State-of-the-art Review on the Antiparasitic Activity of Benzimidazolebased Derivatives: Facing Malaria, Leishmaniasis, and Trypanosomiasis


Цитировать

Полный текст

Аннотация

Protozoan parasites represent a significant risk for public health worldwide, afflicting particularly people in more vulnerable categories and cause large morbidity and heavy economic impact. Traditional drugs are limited by their toxicity, low efficacy, route of administration, and cost, reflecting their low priority in global health management. Moreover, the drug resistance phenomenon threatens the positive therapy outcome. This scenario claims the need of addressing more adequate therapies. Among the diverse strategies implemented, the medicinal chemistry efforts have also focused their attention on the benzimidazole nucleus as a promising pharmacophore for the generation of new drug candidates. Hence, the present review provides a global insight into recent progress in benzimidazole-based derivatives drug discovery against important protozoan diseases, such as malaria, leishmaniasis and trypanosomiasis. The more relevant chemical features and structure-activity relationship studies of these molecules are discussed for the purpose of paving the way towards the development of more viable drugs for the treatment of these parasitic infections.

Об авторах

Valeria Francesconi

Department of Pharmacy, University of Genoa

Email: info@benthamscience.net

Marco Rizzo

Department of Pharmacy, University of Genoa

Email: info@benthamscience.net

Silvia Schenone

Department of Pharmacy, University of Genoa

Email: info@benthamscience.net

Anna Carbone

Department of Pharmacy, University of Genoa

Автор, ответственный за переписку.
Email: info@benthamscience.net

Michele Tonelli

Department of Pharmacy, University of Genoa

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Pereira, M.A.; Santos-Gomes, G. Parasitic infection and immunity: A special biomedicines issue. Biomedicines, 2022, 10(10), 2547. doi: 10.3390/biomedicines10102547 PMID: 36289809
  2. Why do neglected tropical diseases suffer low priority? Available from: https://www.afro.who.int/news/why-do-neglected-tropical-diseases-suffer-low-priority (Accessed May 1, 2023).
  3. Q&A on RTS S malaria vaccine. Available from: https://www.who.int/news-room/questions-and-answers/item/q-a-on-rts-s-malaria-vaccine
  4. Nadeem, A.Y.; Shehzad, A.; Islam, S.U.; Al-Suhaimi, E.A.; Lee, Y.S. Mosquirix™ RTS, S/AS01 vaccine development, immunogenicity, and efficacy. Vaccines, 2022, 10(5), 713. doi: 10.3390/vaccines10050713 PMID: 35632469
  5. Chandley, P.; Ranjan, R.; Kumar, S.; Rohatgi, S. Host-parasite interactions during Plasmodium infection: Implications for immunotherapies. Front. Immunol., 2023, 13, 1091961. doi: 10.3389/fimmu.2022.1091961 PMID: 36685595
  6. Capela, R.; Moreira, R.; Lopes, F. An overview of drug resistance in protozoal diseases. Int. J. Mol. Sci., 2019, 20(22), 5748. doi: 10.3390/ijms20225748 PMID: 31731801
  7. World malaria report. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 (Accessed Jan 7, 2023).
  8. Zanghi, G.; Vaughan, A.M. Plasmodium vivax pre-erythrocytic stages and the latent hypnozoite. Parasitol. Int., 2021, 85, 102447. doi: 10.1016/j.parint.2021.102447 PMID: 34474178
  9. Belete, T.M. Recent progress in the development of new antimalarial drugs with novel targets. Drug Des. Devel. Ther., 2020, 14, 3875-3889. doi: 10.2147/DDDT.S265602 PMID: 33061294
  10. Plewes, K.; Leopold, S.J.; Kingston, H.W.F.; Dondorp, A.M. Malaria. Infect. Dis. Clin. North Am., 2019, 33(1), 39-60. doi: 10.1016/j.idc.2018.10.002 PMID: 30712767
  11. Nsanzabana, C. Resistance to artemisinin combination therapies (ACTs): Do not forget the partner drug! Trop. Med. Infect. Dis., 2019, 4(1), 26. doi: 10.3390/tropicalmed4010026 PMID: 30717149
  12. Jones, R.A.; Panda, S.S.; Hall, C.D. Quinine conjugates and quinine analogues as potential antimalarial agents. Eur. J. Med. Chem., 2015, 97, 335-355. doi: 10.1016/j.ejmech.2015.02.002 PMID: 25683799
  13. Tibon, N.S.; Ng, C.H.; Cheong, S.L. Current progress in antimalarial pharmacotherapy and multi-target drug discovery. Eur. J. Med. Chem., 2020, 188, 111983. doi: 10.1016/j.ejmech.2019.111983 PMID: 31911292
