 2019, 17(35), 8115-8124. doi: 10.1039/C9OB01639B PMID: 31460552
- Shnyder, S.; Cooper, P.; Millington, N.; Pettit, G.; Bibby, M. Auristatin PYE, a novel synthetic derivative of dolastatin 10, is highly effective in human colon tumour models. Int. J. Oncol., 2007, 31(2), 353-360. doi: 10.3892/ijo.31.2.353 PMID: 17611692
- Kaplon, H.; Muralidharan, M.; Schneider, Z.; Reichert, J.M. Antibodies to watch in 2020. MAbs, 2020, 12(1), 1703531. doi: 10.1080/19420862.2019.1703531 PMID: 31847708
- Tilly, H.; Morschhauser, F.; Sehn, L.H.; Friedberg, J.W.; Trněný, M.; Sharman, J.P.; Herbaux, C.; Burke, J.M.; Matasar, M.; Rai, S.; Izutsu, K.; Mehta-Shah, N.; Oberic, L.; Chauchet, A.; Jurczak, W.; Song, Y.; Greil, R.; Mykhalska, L.; Bergua-Burgués, J.M.; Cheung, M.C.; Pinto, A.; Shin, H.J.; Hapgood, G.; Munhoz, E.; Abrisqueta, P.; Gau, J.P.; Hirata, J.; Jiang, Y.; Yan, M.; Lee, C.; Flowers, C.R.; Salles, G. Polatuzumab vedotin in previously untreated diffuse large B-Cell lymphoma. N. Engl. J. Med., 2022, 386(4), 351-363. doi: 10.1056/NEJMoa2115304 PMID: 34904799
- Canellos, G.P.; LaCasce, A.S. Brentuximab vedotin for stage III or IV hodgkins lymphoma. N. Engl. J. Med., 2018, 378(16), 1560. PMID: 29671468
- Hossain, M.B.; van der Helm, D.; Antel, J.; Sheldrick, G.M.; Sanduja, S.K.; Weinheimer, A.J. Crystal and molecular structure of didemnin B, an antiviral and cytotoxic depsipeptide. Proc. Natl. Acad. Sci., 1988, 85(12), 4118-4122. doi: 10.1073/pnas.85.12.4118 PMID: 3380783
- Potts, M.B.; McMillan, E.A.; Rosales, T.I.; Kim, H.S.; Ou, Y.H.; Toombs, J.E.; Brekken, R.A.; Minden, M.D.; MacMillan, J.B.; White, M.A. Mode of action and pharmacogenomic biomarkers for exceptional responders to didemnin B. Nat. Chem. Biol., 2015, 11(6), 401-408. doi: 10.1038/nchembio.1797 PMID: 25867045
- Maroun, J.A.; Belanger, K.; Seymour, L.; Matthews, S.; Roach, J.; Dionne, J.; Soulieres, D.; Stewart, D.; Goel, R.; Charpentier, D.; Goss, G.; Tomiak, E.; Yau, J.; Jimeno, J.; Chiritescu, G. Phase I study of Aplidine in a daily×5 one-hour infusion every 3 weeks in patients with solid tumors refractory to standard therapy. A National Cancer Institute of Canada Clinical Trials Group study: NCIC CTG IND 115. Ann. Oncol., 2006, 17(9), 1371-1378. doi: 10.1093/annonc/mdl165 PMID: 16966366
- Jimenez, P.C.; Wilke, D.V.; Branco, P.C.; Bauermeister, A.; Rezende-Teixeira, P.; Gaudêncio, S.P.; Costa-Lotufo, L.V. Enriching cancer pharmacology with drugs of marine origin. Br. J. Pharmacol., 2020, 177(1), 3-27. doi: 10.1111/bph.14876 PMID: 31621891
- White, K.M.; Rosales, R.; Yildiz, S.; Kehrer, T.; Miorin, L.; Moreno, E.; Jangra, S.; Uccellini, M.B.; Rathnasinghe, R.; Coughlan, L.; Martinez-Romero, C.; Batra, J.; Rojc, A.; Bouhaddou, M.; Fabius, J.M.; Obernier, K.; Dejosez, M.; Guillén, M.J.; Losada, A.; Avilés, P.; Schotsaert, M.; Zwaka, T.; Vignuzzi, M.; Shokat, K.M.; Krogan, N.J.; García-Sastre, A. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science, 2021, 371(6532), 926-931. doi: 10.1126/science.abf4058 PMID: 33495306
- Scala, S. Molecular pathways: Targeting the CXCR4-CXCL12 axis-untapped potential in the tumor microenvironment. Clin. Cancer Res., 2015, 21(19), 4278-4285. doi: 10.1158/1078-0432.CCR-14-0914 PMID: 26199389
- Pernas, S.; Martin, M.; Kaufman, P.A.; Gil-Martin, M.; Gomez Pardo, P.; Lopez-Tarruella, S.; Manso, L.; Ciruelos, E.; Perez-Fidalgo, J.A.; Hernando, C.; Ademuyiwa, F.O.; Weilbaecher, K.; Mayer, I.; Pluard, T.J.; Martinez Garcia, M.; Vahdat, L.; Perez-Garcia, J.; Wach, A.; Barker, D.; Fung, S.; Romagnoli, B.; Cortes, J. Balixafortide plus eribulin in HER2-negative metastatic breast cancer: A phase 1, single-arm, dose-escalation trial. Lancet Oncol., 2018, 19(6), 812-824. doi: 10.1016/S1470-2045(18)30147-5 PMID: 29706375
- Kim, M.; Kang, N.; Ko, S.; Park, J.; Park, E.; Shin, D.; Kim, S.; Lee, S.; Lee, J.; Lee, S.; Ha, E.; Jeon, S.; Park, Y. Antibacterial and antibiofilm activity and mode of action of Magainin 2 against drug-resistant acinetobacter baumannii. Int. J. Mol. Sci., 2018, 19(10), 3041. doi: 10.3390/ijms19103041 PMID: 30301180
- Anand, P.; Grigoryan, A.; Bhuiyan, M.H.; Ueberheide, B.; Russell, V.; Quinoñez, J.; Moy, P.; Chait, B.T.; Poget, S.F.; Holford, M. Sample limited characterization of a novel disulfide-rich venom peptide toxin from terebrid marine snail Terebra variegata. PLoS One, 2014, 9(4), e94122. doi: 10.1371/journal.pone.0094122 PMID: 24713808
- Fahy, R.J.; Wewers, M.D. Pulmonary defense and the human cathelicidin hCAP-18/LL-37. Immunol. Res., 2005, 31(2), 075-090. doi: 10.1385/IR:31:2:075 PMID: 15778507
- Gaspar, D.; Freire, J.M.; Pacheco, T.R.; Barata, J.T.; Castanho, M.A.R.B. Apoptotic human neutrophil peptide-1 anti-tumor activity revealed by cellular biomechanics. Biochim. Biophys. Acta Mol. Cell Res., 2015, 1853(2), 308-316. doi: 10.1016/j.bbamcr.2014.11.006 PMID: 25447543
- Li, B.; Lyu, P.; Xi, X.; Ge, L.; Mahadevappa, R.; Shaw, C.; Kwok, H.F. Triggering of cancer cell cycle arrest by a novel scorpion venom-derived peptide-Gonearrestide. J. Cell. Mol. Med., 2018, 22(9), 4460-4473. doi: 10.1111/jcmm.13745 PMID: 29993185
