State-of-the-art Review on the Antiparasitic Activity of Benzimidazolebased Derivatives: Facing Malaria, Leishmaniasis, and Trypanosomiasis
- Авторы: Francesconi V.1, Rizzo M.1, Schenone S.1, Carbone A.1, Tonelli M.1
-
Учреждения:
- Department of Pharmacy, University of Genoa
- Выпуск: Том 31, № 15 (2024)
- Страницы: 1955-1982
- Раздел: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/644384
- DOI: https://doi.org/10.2174/0929867331666230915093928
- ID: 644384
Цитировать
Полный текст
Аннотация
Protozoan parasites represent a significant risk for public health worldwide, afflicting particularly people in more vulnerable categories and cause large morbidity and heavy economic impact. Traditional drugs are limited by their toxicity, low efficacy, route of administration, and cost, reflecting their low priority in global health management. Moreover, the drug resistance phenomenon threatens the positive therapy outcome. This scenario claims the need of addressing more adequate therapies. Among the diverse strategies implemented, the medicinal chemistry efforts have also focused their attention on the benzimidazole nucleus as a promising pharmacophore for the generation of new drug candidates. Hence, the present review provides a global insight into recent progress in benzimidazole-based derivatives drug discovery against important protozoan diseases, such as malaria, leishmaniasis and trypanosomiasis. The more relevant chemical features and structure-activity relationship studies of these molecules are discussed for the purpose of paving the way towards the development of more viable drugs for the treatment of these parasitic infections.
Об авторах
Valeria Francesconi
Department of Pharmacy, University of Genoa
Email: info@benthamscience.net
Marco Rizzo
Department of Pharmacy, University of Genoa
Email: info@benthamscience.net
Silvia Schenone
Department of Pharmacy, University of Genoa
Email: info@benthamscience.net
Anna Carbone
Department of Pharmacy, University of Genoa
Автор, ответственный за переписку.
Email: info@benthamscience.net
Michele Tonelli
Department of Pharmacy, University of Genoa
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Pereira, M.A.; Santos-Gomes, G. Parasitic infection and immunity: A special biomedicines issue. Biomedicines, 2022, 10(10), 2547. doi: 10.3390/biomedicines10102547 PMID: 36289809
- Why do neglected tropical diseases suffer low priority? Available from: https://www.afro.who.int/news/why-do-neglected-tropical-diseases-suffer-low-priority (Accessed May 1, 2023).
- Q&A on RTS S malaria vaccine. Available from: https://www.who.int/news-room/questions-and-answers/item/q-a-on-rts-s-malaria-vaccine
- Nadeem, A.Y.; Shehzad, A.; Islam, S.U.; Al-Suhaimi, E.A.; Lee, Y.S. Mosquirix RTS, S/AS01 vaccine development, immunogenicity, and efficacy. Vaccines, 2022, 10(5), 713. doi: 10.3390/vaccines10050713 PMID: 35632469
- Chandley, P.; Ranjan, R.; Kumar, S.; Rohatgi, S. Host-parasite interactions during Plasmodium infection: Implications for immunotherapies. Front. Immunol., 2023, 13, 1091961. doi: 10.3389/fimmu.2022.1091961 PMID: 36685595
- Capela, R.; Moreira, R.; Lopes, F. An overview of drug resistance in protozoal diseases. Int. J. Mol. Sci., 2019, 20(22), 5748. doi: 10.3390/ijms20225748 PMID: 31731801
- World malaria report. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 (Accessed Jan 7, 2023).
- Zanghi, G.; Vaughan, A.M. Plasmodium vivax pre-erythrocytic stages and the latent hypnozoite. Parasitol. Int., 2021, 85, 102447. doi: 10.1016/j.parint.2021.102447 PMID: 34474178
- Belete, T.M. Recent progress in the development of new antimalarial drugs with novel targets. Drug Des. Devel. Ther., 2020, 14, 3875-3889. doi: 10.2147/DDDT.S265602 PMID: 33061294
- Plewes, K.; Leopold, S.J.; Kingston, H.W.F.; Dondorp, A.M. Malaria. Infect. Dis. Clin. North Am., 2019, 33(1), 39-60. doi: 10.1016/j.idc.2018.10.002 PMID: 30712767
- Nsanzabana, C. Resistance to artemisinin combination therapies (ACTs): Do not forget the partner drug! Trop. Med. Infect. Dis., 2019, 4(1), 26. doi: 10.3390/tropicalmed4010026 PMID: 30717149
- Jones, R.A.; Panda, S.S.; Hall, C.D. Quinine conjugates and quinine analogues as potential antimalarial agents. Eur. J. Med. Chem., 2015, 97, 335-355. doi: 10.1016/j.ejmech.2015.02.002 PMID: 25683799
- Tibon, N.S.; Ng, C.H.; Cheong, S.L. Current progress in antimalarial pharmacotherapy and multi-target drug discovery. Eur. J. Med. Chem., 2020, 188, 111983. doi: 10.1016/j.ejmech.2019.111983 PMID: 31911292
- Kamchonwongpaisan, S.; Charoensetakul, N.; Srisuwannaket, C.; Taweechai, S.; Rattanajak, R.; Vanichtanankul, J.; Vitsupakorn, D.; Arwon, U.; Thongpanchang, C.; Tarnchompoo, B.; Vilaivan, T.; Yuthavong, Y. Flexible diaminodihydrotriazine inhibitors of Plasmodium falciparum dihydrofolate reductase: Binding strengths, modes of binding and their antimalarial activities. Eur. J. Med. Chem., 2020, 195, 112263. doi: 10.1016/j.ejmech.2020.112263 PMID: 32294614
- Blasco, B.; Leroy, D.; Fidock, D.A. Antimalarial drug resistance: Linking Plasmodium falciparum parasite biology to the clinic. Nat. Med., 2017, 23(8), 917-928. doi: 10.1038/nm.4381 PMID: 28777791
- Antonovics, J. Transmission dynamics: Critical questions and challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, 372(1719), 20160087. doi: 10.1098/rstb.2016.0087 PMID: 28289255
- Neglected tropical diseases - GLOBAL. Available from: https://www.who.int/health-topics/neglected-tropical-diseases (Accessed May 1, 2023).
