miR-26a is a Key Therapeutic Target with Enormous Potential in the Diagnosis and Prognosis of Human Disease
- Authors: Guan W.1, Chen Y.2, Fan Y.3
-
Affiliations:
- Department of Pharmacology, Pharmacy College,, Nantong University
- Department of Neurology, Nantong Third Peoples Hospital, Affiliated Nantong Hospital 3 of Nantong University
- Department of Pharmacy, Zhangjiagang Second People's Hospital
- Issue: Vol 31, No 18 (2024)
- Pages: 2550-2570
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/644543
- DOI: https://doi.org/10.2174/0109298673271808231116075056
- ID: 644543
Cite item
Full Text
Abstract
MicroRNA-26a (miR-26a) belongs to small non-coding regulatory RNA molecules emerging as fundamental post-transcriptional regulators inhibiting gene expression that plays vital roles in various processes of human diseases such as depression, renal ischemia and reperfusion injury, liver injury and some refractory cancer. In this review, we expound on the results of studies about miR-26a with emphasis on its function in animal models or in vitro cell culture to simulate the most common human disease in the clinic. Furthermore, we also illustrate the underlying mechanisms of miR-26a in strengthening the antitumor activity of antineoplastic drugs. Importantly, dysregulation of miR-26a has been related to many chronic and malignant diseases, especially in neurological disorders in the brain such as depression and neurodegenerative diseases as well as cancers such as papillary thyroid carcinoma, hepatocellular carcinoma and so on. It follows that miR-26a has a strong possibility to be a potential therapeutic target for the treatment of neurological disorders and cancers. Although the research of miRNAs has made great progress in the last few decades, much is yet to be discovered, especially regarding their underlying mechanisms and roles in the complex diseases of humans. Consequently, miR-26a has been analyzed in chronic and malignant diseases, and we discuss the dysregulation of miR-26a and functional roles in the development and pathogenesis of these diseases, which is very helpful for understanding their mechanisms as new biomarkers for diagnosing and curing diseases in the near future.
Keywords
About the authors
Wei Guan
Department of Pharmacology, Pharmacy College,, Nantong University
Email: info@benthamscience.net
Yan Chen
Department of Neurology, Nantong Third Peoples Hospital, Affiliated Nantong Hospital 3 of Nantong University
Email: info@benthamscience.net
Yan Fan
Department of Pharmacy, Zhangjiagang Second People's Hospital
Author for correspondence.
Email: info@benthamscience.net
References
- Correia de Sousa, M.; Gjorgjieva, M.; Dolicka, D.; Sobolewski, C.; Foti, M. Deciphering miRNAs Action through miRNA Editing. Int. J. Mol. Sci., 2019, 20(24), 6249. doi: 10.3390/ijms20246249 PMID: 31835747
- Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol., 2019, 234(5), 5451-5465. doi: 10.1002/jcp.27486 PMID: 30471116
- Ginckels, P.; Holvoet, P. Oxidative stress and inflammation in cardiovascular diseases and cancer: Role of non- coding RNAs. Yale J. Biol. Med., 2022, 95(1), 129-152. PMID: 35370493