- Cassoli, J.S.; Verano-Braga, T.; Oliveira, J.S.; Montandon, G.G.; Cologna, C.T.; Peigneur, S.; Pimenta, A.M.C.; Kjeldsen, F.; Roepstorff, P.; Tytgat, J.; de Lima, M.E. The proteomic profile of Stichodactyla duerdeni secretion reveals the presence of a novel O-linked glycopeptide. J. Proteomics, 2013, 87, 89-102. doi: 10.1016/j.jprot.2013.05.022 PMID: 23727489
- Pazgier, M.; Liu, M.; Zou, G.; Yuan, W.; Li, C.; Li, C.; Li, J.; Monbo, J.; Zella, D.; Tarasov, S.G.; Lu, W. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc. Natl. Acad. Sci., 2009, 106(12), 4665-4670. doi: 10.1073/pnas.0900947106 PMID: 19255450
- Kang, J.; Zhao, G.; Lin, T.; Tang, S.; Xu, G.; Hu, S.; Bi, Q.; Guo, C.; Sun, L.; Han, S.; Xu, Q.; Nie, Y.; Wang, B.; Liang, S.; Ding, J.; Wu, K. A peptide derived from phage display library exhibits anti-tumor activity by targeting GRP78 in gastric cancer multidrug resistance cells. Cancer Lett., 2013, 339(2), 247-259. doi: 10.1016/j.canlet.2013.06.016 PMID: 23792224
- Liu, M.; Li, C.; Pazgier, M.; Li, C.; Mao, Y.; Lv, Y.; Gu, B.; Wei, G.; Yuan, W.; Zhan, C.; Lu, W.Y.; Lu, W. D-peptide inhibitors of the p53MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proc. Natl. Acad. Sci., 2010, 107(32), 14321-14326. doi: 10.1073/pnas.1008930107 PMID: 20660730
- Zhan, C.; Zhao, L.; Wei, X.; Wu, X.; Chen, X.; Yuan, W.; Lu, W.Y.; Pazgier, M.; Lu, W. An ultrahigh affinity d-peptide antagonist Of MDM2. J. Med. Chem., 2012, 55(13), 6237-6241. doi: 10.1021/jm3005465 PMID: 22694121
- Kim, J.H.; Seok, J.K.; Kim, Y.M.; Boo, Y.C. Identification of small peptides and glycinamide that inhibit melanin synthesis using a positional scanning synthetic peptide combinatorial library. Br. J. Dermatol., 2019, 181(1), 128-137. doi: 10.1111/bjd.17634 PMID: 30637717
- Yin, Y.; Ochi, N.; Craven, T.W.; Baker, D.; Takigawa, N.; Suga, H. De novo carborane-containing macrocyclic peptides targeting human epidermal growth factor receptor. J. Am. Chem. Soc., 2019, 141(49), 19193-19197. doi: 10.1021/jacs.9b09106 PMID: 31752491
- Takada, Y.; Itoh, H.; Paudel, A.; Panthee, S.; Hamamoto, H.; Sekimizu, K.; Inoue, M. Discovery of gramicidin A analogues with altered activities by multidimensional screening of a one-bead-one-compound library. Nat. Commun., 2020, 11(1), 4935. doi: 10.1038/s41467-020-18711-2 PMID: 33004797
- Guardiola, S.; Díaz-Lobo, M.; Seco, J.; García, J.; Nevola, L.; Giralt, E. Peptides targeting EGF block the EGF-EGFR interaction. ChemBioChem, 2016, 17(8), 702-711. doi: 10.1002/cbic.201500525 PMID: 26677067
- Cha, N.; Han, X.; Jia, B.; Liu, Y.; Wang, X.; Gao, Y.; Ren, J. Structure-based design of peptides against HER2 with cytotoxicity on colon cancer. Artif. Cells Nanomed. Biotechnol., 2017, 45(3), 649-654. doi: 10.3109/21691401.2016.1167705 PMID: 27068253
- Chatterjee, S.; Lesniak, W.G.; Miller, M.S.; Lisok, A.; Sikorska, E.; Wharram, B.; Kumar, D.; Gabrielson, M.; Pomper, M.G.; Gabelli, S.B.; Nimmagadda, S. Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem. Biophys. Res. Commun., 2017, 483(1), 258-263. doi: 10.1016/j.bbrc.2016.12.156 PMID: 28025143
- Gabernet, G.; Gautschi, D.; Müller, A.T.; Neuhaus, C.S.; Armbrecht, L.; Dittrich, P.S.; Hiss, J.A.; Schneider, G. In silico design and optimization of selective membranolytic anticancer peptides. Sci. Rep., 2019, 9(1), 11282. doi: 10.1038/s41598-019-47568-9 PMID: 31375699
- Tada, N.; Horibe, T.; Haramoto, M.; Ohara, K.; Kohno, M.; Kawakami, K. A single replacement of histidine to arginine in EGFR-lytic hybrid peptide demonstrates the improved anticancer activity. Biochem. Biophys. Res. Commun., 2011, 407(2), 383-388. doi: 10.1016/j.bbrc.2011.03.030 PMID: 21396910
- Zhang, P.; Ma, J.; Yan, Y.; Chen, B.; Liu, B.; Jian, C.; Zhu, B.; Liang, S.; Zeng, Y.; Liu, Z. Arginine modification of lycosin-I to improve inhibitory activity against cancer cells. Org. Biomol. Chem., 2017, 15(44), 9379-9388. doi: 10.1039/C7OB02233F PMID: 29090725
- Ke, M.; Dong, J.; Wang, Y.; Zhang, J.; Zhang, M.; Wu, Z.; Lv, Y.; Wu, R. MEL-pep, an analog of melittin, disrupts cell membranes and reverses 5-fluorouracil resistance in human hepatocellular carcinoma cells. Int. J. Biochem. Cell Biol., 2018, 101, 39-48. doi: 10.1016/j.biocel.2018.05.013 PMID: 29800725
- Li, Y.; Lei, Y.; Wagner, E.; Xie, C.; Lu, W.; Zhu, J.; Shen, J.; Wang, J.; Liu, M. Potent retro-inverso D-peptide for simultaneous targeting of angiogenic blood vasculature and tumor cells. Bioconjug. Chem., 2013, 24(1), 133-143. doi: 10.1021/bc300537z PMID: 23241015
- Li, X.; Liu, C.; Chen, S.; Hu, H.; Su, J.; Zou, Y. d -Amino acid mutation of PMI as potent dual peptide inhibitors of p53-MDM2/MDMX interactions. Bioorg. Med. Chem. Lett., 2017, 27(20), 4678-4681. doi: 10.1016/j.bmcl.2017.09.014 PMID: 28916339
- Kluskens, L.D.; Nelemans, S.A.; Rink, R.; de Vries, L.; Meter-Arkema, A.; Wang, Y.; Walther, T.; Kuipers, A.; Moll, G.N.; Haas, M. Angiotensin-(1-7) with thioether bridge: an angiotensin-converting enzyme-resistant, potent angiotensin-(1-7) analog. J. Pharmacol. Exp. Ther., 2009, 328(3), 849-854. doi: 10.1124/jpet.108.146431 PMID: 19038778
- Leshchiner, E.S.; Parkhitko, A.; Bird, G.H.; Luccarelli, J.; Bellairs, J.A.; Escudero, S.; Opoku-Nsiah, K.; Godes, M.; Perrimon, N.; Walensky, L.D. Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proc. Natl. Acad. Sci., 2015, 112(6), 1761-1766. doi: 10.1073/pnas.1413185112 PMID: 25624485