- Leishmaniasis. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (Accessed May 1, 2023).
- Liu, D.; Uzonna, J.E. The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response. Front. Cell. Infect. Microbiol., 2012, 2, 83. doi: 10.3389/fcimb.2012.00083 PMID: 22919674
- Mann, S.; Frasca, K.; Scherrer, S.; Henao-Martínez, A.F.; Newman, S.; Ramanan, P.; Suarez, J.A. A review of leishmaniasis: Current knowledge and future directions. Curr. Trop. Med. Rep., 2021, 8(2), 121-132. doi: 10.1007/s40475-021-00232-7 PMID: 33747716
- Kaye, P.M.; Mohan, S.; Mantel, C.; Malhame, M.; Revill, P.; Le Rutte, E.; Parkash, V.; Layton, A.M.; Lacey, C.J.N.; Malvolti, S. Overcoming roadblocks in the development of vaccines for leishmaniasis. Expert Rev. Vaccines, 2021, 20(11), 1419-1430. doi: 10.1080/14760584.2021.1990043 PMID: 34727814
- Morales-Yuste, M.; Martín-Sánchez, J.; Corpas-Lopez, V. Canine leishmaniasis: Update on epidemiology, diagnosis, treatment, and prevention. Vet. Sci., 2022, 9(8), 387. doi: 10.3390/vetsci9080387 PMID: 36006301
- Rao, S.P.S.; Barrett, M.P.; Dranoff, G.; Faraday, C.J.; Gimpelewicz, C.R.; Hailu, A.; Jones, C.L.; Kelly, J.M.; Lazdins-Helds, J.K.; Mäser, P.; Mengel, J.; Mottram, J.C.; Mowbray, C.E.; Sacks, D.L.; Scott, P.; Späth, G.F.; Tarleton, R.L.; Spector, J.M.; Diagana, T.T. Drug discovery for kinetoplastid diseases: Future directions. ACS Infect. Dis., 2019, 5(2), 152-157. doi: 10.1021/acsinfecdis.8b00298 PMID: 30543391
- Katsuno, K.; Burrows, J.N.; Duncan, K.; van Huijsduijnen, R.H.; Kaneko, T.; Kita, K.; Mowbray, C.E.; Schmatz, D.; Warner, P.; Slingsby, B.T. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat. Rev. Drug Discov., 2015, 14(11), 751-758. doi: 10.1038/nrd4683 PMID: 26435527
- Trypanosomiasis, human African (sleeping sickness). Available from: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness) (Accessed May 1, 2023).
- Lindner, A.K.; Lejon, V.; Chappuis, F.; Seixas, J.; Kazumba, L.; Barrett, M.P.; Mwamba, E.; Erphas, O.; Akl, E.A.; Villanueva, G.; Bergman, H.; Simarro, P.; Kadima Ebeja, A.; Priotto, G.; Franco, J.R. New WHO guidelines for treatment of gambiense human African trypanosomiasis including fexinidazole: Substantial changes for clinical practice. Lancet Infect. Dis., 2020, 20(2), e38-e46. doi: 10.1016/S1473-3099(19)30612-7 PMID: 31879061
- Chagas disease. Available from: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (Accessed May 1, 2023).
- da Costa, K.M.; Valente, R.C.; Fonseca, L.M.; Freire-de-Lima, L.; Previato, J.O.; Mendonça-Previato, L. The history of the abc proteins in human trypanosomiasis pathogens. Pathogens, 2022, 11(9), 988. doi: 10.3390/pathogens11090988 PMID: 36145420
- Sandes, J.M.; de Figueiredo, R.C.B.Q. The endoplasmic reticulum of trypanosomatids: An unrevealed road for chemotherapy. Front. Cell. Infect., 2022, 12.
