Serine Protease 27, a Prognostic Biomarker in Pan-cancer and Associated with the Aggressive Progression of Breast Cancer


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:To create effective medicines, researchers must first identify the common or unique genes that drive oncogenic processes in human cancers. Serine protease 27 (PRSS27) has been recently defined as a possible driver gene in esophageal squamous cell carcinoma. However, no thorough pan-cancer study has been performed to date, including breast cancer.

Methods:Using the TCGA (The Cancer Genome Atlas), the GEO (Gene Expression Omnibus) dataset, and multiple bioinformatic tools, we investigated the function of PRSS27 in 33 tumor types. In addition, prognosis analysis of PRSS27 in breast cancer was carried out, as well as in vitro experiments to verify its role as an oncogene. We first explored the expression of PRSS27 in over 10 tumors and then we looked into PRSS27 genomic mutations.

Results:We discovered that PRSS27 has prognostic significance in breast cancer and other cancers' survival, and we developed a breast cancer prognostic prediction model by combining a defined set of clinical factors. Besides, we confirmed PRSS27 as an oncogene in breast cancer using some primary in vitro experiments.

Conclusion:Our pan-cancer survey has comprehensively reviewed the oncogenic function of PRSS27 in various human malignancies, suggesting that it may be a promising prognostic biomarker and tumor therapeutic target in breast cancer.

Авторлар туралы

Yiying Xu

Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University

Email: info@benthamscience.net

Yanyan Shen

Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University

Email: info@benthamscience.net

Adheesh Bhandari

Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University

Email: info@benthamscience.net

Suzita Hirachan

Department of General Surgery, Breast and Thyroid Unit,, Tribhuvan University Teaching Hospital