- Wang, B.; Zhang, A.; Wang, H.; Klein, J.D.; Tan, L.; Wang, Z.M.; Du, J.; Naqvi, N.; Liu, B.C.; Wang, X.H. miR-26a limits muscle wasting and cardiac fibrosis through exosome-mediated microRNA transfer in chronic kidney disease. Theranostics, 2019, 9(7), 1864-1877. doi: 10.7150/thno.29579 PMID: 31037144
- Cai, B.; Qu, X.; Kan, D.; Luo, Y. miR-26a-5p suppresses nasopharyngeal carcinoma progression by inhibiting PTGS2 expression. Cell Cycle, 2022, 21(6), 618-629. doi: 10.1080/15384101.2022.2030168 PMID: 35073820
- Li, Y.; Fan, C.; Wang, L.; Lan, T.; Gao, R.; Wang, W.; Yu, S.Y. MicroRNA-26a-3p rescues depression-like behaviors in male rats via preventing hippocampal neuronal anomalies. J. Clin. Invest., 2021, 131(16), e148853. doi: 10.1172/JCI148853 PMID: 34228643
- Chen, B.; Deng, Y.; Wang, X.; Xia, Z.; He, Y.; Zhang, P.; Syed, S.E.; Li, Q.; Liang, S. miR-26a enhances colorectal cancer cell growth by targeting RREB1 deacetylation to activate AKT-mediated glycolysis. Cancer Lett., 2021, 521, 1-13. doi: 10.1016/j.canlet.2021.08.017 PMID: 34419497
- Shen, B.; Mei, M.; Pu, Y.; Zhang, H.; Liu, H.; Tang, M.; Pan, Q.; He, Y.; Wu, X.; Zhao, H. Necrostatin-1 attenuates renal ischemia and reperfusion injury via meditation of HIF-1α/mir-26a/TRPC6/PARP1 Signaling. Mol. Ther. Nucleic Acids, 2019, 17, 701-713. doi: 10.1016/j.omtn.2019.06.025 PMID: 31422287
- Kong, B.; Qin, Z.; Ye, Z.; Yang, X.; Li, L.; Su, Q. microRNA-26a-5p affects myocardial injury induced by coronary microembolization by modulating HMGA1. J. Cell. Biochem., 2019, 120(6), 10756-10766. doi: 10.1002/jcb.28367 PMID: 30652345
- Su, Y.; Deng, M.F.; Xiong, W.; Xie, A.J.; Guo, J.; Liang, Z.H.; Hu, B.; Chen, J.G.; Zhu, X.; Man, H.Y.; Lu, Y.; Liu, D.; Tang, B.; Zhu, L.Q. MicroRNA-26a/Death-associated protein kinase 1 signaling induces synucleinopathy and dopaminergic neuron degeneration in parkinsons disease. Biol. Psychiatry, 2019, 85(9), 769-781. doi: 10.1016/j.biopsych.2018.12.008 PMID: 30718039
- Li, C.; Li, Y.; Lu, Y.; Niu, Z.; Zhao, H.; Peng, Y.; Li, M. miR-26 family and its target genes in tumorigenesis and development. Crit. Rev. Oncol. Hematol., 2021, 157, 103124. doi: 10.1016/j.critrevonc.2020.103124 PMID: 33254041
- Li, X.; Pan, X.; Fu, X.; Yang, Y.; Chen, J.; Lin, W. MicroRNA-26a: An emerging regulator of renal biology and disease. Kidney Blood Press. Res., 2019, 44(3), 287-297. doi: 10.1159/000499646 PMID: 31163420
- Icli, B.; Dorbala, P.; Feinberg, M.W. An emerging role for the miR-26 family in cardiovascular disease. Trends Cardiovasc. Med., 2014, 24(6), 241-248. doi: 10.1016/j.tcm.2014.06.003 PMID: 25066487
- Pelletier, D.; Rivera, B.; Fabian, M.R.; Foulkes, W.D. miRNA biogenesis and inherited disorders: clinico-molecular insights. Trends Genet., 2023, 39(5), 401-414. doi: 10.1016/j.tig.2023.01.009 PMID: 36863945
- Zeng, Y.; Yi, R.; Cullen, B.R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J., 2005, 24(1), 138-148. doi: 10.1038/sj.emboj.7600491 PMID: 15565168
- Saito, K.; Ishizuka, A.; Siomi, H.; Siomi, M.C. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol., 2005, 3(7), e235. doi: 10.1371/journal.pbio.0030235 PMID: 15918769