  14. Kamchonwongpaisan, S.; Charoensetakul, N.; Srisuwannaket, C.; Taweechai, S.; Rattanajak, R.; Vanichtanankul, J.; Vitsupakorn, D.; Arwon, U.; Thongpanchang, C.; Tarnchompoo, B.; Vilaivan, T.; Yuthavong, Y. Flexible diaminodihydrotriazine inhibitors of Plasmodium falciparum dihydrofolate reductase: Binding strengths, modes of binding and their antimalarial activities. Eur. J. Med. Chem., 2020, 195, 112263. doi: 10.1016/j.ejmech.2020.112263 PMID: 32294614
  15. Blasco, B.; Leroy, D.; Fidock, D.A. Antimalarial drug resistance: Linking Plasmodium falciparum parasite biology to the clinic. Nat. Med., 2017, 23(8), 917-928. doi: 10.1038/nm.4381 PMID: 28777791
  16. Antonovics, J. Transmission dynamics: Critical questions and challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, 372(1719), 20160087. doi: 10.1098/rstb.2016.0087 PMID: 28289255
  17. Neglected tropical diseases - GLOBAL. Available from: https://www.who.int/health-topics/neglected-tropical-diseases (Accessed May 1, 2023).
  18. Leishmaniasis. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (Accessed May 1, 2023).
  19. Liu, D.; Uzonna, J.E. The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response. Front. Cell. Infect. Microbiol., 2012, 2, 83. doi: 10.3389/fcimb.2012.00083 PMID: 22919674
  20. Mann, S.; Frasca, K.; Scherrer, S.; Henao-Martínez, A.F.; Newman, S.; Ramanan, P.; Suarez, J.A. A review of leishmaniasis: Current knowledge and future directions. Curr. Trop. Med. Rep., 2021, 8(2), 121-132. doi: 10.1007/s40475-021-00232-7 PMID: 33747716
  21. Kaye, P.M.; Mohan, S.; Mantel, C.; Malhame, M.; Revill, P.; Le Rutte, E.; Parkash, V.; Layton, A.M.; Lacey, C.J.N.; Malvolti, S. Overcoming roadblocks in the development of vaccines for leishmaniasis. Expert Rev. Vaccines, 2021, 20(11), 1419-1430. doi: 10.1080/14760584.2021.1990043 PMID: 34727814
  22. Morales-Yuste, M.; Martín-Sánchez, J.; Corpas-Lopez, V. Canine leishmaniasis: Update on epidemiology, diagnosis, treatment, and prevention. Vet. Sci., 2022, 9(8), 387. doi: 10.3390/vetsci9080387 PMID: 36006301
  23. Rao, S.P.S.; Barrett, M.P.; Dranoff, G.; Faraday, C.J.; Gimpelewicz, C.R.; Hailu, A.; Jones, C.L.; Kelly, J.M.; Lazdins-Helds, J.K.; Mäser, P.; Mengel, J.; Mottram, J.C.; Mowbray, C.E.; Sacks, D.L.; Scott, P.; Späth, G.F.; Tarleton, R.L.; Spector, J.M.; Diagana, T.T. Drug discovery for kinetoplastid diseases: Future directions. ACS Infect. Dis., 2019, 5(2), 152-157. doi: 10.1021/acsinfecdis.8b00298 PMID: 30543391
  24. Katsuno, K.; Burrows, J.N.; Duncan, K.; van Huijsduijnen, R.H.; Kaneko, T.; Kita, K.; Mowbray, C.E.; Schmatz, D.; Warner, P.; Slingsby, B.T. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat. Rev. Drug Discov., 2015, 14(11), 751-758. doi: 10.1038/nrd4683 PMID: 26435527
  25. Trypanosomiasis, human African (sleeping sickness). Available from: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness) (Accessed May 1, 2023).
  26. Lindner, A.K.; Lejon, V.; Chappuis, F.; Seixas, J.; Kazumba, L.; Barrett, M.P.; Mwamba, E.; Erphas, O.; Akl, E.A.; Villanueva, G.; Bergman, H.; Simarro, P.; Kadima Ebeja, A.; Priotto, G.; Franco, J.R. New WHO guidelines for treatment of gambiense human African trypanosomiasis including fexinidazole: Substantial changes for clinical practice. Lancet Infect. Dis., 2020, 20(2), e38-e46. doi: 10.1016/S1473-3099(19)30612-7 PMID: 31879061
  27. Chagas disease. Available from: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (Accessed May 1, 2023).
  28. da Costa, K.M.; Valente, R.C.; Fonseca, L.M.; Freire-de-Lima, L.; Previato, J.O.; Mendonça-Previato, L. The history of the abc proteins in human trypanosomiasis pathogens. Pathogens, 2022, 11(9), 988. doi: 10.3390/pathogens11090988 PMID: 36145420
  29. Sandes, J.M.; de Figueiredo, R.C.B.Q. The endoplasmic reticulum of trypanosomatids: An unrevealed road for chemotherapy. Front. Cell. Infect., 2022, 12.
  30. Tahlan, S.; Kumar, S.; Narasimhan, B. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review. BMC Chem., 2019, 13(1), 101. doi: 10.1186/s13065-019-0625-4 PMID: 31410412
  31. Ajani, O.O.; Aderohunmu, D.V.; Ikpo, C.O.; Adedapo, A.E.; Olanrewaju, I.O. Functionalized benzimidazole scaffolds: Privileged heterocycle for drug design in therapeutic medicine. Arch. Pharm., 2016, 349(7), 475-506. doi: 10.1002/ardp.201500464 PMID: 27213292