Email: info@benthamscience.net

Ouchen Wang

Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Erjie Xia

Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Bhagwandin, V.J.; Hau, L.W.; Mallen-St, C.J.; Wolters, P.J.; Caughey, G.H. Structure and activity of human pancreasin, a novel tryptic serine peptidase expressed primarily by the pancreas. J. Biol. Chem., 2003, 278(5), 3363-3371. doi: 10.1074/jbc.M209353200 PMID: 12441343
  2. Kataoka, A.; Yamada, K.; Hagiwara, T.; Terayama, M.; Sugimoto, T.; Nohara, K.; Igari, T.; Yokoi, C.; Kawamura, Y.I. Expression status of serine protease 27: A prognostic marker for esophageal squamous cell carcinoma treated with preoperative chemotherapy/chemoradiotherapy. Ann. Surg. Oncol., 2021, 28(9), 5373-5381. doi: 10.1245/s10434-020-09550-y PMID: 33452606
  3. Raman, K.; Trivedi, N.N.; Raymond, W.W.; Ganesan, R.; Kirchhofer, D.; Verghese, G.M.; Craik, C.S.; Schneider, E.L.; Nimishakavi, S.; Caughey, G.H. Mutational tail loss is an evolutionary mechanism for liberating marapsins and other type I serine proteases from transmembrane anchors. J. Biol. Chem., 2013, 288(15), 10588-10598. doi: 10.1074/jbc.M112.449033 PMID: 23447538
  4. Britt, K.L.; Cuzick, J.; Phillips, K.A. Key steps for effective breast cancer prevention. Nat. Rev. Cancer, 2020, 20(8), 417-436. doi: 10.1038/s41568-020-0266-x PMID: 32528185
  5. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  6. Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast cancer. Lancet, 2021, 397(10286), 1750-1769. doi: 10.1016/S0140-6736(20)32381-3 PMID: 33812473
  7. Borri, F.; Granaglia, A. Pathology of triple negative breast cancer. Semin. Cancer Biol., 2021, 72, 136-145. doi: 10.1016/j.semcancer.2020.06.005 PMID: 32544511
  8. Atakpa, E.C.; Thorat, M.A.; Cuzick, J.; Brentnall, A.R. Mammographic density, endocrine therapy and breast cancer risk: A prognostic and predictive biomarker review. Cochrane Database Syst. Rev., 2021, 10(10), CD013091. PMID: 34697802
  9. Zhao, J.; Chen, X.; Herjan, T.; Li, X. The role of interleukin-17 in tumor development and progression. J. Exp. Med., 2020, 217(1), e20190297. doi: 10.1084/jem.20190297 PMID: 31727782
  10. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
  11. Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res., 2020, 22(1), 61. doi: 10.1186/s13058-020-01296-5 PMID: 32517735
  12. Lyons, T.G. Targeted therapies for triple-negative breast cancer. Curr. Treat. Options Oncol., 2019, 20(11), 82. doi: 10.1007/s11864-019-0682-x PMID: 31754897
  13. Tutt, A.; Tovey, H.; Cheang, M.C.U.; Kernaghan, S.; Kilburn, L.; Gazinska, P.; Owen, J.; Abraham, J.; Barrett, S.; Barrett-Lee, P.; Brown, R.; Chan, S.; Dowsett, M.; Flanagan, J.M.; Fox, L.; Grigoriadis, A.; Gutin, A.; Harper-Wynne, C.; Hatton, M.Q.; Hoadley, K.A.; Parikh, J.; Parker, P.; Perou, C.M.; Roylance, R.; Shah, V.; Shaw, A.; Smith, I.E.; Timms, K.M.; Wardley, A.M.; Wilson, G.; Gillett, C.; Lanchbury, J.S.; Ashworth, A.; Rahman, N.; Harries, M.; Ellis, P.; Pinder, S.E.; Bliss, J.M. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: The TNT Trial. Nat. Med., 2018, 24(5), 628-637. doi: 10.1038/s41591-018-0009-7 PMID: 29713086
  14. Gerratana, L.; Basile, D.; Buono, G.; De Placido, S.; Giuliano, M.; Minichillo, S.; Coinu, A.; Martorana, F.; De Santo, I.; Del Mastro, L.; De Laurentiis, M.; Puglisi, F.; Arpino, G. Androgen receptor in triple negative breast cancer: A potential target for the targetless subtype. Cancer Treat. Rev., 2018, 68, 102-110. doi: 10.1016/j.ctrv.2018.06.005 PMID: 29940524
  15. Costa, R.L.B.; Han, H.S.; Gradishar, W.J. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: A review. Breast Cancer Res. Treat., 2018, 169(3), 397-406. doi: 10.1007/s10549-018-4697-y PMID: 29417298
  16. Bardia, A.; Hurvitz, S.A.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Sardesai, S.D.; Kalinsky, K.; Zelnak, A.B.; Weaver, R.; Traina, T.; Dalenc, F.; Aftimos, P.; Lynce, F.; Diab, S.; Cortés, J.; O’Shaughnessy, J.; Diéras, V.; Ferrario, C.; Schmid, P.; Carey, L.A.; Gianni, L.; Piccart, M.J.; Loibl, S.; Goldenberg, D.M.; Hong, Q.; Olivo, M.S.; Itri, L.M.; Rugo, H.S. Sacituzumab govitecan in metastatic triple-negative breast cancer. N. Engl. J. Med., 2021, 384(16), 1529-1541. doi: 10.1056/NEJMoa2028485 PMID: 33882206