- Fukunaga, R.; Han, B.W.; Hung, J.H.; Xu, J.; Weng, Z.; Zamore, P.D. Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell, 2012, 151(3), 533-546. doi: 10.1016/j.cell.2012.09.027 PMID: 23063653
- Jiang, F.; Zong, Y.; Ma, X.; Jiang, C.; Shan, H.; Lin, Y.; Xia, W.; Yin, F.; Wang, N.; Zhou, L.; Zhou, Z.; Yu, X. miR-26a attenuated bone-specific insulin resistance and bone quality in diabetic mice. Mol. Ther. Nucleic Acids, 2020, 20, 459-467. doi: 10.1016/j.omtn.2020.03.010 PMID: 32278305
- Xing, X.; Guo, S.; Zhang, G.; Liu, Y.; Bi, S.; Wang, X.; Lu, Q. miR-26a-5p protects against myocardial ischemia/reperfusion injury by regulating the PTEN/PI3K/AKT signaling pathway. Braz. J. Med. Biol. Res., 2020, 53(2), e9106. doi: 10.1590/1414-431x20199106 PMID: 31994603
- Cheng, C.; Chen, X.; Wang, Y.; Cheng, W.; Zuo, X.; Tang, W.; Huang, W. MSCs-derived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6. Mol. Med., 2021, 27(1), 67. doi: 10.1186/s10020-021-00324-0 PMID: 34215174
- Gao, S.; Bian, T.; Su, M.; Liu, Y.; Zhang, Y. miR-26a inhibits ovarian cancer cell proliferation, migration and invasion by targeting TCF12. Oncol. Rep., 2020, 43(1), 368-374. PMID: 31789414
- Gong, Y.; Wu, W.; Zou, X.; Liu, F.; Wei, T.; Zhu, J. MiR-26a inhibits thyroid cancer cell proliferation by targeting ARPP19. Am. J. Cancer Res., 2018, 8(6), 1030-1039. PMID: 30034940
- Wang, H.; Hu, Z.; Chen, L. Enhanced plasma miR-26a-5p promotes the progression of bladder cancer via targeting PTEN. Oncol. Lett., 2018, 16(4), 4223-4228. doi: 10.3892/ol.2018.9163 PMID: 30197668
- Rock, P.L.; Roiser, J.P.; Riedel, W.J.; Blackwell, A.D. Cognitive impairment in depression: A systematic review and meta-analysis. Psychol. Med., 2014, 44(10), 2029-2040. doi: 10.1017/S0033291713002535 PMID: 24168753
- Colucci-DAmato, L.; Speranza, L.; Volpicelli, F. Neurotrophic Factor BDNF, Physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int. J. Mol. Sci., 2020, 21(20), 7777. doi: 10.3390/ijms21207777 PMID: 33096634
- Wu, Z.; Cai, Z.; Shi, H.; Huang, X.; Cai, M.; Yuan, K.; Huang, P.; Shi, G.; Yan, T.; Li, Z. Effective biomarkers and therapeutic targets of nerve-immunity interaction in the treatment of depression: An integrated investigation of the miRNA-mRNA regulatory networks. Aging, 2022, 14(8), 3569-3596. doi: 10.18632/aging.204030 PMID: 35468096
- Homorogan, C.; Enatescu, V.R.; Nitusca, D.; Marcu, A.; Seclaman, E.; Marian, C. Distribution of microRNAs associated with major depressive disorder among blood compartments. J. Int. Med. Res., 2021, 49(4), 03000605211006633. doi: 10.1177/03000605211006633 PMID: 33827323
- Bocchio-Chiavetto, L.; Maffioletti, E.; Bettinsoli, P.; Giovannini, C.; Bignotti, S.; Tardito, D.; Corrada, D.; Milanesi, L.; Gennarelli, M. Blood microRNA changes in depressed patients during antidepressant treatment. Eur. Neuropsychopharmacol., 2013, 23(7), 602-611. doi: 10.1016/j.euroneuro.2012.06.013 PMID: 22925464
- Carrillo, M.C.; Brashear, H.R.; Logovinsky, V.; Ryan, J.M.; Feldman, H.H.; Siemers, E.R.; Abushakra, S.; Hartley, D.M.; Petersen, R.C.; Khachaturian, A.S.; Sperling, R.A. Can we prevent Alzheimers disease? Secondary "prevention" trials in Alzheimers disease. Alzheimers Dement., 2013, 9(2), 123-131.e1. doi: 10.1016/j.jalz.2012.12.004 PMID: 23411394
- Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimers disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine, 2019, 14, 5541-5554. doi: 10.2147/IJN.S200490 PMID: 31410002
- Inui, M.; Martello, G.; Piccolo, S. MicroRNA control of signal transduction. Nat. Rev. Mol. Cell Biol., 2010, 11(4), 252-263. doi: 10.1038/nrm2868 PMID: 20216554
- Li, B.; Sun, H. miR-26a promotes neurite outgrowth by repressing PTEN expression. Mol. Med. Rep., 2013, 8(2), 676-680. doi: 10.3892/mmr.2013.1534 PMID: 23783805
- Demuro, S.; Di Martino, R.M.C.; Ortega, J.A.; Cavalli, A. GSK-3β, FYN, and DYRK1A: Master regulators in neurodegenerative pathways. Int. J. Mol. Sci., 2021, 22(16), 9098. doi: 10.3390/ijms22169098 PMID: 34445804
- Liu, Y.; Wang, L.; Xie, F.; Wang, X.; Hou, Y.; Wang, X.; Liu, J. Overexpression of miR-26a-5p suppresses tau phosphorylation and Aβ accumulation in the Alzheimers disease mice by targeting DYRK1A. Curr. Neurovasc. Res., 2020, 17(3), 241-248. doi: 10.2174/1567202617666200414142637 PMID: 32286945
- Xie, T.; Pei, Y.; Shan, P.; Xiao, Q.; Zhou, F.; Huang, L.; Wang, S. Identification of miRNAmRNA Pairs in the Alzheimers disease expression profile and explore the effect of miR-26a-5p/PTGS2 on amyloid-β induced neurotoxicity in Alzheimers disease cell model. Front. Aging Neurosci., 2022, 14, 909222. doi: 10.3389/fnagi.2022.909222 PMID: 35783137
- Paredes, C.; Hsu, R.C.; Tong, A.; Johnson, J.R. Obesity and pregnancy. Neoreviews, 2021, 22(2), e78-e87. doi: 10.1542/neo.22-2-e78 PMID: 33526637
- Marcelin, G.; Silveira, A.L.M.; Martins, L.B.; Ferreira, A.V.M.; Clément, K. Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. J. Clin. Invest., 2019, 129(10), 4032-4040. doi: 10.1172/JCI129192 PMID: 31498150
- Cirillo, F.; Catellani, C.; Sartori, C.; Lazzeroni, P.; Amarri, S.; Street, M.E. Obesity, insulin resistance, and colorectal cancer: Could miRNA dysregulation play a role? Int. J. Mol. Sci., 2019, 20(12), 2922. doi: 10.3390/ijms20122922 PMID: 31207998
- Fu, X.; Dong, B.; Tian, Y.; Lefebvre, P.; Meng, Z.; Wang, X.; Pattou, F.; Han, W.; Wang, X.; Lou, F.; Jove, R.; Staels, B.; Moore, D.D.; Huang, W. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J. Clin. Invest., 2015, 125(6), 2497-2509. doi: 10.1172/JCI75438 PMID: 25961460
- Acharya, A.; Berry, D.C.; Zhang, H.; Jiang, Y.; Jones, B.T.; Hammer, R.E.; Graff, J.M.; Mendell, J.T. miR-26 suppresses adipocyte progenitor differentiation and fat production by targeting Fbxl19. Genes Dev., 2019, 33(19-20), 1367-1380. doi: 10.1101/gad.328955.119 PMID: 31488578
- Kim, N.H.; Ahn, J.; Choi, Y.M.; Son, H.J.; Choi, W.H.; Cho, H.J.; Yu, J.H.; Seo, J.A.; Jang, Y.J.; Jung, C.H.; Ha, T.Y. Differential circulating and visceral fat microRNA expression of non-obese and obese subjects. Clin. Nutr., 2020, 39(3), 910-916. doi: 10.1016/j.clnu.2019.03.033 PMID: 31003790
- Hsieh, C.H.; Rau, C.S.; Wu, S.C.; Yang, J.C.S.; Wu, Y.C.; Lu, T.H.; Tzeng, S.L.; Wu, C.J.; Lin, C.W. Weight-reduction through a low-fat diet causes differential expression of circulating microRNAs in obese C57BL/6 mice. BMC Genomics, 2015, 16(1), 699. doi: 10.1186/s12864-015-1896-3 PMID: 26377847