  32. Choudhary, S.; Arora, M.; Verma, H.; Kumar, M.; Silakari, O. Benzimidazole based hybrids against complex diseases: A catalogue of the SAR profile. Eur. J. Pharmacol., 2021, 899, 174027. doi: 10.1016/j.ejphar.2021.174027 PMID: 33731294
  33. Yadav, G.; Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem., 2015, 97, 419-443. doi: 10.1016/j.ejmech.2014.11.053 PMID: 25479684
  34. Alzhrani, Z.M.M.; Alam, M.M.; Nazreen, S. Recent advancements on benzimidazole: A versatile scaffold in medicinal chemistry. Mini Rev. Med. Chem., 2022, 22(2), 365-386. doi: 10.2174/1389557521666210331163810 PMID: 33797365
  35. Akhtar, W.; Khan, M.F.; Verma, G.; Shaquiquzzaman, M.; Rizvi, M.A.; Mehdi, S.H.; Akhter, M.; Alam, M.M. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur. J. Med. Chem., 2017, 126, 705-753. doi: 10.1016/j.ejmech.2016.12.010 PMID: 27951484
  36. Ebenezer, O.; Jordaan, M.A.; Carena, G.; Bono, T.; Shapi, M.; Tuszynski, J.A. An overview of the biological evaluation of selected nitrogen-containing heterocycle medicinal chemistry compounds. Int. J. Mol. Sci., 2022, 23(15), 8117. doi: 10.3390/ijms23158117 PMID: 35897691
  37. Cichero, E.; Calautti, A.; Francesconi, V.; Tonelli, M.; Schenone, S.; Fossa, P. Probing in silico the benzimidazole privileged scaffold for the development of drug-like anti-rsv agents. Pharmaceuticals, 2021, 14(12), 1307. doi: 10.3390/ph14121307 PMID: 34959708
  38. Barrett, M.P.; Gemmell, C.G.; Suckling, C.J. Minor groove binders as anti-infective agents. Pharmacol. Ther., 2013, 139(1), 12-23. doi: 10.1016/j.pharmthera.2013.03.002 PMID: 23507040
  39. Dardonville, C.; Nue Martinez, J.J. Bis(2-aminoimida- zolines) and bisguanidines: Synthetic approaches, antiparasitic activity and DNA binding properties. Curr. Med. Chem., 2017, 24(33), 3606-3632. doi: 10.2174/0929867324666170623091522 PMID: 28641558
  40. Hamilton, W.L.; Claessens, A.; Otto, T.D.; Kekre, M.; Fairhurst, R.M.; Rayner, J.C.; Kwiatkowski, D. Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids Res., 2017, 45(4), 1889-1901. PMID: 27994033
  41. Wilson, W.D.; Tanious, F.A.; Mathis, A.; Tevis, D.; Hall, J.E.; Boykin, D.W. Antiparasitic compounds that target DNA. Biochimie, 2008, 90(7), 999-1014. doi: 10.1016/j.biochi.2008.02.017 PMID: 18343228
  42. Boschi, D.; Pippione, A.C.; Sainas, S.; Lolli, M.L. Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur. J. Med. Chem., 2019, 183, 111681. doi: 10.1016/j.ejmech.2019.111681 PMID: 31557612
  43. Phillips, M.A.; Rathod, P.K. Plasmodium dihydroorotate dehydrogenase: A promising target for novel anti-malarial chemotherapy. Infect. Disord. Drug Targets, 2010, 10(3), 226-239. doi: 10.2174/187152610791163336 PMID: 20334617
  44. Fernandes, P.; Loubens, M.; Le Borgne, R.; Marinach, C.; Ardin, B.; Briquet, S.; Vincensini, L.; Hamada, S.; Hoareau-Coudert, B.; Verbavatz, J.M.; Weiner, A.; Silvie, O. The AMA1-RON complex drives Plasmodium sporozoite invasion in the mosquito and mammalian hosts. PLoS Pathog., 2022, 18(6), e1010643. doi: 10.1371/journal.ppat.1010643 PMID: 35731833
  45. Devine, S.M.; MacRaild, C.A.; Norton, R.S.; Scammells, P.J. Antimalarial drug discovery targeting apical membrane antigen 1. MedChemComm, 2017, 8(1), 13-20. doi: 10.1039/C6MD00495D PMID: 30108688
  46. Drew, D.R.; Wilson, D.W.; Elliott, S.R.; Cross, N.; Terheggen, U.; Hodder, A.N.; Siba, P.M.; Chelimo, K.; Dent, A.E.; Kazura, J.W.; Mueller, I.; Beeson, J.G. A novel approach to identifying patterns of human invasion-inhibitory antibodies guides the design of malaria vaccines incorporating polymorphic antigens. BMC Med., 2016, 14(1), 144. doi: 10.1186/s12916-016-0691-6 PMID: 27658419
  47. Lee, S.K.; Low, L.M.; Andersen, J.F.; Yeoh, L.M.; Valenzuela Leon, P.C.; Drew, D.R.; Doehl, J.S.P.; Calvo, E.; Miller, L.H.; Beeson, J.G.; Gunalan, K. The direct binding of Plasmodium vivax AMA1 to erythrocytes defines a RON2-independent invasion pathway. Proc. Natl. Acad. Sci., 2023, 120(1), e2215003120. doi: 10.1073/pnas.2215003120 PMID: 36577076
  48. de Villiers, K.A.; Egan, T.J. Heme detoxification in the malaria parasite: A target for antimalarial drug development. Acc. Chem. Res., 2021, 54(11), 2649-2659. doi: 10.1021/acs.accounts.1c00154 PMID: 33982570