  17. Voorwerk, L.; Slagter, M.; Horlings, H.M.; Sikorska, K.; van de Vijver, K.K.; de Maaker, M.; Nederlof, I.; Kluin, R.J.C.; Warren, S.; Ong, S.; Wiersma, T.G.; Russell, N.S.; Lalezari, F.; Schouten, P.C.; Bakker, N.A.M.; Ketelaars, S.L.C.; Peters, D.; Lange, C.A.H.; van Werkhoven, E.; van Tinteren, H.; Mandjes, I.A.M.; Kemper, I.; Onderwater, S.; Chalabi, M.; Wilgenhof, S.; Haanen, J.B.A.G.; Salgado, R.; de Visser, K.E.; Sonke, G.S.; Wessels, L.F.A.; Linn, S.C.; Schumacher, T.N.; Blank, C.U.; Kok, M. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: The TONIC trial. Nat. Med., 2019, 25(6), 920-928. doi: 10.1038/s41591-019-0432-4 PMID: 31086347
  18. Li, W.; Danilenko, D.M.; Bunting, S.; Ganesan, R.; Sa, S.; Ferrando, R.; Wu, T.D.; Kolumam, G.A.; Ouyang, W.; Kirchhofer, D. The serine protease marapsin is expressed in stratified squamous epithelia and is up-regulated in the hyperproliferative epidermis of psoriasis and regenerating wounds. J. Biol. Chem., 2009, 284(1), 218-228. doi: 10.1074/jbc.M806267200 PMID: 18948266
  19. Adachi, W.; Ulanovsky, H.; Li, Y.; Norman, B.; Davis, J.; Piatigorsky, J. Serial analysis of gene expression (SAGE) in the rat limbal and central corneal epithelium. Invest. Ophthalmol. Vis. Sci., 2006, 47(9), 3801-3810. doi: 10.1167/iovs.06-0216 PMID: 16936091
  20. Bianchini, G.; De Angelis, C.; Licata, L.; Gianni, L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat. Rev. Clin. Oncol., 2022, 19(2), 91-113. doi: 10.1038/s41571-021-00565-2 PMID: 34754128
  21. Schmid, P.; Rugo, H.S.; Adams, S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Henschel, V.; Molinero, L.; Chui, S.Y.; Maiya, V.; Husain, A.; Winer, E.P.; Loi, S.; Emens, L.A. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): Updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol., 2020, 21(1), 44-59. doi: 10.1016/S1470-2045(19)30689-8 PMID: 31786121
  22. Winer, E.P.; Lipatov, O.; Im, S.A.; Goncalves, A.; Muñoz-Couselo, E.; Lee, K.S.; Schmid, P.; Tamura, K.; Testa, L.; Witzel, I.; Ohtani, S.; Turner, N.; Zambelli, S.; Harbeck, N.; Andre, F.; Dent, R.; Zhou, X.; Karantza, V.; Mejia, J.; Cortes, J. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): A randomised, open-label, phase 3 trial. Lancet Oncol., 2021, 22(4), 499-511. doi: 10.1016/S1470-2045(20)30754-3 PMID: 33676601
  23. Adams, S.; Schmid, P.; Rugo, H.S.; Winer, E.P.; Loirat, D.; Awada, A.; Cescon, D.W.; Iwata, H.; Campone, M.; Nanda, R.; Hui, R.; Curigliano, G.; Toppmeyer, D.; O’Shaughnessy, J.; Loi, S.; Paluch-Shimon, S.; Tan, A.R.; Card, D.; Zhao, J.; Karantza, V.; Cortés, J. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: Cohort A of the phase II KEYNOTE-086 study. Ann. Oncol., 2019, 30(3), 397-404. doi: 10.1093/annonc/mdy517 PMID: 30475950
  24. Jiang, T.; Wang, P.; Zhang, J.; Zhao, Y.; Zhou, J.; Fan, Y.; Shu, Y.; Liu, X.; Zhang, H.; He, J.; Gao, G.; Mu, X.; Bao, Z.; Xu, Y.; Guo, R.; Wang, H.; Deng, L.; Ma, N.; Zhang, Y.; Feng, H.; Yao, S.; Wu, J.; Chen, L.; Zhou, C.; Ren, S. Toripalimab plus chemotherapy as second-line treatment in previously EGFR-TKI treated patients with EGFR-mutant-advanced NSCLC: A multicenter phase-II trial. Signal Transduct. Target. Ther., 2021, 6(1), 355. doi: 10.1038/s41392-021-00751-9 PMID: 34650034
  25. Yin, X.; Teng, X.; Ma, T.; Yang, T.; Zhang, J.; Huo, M.; Liu, W.; Yang, Y.; Yuan, B.; Yu, H.; Huang, W.; Wang, Y. RUNX2 recruits the NuRD(MTA1)/CRL4B complex to promote breast cancer progression and bone metastasis. Cell Death Differ., 2022, 29(11), 2203-2217. doi: 10.1038/s41418-022-01010-2 PMID: 35534547
  26. Qian, X.L.; Xu, P.; Zhang, Y.Q.; Song, Y.M.; Li, Y.Q.; Li, W.D.; Jiang, C.Y.; Shen, B.B.; Zhang, X.M.; Zhang, L.N.; Fu, L.; Guo, X.J. Increased number of intratumoral IL-17+ cells, a harbinger of the adverse prognosis of triple-negative breast cancer. Breast Cancer Res. Treat., 2020, 180(2), 311-319. doi: 10.1007/s10549-020-05540-6 PMID: 31993861

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024