- Li, C.; Zhao, N.; An, L.; Dai, Z.; Chen, X.; Yang, F.; You, Q.; Di, B.; Hu, C.; Xu, L. Apoptosis-inducing activity of synthetic hydrocarbon-stapled peptides in H358 cancer cells expressing KRASG12C. Acta Pharm. Sin. B, 2021, 11(9), 2670-2684. doi: 10.1016/j.apsb.2021.06.013 PMID: 34589388
- Lin, T.; Min, H.; Jiang, C.; Niu, M.; Yan, F.; Xu, L.; Di, B. Design, synthesis and biological evaluation of phosphopeptides as Polo-like kinase 1 Polo-box domain inhibitors. Bioorg. Med. Chem., 2018, 26(12), 3429-3437. doi: 10.1016/j.bmc.2018.05.014 PMID: 29807699
- Deng, X.; Qiu, Q.; Wang, X.; Huang, W.; Qian, H. Design, synthesis, and biological evaluation of novel cholesteryl peptides with anticancer and multidrug resistance-reversing activities. Chem. Biol. Drug Des., 2016, 87(3), 374-381. doi: 10.1111/cbdd.12667 PMID: 26390861
- Li, S.; Zou, R.; Tu, Y.; Wu, J.; Landry, M.P. Cholesterol-directed nanoparticle assemblies based on single amino acid peptide mutations activate cellular uptake and decrease tumor volume. Chem. Sci., 2017, 8(11), 7552-7559. doi: 10.1039/C7SC02616A PMID: 29163910
- Wu, M.; Ai, S.; Chen, Q.; Chen, X.; Li, H.; Li, Y.; Zhao, X. Effects of glycosylation and d-amino acid substitution on the antitumor and antibacterial activities of bee venom peptide HYL. Bioconjug. Chem., 2020, 31(10), 2293-2302. doi: 10.1021/acs.bioconjchem.0c00355 PMID: 32786366
- Brinckerhoff, L.H.; Kalashnikov, V.V.; Thompson, L.W.; Yamshchikov, G.V.; Pierce, R.A.; Galavotti, H.S.; Engelhard, V.H.; Slingluff, C.L., Jr Terminal modifications inhibit proteolytic degradation of an immunogenic MART-1(27-35) peptide: Implications for peptide vaccines. Int. J. Cancer, 1999, 83(3), 326-334. doi: 10.1002/(SICI)1097-0215(19991029)83:33.0.CO;2-X PMID: 10495424
- Jian, C.; Zhang, P.; Ma, J.; Jian, S.; Zhang, Q.; Liu, B.; Liang, S.; Liu, M.; Zeng, Y.; Liu, Z. The roles of fatty-acid modification in the activity of the anticancer peptide R-Lycosin-I. Mol. Pharm., 2018, 15(10), 4612-4620. doi: 10.1021/acs.molpharmaceut.8b00605 PMID: 30183307
- Sinthuvanich, C.; Veiga, A.S.; Gupta, K.; Gaspar, D.; Blumenthal, R.; Schneider, J.P. Anticancer β-hairpin peptides: Membrane-induced folding triggers activity. J. Am. Chem. Soc., 2012, 134(14), 6210-6217. doi: 10.1021/ja210569f PMID: 22413859
- Hao, X.; Yan, Q.; Zhao, J.; Wang, W.; Huang, Y.; Chen, Y. TAT modification of alpha-helical anticancer peptides to improve specificity and efficacy. PLoS One, 2015, 10(9), e0138911. doi: 10.1371/journal.pone.0138911 PMID: 26405806
- Coiffier, B.; Pro, B.; Prince, H.M.; Foss, F.; Sokol, L.; Greenwood, M.; Caballero, D.; Borchmann, P.; Morschhauser, F.; Wilhelm, M.; Pinter-Brown, L.; Padmanabhan, S.; Shustov, A.; Nichols, J.; Carroll, S.; Balser, J.; Balser, B.; Horwitz, S. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T- cell lymphoma after prior systemic therapy. J. Clin. Oncol., 2012, 30(6), 631-636. doi: 10.1200/JCO.2011.37.4223 PMID: 22271479
- Lopez, J.A.V.; Al-Lihaibi, S.S.; Alarif, W.M.; Abdel-Lateff, A.; Nogata, Y.; Washio, K.; Morikawa, M.; Okino, T. Wewakazole B, a cytotoxic cyanobactin from the Cyanobacterium Moorea producens collected in the red sea. J. Nat. Prod., 2016, 79(4), 1213-1218. doi: 10.1021/acs.jnatprod.6b00051 PMID: 26980238
- Kuroda, K.; Fukuda, T.; Krstic-Demonacos, M.; Demonacos, C.; Okumura, K.; Isogai, H.; Hayashi, M.; Saito, K.; Isogai, E. miR-663a regulates growth of colon cancer cells, after administration of antimicrobial peptides, by targeting CXCR4-p21 pathway. BMC Cancer, 2017, 17(1), 33. doi: 10.1186/s12885-016-3003-9 PMID: 28061765
- Niemirowicz, K.; Prokop, I.; Wilczewska, A.; Wnorowska, U.; Piktel, E.; Wątek, M.; Savage, P.; Bucki, R. Magnetic nanoparticles enhance the anticancer activity of cathelicidin LL-37 peptide against colon cancer cells. Int. J. Nanomedicine, 2015, 10, 3843-3853. doi: 10.2147/IJN.S76104 PMID: 26082634
- Kaas, Q.; Craik, D. Bioinformatics-aided venomics. Toxins, 2015, 7(6), 2159-2187. doi: 10.3390/toxins7062159 PMID: 26110505
- Andreev, Y.A.; Kozlov, S.A.; Koshelev, S.G.; Ivanova, E.A.; Monastyrnaya, M.M.; Kozlovskaya, E.P.; Grishin, E.V. Analgesic compound from sea anemone Heteractis crispa is the first polypeptide inhibitor of vanilloid receptor 1 (TRPV1). J. Biol. Chem., 2008, 283(35), 23914-23921. doi: 10.1074/jbc.M800776200 PMID: 18579526
- Madio, B.; Peigneur, S.; Chin, Y.K.Y.; Hamilton, B.R.; Henriques, S.T.; Smith, J.J.; Cristofori-Armstrong, B.; Dekan, Z.; Boughton, B.A.; Alewood, P.F.; Tytgat, J.; King, G.F.; Undheim, E.A.B. PHAB toxins: A unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold. Cell. Mol. Life Sci., 2018, 75(24), 4511-4524. doi: 10.1007/s00018-018-2897-6 PMID: 30109357
- Himaya, S.W.A.; Jin, A.H.; Dutertre, S.; Giacomotto, J.; Mohialdeen, H.; Vetter, I.; Alewood, P.F.; Lewis, R.J. Comparative venomics reveals the complex prey capture strategy of the piscivorous cone snail conus catus. J. Proteome Res., 2015, 14(10), 4372-4381. doi: 10.1021/acs.jproteome.5b00630 PMID: 26322961
- Campos, P.F.; Andrade-Silva, D.; Zelanis, A.; Paes Leme, A.F.; Rocha, M.M.T.; Menezes, M.C.; Serrano, S.M.T.; Junqueira-de-Azevedo, I.L.M. Trends in the evolution of snake toxins underscored by an integrative omics approach to profile the venom of the colubrid phalotris mertensi. Genome Biol. Evol., 2016, 8(8), 2266-2287. doi: 10.1093/gbe/evw149 PMID: 27412610