- Tahlan, S.; Kumar, S.; Narasimhan, B. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review. BMC Chem., 2019, 13(1), 101. doi: 10.1186/s13065-019-0625-4 PMID: 31410412
- Ajani, O.O.; Aderohunmu, D.V.; Ikpo, C.O.; Adedapo, A.E.; Olanrewaju, I.O. Functionalized benzimidazole scaffolds: Privileged heterocycle for drug design in therapeutic medicine. Arch. Pharm., 2016, 349(7), 475-506. doi: 10.1002/ardp.201500464 PMID: 27213292
- Choudhary, S.; Arora, M.; Verma, H.; Kumar, M.; Silakari, O. Benzimidazole based hybrids against complex diseases: A catalogue of the SAR profile. Eur. J. Pharmacol., 2021, 899, 174027. doi: 10.1016/j.ejphar.2021.174027 PMID: 33731294
- Yadav, G.; Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem., 2015, 97, 419-443. doi: 10.1016/j.ejmech.2014.11.053 PMID: 25479684
- Alzhrani, Z.M.M.; Alam, M.M.; Nazreen, S. Recent advancements on benzimidazole: A versatile scaffold in medicinal chemistry. Mini Rev. Med. Chem., 2022, 22(2), 365-386. doi: 10.2174/1389557521666210331163810 PMID: 33797365
- Akhtar, W.; Khan, M.F.; Verma, G.; Shaquiquzzaman, M.; Rizvi, M.A.; Mehdi, S.H.; Akhter, M.; Alam, M.M. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur. J. Med. Chem., 2017, 126, 705-753. doi: 10.1016/j.ejmech.2016.12.010 PMID: 27951484
- Ebenezer, O.; Jordaan, M.A.; Carena, G.; Bono, T.; Shapi, M.; Tuszynski, J.A. An overview of the biological evaluation of selected nitrogen-containing heterocycle medicinal chemistry compounds. Int. J. Mol. Sci., 2022, 23(15), 8117. doi: 10.3390/ijms23158117 PMID: 35897691
- Cichero, E.; Calautti, A.; Francesconi, V.; Tonelli, M.; Schenone, S.; Fossa, P. Probing in silico the benzimidazole privileged scaffold for the development of drug-like anti-rsv agents. Pharmaceuticals, 2021, 14(12), 1307. doi: 10.3390/ph14121307 PMID: 34959708
- Barrett, M.P.; Gemmell, C.G.; Suckling, C.J. Minor groove binders as anti-infective agents. Pharmacol. Ther., 2013, 139(1), 12-23. doi: 10.1016/j.pharmthera.2013.03.002 PMID: 23507040
- Dardonville, C.; Nue Martinez, J.J. Bis(2-aminoimida- zolines) and bisguanidines: Synthetic approaches, antiparasitic activity and DNA binding properties. Curr. Med. Chem., 2017, 24(33), 3606-3632. doi: 10.2174/0929867324666170623091522 PMID: 28641558
- Hamilton, W.L.; Claessens, A.; Otto, T.D.; Kekre, M.; Fairhurst, R.M.; Rayner, J.C.; Kwiatkowski, D. Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids Res., 2017, 45(4), 1889-1901. PMID: 27994033
- Wilson, W.D.; Tanious, F.A.; Mathis, A.; Tevis, D.; Hall, J.E.; Boykin, D.W. Antiparasitic compounds that target DNA. Biochimie, 2008, 90(7), 999-1014. doi: 10.1016/j.biochi.2008.02.017 PMID: 18343228
- Boschi, D.; Pippione, A.C.; Sainas, S.; Lolli, M.L. Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur. J. Med. Chem., 2019, 183, 111681. doi: 10.1016/j.ejmech.2019.111681 PMID: 31557612
- Phillips, M.A.; Rathod, P.K. Plasmodium dihydroorotate dehydrogenase: A promising target for novel anti-malarial chemotherapy. Infect. Disord. Drug Targets, 2010, 10(3), 226-239. doi: 10.2174/187152610791163336 PMID: 20334617
- Fernandes, P.; Loubens, M.; Le Borgne, R.; Marinach, C.; Ardin, B.; Briquet, S.; Vincensini, L.; Hamada, S.; Hoareau-Coudert, B.; Verbavatz, J.M.; Weiner, A.; Silvie, O. The AMA1-RON complex drives Plasmodium sporozoite invasion in the mosquito and mammalian hosts. PLoS Pathog., 2022, 18(6), e1010643. doi: 10.1371/journal.ppat.1010643 PMID: 35731833
- Devine, S.M.; MacRaild, C.A.; Norton, R.S.; Scammells, P.J. Antimalarial drug discovery targeting apical membrane antigen 1. MedChemComm, 2017, 8(1), 13-20. doi: 10.1039/C6MD00495D PMID: 30108688
- Drew, D.R.; Wilson, D.W.; Elliott, S.R.; Cross, N.; Terheggen, U.; Hodder, A.N.; Siba, P.M.; Chelimo, K.; Dent, A.E.; Kazura, J.W.; Mueller, I.; Beeson, J.G. A novel approach to identifying patterns of human invasion-inhibitory antibodies guides the design of malaria vaccines incorporating polymorphic antigens. BMC Med., 2016, 14(1), 144. doi: 10.1186/s12916-016-0691-6 PMID: 27658419
- Lee, S.K.; Low, L.M.; Andersen, J.F.; Yeoh, L.M.; Valenzuela Leon, P.C.; Drew, D.R.; Doehl, J.S.P.; Calvo, E.; Miller, L.H.; Beeson, J.G.; Gunalan, K. The direct binding of Plasmodium vivax AMA1 to erythrocytes defines a RON2-independent invasion pathway. Proc. Natl. Acad. Sci., 2023, 120(1), e2215003120. doi: 10.1073/pnas.2215003120 PMID: 36577076
- de Villiers, K.A.; Egan, T.J. Heme detoxification in the malaria parasite: A target for antimalarial drug development. Acc. Chem. Res., 2021, 54(11), 2649-2659. doi: 10.1021/acs.accounts.1c00154 PMID: 33982570
- Quadros, H.C.; Silva, M.C.B.; Moreira, D.R.M. The role of the iron protoporphyrins heme and hematin in the antimalarial activity of endoperoxide drugs. Pharmaceuticals, 2022, 15(1), 60. doi: 10.3390/ph15010060 PMID: 35056117
- Dvorin, J.D.; Goldberg, D.E. Plasmodium egress across the parasite life cycle. Annu. Rev. Microbiol., 2022, 76(1), 67-90. doi: 10.1146/annurev-micro-041320-020659 PMID: 35417197
- Tan, M.S.Y.; Blackman, M.J. Malaria parasite egress at a glance. J. Cell Sci., 2021, 134(5), jcs257345. doi: 10.1242/jcs.257345 PMID: 33686010
- Ramaprasad, A.; Burda, P-C.; Koussis, K.; Thomas, J.; Pietsch, E.; Calvani, E.; Howell, S.; MacRae, J.; Snijders, A.; Gilberger, T-W.; Blackman, M. A malaria parasite phospholipase facilitates efficient asexual blood stage egres. bioRxiv, 2023, 532312.