- Blagosklonny, M.V. Once again on rapamycin-induced insulin resistance and longevity: Despite of or owing to. Aging, 2012, 4(5), 350-358. doi: 10.18632/aging.100461 PMID: 22683661
- Osna, N.A.; Donohue, T.M., Jr; Kharbanda, K.K. Alcoholic liver disease: Pathogenesis and current management. Alcohol Res., 2017, 38(2), 147-161. PMID: 28988570
- Lackner, C.; Tiniakos, D. Fibrosis and alcohol-related liver disease. J. Hepatol., 2019, 70(2), 294-304. doi: 10.1016/j.jhep.2018.12.003 PMID: 30658730
- Zhao, Z.; Lin, C.Y.; Cheng, K. siRNA- and miRNA-based therapeutics for liver fibrosis. Transl. Res., 2019, 214, 17-29. doi: 10.1016/j.trsl.2019.07.007 PMID: 31476281
- Wang, X.; He, Y.; Mackowiak, B.; Gao, B. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut, 2021, 70(4), 784-795. doi: 10.1136/gutjnl-2020-322526 PMID: 33127832
- Blaya, D.; Pose, E.; Coll, M.; Lozano, J.J.; Graupera, I.; Schierwagen, R.; Jansen, C.; Castro, P.; Fernandez, S.; Sidorova, J.; Vasa-Nicotera, M.; Solà, E.; Caballería, J.; Trebicka, J.; Ginès, P.; Sancho-Bru, P. Profiling circulating microRNAs in patients with cirrhosis and acute-on-chronic liver failure. JHEP Reports, 2021, 3(2), 100233. doi: 10.1016/j.jhepr.2021.100233 PMID: 33665588
- Zhou, J.; Li, Z.; Huang, Y.; Ju, W.; Wang, D.; Zhu, X.; He, X. MicroRNA-26a targets the mdm2/p53 loop directly in response to liver regeneration. Int. J. Mol. Med., 2019, 44(4), 1505-1514. doi: 10.3892/ijmm.2019.4282 PMID: 31364731
- Kalayinia, S.; Goodarzynejad, H.; Maleki, M.; Mahdieh, N. Next generation sequencing applications for cardiovascular disease. Ann. Med., 2018, 50(2), 91-109. doi: 10.1080/07853890.2017.1392595 PMID: 29027470
- Huang, Y. The novel regulatory role of lnc RNA -mi RNA-MRNA axis in cardiovascular diseases. J. Cell. Mol. Med., 2018, 22(12), 5768-5775. doi: 10.1111/jcmm.13866 PMID: 30188595
- Kalayinia, S.; Arjmand, F.; Maleki, M.; Malakootian, M.; Singh, C.P. MicroRNAs: Roles in cardiovascular development and disease. Cardiovasc. Pathol., 2021, 50, 107296. doi: 10.1016/j.carpath.2020.107296 PMID: 33022373
- Lu, D.; Thum, T. RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat. Rev. Cardiol., 2019, 16(11), 661-674. doi: 10.1038/s41569-019-0218-x PMID: 31186539
- Shi, H.; Li, H.; Zhang, F.; Xue, H.; Zhang, Y.; Han, Q. MiR-26a-5p alleviates cardiac hypertrophy and dysfunction via targeting ADAM17. Cell Biol. Int., 2021, 45(11), 2357-2367. doi: 10.1002/cbin.11685 PMID: 34370360
- Tang, L.; Xie, J.; Yu, X.; Zheng, Y. MiR-26a-5p inhibits GSK3β expression and promotes cardiac hypertrophy in vitro. PeerJ, 2020, 8, e10371. doi: 10.7717/peerj.10371 PMID: 33240671
- Deng, S.; Solinas, A.; Calvisi, D.F. Cabozantinib for HCC Treatment, from clinical back to experimental models. Front. Oncol., 2021, 11, 756672. doi: 10.3389/fonc.2021.756672 PMID: 34722310
- Di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in cancer. Annu. Rev. Pathol., 2014, 9(1), 287-314. doi: 10.1146/annurev-pathol-012513-104715 PMID: 24079833