- Madio, B.; Undheim, E.A.B.; King, G.F. Revisiting venom of the sea anemone Stichodactyla haddoni: Omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus. J. Proteomics, 2017, 166, 83-92. doi: 10.1016/j.jprot.2017.07.007 PMID: 28739511
- Huang, Y.; Wiedmann, M.M.; Suga, H. RNA display methods for the discovery of bioactive macrocycles. Chem. Rev., 2019, 119(17), 10360-10391. doi: 10.1021/acs.chemrev.8b00430 PMID: 30395448
- Smith, G.P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228(4705), 1315-1317. doi: 10.1126/science.4001944 PMID: 4001944
- Rahbarnia, L.; Farajnia, S.; Babaei, H.; Majidi, J.; Veisi, K.; Ahmadzadeh, V.; Akbari, B. Evolution of phage display technology: From discovery to application. J. Drug Target., 2017, 25(3), 216-224. doi: 10.1080/1061186X.2016.1258570 PMID: 27819143
- Saw, P.E.; Song, E.W. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell, 2019, 10(11), 787-807. doi: 10.1007/s13238-019-0639-7 PMID: 31140150
- Hamzeh-Mivehroud, M.; Alizadeh, A.A.; Morris, M.B.; Bret Church, W.; Dastmalchi, S. Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discov. Today, 2013, 18(23-24), 1144-1157. doi: 10.1016/j.drudis.2013.09.001 PMID: 24051398
- Omidfar, K.; Daneshpour, M. Advances in phage display technology for drug discovery. Expert Opin. Drug Discov., 2015, 10(6), 651-669. doi: 10.1517/17460441.2015.1037738 PMID: 25910798
- Heinis, C.; Winter, G. Encoded libraries of chemically modified peptides. Curr. Opin. Chem. Biol., 2015, 26, 89-98. doi: 10.1016/j.cbpa.2015.02.008 PMID: 25768886
- Schumacher, T.N.M.; Mayr, L.M.; Minor, D.L., Jr; Milhollen, M.A.; Burgess, M.W.; Kim, P.S. Identification of D-peptide ligands through mirror-image phage display. Science, 1996, 271(5257), 1854-1857. doi: 10.1126/science.271.5257.1854 PMID: 8596952
- Roberts, R.W.; Szostak, J.W. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci., 1997, 94(23), 12297-12302. doi: 10.1073/pnas.94.23.12297 PMID: 9356443
- Goto, Y.; Katoh, T.; Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc., 2011, 6(6), 779-790. doi: 10.1038/nprot.2011.331 PMID: 21637198
- Murakami, H.; Ohta, A.; Ashigai, H.; Suga, H. A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat. Methods, 2006, 3(5), 357-359. doi: 10.1038/nmeth877 PMID: 16628205
- Nawatha, M.; Rogers, J.M.; Bonn, S.M.; Livneh, I.; Lemma, B.; Mali, S.M.; Vamisetti, G.B.; Sun, H.; Bercovich, B.; Huang, Y.; Ciechanover, A.; Fushman, D.; Suga, H.; Brik, A. De novo macrocyclic peptides that specifically modulate Lys48-linked ubiquitin chains. Nat. Chem., 2019, 11(7), 644-652. doi: 10.1038/s41557-019-0278-x PMID: 31182821
- Lam, K.S.; Salmon, S.E.; Hersh, E.M.; Hruby, V.J.; Kazmierski, W.M.; Knapp, R.J. A new type of synthetic peptide library for identifying ligand-binding activity. Nature, 1991, 354(6348), 82-84. doi: 10.1038/354082a0 PMID: 1944576
- Elashal, H.E.; Cohen, R.D.; Elashal, H.E.; Raj, M. Oxazolidinone-mediated sequence determination of one-bead one-compound cyclic peptide libraries. Org. Lett., 2018, 20(8), 2374-2377. doi: 10.1021/acs.orglett.8b00717 PMID: 29617143
- Yang, P.P.; Li, Y.J.; Cao, Y.; Zhang, L.; Wang, J.Q.; Lai, Z.; Zhang, K.; Shorty, D.; Xiao, W.; Cao, H.; Wang, L.; Wang, H.; Liu, R.; Lam, K.S. Rapid discovery of self- assembling peptides with one-bead one-compound peptide library. Nat. Commun., 2021, 12(1), 4494. doi: 10.1038/s41467-021-24597-5 PMID: 34301935
- Singh, Y.; Rodriguez Benavente, M.C.; Al-Huniti, M.H.; Beckwith, D.; Ayyalasomayajula, R.; Patino, E.; Miranda, W.S.; Wade, A.; Cudic, M. Positional scanning MUC1 glycopeptide library reveals the importance of PDTR epitope glycosylation for lectin binding. J. Org. Chem., 2020, 85(3), 1434-1445. doi: 10.1021/acs.joc.9b02396 PMID: 31799848
- Pinilla, C.; Appel, J.R.; Borràs, E.; Houghten, R.A. Advances in the use of synthetic combinatorial chemistry: Mixture-based libraries. Nat. Med., 2003, 9(1), 118-122. doi: 10.1038/nm0103-118 PMID: 12514724
- Sun, Z.G.; Zhou, X.J.; Zhu, M.L.; Ding, W.Z.; Li, Z.; Zhu, H.L. Synthesis and biological evaluation of novel aryl-2H-pyrazole derivatives as potent non-purine xanthine oxidase inhibitors. Chem. Pharm. Bull., 2015, 63(8), 603-607. doi: 10.1248/cpb.c15-00282 PMID: 26040271
- Sun, Z.G.; Yang, Y.A.; Zhang, Z.G.; Zhu, H.L. Optimization techniques for novel c-Met kinase inhibitors. Expert Opin. Drug Discov., 2019, 14(1), 59-69. doi: 10.1080/17460441.2019.1551355 PMID: 30518273
- Xu, J.F.; Wang, T.T.; Yuan, Q.; Duan, Y.T.; Xu, Y.J.; Lv, P.C.; Wang, X.M.; Yang, Y.S.; Zhu, H.L. Discovery and development of novel rhodanine derivatives targeting enoyl-acyl carrier protein reductase. Bioorg. Med. Chem., 2019, 27(8), 1509-1516. doi: 10.1016/j.bmc.2019.02.043 PMID: 30846404
- London, N.; Raveh, B.; Cohen, E.; Fathi, G.; Schueler-Furman, O. Rosetta FlexPepDock web server-high resolution modeling of peptideprotein interactions. Nucleic Acids Res., 2011, 39(Web Server issue)(Suppl. 2), W249-W253. doi: 10.1093/nar/gkr431 PMID: 21622962
- Raveh, B.; London, N.; Zimmerman, L.; Schueler-Furman, O. Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One, 2011, 6(4), e18934. doi: 10.1371/journal.pone.0018934 PMID: 21572516
- Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinf., 2016, 54(1), 5-6.