- Cavalcanti, D.P.; de Souza, W. The kinetoplast of trypanosomatids: From early studies of electron microscopy to recent advances in atomic force microscopy. Scanning, 2018, 2018, 1-10. doi: 10.1155/2018/9603051 PMID: 30018700
- Menna-Barreto, R.F.S.; de Castro, S.L. The double-edged sword in pathogenic trypanosomatids: The pivotal role of mitochondria in oxidative stress and bioenergetics. BioMed Res. Int., 2014, 2014, 1-14. doi: 10.1155/2014/614014 PMID: 24800243
- Tomás, A.M.; Castro, H. Redox metabolism in mitochondria of trypanosomatids. Antioxid. Redox Signal., 2013, 19(7), 696-707. doi: 10.1089/ars.2012.4948 PMID: 23025438
- Irigoín, F.; Cibils, L.; Comini, M.A.; Wilkinson, S.R.; Flohé, L.; Radi, R. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radic. Biol. Med., 2008, 45(6), 733-742. doi: 10.1016/j.freeradbiomed.2008.05.028 PMID: 18588970
- Stoll, V.S.; Simpson, S.J.; Krauth-Siegel, R.L.; Walsh, C.T.; Pai, E.F. Glutathione reductase turned into trypanothione reductase: Structural analysis of an engineered change in substrate specificity. Biochemistry, 1997, 36(21), 6437-6447. doi: 10.1021/bi963074p PMID: 9174360
- Krieger, S.; Schwarz, W.; Ariyanayagam, M.R.; Fairlamb, A.H.; Krauth-Siegel, R.L.; Clayton, C. Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol. Microbiol., 2000, 35(3), 542-552. doi: 10.1046/j.1365-2958.2000.01721.x PMID: 10672177
- Borsari, C.; Quotadamo, A.; Ferrari, S.; Venturelli, A.; Cordeiro-da-Silva, A.; Santarem, N.; Costi, M.P. Chapter Two : Scaffolds and biological targets avenue to fight against drug resistance in leishmaniasis. In: Annual reports in medicinal chemistry. Neglected Diseases: Extensive Space for Modern Drug Discovery; Botta, M., Ed.; Academic Press, 2018; 51, pp. 39-95.
- Quiñones, W.; Acosta, H.; Gonçalves, C.S.; Motta, M.C.M.; Gualdrón-López, M.; Michels, P.A.M. Structure, properties, and function of glycosomes in Trypanosoma cruzi. Front. Cell. Infect. Microbiol., 2020, 10, 25. doi: 10.3389/fcimb.2020.00025 PMID: 32083023
- Veloso-Silva, L.L.W.; Dores-Silva, P.R.; Bertolino-Reis, D.E.; Moreno-Oliveira, L.F.; Libardi, S.H.; Borges, J.C. Structural studies of old yellow enzyme of Leishmania braziliensis in solution. Arch. Biochem. Biophys., 2019, 661, 87-96. doi: 10.1016/j.abb.2018.11.009 PMID: 30447208
- Díaz-Viraqué, F.; Chiribao, M.L.; Trochine, A.; González-Herrera, F.; Castillo, C.; Liempi, A.; Kemmerling, U.; Maya, J.D.; Robello, C. Old yellow enzyme from Trypanosoma cruzi exhibits in vivo prostaglandin F2α synthase activity and has a key role in parasite infection and drug susceptibility. Front. Immunol., 2018, 9, 456. doi: 10.3389/fimmu.2018.00456 PMID: 29563916
- Balaña-Fouce, R.; Calvo-Álvarez, E.; Álvarez-Velilla, R.; Prada, C.F.; Pérez-Pertejo, Y.; Reguera, R.M. Role of trypanosomatids arginase in polyamine biosynthesis and pathogenesis. Mol. Biochem. Parasitol., 2012, 181(2), 85-93. doi: 10.1016/j.molbiopara.2011.10.007 PMID: 22033378
- Ilari, A.; Fiorillo, A.; Baiocco, P.; Poser, E.; Angiulli, G.; Colotti, G. Targeting polyamine metabolism for finding new drugs against leishmaniasis: A review. Mini Rev. Med. Chem., 2015, 15(3), 243-252. doi: 10.2174/138955751503150312141044 PMID: 25769972
- Westrop, G.D.; Williams, R.A.M.; Wang, L.; Zhang, T.; Watson, D.G.; Silva, A.M.; Coombs, G.H. Metabolomic analyses of leishmania reveal multiple species differences and large differences in amino acid metabolism. PLoS One, 2015, 10(9), e0136891. doi: 10.1371/journal.pone.0136891 PMID: 26368322
- Boitz, J.M.; Gilroy, C.A.; Olenyik, T.D.; Paradis, D.; Perdeh, J.; Dearman, K.; Davis, M.J.; Yates, P.A.; Li, Y.; Riscoe, M.K.; Ullman, B.; Roberts, S.C. Arginase is essential for survival of Leishmania donovani promastigotes but not intracellular amastigotes. Infect. Immun., 2016, 85(1), e00554-e16. PMID: 27795357
- Siqueira-Neto, J.L.; Debnath, A.; McCall, L.I.; Bernatchez, J.A.; Ndao, M.; Reed, S.L.; Rosenthal, P.J. Cysteine proteases in protozoan parasites. PLoS Negl. Trop. Dis., 2018, 12(8), e0006512. doi: 10.1371/journal.pntd.0006512 PMID: 30138453