- Wang, Y.; Sun, B.; Sun, H.; Zhao, X.; Wang, X.; Zhao, N.; Zhang, Y.; Li, Y.; Gu, Q.; Liu, F.; Shao, B.; An, J. Regulation of proliferation, angiogenesis and apoptosis in hepatocellular carcinoma by miR-26b-5p. Tumour Biol., 2016, 37(8), 10965-10979. doi: 10.1007/s13277-016-4964-7 PMID: 26891666
- Zhang, Y.F.; Zhang, A.R.; Zhang, B.C.; Rao, Z.G.; Gao, J.F.; Lv, M.H.; Wu, Y.Y.; Wang, S.M.; Wang, R.Q.; Fang, D.C. MiR-26a regulates cell cycle and anoikis of human esophageal adenocarcinoma cells through Rb1-E2F1 signaling pathway. Mol. Biol. Rep., 2013, 40(2), 1711-1720. doi: 10.1007/s11033-012-2222-7 PMID: 23108995
- Chang, L.; Li, K.; Guo, T. miR-26a-5p suppresses tumor metastasis by regulating EMT and is associated with prognosis in HCC. Clin. Transl. Oncol., 2017, 19(6), 695-703. doi: 10.1007/s12094-016-1582-1 PMID: 27864783
- Zhu, W.J.; Yan, Y.; Zhang, J.W.; Tang, Y.D.; Han, B. Effect and mechanism of miR-26a-5p on proliferation and apoptosis of hepatocellular carcinoma cells. Cancer Manag. Res., 2020, 12, 3013-3022. doi: 10.2147/CMAR.S237752 PMID: 32431544
- Liebner, D.A.; Shah, M.H. Thyroid cancer: Pathogenesis and targeted therapy. Ther. Adv. Endocrinol. Metab., 2011, 2(5), 173-195. doi: 10.1177/2042018811419889 PMID: 23148184
- Lin, R.X.; Yang, S.L.; Jia, Y.; Wu, J.C.; Xu, Z.; Zhang, H. Epigenetic regulation of papillary thyroid carcinoma by long non-coding RNAs. Semin. Cancer Biol., 2022, 83, 253-260. doi: 10.1016/j.semcancer.2021.03.027 PMID: 33785446
- Wu, Y.C.; Li, S.Y.; Jia, Y.F. MicroRNA-26a suppresses the malignant biological behaviors of papillary thyroid carcinoma by targeting ROCK1 and regulating PI3K/AKT signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(20), 8940-8949. PMID: 31696481
- Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 3-14. doi: 10.1016/j.bpobgyn.2016.08.006 PMID: 27743768
- Sun, T.Y.; Xie, H.J.; He, H.; Li, Z.; Kong, L.F. miR-26a inhibits the proliferation of ovarian cancer cells via regulating CDC6 expression. Am. J. Transl. Res., 2016, 8(2), 1037-1046. PMID: 27158389
- Shen, W.; Song, M.; Liu, J.; Qiu, G.; Li, T.; Hu, Y.; Liu, H. MiR-26a promotes ovarian cancer proliferation and tumorigenesis. PLoS One, 2014, 9(1), e86871. doi: 10.1371/journal.pone.0086871 PMID: 24466274
- Testa, U.; Castelli, G.; Pelosi, E. Cellular and molecular mechanisms underlying prostate cancer development: Therapeutic implications. Medicines, 2019, 6(3), 82. doi: 10.3390/medicines6030082 PMID: 31366128
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules, 2022, 27(17), 5730. doi: 10.3390/molecules27175730 PMID: 36080493
- Pritchard, C.C.; Cheng, H.H.; Tewari, M. MicroRNA profiling: Approaches and considerations. Nat. Rev. Genet., 2012, 13(5), 358-369. doi: 10.1038/nrg3198 PMID: 22510765
- Mohammadi Torbati, P.; Asadi, F.; Fard-Esfahani, P. Circulating miR-20a and miR-26a as biomarkers in prostate cancer. Asian Pac. J. Cancer Prev., 2019, 20(5), 1453-1456. doi: 10.31557/APJCP.2019.20.5.1453 PMID: 31127907
- Yang, B.; Tang, X.; Wang, Z.; Sun, D.; Wei, X.; Ding, Y. TUG1 promotes prostate cancer progression by acting as a ceRNA of miR-26a. Biosci. Rep., 2018, 38(5), BSR20180677. doi: 10.1042/BSR20180677 PMID: 29967294