- Lee, H.; Heo, L.; Lee, M.S.; Seok, C. GalaxyPepDock: A proteinpeptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res., 2015, 43(W1), W431-W435. doi: 10.1093/nar/gkv495 PMID: 25969449
- Kurcinski, M.; Jamroz, M.; Blaszczyk, M.; Kolinski, A.; Kmiecik, S. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res., 2015, 43(W1), W419-W424. doi: 10.1093/nar/gkv456 PMID: 25943545
- Wang, S.H.; Yu, J. Structure-based design for binding peptides in anti-cancer therapy. Biomaterials, 2018, 156, 1-15. doi: 10.1016/j.biomaterials.2017.11.024 PMID: 29182932
- Chen, X.; Zhang, W.; Yang, X.; Li, C.; Chen, H. ACP-DA: improving the prediction of anticancer peptides using data augmentation. Front. Genet., 2021, 12, 698477. doi: 10.3389/fgene.2021.698477 PMID: 34276801
- Boopathi, V.; Subramaniyam, S.; Malik, A.; Lee, G.; Manavalan, B.; Yang, D.C. mACPpred: a support vector machine-based meta-predictor for identification of anticancer peptides. Int. J. Mol. Sci., 2019, 20(8), 1964. doi: 10.3390/ijms20081964 PMID: 31013619
- Tyagi, A.; Kapoor, P.; Kumar, R.; Chaudhary, K.; Gautam, A.; Raghava, G.P.S. In silico models for designing and discovering novel anticancer peptides. Sci. Rep., 2013, 3(1), 2984. doi: 10.1038/srep02984 PMID: 24136089
- Chen, W.; Ding, H.; Feng, P.; Lin, H.; Chou, K.C. iACP: A sequence-based tool for identifying anticancer peptides. Oncotarget, 2016, 7(13), 16895-16909. doi: 10.18632/oncotarget.7815 PMID: 26942877
- Wei, L.; Zhou, C.; Chen, H.; Song, J.; Su, R. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics, 2018, 34(23), 4007-4016. doi: 10.1093/bioinformatics/bty451 PMID: 29868903
- Schaduangrat, N.; Nantasenamat, C.; Prachayasittikul, V.; Shoombuatong, W. ACPred: a computational tool for the prediction and analysis of anticancer peptides. Molecules, 2019, 24(10), 1973. doi: 10.3390/molecules24101973 PMID: 31121946
- Ahmed, S.; Muhammod, R.; Khan, Z.H.; Adilina, S.; Sharma, A.; Shatabda, S.; Dehzangi, A. ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides. Sci. Rep., 2021, 11(1), 23676. doi: 10.1038/s41598-021-02703-3 PMID: 34880291
- Vijayakumar, S.; Ptv, L. ACPP: a web server for prediction and design of anti-cancer peptides. Int. J. Pept. Res. Ther., 2015, 21(1), 99-106. doi: 10.1007/s10989-014-9435-7
- Yi, H.C.; You, Z.H.; Zhou, X.; Cheng, L.; Li, X.; Jiang, T.H.; Chen, Z.H. ACP-DL: a deep learning long short-term memory model to predict anticancer peptides using high-efficiency feature representation. Mol. Ther. Nucleic Acids, 2019, 17, 1-9. doi: 10.1016/j.omtn.2019.04.025 PMID: 31173946
- Ge, R.; Feng, G.; Jing, X.; Zhang, R.; Wang, P.; Wu, Q. EnACP: an ensemble learning model for identification of anticancer peptides. Front. Genet., 2020, 11, 760. doi: 10.3389/fgene.2020.00760 PMID: 32903636
- Rao, B.; Zhou, C.; Zhang, G.; Su, R.; Wei, L. ACPred- Fuse: fusing multi-view information improves the prediction of anticancer peptides. Brief. Bioinform., 2020, 21(5), 1846-1855. doi: 10.1093/bib/bbz088 PMID: 31729528
- Xu, D.; Wu, Y.; Cheng, Z.; Yang, J.; Ding, Y. ACHP: a web server for predicting anti-cancer peptide and anti-hypertensive peptide. Int. J. Pept. Res. Ther., 2021, 27(3), 1933-1944. doi: 10.1007/s10989-021-10222-y
- Cao, R.; Wang, M.; Bin, Y.; Zheng, C. DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion. PeerJ, 2021, 9, e11906. doi: 10.7717/peerj.11906 PMID: 34414035
- E-kobon, T.; Thongararm, P.; Roytrakul, S.; Meesuk, L.; Chumnanpuen, P. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions. Comput. Struct. Biotechnol. J., 2016, 14, 49-57. doi: 10.1016/j.csbj.2015.11.005
- Xu, L.; Li, C.; An, L.; Dai, Z.; Chen, X.; You, Q.; Hu, C.; Di, B. Selective apoptosis-inducing activity of synthetic hydrocarbon-stapled SOS1 helix with d-amino acids in H358 cancer cells expressing KRASG12C. Eur. J. Med. Chem., 2020, 185, 111844. doi: 10.1016/j.ejmech.2019.111844 PMID: 31706640
- Henninot, A.; Collins, J.C.; Nuss, J.M. The current state of peptide drug discovery: Back to the future? J. Med. Chem., 2018, 61(4), 1382-1414. doi: 10.1021/acs.jmedchem.7b00318 PMID: 28737935
- Dai, Y.; Cai, X.; Shi, W.; Bi, X.; Su, X.; Pan, M.; Li, H.; Lin, H.; Huang, W.; Qian, H. Pro-apoptotic cationic host defense peptides rich in lysine or arginine to reverse drug resistance by disrupting tumor cell membrane. Amino Acids, 2017, 49(9), 1601-1610. doi: 10.1007/s00726-017-2453-y PMID: 28664269
- Harris, F.; Dennison, S.R.; Singh, J.; Phoenix, D.A. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med. Res. Rev., 2013, 33(1), 190-234. doi: 10.1002/med.20252 PMID: 21922503
- Johansson, A.C.V.; Lindahl, E. Position-resolved free energy of solvation for amino acids in lipid membranes from molecular dynamics simulations. Proteins, 2008, 70(4), 1332-1344. doi: 10.1002/prot.21629 PMID: 17876818
- Yamaguchi, Y.; Yamamoto, K.; Sato, Y.; Inoue, S.; Morinaga, T.; Hirano, E. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferatio. Biomed. Res., 2016, 37(2), 153-159. doi: 10.2220/biomedres.37.153 PMID: 27108884
- Yang, B.; Zhang, C.; Li, X.; Yan, S.; Wei, W.; Wang, X.; Deng, X.; Huang, W.; Qian, H. Design, synthesis, and biological evaluation of novel peptide Gly(3)-MC62 analogues as potential antidiabetic agents. Chem. Biol. Drug Des., 2015, 86(5), 979-989. doi: 10.1111/cbdd.12564 PMID: 25845421
- Bhunia, D.; Mondal, P.; Das, G.; Saha, A.; Sengupta, P.; Jana, J.; Mohapatra, S.; Chatterjee, S.; Ghosh, S. Spatial position regulates power of tryptophan: discovery of a major- groove-specific nuclear-localizing, cell-penetrating tetrapeptide. J. Am. Chem. Soc., 2018, 140(5), 1697-1714. doi: 10.1021/jacs.7b10254 PMID: 29283563