- Mottram, J.C.; Coombs, G.H.; Alexander, J. Cysteine peptidases as virulence factors of Leishmania. Curr. Opin. Microbiol., 2004, 7(4), 375-381. doi: 10.1016/j.mib.2004.06.010 PMID: 15358255
- Alexander, J.; Bryson, K. T helper (h)1/Th2 and: Paradox rather than paradigm. Immunol. Lett., 2005, 99(1), 17-23. doi: 10.1016/j.imlet.2005.01.009 PMID: 15894106
- Casgrain, P.A.; Martel, C.; McMaster, W.R.; Mottram, J.C.; Olivier, M.; Descoteaux, A. Cysteine peptidase b regulates leishmania mexicana virulence through the modulation of GP63 Expression. PLoS Pathog., 2016, 12(5), e1005658. doi: 10.1371/journal.ppat.1005658 PMID: 27191844
- Shamshad, H.; Bakri, R.; Mirza, A.Z. Dihydrofolate reductase, thymidylate synthase, and serine hydroxy methyltransferase: Successful targets against some infectious diseases. Mol. Biol. Rep., 2022, 49(7), 6659-6691. doi: 10.1007/s11033-022-07266-8 PMID: 35253073
- Tassone, G.; Landi, G.; Linciano, P.; Francesconi, V.; Tonelli, M.; Tagliazucchi, L.; Costi, M.P.; Mangani, S.; Pozzi, C. Evidence of pyrimethamine and cycloguanil analogues as dual inhibitors of Trypanosoma brucei pteridine reductase and dihydrofolate reductase. Pharmaceuticals, 2021, 14(7), 636. doi: 10.3390/ph14070636 PMID: 34209148
- Pöhner, I.; Quotadamo, A.; Panecka-Hofman, J.; Luciani, R.; Santucci, M.; Linciano, P.; Landi, G.; Di Pisa, F.; Dello Iacono, L.; Pozzi, C.; Mangani, S.; Gul, S.; Witt, G.; Ellinger, B.; Kuzikov, M.; Santarem, N.; Cordeiro-da-Silva, A.; Costi, M.P.; Venturelli, A.; Wade, R.C. Multitarget, selective compound design yields potent inhibitors of a kinetoplastid pteridine reductase 1. J. Med. Chem., 2022, 65(13), 9011-9033. doi: 10.1021/acs.jmedchem.2c00232 PMID: 35675511
- Farahat, A.A.; Ismail, M.A.; Kumar, A.; Wenzler, T.; Brun, R.; Paul, A.; Wilson, W.D.; Boykin, D.W. Indole and benzimidazole bichalcophenes: Synthesis, DNA binding and antiparasitic activity. Eur. J. Med. Chem., 2018, 143, 1590-1596. doi: 10.1016/j.ejmech.2017.10.056 PMID: 29126729
- Cardona-G, W.; Yepes, A.F.; Herrera-R, A. Hybrid molecules: Promising compounds for the development of new treatments against leishmaniasis and chagas disease. Curr. Med. Chem., 2018, 25(30), 3637-3679. doi: 10.2174/0929867325666180309111428 PMID: 29521209
- Doganc, F.; Celik, I.; Eren, G.; Kaiser, M.; Brun, R.; Goker, H. Synthesis, in vitro antiprotozoal activity, molecular docking and molecular dynamics studies of some new monocationic guanidinobenzimidazoles. Eur. J. Med. Chem., 2021, 221, 113545. doi: 10.1016/j.ejmech.2021.113545 PMID: 34091216
- Jahnke, W.; Erlanson, D.A.; de Esch, I.J.P.; Johnson, C.N.; Mortenson, P.N.; Ochi, Y.; Urushima, T. Fragment-to-lead medicinal chemistry publications in 2019. J. Med. Chem., 2020, 63(24), 15494-15507. doi: 10.1021/acs.jmedchem.0c01608 PMID: 33226222
- Krishnarjuna, B.; Lim, S.S.; Devine, S.M.; Debono, C.O.; Lam, R.; Chandrashekaran, I.R.; Jaipuria, G.; Yagi, H.; Atreya, H.S.; Scanlon, M.J.; MacRaild, C.A.; Scammells, P.J.; Norton, R.S. Solution NMR characterization of apical membrane antigen 1 and small molecule interactions as a basis for designing new antimalarials. J. Mol. Recognit., 2016, 29(6), 281-291. doi: 10.1002/jmr.2529 PMID: 26804042
- Kim, J.; Tan, Y.Z.; Wicht, K.J.; Erramilli, S.K.; Dhingra, S.K.; Okombo, J.; Vendome, J.; Hagenah, L.M.; Giacometti, S.I.; Warren, A.L.; Nosol, K.; Roepe, P.D.; Potter, C.S.; Carragher, B.; Kossiakoff, A.A.; Quick, M.; Fidock, D.A.; Mancia, F. Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature, 2019, 576(7786), 315-320. doi: 10.1038/s41586-019-1795-x PMID: 31776516