- Urabe, F.; Kosaka, N.; Sawa, Y.; Yamamoto, Y.; Ito, K.; Yamamoto, T.; Kimura, T.; Egawa, S.; Ochiya, T. miR-26a regulates extracellular vesicle secretion from prostate cancer cells via targeting SHC4, PFDN4, and CHORDC1. Sci. Adv., 2020, 6(18), eaay3051. doi: 10.1126/sciadv.aay3051 PMID: 32494663
- Sexton, R.E.; Al Hallak, M.N.; Diab, M.; Azmi, A.S. Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer Metastasis Rev., 2020, 39(4), 1179-1203. doi: 10.1007/s10555-020-09925-3 PMID: 32894370
- He, B.; Zhao, Z.; Cai, Q.; Zhang, Y.; Zhang, P.; Shi, S.; Xie, H.; Peng, X.; Yin, W.; Tao, Y.; Wang, X. miRNA-based biomarkers, therapies, and resistance in Cancer. Int. J. Biol. Sci., 2020, 16(14), 2628-2647. doi: 10.7150/ijbs.47203 PMID: 32792861
- Deng, M.; Tang, H.; Lu, X.; Liu, M.; Lu, X.; Gu, Y.; Liu, J.; He, Z. miR-26a suppresses tumor growth and metastasis by targeting FGF9 in gastric cancer. PLoS One, 2013, 8(8), e72662. doi: 10.1371/journal.pone.0072662 PMID: 24015269
- Ding, K.; Wu, Z.; Wang, N.; Wang, X.; Wang, Y.; Qian, P.; Meng, G.; Tan, S. MiR-26a performs converse roles in proliferation and metastasis of different gastric cancer cells via regulating of PTEN expression. Pathol. Res. Pract., 2017, 213(5), 467-475. doi: 10.1016/j.prp.2017.01.026 PMID: 28242043
- Śledzińska, P.; Bebyn, M.G.; Furtak, J.; Kowalewski, J.; Lewandowska, M.A. Prognostic and predictive biomarkers in gliomas. Int. J. Mol. Sci., 2021, 22(19), 10373. doi: 10.3390/ijms221910373 PMID: 34638714
- McNamara, M.G.; Lwin, Z.; Jiang, H.; Chung, C.; Millar, B.A.; Sahgal, A.; Laperriere, N.; Mason, W.P. Conditional probability of survival and post-progression survival in patients with glioblastoma in the temozolomide treatment era. J. Neurooncol., 2014, 117(1), 153-160. doi: 10.1007/s11060-014-1368-7 PMID: 24469855
- Jiapaer, S.; Furuta, T.; Tanaka, S.; Kitabayashi, T.; Nakada, M. Potential strategies overcoming the temozolomide resistance for glioblastoma. Neurol. Med. Chir., 2018, 58(10), 405-421. doi: 10.2176/nmc.ra.2018-0141 PMID: 30249919
- Menon, A.; Abd-Aziz, N.; Khalid, K.; Poh, C.L.; Naidu, R. miRNA: A promising therapeutic target in cancer. Int. J. Mol. Sci., 2022, 23(19), 11502. doi: 10.3390/ijms231911502 PMID: 36232799
- Huang, W.; Zhong, Z.; Luo, C.; Xiao, Y.; Li, L.; Zhang, X.; Yang, L.; Xiao, K.; Ning, Y.; Chen, L.; Liu, Q.; Hu, X.; Zhang, J.; Ding, X.; Xiang, S. The miR-26a/AP-2α/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma. Theranostics, 2019, 9(19), 5497-5516. doi: 10.7150/thno.33800 PMID: 31534499
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30. doi: 10.3322/caac.21442 PMID: 29313949
- Liao, R.; Lin, Y.; Zhu, L. Molecular pathways involved in microRNA-mediated regulation of multidrug resistance. Mol. Biol. Rep., 2018, 45(6), 2913-2923. doi: 10.1007/s11033-018-4358-6 PMID: 30194558
- Li, M.; Ma, W. miR-26a reverses multidrug resistance in osteosarcoma by targeting MCL1. Front. Cell Dev. Biol., 2021, 9, 645381. doi: 10.3389/fcell.2021.645381 PMID: 33816494