  49. Quadros, H.C.; Silva, M.C.B.; Moreira, D.R.M. The role of the iron protoporphyrins heme and hematin in the antimalarial activity of endoperoxide drugs. Pharmaceuticals, 2022, 15(1), 60. doi: 10.3390/ph15010060 PMID: 35056117
  50. Dvorin, J.D.; Goldberg, D.E. Plasmodium egress across the parasite life cycle. Annu. Rev. Microbiol., 2022, 76(1), 67-90. doi: 10.1146/annurev-micro-041320-020659 PMID: 35417197
  51. Tan, M.S.Y.; Blackman, M.J. Malaria parasite egress at a glance. J. Cell Sci., 2021, 134(5), jcs257345. doi: 10.1242/jcs.257345 PMID: 33686010
  52. Ramaprasad, A.; Burda, P-C.; Koussis, K.; Thomas, J.; Pietsch, E.; Calvani, E.; Howell, S.; MacRae, J.; Snijders, A.; Gilberger, T-W.; Blackman, M. A malaria parasite phospholipase facilitates efficient asexual blood stage egres. bioRxiv, 2023, 532312.
  53. Cavalcanti, D.P.; de Souza, W. The kinetoplast of trypanosomatids: From early studies of electron microscopy to recent advances in atomic force microscopy. Scanning, 2018, 2018, 1-10. doi: 10.1155/2018/9603051 PMID: 30018700
  54. Menna-Barreto, R.F.S.; de Castro, S.L. The double-edged sword in pathogenic trypanosomatids: The pivotal role of mitochondria in oxidative stress and bioenergetics. BioMed Res. Int., 2014, 2014, 1-14. doi: 10.1155/2014/614014 PMID: 24800243
  55. Tomás, A.M.; Castro, H. Redox metabolism in mitochondria of trypanosomatids. Antioxid. Redox Signal., 2013, 19(7), 696-707. doi: 10.1089/ars.2012.4948 PMID: 23025438
  56. Irigoín, F.; Cibils, L.; Comini, M.A.; Wilkinson, S.R.; Flohé, L.; Radi, R. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radic. Biol. Med., 2008, 45(6), 733-742. doi: 10.1016/j.freeradbiomed.2008.05.028 PMID: 18588970
  57. Stoll, V.S.; Simpson, S.J.; Krauth-Siegel, R.L.; Walsh, C.T.; Pai, E.F. Glutathione reductase turned into trypanothione reductase: Structural analysis of an engineered change in substrate specificity. Biochemistry, 1997, 36(21), 6437-6447. doi: 10.1021/bi963074p PMID: 9174360
  58. Krieger, S.; Schwarz, W.; Ariyanayagam, M.R.; Fairlamb, A.H.; Krauth-Siegel, R.L.; Clayton, C. Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol. Microbiol., 2000, 35(3), 542-552. doi: 10.1046/j.1365-2958.2000.01721.x PMID: 10672177
  59. Borsari, C.; Quotadamo, A.; Ferrari, S.; Venturelli, A.; Cordeiro-da-Silva, A.; Santarem, N.; Costi, M.P. Chapter Two : Scaffolds and biological targets avenue to fight against drug resistance in leishmaniasis. In: Annual reports in medicinal chemistry. Neglected Diseases: Extensive Space for Modern Drug Discovery; Botta, M., Ed.; Academic Press, 2018; 51, pp. 39-95.
  60. Quiñones, W.; Acosta, H.; Gonçalves, C.S.; Motta, M.C.M.; Gualdrón-López, M.; Michels, P.A.M. Structure, properties, and function of glycosomes in Trypanosoma cruzi. Front. Cell. Infect. Microbiol., 2020, 10, 25. doi: 10.3389/fcimb.2020.00025 PMID: 32083023
  61. Veloso-Silva, L.L.W.; Dores-Silva, P.R.; Bertolino-Reis, D.E.; Moreno-Oliveira, L.F.; Libardi, S.H.; Borges, J.C. Structural studies of old yellow enzyme of Leishmania braziliensis in solution. Arch. Biochem. Biophys., 2019, 661, 87-96. doi: 10.1016/j.abb.2018.11.009 PMID: 30447208
  62. Díaz-Viraqué, F.; Chiribao, M.L.; Trochine, A.; González-Herrera, F.; Castillo, C.; Liempi, A.; Kemmerling, U.; Maya, J.D.; Robello, C. Old yellow enzyme from Trypanosoma cruzi exhibits in vivo prostaglandin F2α synthase activity and has a key role in parasite infection and drug susceptibility. Front. Immunol., 2018, 9, 456. doi: 10.3389/fimmu.2018.00456 PMID: 29563916
  63. Balaña-Fouce, R.; Calvo-Álvarez, E.; Álvarez-Velilla, R.; Prada, C.F.; Pérez-Pertejo, Y.; Reguera, R.M. Role of trypanosomatid’s arginase in polyamine biosynthesis and pathogenesis. Mol. Biochem. Parasitol., 2012, 181(2), 85-93. doi: 10.1016/j.molbiopara.2011.10.007 PMID: 22033378
  64. Ilari, A.; Fiorillo, A.; Baiocco, P.; Poser, E.; Angiulli, G.; Colotti, G. Targeting polyamine metabolism for finding new drugs against leishmaniasis: A review. Mini Rev. Med. Chem., 2015, 15(3), 243-252. doi: 10.2174/138955751503150312141044 PMID: 25769972