- Jiménez-Díaz, M.B.; Ebert, D.; Salinas, Y.; Pradhan, A.; Lehane, A.M.; Myrand-Lapierre, M.E.; OLoughlin, K.G.; Shackleford, D.M.; Justino de Almeida, M.; Carrillo, A.K.; Clark, J.A.; Dennis, A.S.M.; Diep, J.; Deng, X.; Duffy, S.; Endsley, A.N.; Fedewa, G.; Guiguemde, W.A.; Gómez, M.G.; Holbrook, G.; Horst, J.; Kim, C.C.; Liu, J.; Lee, M.C.S.; Matheny, A.; Martínez, M.S.; Miller, G.; Rodríguez-Alejandre, A.; Sanz, L.; Sigal, M.; Spillman, N.J.; Stein, P.D.; Wang, Z.; Zhu, F.; Waterson, D.; Knapp, S.; Shelat, A.; Avery, V.M.; Fidock, D.A.; Gamo, F.J.; Charman, S.A.; Mirsalis, J.C.; Ma, H.; Ferrer, S.; Kirk, K.; Angulo-Barturen, I.; Kyle, D.E.; DeRisi, J.L.; Floyd, D.M.; Guy, R.K. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proc. Natl. Acad. Sci., 2014, 111(50), E5455-E5462. doi: 10.1073/pnas.1414221111 PMID: 25453091
- Bhoi, R.T.; Rajput, J.D.; Bendre, R.S. An efficient synthesis of rearranged new biologically active benzimidazoles derived from 2-formyl carvacrol. Res. Chem. Intermed., 2022, 48(1), 401-422. doi: 10.1007/s11164-021-04601-9
- Singh, V.; Hada, R.S.; Jain, R.; Vashistha, M.; Kumari, G.; Singh, S.; Sharma, N.; Bansal, M.; Poonam, ; Zoltner, M.; Caffrey, C.R.; Rathi, B.; Singh, S. Designing and development of phthalimides as potent anti-tubulin hybrid molecules against malaria. Eur. J. Med. Chem., 2022, 239, 114534. doi: 10.1016/j.ejmech.2022.114534 PMID: 35749989
- Ndakala, A.J.; Gessner, R.K.; Gitari, P.W.; October, N.; White, K.L.; Hudson, A.; Fakorede, F.; Shackleford, D.M.; Kaiser, M.; Yeates, C.; Charman, S.A.; Chibale, K. Antimalarial pyrido1,2-abenzimidazoles. J. Med. Chem., 2011, 54(13), 4581-4589. doi: 10.1021/jm200227r PMID: 21644541
- Mali, S.N.; Pandey, A. Hemozoin (beta-hematin) Formation inhibitors: Promising target for the development of new antimalarials: Current update and future prospect. Comb. Chem. High Throughput Screen., 2022, 25(11), 1859-1874. doi: 10.2174/1386207325666210924104036 PMID: 34565319
- Sousa, C.C.; Dziwornu, G.A.; Quadros, H.C.; Araujo-Neto, J.H.; Chibale, K.; Moreira, D.R.M. Antimalarial Pyrido1,2-abenzimidazoles exert strong parasiticidal effects by achieving high cellular uptake and suppressing heme detoxification. ACS Infect. Dis., 2022, 8(8), 1700-1710. doi: 10.1021/acsinfecdis.2c00326 PMID: 35848708
- Nieto-Meneses, R.; Castillo, R.; Hernández-Campos, A.; Maldonado-Rangel, A.; Matius-Ruiz, J.B.; Trejo-Soto, P.J.; Nogueda-Torres, B.; Dea-Ayuela, M.A.; Bolás-Fernández, F.; Méndez-Cuesta, C.; Yépez-Mulia, L. In vitro activity of new N-benzyl-1H-benzimidazol-2-amine derivatives against cutaneous, mucocutaneous and visceral Leishmania species. Exp. Parasitol., 2018, 184, 82-89. doi: 10.1016/j.exppara.2017.11.009 PMID: 29191699
- De Luca, L.; Ferro, S.; Buemi, M.R.; Monforte, A.M.; Gitto, R.; Schirmeister, T.; Maes, L.; Rescifina, A.; Micale, N. Discovery of benzimidazole-based Leishmania mexicana cysteine protease CPB2.8ΔCTE inhibitors as potential therapeutics for leishmaniasis. Chem. Biol. Drug Des., 2018, 92(3), 1585-1596. doi: 10.1111/cbdd.13326 PMID: 29729080
- Kumar, A.; Nimsarkar, P.; Singh, S. Systems pharmacology aiding benzimidazole scaffold as potential lead compounds against leishmaniasis for functional therapeutics. Life Sci., 2022, 308, 120960. doi: 10.1016/j.lfs.2022.120960 PMID: 36116527
- Kapil, S.; Singh, P.K.; Kashyap, A.; Silakari, O. Structure based designing of benzimidazole/benzoxazole derivatives as anti-leishmanial agents. SAR QSAR Environ. Res., 2019, 30(12), 919-933. doi: 10.1080/1062936X.2019.1684357 PMID: 31702401
- Patel, V.M.; Patel, N.B.; Chan-Bacab, M.J.; Rivera, G. N -Mannich bases of benzimidazole as a potent antitubercular and antiprotozoal agents: Their synthesis and computational studies. Synth. Commun., 2020, 50(6), 858-878. doi: 10.1080/00397911.2020.1725057
- Sánchez-Salgado, J.C.; Bilbao-Ramos, P.; Dea-Ayuela, M.A.; Hernández-Luis, F.; Bolás-Fernández, F.; Medina-Franco, J.L.; Rojas-Aguirre, Y. Systematic search for benzimidazole compounds and derivatives with antileishmanial effects. Mol. Divers., 2018, 22(4), 779-790. doi: 10.1007/s11030-018-9830-7 PMID: 29748853