- Hilchie, A.L.; Haney, E.F.; Pinto, D.M.; Hancock, R.E.W.; Hoskin, D.W. Enhanced killing of breast cancer cells by a d-amino acid analog of the winter flounder-derived pleurocidin NRC-03. Exp. Mol. Pathol., 2015, 99(3), 426-434. doi: 10.1016/j.yexmp.2015.08.021 PMID: 26344617
- Grishin, D.V.; Zhdanov, D.D.; Pokrovskaya, M.V.; Sokolov, N.N. D-amino acids in nature, agriculture and biomedicine. All Life, 2020, 13(1), 11-22. doi: 10.1080/21553769.2019.1622596
- Li, C.; Pazgier, M.; Li, J.; Li, C.; Liu, M.; Zou, G.; Li, Z.; Chen, J.; Tarasov, S.G.; Lu, W.Y.; Lu, W. Limitations of peptide retro-inverso isomerization in molecular mimicry. J. Biol. Chem., 2010, 285(25), 19572-19581. doi: 10.1074/jbc.M110.116814 PMID: 20382735
- Doti, N.; Mardirossian, M.; Sandomenico, A.; Ruvo, M.; Caporale, A. Recent applications of retro-inverso peptides. Int. J. Mol. Sci., 2021, 22(16), 8677. doi: 10.3390/ijms22168677 PMID: 34445382
- Chen, Y.; Mant, C.T.; Hodges, R.S. Determination of stereochemistry stability coefficients of amino acid side-chains in an amphipathic α-helix. J. Pept. Res., 2002, 59(1), 18-33. doi: 10.1046/j.1397-002x.2001.10994.x PMID: 11906604
- Najjar, K.; Erazo-Oliveras, A.; Brock, D.J.; Wang, T.Y.; Pellois, J.P. An l- to d-amino acid conversion in an endosomolytic analog of the cell-penetrating peptide TAT influences proteolytic stability, endocytic uptake, and endosomal escape. J. Biol. Chem., 2017, 292(3), 847-861. doi: 10.1074/jbc.M116.759837 PMID: 27923812
- Papo, N.; Shahar, M.; Eisenbach, L.; Shai, Y. A novel lytic peptide composed of DL-amino acids selectively kills cancer cells in culture and in mice. J. Biol. Chem., 2003, 278(23), 21018-21023. doi: 10.1074/jbc.M211204200 PMID: 12646578
- Papo, N.; Shai, Y. New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Biochemistry, 2003, 42(31), 9346-9354. doi: 10.1021/bi027212o PMID: 12899621
- Abdel Monaim, S.A.H.; Jad, Y.E.; El-Faham, A.; de la Torre, B.G.; Albericio, F. Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study. Bioorg. Med. Chem., 2018, 26(10), 2788-2796. doi: 10.1016/j.bmc.2017.09.040 PMID: 29029900
- Wiśniewski, K.; Galyean, R.; Tariga, H.; Alagarsamy, S.; Croston, G.; Heitzmann, J.; Kohan, A.; Wiśniewska, H.; Laporte, R.; Rivière, P.J.M.; Schteingart, C.D. New, potent, selective, and short-acting peptidic V1a receptor agonists. J. Med. Chem., 2011, 54(13), 4388-4398. doi: 10.1021/jm200278m PMID: 21688787
- Frey, V.; Viaud, J.; Subra, G.; Cauquil, N.; Guichou, J.F.; Casara, P.; Grassy, G.; Chavanieu, A. Structureactivity relationships of Bak derived peptides: Affinity and specificity modulations by amino acid replacement. Eur. J. Med. Chem., 2008, 43(5), 966-972. doi: 10.1016/j.ejmech.2007.06.008 PMID: 17692431
- Malakoutikhah, M.; Teixidó, M.; Giralt, E. Toward an optimal blood-brain barrier shuttle by synthesis and evaluation of peptide libraries. J. Med. Chem., 2008, 51(16), 4881-4889. doi: 10.1021/jm800156z PMID: 18666771
- Huhmann, S.; Koksch, B. Fine-tuning the proteolytic stability of peptides with fluorinated amino acids. Eur. J. Org. Chem., 2018, 2018(27-28), 3667-3679. doi: 10.1002/ejoc.201800803
- Hicks, R.P. Antibacterial and anticancer activity of a series of novel peptides incorporating cyclic tetra-substituted Cα amino acids. Bioorg. Med. Chem., 2016, 24(18), 4056-4065. doi: 10.1016/j.bmc.2016.06.048 PMID: 27387357
- Cabrele, C.; Martinek, T.A.; Reiser, O.; Berlicki, Ł. Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. J. Med. Chem., 2014, 57(23), 9718-9739. doi: 10.1021/jm5010896 PMID: 25207470
- Montero, A.; Beierle, J.M.; Olsen, C.A.; Ghadiri, M.R. Design, synthesis, biological evaluation, and structural characterization of potent histone deacetylase inhibitors based on cyclic α/β-tetrapeptide architectures. J. Am. Chem. Soc., 2009, 131(8), 3033-3041. doi: 10.1021/ja809508f PMID: 19239270
- Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS J., 2015, 17(1), 134-143. doi: 10.1208/s12248-014-9687-3 PMID: 25366889
- White, C.J.; Yudin, A.K. Contemporary strategies for peptide macrocyclization. Nat. Chem., 2011, 3(7), 509-524. doi: 10.1038/nchem.1062 PMID: 21697871
- Schafmeister, C.E.; Po, J.; Verdine, G.L. An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J. Am. Chem. Soc., 2000, 122(24), 5891-5892. doi: 10.1021/ja000563a
- Carvajal, L.A.; Neriah, D.B.; Senecal, A.; Benard, L.; Thiruthuvanathan, V.; Yatsenko, T.; Narayanagari, S.R.; Wheat, J.C.; Todorova, T.I.; Mitchell, K.; Kenworthy, C.; Guerlavais, V.; Annis, D.A.; Bartholdy, B.; Will, B.; Anampa, J.D.; Mantzaris, I.; Aivado, M.; Singer, R.H.; Coleman, R.A.; Verma, A.; Steidl, U. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci. Transl. Med., 2018, 10(436), eaao3003. doi: 10.1126/scitranslmed.aao3003 PMID: 29643228
- Fadnes, B.; Uhlin-Hansen, L.; Lindin, I.; Rekdal, Ø. Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells. BMC Cancer, 2011, 11(1), 116. doi: 10.1186/1471-2407-11-116 PMID: 21453492
- Sanyal, A.; Dutta, S.; Camara, A.; Chandran, A.; Koller, A.; Watson, B.G.; Sengupta, R.; Ysselstein, D.; Montenegro, P.; Cannon, J.; Rochet, J.C.; Mattoo, S. Alpha-synuclein is a target of Fic-mediated adenylylation/AMPylation: Possible implications for Parkinsons disease. J. Mol. Biol., 2019, 431(12), 2266-2282. doi: 10.1016/j.jmb.2019.04.026 PMID: 31034889
- H, M.; J, F.G. Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr. Pharm. Des., 2003, 9(16), 1289-1295. doi: 10.2174/1381612033454847 PMID: 12769737