  65. Westrop, G.D.; Williams, R.A.M.; Wang, L.; Zhang, T.; Watson, D.G.; Silva, A.M.; Coombs, G.H. Metabolomic analyses of leishmania reveal multiple species differences and large differences in amino acid metabolism. PLoS One, 2015, 10(9), e0136891. doi: 10.1371/journal.pone.0136891 PMID: 26368322
  66. Boitz, J.M.; Gilroy, C.A.; Olenyik, T.D.; Paradis, D.; Perdeh, J.; Dearman, K.; Davis, M.J.; Yates, P.A.; Li, Y.; Riscoe, M.K.; Ullman, B.; Roberts, S.C. Arginase is essential for survival of Leishmania donovani promastigotes but not intracellular amastigotes. Infect. Immun., 2016, 85(1), e00554-e16. PMID: 27795357
  67. Siqueira-Neto, J.L.; Debnath, A.; McCall, L.I.; Bernatchez, J.A.; Ndao, M.; Reed, S.L.; Rosenthal, P.J. Cysteine proteases in protozoan parasites. PLoS Negl. Trop. Dis., 2018, 12(8), e0006512. doi: 10.1371/journal.pntd.0006512 PMID: 30138453
  68. Mottram, J.C.; Coombs, G.H.; Alexander, J. Cysteine peptidases as virulence factors of Leishmania. Curr. Opin. Microbiol., 2004, 7(4), 375-381. doi: 10.1016/j.mib.2004.06.010 PMID: 15358255
  69. Alexander, J.; Bryson, K. T helper (h)1/Th2 and: Paradox rather than paradigm. Immunol. Lett., 2005, 99(1), 17-23. doi: 10.1016/j.imlet.2005.01.009 PMID: 15894106
  70. Casgrain, P.A.; Martel, C.; McMaster, W.R.; Mottram, J.C.; Olivier, M.; Descoteaux, A. Cysteine peptidase b regulates leishmania mexicana virulence through the modulation of GP63 Expression. PLoS Pathog., 2016, 12(5), e1005658. doi: 10.1371/journal.ppat.1005658 PMID: 27191844
  71. Shamshad, H.; Bakri, R.; Mirza, A.Z. Dihydrofolate reductase, thymidylate synthase, and serine hydroxy methyltransferase: Successful targets against some infectious diseases. Mol. Biol. Rep., 2022, 49(7), 6659-6691. doi: 10.1007/s11033-022-07266-8 PMID: 35253073
  72. Tassone, G.; Landi, G.; Linciano, P.; Francesconi, V.; Tonelli, M.; Tagliazucchi, L.; Costi, M.P.; Mangani, S.; Pozzi, C. Evidence of pyrimethamine and cycloguanil analogues as dual inhibitors of Trypanosoma brucei pteridine reductase and dihydrofolate reductase. Pharmaceuticals, 2021, 14(7), 636. doi: 10.3390/ph14070636 PMID: 34209148
  73. Pöhner, I.; Quotadamo, A.; Panecka-Hofman, J.; Luciani, R.; Santucci, M.; Linciano, P.; Landi, G.; Di Pisa, F.; Dello Iacono, L.; Pozzi, C.; Mangani, S.; Gul, S.; Witt, G.; Ellinger, B.; Kuzikov, M.; Santarem, N.; Cordeiro-da-Silva, A.; Costi, M.P.; Venturelli, A.; Wade, R.C. Multitarget, selective compound design yields potent inhibitors of a kinetoplastid pteridine reductase 1. J. Med. Chem., 2022, 65(13), 9011-9033. doi: 10.1021/acs.jmedchem.2c00232 PMID: 35675511
  74. Farahat, A.A.; Ismail, M.A.; Kumar, A.; Wenzler, T.; Brun, R.; Paul, A.; Wilson, W.D.; Boykin, D.W. Indole and benzimidazole bichalcophenes: Synthesis, DNA binding and antiparasitic activity. Eur. J. Med. Chem., 2018, 143, 1590-1596. doi: 10.1016/j.ejmech.2017.10.056 PMID: 29126729
  75. Cardona-G, W.; Yepes, A.F.; Herrera-R, A. Hybrid molecules: Promising compounds for the development of new treatments against leishmaniasis and chagas disease. Curr. Med. Chem., 2018, 25(30), 3637-3679. doi: 10.2174/0929867325666180309111428 PMID: 29521209
  76. Doganc, F.; Celik, I.; Eren, G.; Kaiser, M.; Brun, R.; Goker, H. Synthesis, in vitro antiprotozoal activity, molecular docking and molecular dynamics studies of some new monocationic guanidinobenzimidazoles. Eur. J. Med. Chem., 2021, 221, 113545. doi: 10.1016/j.ejmech.2021.113545 PMID: 34091216
  77. Jahnke, W.; Erlanson, D.A.; de Esch, I.J.P.; Johnson, C.N.; Mortenson, P.N.; Ochi, Y.; Urushima, T. Fragment-to-lead medicinal chemistry publications in 2019. J. Med. Chem., 2020, 63(24), 15494-15507. doi: 10.1021/acs.jmedchem.0c01608 PMID: 33226222
  78. Krishnarjuna, B.; Lim, S.S.; Devine, S.M.; Debono, C.O.; Lam, R.; Chandrashekaran, I.R.; Jaipuria, G.; Yagi, H.; Atreya, H.S.; Scanlon, M.J.; MacRaild, C.A.; Scammells, P.J.; Norton, R.S. Solution NMR characterization of apical membrane antigen 1 and small molecule interactions as a basis for designing new antimalarials. J. Mol. Recognit., 2016, 29(6), 281-291. doi: 10.1002/jmr.2529 PMID: 26804042