- Hernández-Luis, F.; Hernández-Campos, A.; Castillo, R.; Navarrete-Vázquez, G.; Soria-Arteche, O.; Hernández-Hernández, M.; Yépez-Mulia, L. Synthesis and biological activity of 2-(trifluoromethyl)-1H-benzimidazole derivatives against some protozoa and Trichinella spiralis. Eur. J. Med. Chem., 2010, 45(7), 3135-3141. doi: 10.1016/j.ejmech.2010.03.050 PMID: 20430484
- Gómez-Ochoa, P.; Castillo, J.A.; Gascón, M.; Zarate, J.J.; Alvarez, F.; Couto, C.G. Use of domperidone in the treatment of canine visceral leishmaniasis: A clinical trial. Vet. J., 2009, 179(2), 259-263. doi: 10.1016/j.tvjl.2007.09.014 PMID: 18023375
- Baxarias, M.; Martínez-Orellana, P.; Baneth, G.; Solano-Gallego, L. Immunotherapy in clinical canine leishmaniosis: A comparative update. Res. Vet. Sci., 2019, 125, 218-226. doi: 10.1016/j.rvsc.2019.06.009 PMID: 31280121
- Cavalera, M.A.; Gernone, F.; Uva, A.; DIppolito, P.; Roura, X.; Paltrinieri, S.; Zatelli, A. Effect of domperidone (leisguard®) on antibody titers, inflammatory markers and creatinine in dogs with leishmaniosis and chronic kidney disease. Parasit. Vectors, 2021, 14(1), 525. doi: 10.1186/s13071-021-05030-8 PMID: 34629081
- Ratcliffe, N.A.; Furtado Pacheco, J.P.; Dyson, P.; Castro, H.C.; Gonzalez, M.S.; Azambuja, P.; Mello, C.B. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit. Vectors, 2022, 15(1), 112. doi: 10.1186/s13071-021-05132-3 PMID: 35361286
- Ferreira, R.A.A.; Junior, C.O.R.; Martinez, P.D.G.; Koovits, P.J.; Soares, B.M.; Ferreira, L.L.G.; Michelan-Duarte, S.; Chelucci, R.C.; Andricopulo, A.D.; Galuppo, M.K.; Uliana, S.R.B.; Matheeussen, A.; Caljon, G.; Maes, L.; Campbell, S.; Kratz, J.M.; Mowbray, C.E.; Dias, L.C. 2-aminobenzimidazoles for leishmaniasis: From initial hit discovery to in vivo profiling. PLoS Negl. Trop. Dis., 2021, 15(2), e0009196. doi: 10.1371/journal.pntd.0009196 PMID: 33617566
- Peña, I.; Pilar Manzano, M.; Cantizani, J.; Kessler, A.; Alonso-Padilla, J.; Bardera, A.I.; Alvarez, E.; Colmenarejo, G.; Cotillo, I.; Roquero, I.; de Dios-Anton, F.; Barroso, V.; Rodriguez, A.; Gray, D.W.; Navarro, M.; Kumar, V.; Sherstnev, A.; Drewry, D.H.; Brown, J.R.; Fiandor, J.M.; Julio Martin, J. New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: An open resource. Sci. Rep., 2015, 5(1), 8771. doi: 10.1038/srep08771 PMID: 25740547
- Tonelli, M.; Gabriele, E.; Piazza, F.; Basilico, N.; Parapini, S.; Tasso, B.; Loddo, R.; Sparatore, F.; Sparatore, A. Benzimidazole derivatives endowed with potent antileishmanial activity. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 210-226. doi: 10.1080/14756366.2017.1410480 PMID: 29233048
- Espinosa-Bustos, C.; Ortiz Pérez, M.; Gonzalez-Gonzalez, A.; Zarate, A.M.; Rivera, G.; Belmont-Díaz, J.A.; Saavedra, E.; Cuellar, M.A.; Vázquez, K.; Salas, C.O. New amino naphthoquinone derivatives as anti-trypanosoma cruzi agents targeting trypanothione reductase. Pharmaceutics, 2022, 14(6), 1121. doi: 10.3390/pharmaceutics14061121 PMID: 35745694
- López-Lira, C.; Tapia, R.A.; Herrera, A.; Lapier, M.; Maya, J.D.; Soto-Delgado, J.; Oliver, A.G.; Graham Lappin, A.; Uriarte, E. New benzimidazolequinones as trypanosomicidal agents. Bioorg. Chem., 2021, 111, 104823. doi: 10.1016/j.bioorg.2021.104823 PMID: 33798844
- Bruno, S.; Uliassi, E.; Zaffagnini, M.; Prati, F.; Bergamini, C.; Amorati, R.; Paredi, G.; Margiotta, M.; Conti, P.; Costi, M.P.; Kaiser, M.; Cavalli, A.; Fato, R.; Bolognesi, M.L. Molecular basis for covalent inhibition of glyceraldehyde-3-phosphate dehydrogenase by a 2-phenoxy-1,4-naphthoqui- none small molecule. Chem. Biol. Drug Des., 2017, 90(2), 225-235. doi: 10.1111/cbdd.12941 PMID: 28079302
- Uchiyama, N.; Kabututu, Z.; Kubata, B.K.; Kiuchi, F.; Ito, M.; Nakajima-Shimada, J.; Aoki, T.; Ohkubo, K.; Fukuzumi, S.; Martin, S.K.; Honda, G.; Urade, Y. Antichagasic activity of komaroviquinone is due to generation of reactive oxygen species catalyzed by Trypanosoma cruzi old yellow enzyme. Antimicrob. Agents Chemother., 2005, 49(12), 5123-5126. doi: 10.1128/AAC.49.12.5123-5126.2005 PMID: 16304182