- Kelly, G.J.; Kia, A.F.A.; Hassan, F.; OGrady, S.; Morgan, M.P.; Creaven, B.S.; McClean, S.; Harmey, J.H.; Devocelle, M. Polymeric prodrug combination to exploit the therapeutic potential of antimicrobial peptides against cancer cells. Org. Biomol. Chem., 2016, 14(39), 9278-9286. doi: 10.1039/C6OB01815G PMID: 27722734
- Belén, L.H.; Rangel-Yagui, C.O.; Beltrán Lissabet, J.F.; Effer, B.; Lee-Estevez, M.; Pessoa, A.; Castillo, R.L.; Farías, J.G. From synthesis to characterization of site-selective PEGylated proteins. Front. Pharmacol., 2019, 10, 1450. doi: 10.3389/fphar.2019.01450 PMID: 31920645
- Milla, P.; Dosio, F.; Cattel, L. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab., 2012, 13(1), 105-119. doi: 10.2174/138920012798356934 PMID: 21892917
- Ginn, C.; Khalili, H.; Lever, R.; Brocchini, S. PEGylation and its impact on the design of new protein-based medicines. Future Med. Chem., 2014, 6(16), 1829-1846. doi: 10.4155/fmc.14.125 PMID: 25407370
- Shiraishi, K.; Yokoyama, M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review. Sci. Technol. Adv. Mater., 2019, 20(1), 324-336. doi: 10.1080/14686996.2019.1590126 PMID: 31068982
- Narwal, V.; Deswal, R.; Batra, B.; Kalra, V.; Hooda, R.; Sharma, M.; Rana, J.S. Cholesterol biosensors: A review. Steroids, 2019, 143, 6-17. doi: 10.1016/j.steroids.2018.12.003 PMID: 30543816
- Moremen, K.W.; Tiemeyer, M.; Nairn, A.V. Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol., 2012, 13(7), 448-462. doi: 10.1038/nrm3383 PMID: 22722607
- Pocheć, E.; Lityńska, A.; Bubka, M.; Amoresano, A.; Casbarra, A. Characterization of the oligosaccharide component of α3β1 integrin from human bladder carcinoma cell line T24 and its role in adhesion and migration. Eur. J. Cell Biol., 2006, 85(1), 47-57. doi: 10.1016/j.ejcb.2005.08.010 PMID: 16373174
- Moradi, S.V.; Hussein, W.M.; Varamini, P.; Simerska, P.; Toth, I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem. Sci. (Camb.), 2016, 7(4), 2492-2500. doi: 10.1039/C5SC04392A PMID: 28660018
- Zhang, P.; Ma, J.; Zhang, Q.; Jian, S.; Sun, X.; Liu, B.; Nie, L.; Liu, M.; Liang, S.; Zeng, Y.; Liu, Z. Monosaccharide analogues of anticancer peptide R-Lycosin-I: Role of monosaccharide conjugation in complexation and the potential of lung cancer targeting and therapy. J. Med. Chem., 2019, 62(17), 7857-7873. doi: 10.1021/acs.jmedchem.9b00634 PMID: 31276399
- Huang, C.Y.; Hsu, J.T.; Chung, P.H.; Cheng, W.T.K.; Jiang, Y.N.; Ju, Y.T. Site-specific N-glycosylation of caprine lysostaphin restricts its bacteriolytic activity toward Staphylococcus aureus. Anim. Biotechnol., 2013, 24(2), 129-147. doi: 10.1080/10495398.2012.760469 PMID: 23534959
- Lai, X.; Tang, J.; ElSayed, M.E.H. Recent advances in proteolytic stability for peptide, protein, and antibody drug discovery. Expert Opin. Drug Discov., 2021, 16(12), 1467-1482. doi: 10.1080/17460441.2021.1942837 PMID: 34187273
- Hilchie, A.L.; Sharon, A.J.; Haney, E.F.; Hoskin, D.W.; Bally, M.B.; Franco, O.L.; Corcoran, J.A.; Hancock, R.E.W. Mastoparan is a membranolytic anti-cancer peptide that works synergistically with gemcitabine in a mouse model of mammary carcinoma. Biochim. Biophys. Acta Biomembr., 2016, 1858(12), 3195-3204. doi: 10.1016/j.bbamem.2016.09.021 PMID: 27693190
- Zhang, L.; Bulaj, G. Converting peptides into drug leads by lipidation. Curr. Med. Chem., 2012, 19(11), 1602-1618. doi: 10.2174/092986712799945003 PMID: 22376031
- Macquaire, F.; Baleux, F.; Giaccobi, E.; Neumann, J.M.; Sanson, A.; Sanson, A. Peptide secondary structure induced by a micellar phospholipidic interface: proton NMR conformational study of a lipopeptide. Biochemistry, 1992, 31(9), 2576-2582. doi: 10.1021/bi00124a018 PMID: 1547240
- Aicart-Ramos, C.; Valero, R.A.; Rodriguez-Crespo, I. Protein palmitoylation and subcellular trafficking. Biochim. Biophys. Acta Biomembr., 2011, 1808(12), 2981-2994. doi: 10.1016/j.bbamem.2011.07.009 PMID: 21819967
- Jiang, H.; Zhang, X.; Chen, X.; Aramsangtienchai, P.; Tong, Z.; Lin, H. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem. Rev., 2018, 118(3), 919-988. doi: 10.1021/acs.chemrev.6b00750 PMID: 29292991
- Roxin, Á.; Zheng, G. Flexible or fixed: a comparative review of linear and cyclic cancer-targeting peptides. Future Med. Chem., 2012, 4(12), 1601-1618. doi: 10.4155/fmc.12.75 PMID: 22917248
- Chatterjee, J.; Rechenmacher, F.; Kessler, H. N-methylation of peptides and proteins: an important element for modulating biological functions. Angew. Chem. Int. Ed., 2013, 52(1), 254-269. doi: 10.1002/anie.201205674 PMID: 23161799
- Ványolós, A.; Dékány, M.; Kovács, B.; Krámos, B.; Bérdi, P.; Zupkó, I.; Hohmann, J.; Béni, Z. Gymnopeptides A and B, cyclic octadecapeptides from the mushroom gymnopus fusipes. Org. Lett., 2016, 18(11), 2688-2691. doi: 10.1021/acs.orglett.6b01158 PMID: 27194202
- Pan, Z.; Wu, C.; Wang, W.; Cheng, Z.; Yao, G.; Liu, K.; Li, H.; Fang, L.; Su, W. Total synthesis and stereochemical assignment of gymnopeptides A and B. Org. Lett., 2017, 19(17), 4420-4423. doi: 10.1021/acs.orglett.7b01742 PMID: 28799768
- Li, J.; Koh, J.J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane active antimicrobial peptides: translating mechanistic insights to design. Front. Neurosci., 2017, 11, 73. doi: 10.3389/fnins.2017.00073 PMID: 28261050
- Klimpel, A.; Lützenburg, T.; Neundorf, I. Recent advances of anti-cancer therapies including the use of cell-penetrating peptides. Curr. Opin. Pharmacol., 2019, 47, 8-13. doi: 10.1016/j.coph.2019.01.003 PMID: 30771730
- El-Sayed, A.; Futaki, S.; Harashima, H. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J., 2009, 11(1), 13-22. doi: 10.1208/s12248-008-9071-2 PMID: 19125334