  79. Kim, J.; Tan, Y.Z.; Wicht, K.J.; Erramilli, S.K.; Dhingra, S.K.; Okombo, J.; Vendome, J.; Hagenah, L.M.; Giacometti, S.I.; Warren, A.L.; Nosol, K.; Roepe, P.D.; Potter, C.S.; Carragher, B.; Kossiakoff, A.A.; Quick, M.; Fidock, D.A.; Mancia, F. Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature, 2019, 576(7786), 315-320. doi: 10.1038/s41586-019-1795-x PMID: 31776516
  80. Jiménez-Díaz, M.B.; Ebert, D.; Salinas, Y.; Pradhan, A.; Lehane, A.M.; Myrand-Lapierre, M.E.; O’Loughlin, K.G.; Shackleford, D.M.; Justino de Almeida, M.; Carrillo, A.K.; Clark, J.A.; Dennis, A.S.M.; Diep, J.; Deng, X.; Duffy, S.; Endsley, A.N.; Fedewa, G.; Guiguemde, W.A.; Gómez, M.G.; Holbrook, G.; Horst, J.; Kim, C.C.; Liu, J.; Lee, M.C.S.; Matheny, A.; Martínez, M.S.; Miller, G.; Rodríguez-Alejandre, A.; Sanz, L.; Sigal, M.; Spillman, N.J.; Stein, P.D.; Wang, Z.; Zhu, F.; Waterson, D.; Knapp, S.; Shelat, A.; Avery, V.M.; Fidock, D.A.; Gamo, F.J.; Charman, S.A.; Mirsalis, J.C.; Ma, H.; Ferrer, S.; Kirk, K.; Angulo-Barturen, I.; Kyle, D.E.; DeRisi, J.L.; Floyd, D.M.; Guy, R.K. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proc. Natl. Acad. Sci., 2014, 111(50), E5455-E5462. doi: 10.1073/pnas.1414221111 PMID: 25453091
  81. Bhoi, R.T.; Rajput, J.D.; Bendre, R.S. An efficient synthesis of rearranged new biologically active benzimidazoles derived from 2-formyl carvacrol. Res. Chem. Intermed., 2022, 48(1), 401-422. doi: 10.1007/s11164-021-04601-9
  82. Singh, V.; Hada, R.S.; Jain, R.; Vashistha, M.; Kumari, G.; Singh, S.; Sharma, N.; Bansal, M.; Poonam, ; Zoltner, M.; Caffrey, C.R.; Rathi, B.; Singh, S. Designing and development of phthalimides as potent anti-tubulin hybrid molecules against malaria. Eur. J. Med. Chem., 2022, 239, 114534. doi: 10.1016/j.ejmech.2022.114534 PMID: 35749989
  83. Ndakala, A.J.; Gessner, R.K.; Gitari, P.W.; October, N.; White, K.L.; Hudson, A.; Fakorede, F.; Shackleford, D.M.; Kaiser, M.; Yeates, C.; Charman, S.A.; Chibale, K. Antimalarial pyrido1,2-abenzimidazoles. J. Med. Chem., 2011, 54(13), 4581-4589. doi: 10.1021/jm200227r PMID: 21644541
  84. Mali, S.N.; Pandey, A. Hemozoin (beta-hematin) Formation inhibitors: Promising target for the development of new antimalarials: Current update and future prospect. Comb. Chem. High Throughput Screen., 2022, 25(11), 1859-1874. doi: 10.2174/1386207325666210924104036 PMID: 34565319
  85. Sousa, C.C.; Dziwornu, G.A.; Quadros, H.C.; Araujo-Neto, J.H.; Chibale, K.; Moreira, D.R.M. Antimalarial Pyrido1,2-abenzimidazoles exert strong parasiticidal effects by achieving high cellular uptake and suppressing heme detoxification. ACS Infect. Dis., 2022, 8(8), 1700-1710. doi: 10.1021/acsinfecdis.2c00326 PMID: 35848708
  86. Nieto-Meneses, R.; Castillo, R.; Hernández-Campos, A.; Maldonado-Rangel, A.; Matius-Ruiz, J.B.; Trejo-Soto, P.J.; Nogueda-Torres, B.; Dea-Ayuela, M.A.; Bolás-Fernández, F.; Méndez-Cuesta, C.; Yépez-Mulia, L. In vitro activity of new N-benzyl-1H-benzimidazol-2-amine derivatives against cutaneous, mucocutaneous and visceral Leishmania species. Exp. Parasitol., 2018, 184, 82-89. doi: 10.1016/j.exppara.2017.11.009 PMID: 29191699
  87. De Luca, L.; Ferro, S.; Buemi, M.R.; Monforte, A.M.; Gitto, R.; Schirmeister, T.; Maes, L.; Rescifina, A.; Micale, N. Discovery of benzimidazole-based Leishmania mexicana cysteine protease CPB2.8ΔCTE inhibitors as potential therapeutics for leishmaniasis. Chem. Biol. Drug Des., 2018, 92(3), 1585-1596. doi: 10.1111/cbdd.13326 PMID: 29729080
  88. Kumar, A.; Nimsarkar, P.; Singh, S. Systems pharmacology aiding benzimidazole scaffold as potential lead compounds against leishmaniasis for functional therapeutics. Life Sci., 2022, 308, 120960. doi: 10.1016/j.lfs.2022.120960 PMID: 36116527
  89. Kapil, S.; Singh, P.K.; Kashyap, A.; Silakari, O. Structure based designing of benzimidazole/benzoxazole derivatives as anti-leishmanial agents. SAR QSAR Environ. Res., 2019, 30(12), 919-933. doi: 10.1080/1062936X.2019.1684357 PMID: 31702401
  90. Patel, V.M.; Patel, N.B.; Chan-Bacab, M.J.; Rivera, G. N -Mannich bases of benzimidazole as a potent antitubercular and antiprotozoal agents: Their synthesis and computational studies. Synth. Commun., 2020, 50(6), 858-878. doi: 10.1080/00397911.2020.1725057