- Téllez-Valencia, A.; Ávila-Ríos, S.; Pérez-Montfort, R.; Rodríguez-Romero, A.; Tuena de Gómez-Puyou, M.; López-Calahorra, F.; Gómez-Puyou, A. Highly specific inactivation of triosephosphate isomerase from Trypanosoma cruzi. Biochem. Biophys. Res. Commun., 2002, 295(4), 958-963. doi: 10.1016/S0006-291X(02)00796-9 PMID: 12127988
- Téllez-Valencia, A.; Olivares-Illana, V.; Hernández-Santoyo, A.; Pérez-Montfort, R.; Costas, M.; Rodríguez-Romero, A.; López-Calahorra, F.; Tuena de Gómez-Puyou, M.; Gómez-Puyou, A. Inactivation of triosephosphate isomerase from Trypanosoma cruzi by an agent that perturbs its dimer interface. J. Mol. Biol., 2004, 341(5), 1355-1365. doi: 10.1016/j.jmb.2004.06.056 PMID: 15321726
- Flores Sandoval, C.A.; Cuevas Hernández, R.I.; Correa Basurto, J.; Beltrán Conde, H.I.; Padilla Martínez, I.I.; Farfán García, J.N.; Nogueda Torres, B.; Trujillo Ferrara, J.G. Synthesis and theoretic calculations of benzoxazoles and docking studies of their interactions with triosephosphate isomerase. Med. Chem. Res., 2013, 22(6), 2768-2777. doi: 10.1007/s00044-012-0264-y
- Velázquez-López, J.M.; Hernández-Campos, A.; Yépez-Mulia, L.; Téllez-Valencia, A.; Flores-Carrillo, P.; Nieto-Meneses, R.; Castillo, R. Synthesis and trypanocidal activity of novel benzimidazole derivatives. Bioorg. Med. Chem. Lett., 2016, 26(17), 4377-4381. doi: 10.1016/j.bmcl.2015.08.018 PMID: 27503677
- Vázquez-Jiménez, L.K.; Juárez-Saldivar, A.; Gómez-Escobedo, R.; Delgado-Maldonado, T.; Méndez-Álvarez, D.; Palos, I.; Bandyopadhyay, D.; Gaona-Lopez, C.; Ortiz-Pérez, E.; Nogueda-Torres, B.; Ramírez-Moreno, E.; Rivera, G. Ligand-based virtual screening and molecular docking of benzimidazoles as potential inhibitors of triosephosphate isomerase identified new trypanocidal agents. Int. J. Mol. Sci., 2022, 23(17), 10047. doi: 10.3390/ijms231710047 PMID: 36077439
- Song, D.; Ma, S. Recent development of benzimidazole-containing antibacterial agents. ChemMedChem, 2016, 11(7), 646-659. doi: 10.1002/cmdc.201600041 PMID: 26970352
- Beltran-Hortelano, I.; Atherton, R.L.; Rubio-Hernández, M.; Sanz-Serrano, J.; Alcolea, V.; Kelly, J.M.; Pérez-Silanes, S.; Olmo, F. Design and synthesis of mannich base-type derivatives containing imidazole and benzimidazole as lead compounds for drug discovery in chagas disease. Eur. J. Med. Chem., 2021, 223, 113646. doi: 10.1016/j.ejmech.2021.113646 PMID: 34182359
- Beltran-Hortelano, I.; Perez-Silanes, S.; Galiano, S. Trypanothione reductase and superoxide dismutase as current drug targets for Trypanosoma cruzi: An overview of compounds with activity against chagas disease. Curr. Med. Chem., 2017, 24(11), 1066-1138. PMID: 28025938
- Bistrović, A.; Krstulović, L.; Harej, A.; Grbčić, P.; Sedić, M.; Kotrun, S.; Pavelić, S.K.; Bajić, M.; Raić-Malić, S. Design, synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer. Eur. J. Med. Chem., 2018, 143, 1616-1634. doi: 10.1016/j.ejmech.2017.10.061 PMID: 29133046
- McNamara, N.; Rahmani, R.; Sykes, M.L.; Avery, V.M.; Baell, J. Hit-to-lead optimization of novel benzimidazole phenylacetamides as broad spectrum trypanosomacides. RSC Med. Chem., 2020, 11(6), 685-695. doi: 10.1039/D0MD00058B PMID: 33479668
- de Oliveira Rezende Júnior, C.; Martinez, P.D.G.; Ferreira, R.A.A.; Koovits, P.J.; Miranda Soares, B.; Ferreira, L.L.G.; Michelan-Duarte, S.; Chelucci, R.C.; Andricopulo, A.D.; Matheeussen, A.; Van Pelt, N.; Caljon, G.; Maes, L.; Campbell, S.; Kratz, J.M.; Mowbray, C.E.; Dias, L.C. Hit-to-lead optimization of a 2-aminobenzimidazole series as new candidates for chagas disease. Eur. J. Med. Chem., 2023, 246, 114925. doi: 10.1016/j.ejmech.2022.114925 PMID: 36459758
- Ornellas-Garcia, U.; Cuervo, P.; Ribeiro-Gomes, F.L. Malaria and leishmaniasis: Updates on co-infection. Front. Immunol., 2023, 14, 1122411. doi: 10.3389/fimmu.2023.1122411 PMID: 36895563
- Formenti, B.; Gregori, N.; Crosato, V.; Marchese, V.; Tomasoni, L.R.; Castelli, F. The impact of COVID-19 on communicable and non-communicable diseases in Africa: A narrative review. Infez. Med., 2022, 30(1), 30-40. PMID: 35350264
Дополнительные файлы