- Regberg, J.; Srimanee, A.; Langel, Ü. Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals (Basel), 2012, 5(9), 991-1007. doi: 10.3390/ph5090991 PMID: 24280701
- Dokka, S.; Toledo-Velasquez, D.; Shi, X.; Wang, L.; Rojanasakul, Y. Cellular delivery of oligonucleotides by synthetic import peptide carrier. Pharm. Res., 1997, 14(12), 1759-1764. doi: 10.1023/A:1012188014919 PMID: 9453065
- Nakayama, F.; Yasuda, T.; Umeda, S.; Asada, M.; Imamura, T.; Meineke, V.; Akashi, M. Fibroblast growth factor-12 (FGF12) translocation into intestinal epithelial cells is dependent on a novel cell-penetrating peptide domain: involvement of internalization in the in vivo role of exogenous FGF12. J. Biol. Chem., 2011, 286(29), 25823-25834. doi: 10.1074/jbc.M110.198267 PMID: 21518765
- Tian, H.; Lin, L.; Chen, J.; Chen, X.; Park, T.G.; Maruyama, A. RGD targeting hyaluronic acid coating system for PEI-PBLG polycation gene carriers. J. Control. Release, 2011, 155(1), 47-53. doi: 10.1016/j.jconrel.2011.01.025 PMID: 21281679
- Tang, B.; Zaro, J.L.; Shen, Y.; Chen, Q.; Yu, Y.; Sun, P.; Wang, Y.; Shen, W.C.; Tu, J.; Sun, C. Acid-sensitive hybrid polymeric micelles containing a reversibly activatable cell-penetrating peptide for tumor-specific cytoplasm targeting. J. Control. Release, 2018, 279, 147-156. doi: 10.1016/j.jconrel.2018.04.016 PMID: 29653223
- Hogervorst, T.P.; Li, R.J.E.; Marino, L.; Bruijns, S.C.M.; Meeuwenoord, N.J.; Filippov, D.V.; Overkleeft, H.S.; van der Marel, G.A.; van Vliet, S.J.; van Kooyk, Y.; Codée, J.D.C. C-mannosyl lysine for solid phase assembly of mannosylated peptide conjugate cancer vaccines. ACS Chem. Biol., 2020, 15(3), 728-739. doi: 10.1021/acschembio.9b00987 PMID: 32045202
- Habault, J.; Kaci, A.; Pasquereau-Kotula, E.; Fraser, C.; Chomienne, C.; Dombret, H.; Braun, T.; Pla, M.; Poyet, J.L. Prophylactic and therapeutic antileukemic effects induced by the AAC-11-derived Peptide RT53. OncoImmunology, 2020, 9(1), 1728871. doi: 10.1080/2162402X.2020.1728871 PMID: 32158621
- Noguchi, M.; Arai, G.; Matsumoto, K.; Naito, S.; Moriya, F.; Suekane, S.; Komatsu, N.; Matsueda, S.; Sasada, T.; Yamada, A.; Kakuma, T.; Itoh, K. Phase I trial of a cancer vaccine consisting of 20 mixed peptides in patients with castration-resistant prostate cancer: dose-related immune boosting and suppression. Cancer Immunol. Immunother., 2015, 64(4), 493-505. doi: 10.1007/s00262-015-1660-1 PMID: 25662406
- Noguchi, M.; Arai, G.; Egawa, S.; Ohyama, C.; Naito, S.; Matsumoto, K.; Uemura, H.; Nakagawa, M.; Nasu, Y.; Eto, M.; Suekane, S.; Sasada, T.; Shichijo, S.; Yamada, A.; Kakuma, T.; Itoh, K. Mixed 20-peptide cancer vaccine in combination with docetaxel and dexamethasone for castration-resistant prostate cancer: a randomized phase II trial. Cancer Immunol. Immunother., 2020, 69(5), 847-857. doi: 10.1007/s00262-020-02498-8 PMID: 32025848
- Murahashi, M.; Hijikata, Y.; Yamada, K.; Tanaka, Y.; Kishimoto, J.; Inoue, H.; Marumoto, T.; Takahashi, A.; Okazaki, T.; Takeda, K.; Hirakawa, M.; Fujii, H.; Okano, S.; Morita, M.; Baba, E.; Mizumoto, K.; Maehara, Y.; Tanaka, M.; Akashi, K.; Nakanishi, Y.; Yoshida, K.; Tsunoda, T.; Tamura, K.; Nakamura, Y.; Tani, K. Phase I clinical trial of a five-peptide cancer vaccine combined with cyclophosphamide in advanced solid tumors. Clin. Immunol., 2016, 166-167, 48-58. doi: 10.1016/j.clim.2016.03.015 PMID: 27072896
- Nishida, S.; Morimoto, S.; Oji, Y.; Morita, S.; Shirakata, T.; Enomoto, T.; Tsuboi, A.; Ueda, Y.; Yoshino, K.; Shouq, A.; Kanegae, M.; Ohno, S.; Fujiki, F.; Nakajima, H.; Nakae, Y.; Nakata, J.; Hosen, N.; Kumanogoh, A.; Oka, Y.; Kimura, T.; Sugiyama, H. Cellular and humoral immune responses induced by an HLA class I-restricted peptide cancer vaccine targeting WT1 are associated with favorable clinical outcomes in advanced ovarian cancer. J. Immunother., 2022, 45(1), 56-66. doi: 10.1097/CJI.0000000000000405 PMID: 34874330
- Zhang, Y.; He, P.; Zhang, P.; Yi, X.; Xiao, C.; Chen, X. Polypeptidesdrug conjugates for anticancer therapy. Adv. Healthc. Mater., 2021, 10(11), 2001974. doi: 10.1002/adhm.202001974 PMID: 33929786
- Fan, R.; Tong, A.; Li, X.; Gao, X.; Mei, L.; Zhou, L.; Zhang, X.; You, C.; Guo, G. Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer. Int. J. Nanomed., 2015, 10, 7291-7305. PMID: 26664119
- Hassanvand Jamadi, R.; Asadi, A.; Yaghoubi, H.; Goudarzi, F. Investigation into the anticancer activity and apoptosis induction of Brevinin-2R and Brevinin-2R-conjugated PLA-PEG-PLA nanoparticles and strong cell cycle arrest in AGS, HepG2 and KYSE-30 cell lines. Int. J. Pept. Res. Ther., 2019, 25(3), 1225-1239. doi: 10.1007/s10989-018-9772-z
- Li, G.; Lei, Q.; Wang, F.; Deng, D.; Wang, S.; Tian, L.; Shen, W.; Cheng, Y.; Liu, Z.; Wu, S. Fluorinated polymer mediated transmucosal peptide delivery for intravesical instillation therapy of bladder cancer. Small, 2019, 15(25), 1900936. doi: 10.1002/smll.201900936 PMID: 31074941
- Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide J. Am. Chem. Soc., 1963, 85(14), 2149-2154. doi: 10.1021/ja00897a025
- Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707. doi: 10.1016/j.bmc.2017.06.052 PMID: 28720325
- Komin, A.; Russell, L.M.; Hristova, K.A.; Searson, P.C. Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: Mechanisms and challenges. Adv. Drug Deliv. Rev., 2017, 110-111, 52-64. doi: 10.1016/j.addr.2016.06.002 PMID: 27313077
- Conibear, A.C.; Watson, E.E.; Payne, R.J.; Becker, C.F.W. Native chemical ligation in protein synthesis and semi-synthesis. Chem. Soc. Rev., 2018, 47(24), 9046-9068. doi: 10.1039/C8CS00573G PMID: 30418441
Supplementary files