  91. Sánchez-Salgado, J.C.; Bilbao-Ramos, P.; Dea-Ayuela, M.A.; Hernández-Luis, F.; Bolás-Fernández, F.; Medina-Franco, J.L.; Rojas-Aguirre, Y. Systematic search for benzimidazole compounds and derivatives with antileishmanial effects. Mol. Divers., 2018, 22(4), 779-790. doi: 10.1007/s11030-018-9830-7 PMID: 29748853
  92. Hernández-Luis, F.; Hernández-Campos, A.; Castillo, R.; Navarrete-Vázquez, G.; Soria-Arteche, O.; Hernández-Hernández, M.; Yépez-Mulia, L. Synthesis and biological activity of 2-(trifluoromethyl)-1H-benzimidazole derivatives against some protozoa and Trichinella spiralis. Eur. J. Med. Chem., 2010, 45(7), 3135-3141. doi: 10.1016/j.ejmech.2010.03.050 PMID: 20430484
  93. Gómez-Ochoa, P.; Castillo, J.A.; Gascón, M.; Zarate, J.J.; Alvarez, F.; Couto, C.G. Use of domperidone in the treatment of canine visceral leishmaniasis: A clinical trial. Vet. J., 2009, 179(2), 259-263. doi: 10.1016/j.tvjl.2007.09.014 PMID: 18023375
  94. Baxarias, M.; Martínez-Orellana, P.; Baneth, G.; Solano-Gallego, L. Immunotherapy in clinical canine leishmaniosis: A comparative update. Res. Vet. Sci., 2019, 125, 218-226. doi: 10.1016/j.rvsc.2019.06.009 PMID: 31280121
  95. Cavalera, M.A.; Gernone, F.; Uva, A.; D’Ippolito, P.; Roura, X.; Paltrinieri, S.; Zatelli, A. Effect of domperidone (leisguard®) on antibody titers, inflammatory markers and creatinine in dogs with leishmaniosis and chronic kidney disease. Parasit. Vectors, 2021, 14(1), 525. doi: 10.1186/s13071-021-05030-8 PMID: 34629081
  96. Ratcliffe, N.A.; Furtado Pacheco, J.P.; Dyson, P.; Castro, H.C.; Gonzalez, M.S.; Azambuja, P.; Mello, C.B. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit. Vectors, 2022, 15(1), 112. doi: 10.1186/s13071-021-05132-3 PMID: 35361286
  97. Ferreira, R.A.A.; Junior, C.O.R.; Martinez, P.D.G.; Koovits, P.J.; Soares, B.M.; Ferreira, L.L.G.; Michelan-Duarte, S.; Chelucci, R.C.; Andricopulo, A.D.; Galuppo, M.K.; Uliana, S.R.B.; Matheeussen, A.; Caljon, G.; Maes, L.; Campbell, S.; Kratz, J.M.; Mowbray, C.E.; Dias, L.C. 2-aminobenzimidazoles for leishmaniasis: From initial hit discovery to in vivo profiling. PLoS Negl. Trop. Dis., 2021, 15(2), e0009196. doi: 10.1371/journal.pntd.0009196 PMID: 33617566
  98. Peña, I.; Pilar Manzano, M.; Cantizani, J.; Kessler, A.; Alonso-Padilla, J.; Bardera, A.I.; Alvarez, E.; Colmenarejo, G.; Cotillo, I.; Roquero, I.; de Dios-Anton, F.; Barroso, V.; Rodriguez, A.; Gray, D.W.; Navarro, M.; Kumar, V.; Sherstnev, A.; Drewry, D.H.; Brown, J.R.; Fiandor, J.M.; Julio Martin, J. New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: An open resource. Sci. Rep., 2015, 5(1), 8771. doi: 10.1038/srep08771 PMID: 25740547
  99. Tonelli, M.; Gabriele, E.; Piazza, F.; Basilico, N.; Parapini, S.; Tasso, B.; Loddo, R.; Sparatore, F.; Sparatore, A. Benzimidazole derivatives endowed with potent antileishmanial activity. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 210-226. doi: 10.1080/14756366.2017.1410480 PMID: 29233048
  100. Espinosa-Bustos, C.; Ortiz Pérez, M.; Gonzalez-Gonzalez, A.; Zarate, A.M.; Rivera, G.; Belmont-Díaz, J.A.; Saavedra, E.; Cuellar, M.A.; Vázquez, K.; Salas, C.O. New amino naphthoquinone derivatives as anti-trypanosoma cruzi agents targeting trypanothione reductase. Pharmaceutics, 2022, 14(6), 1121. doi: 10.3390/pharmaceutics14061121 PMID: 35745694
  101. López-Lira, C.; Tapia, R.A.; Herrera, A.; Lapier, M.; Maya, J.D.; Soto-Delgado, J.; Oliver, A.G.; Graham Lappin, A.; Uriarte, E. New benzimidazolequinones as trypanosomicidal agents. Bioorg. Chem., 2021, 111, 104823. doi: 10.1016/j.bioorg.2021.104823 PMID: 33798844
  102. Bruno, S.; Uliassi, E.; Zaffagnini, M.; Prati, F.; Bergamini, C.; Amorati, R.; Paredi, G.; Margiotta, M.; Conti, P.; Costi, M.P.; Kaiser, M.; Cavalli, A.; Fato, R.; Bolognesi, M.L. Molecular basis for covalent inhibition of glyceraldehyde-3-phosphate dehydrogenase by a 2-phenoxy-1,4-naphthoqui- none small molecule. Chem. Biol. Drug Des., 2017, 90(2), 225-235. doi: 10.1111/cbdd.12941 PMID: 28079302
  103. Uchiyama, N.; Kabututu, Z.; Kubata, B.K.; Kiuchi, F.; Ito, M.; Nakajima-Shimada, J.; Aoki, T.; Ohkubo, K.; Fukuzumi, S.; Martin, S.K.; Honda, G.; Urade, Y. Antichagasic activity of komaroviquinone is due to generation of reactive oxygen species catalyzed by Trypanosoma cruzi old yellow enzyme. Antimicrob. Agents Chemother., 2005, 49(12), 5123-5126. doi: 10.1128/AAC.49.12.5123-5126.2005 PMID: 16304182
  104. Téllez-Valencia, A.; Ávila-Ríos, S.; Pérez-Montfort, R.; Rodríguez-Romero, A.; Tuena de Gómez-Puyou, M.; López-Calahorra, F.; Gómez-Puyou, A. Highly specific inactivation of triosephosphate isomerase from Trypanosoma cruzi. Biochem. Biophys. Res. Commun., 2002, 295(4), 958-963. doi: 10.1016/S0006-291X(02)00796-9 PMID: 12127988
  105. Téllez-Valencia, A.; Olivares-Illana, V.; Hernández-Santoyo, A.; Pérez-Montfort, R.; Costas, M.; Rodríguez-Romero, A.; López-Calahorra, F.; Tuena de Gómez-Puyou, M.; Gómez-Puyou, A. Inactivation of triosephosphate isomerase from Trypanosoma cruzi by an agent that perturbs its dimer interface. J. Mol. Biol., 2004, 341(5), 1355-1365. doi: 10.1016/j.jmb.2004.06.056 PMID: 15321726
  106. Flores Sandoval, C.A.; Cuevas Hernández, R.I.; Correa Basurto, J.; Beltrán Conde, H.I.; Padilla Martínez, I.I.; Farfán García, J.N.; Nogueda Torres, B.; Trujillo Ferrara, J.G. Synthesis and theoretic calculations of benzoxazoles and docking studies of their interactions with triosephosphate isomerase. Med. Chem. Res., 2013, 22(6), 2768-2777. doi: 10.1007/s00044-012-0264-y
  107. Velázquez-López, J.M.; Hernández-Campos, A.; Yépez-Mulia, L.; Téllez-Valencia, A.; Flores-Carrillo, P.; Nieto-Meneses, R.; Castillo, R. Synthesis and trypanocidal activity of novel benzimidazole derivatives. Bioorg. Med. Chem. Lett., 2016, 26(17), 4377-4381. doi: 10.1016/j.bmcl.2015.08.018 PMID: 27503677
  108. Vázquez-Jiménez, L.K.; Juárez-Saldivar, A.; Gómez-Escobedo, R.; Delgado-Maldonado, T.; Méndez-Álvarez, D.; Palos, I.; Bandyopadhyay, D.; Gaona-Lopez, C.; Ortiz-Pérez, E.; Nogueda-Torres, B.; Ramírez-Moreno, E.; Rivera, G. Ligand-based virtual screening and molecular docking of benzimidazoles as potential inhibitors of triosephosphate isomerase identified new trypanocidal agents. Int. J. Mol. Sci., 2022, 23(17), 10047. doi: 10.3390/ijms231710047 PMID: 36077439
  109. Song, D.; Ma, S. Recent development of benzimidazole-containing antibacterial agents. ChemMedChem, 2016, 11(7), 646-659. doi: 10.1002/cmdc.201600041 PMID: 26970352
  110. Beltran-Hortelano, I.; Atherton, R.L.; Rubio-Hernández, M.; Sanz-Serrano, J.; Alcolea, V.; Kelly, J.M.; Pérez-Silanes, S.; Olmo, F. Design and synthesis of mannich base-type derivatives containing imidazole and benzimidazole as lead compounds for drug discovery in chagas disease. Eur. J. Med. Chem., 2021, 223, 113646. doi: 10.1016/j.ejmech.2021.113646 PMID: 34182359
  111. Beltran-Hortelano, I.; Perez-Silanes, S.; Galiano, S. Trypanothione reductase and superoxide dismutase as current drug targets for Trypanosoma cruzi: An overview of compounds with activity against chagas disease. Curr. Med. Chem., 2017, 24(11), 1066-1138. PMID: 28025938
  112. Bistrović, A.; Krstulović, L.; Harej, A.; Grbčić, P.; Sedić, M.; Koštrun, S.; Pavelić, S.K.; Bajić, M.; Raić-Malić, S. Design, synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer. Eur. J. Med. Chem., 2018, 143, 1616-1634. doi: 10.1016/j.ejmech.2017.10.061 PMID: 29133046
  113. McNamara, N.; Rahmani, R.; Sykes, M.L.; Avery, V.M.; Baell, J. Hit-to-lead optimization of novel benzimidazole phenylacetamides as broad spectrum trypanosomacides. RSC Med. Chem., 2020, 11(6), 685-695. doi: 10.1039/D0MD00058B PMID: 33479668
  114. de Oliveira Rezende Júnior, C.; Martinez, P.D.G.; Ferreira, R.A.A.; Koovits, P.J.; Miranda Soares, B.; Ferreira, L.L.G.; Michelan-Duarte, S.; Chelucci, R.C.; Andricopulo, A.D.; Matheeussen, A.; Van Pelt, N.; Caljon, G.; Maes, L.; Campbell, S.; Kratz, J.M.; Mowbray, C.E.; Dias, L.C. Hit-to-lead optimization of a 2-aminobenzimidazole series as new candidates for chagas disease. Eur. J. Med. Chem., 2023, 246, 114925. doi: 10.1016/j.ejmech.2022.114925 PMID: 36459758
  115. Ornellas-Garcia, U.; Cuervo, P.; Ribeiro-Gomes, F.L. Malaria and leishmaniasis: Updates on co-infection. Front. Immunol., 2023, 14, 1122411. doi: 10.3389/fimmu.2023.1122411 PMID: 36895563
  116. Formenti, B.; Gregori, N.; Crosato, V.; Marchese, V.; Tomasoni, L.R.; Castelli, F. The impact of COVID-19 on communicable and non-communicable diseases in Africa: A narrative review. Infez. Med., 2022, 30(1), 30-40. PMID: 35350264

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024