- Rolfo, C.; Fanale, D.; Hong, D.; Tsimberidou, A.; Piha- Paul, S.; Pauwels, P.; Meerbeeck, J.; Caruso, S.; Bazan, V.; Cicero, G.; Russo, A.; Giovannetti, E. Impact of microRNAs in resistance to chemotherapy and novel targeted agents in non-small cell lung cancer. Curr. Pharm. Biotechnol., 2014, 15(5), 475-485. doi: 10.2174/1389201015666140519123219 PMID: 24846062
- Yang, Y.; Zhang, P.; Zhao, Y.; Yang, J.; Jiang, G.; Fan, J. Decreased MicroRNA-26a expression causes cisplatin resistance in human non-small cell lung cancer. Cancer Biol. Ther., 2016, 17(5), 515-525. doi: 10.1080/15384047.2015.1095405 PMID: 26492332
- Zhou, Y.; Wen, L.; Cheng, F.; Yin, C. MiR-26a enhances the sensitivity of gastric cancer cells to cisplatin by targeting NRAS and E2F2. Saudi J. Gastroenterol., 2015, 21(5), 313-319. doi: 10.4103/1319-3767.166206 PMID: 26458859
- Vishnoi, A.; Rani, S. miRNA biogenesis and regulation of diseases: An updated overview. Methods Mol. Biol., 2023, 2595, 1-12. doi: 10.1007/978-1-0716-2823-2_1 PMID: 36441451
- Amin, M.M.J.; Trevelyan, C.J.; Turner, N.A. MicroRNA-214 in health and disease. Cells, 2021, 10(12), 3274. doi: 10.3390/cells10123274 PMID: 34943783
- Zhou, X.; Deng, X.; Liu, M.; He, M.; Long, W.; Xu, Z.; Zhang, K.; Liu, T.; So, K.F.; Fu, Q.L.; Zhou, L. Intranasal delivery of BDNF-loaded small extracellular vesicles for cerebral ischemia therapy. J. Control. Release, 2023, 357, 1-19. doi: 10.1016/j.jconrel.2023.03.033 PMID: 36958402
- Zou, J.; Sun, J.; Chen, H.; Fan, X.; Qiu, Z.; Li, Y.; Shi, J. The regulatory roles of miR-26a in the development of fracture and osteoblasts. Ann. Transl. Med., 2022, 10(2), 37. doi: 10.21037/atm-21-6101 PMID: 35282137
- Zhuang, C.; Jiang, W.; Huang, D.; Xu, L.; Yang, Q.; Zheng, L.; Wang, X.; Hu, L. Serum miR-21, miR-26a and miR-101 as potential biomarkers of hepatocellular carcinoma. Clin. Res. Hepatol. Gastroenterol., 2016, 40(4), 386-396. doi: 10.1016/j.clinre.2015.11.002 PMID: 26669589
- Shi, D.; Wang, H.; Ding, M.; Yang, M.; Li, C.; Yang, W.; Chen, L. MicroRNA-26a-5p inhibits proliferation, invasion and metastasis by repressing the expression of Wnt5a in papillary thyroid carcinoma. OncoTargets Ther., 2019, 12, 6605-6616. doi: 10.2147/OTT.S205994 PMID: 31496749
- Li, H.; Xu, W.; Wang, T.; Yu, C.; Rao, X.; Hong, X.; Wang, X. miR-26a inhibits the proliferation and migration of prostate cancer by targeting CDC6. Minerva Med., 2021, 112(5), 661-663. doi: 10.23736/S0026-4806.20.06479-4 PMID: 32166936
- Li, Y.; Wang, P.; Wu, L.L.; Yan, J.; Pang, X.Y.; Liu, S.J. miR-26a-5p inhibit gastric cancer cell proliferation and invasion through mediated Wnt5a. OncoTargets Ther., 2020, 13, 2537-2550. doi: 10.2147/OTT.S241199 PMID: 32273724
- Li, H.H.; Wang, J.D.; Wang, W.; Wang, H.F.; Lv, J.Q. Effect of miR-26a-5p on gastric cancer cell proliferation, migration and invasion by targeting COL10A1. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(3), 1186-1194. PMID: 32096148
- Cai, Y.; Zhang, T.; Chen, G.; Liu, C. MiR-26a-5p heightens breast cancer cell sensitivity to paclitaxel via targeting flap endonuclease 1. Ann. Clin. Lab. Sci., 2023, 53(1), 116-125. PMID: 36889769
- Yuan, Y.L.; Yu, H.; Mu, S.M.; Dong, Y.D.; Li, D.Y. MiR-26a-5p inhibits cell proliferation and enhances doxorubicin sensitivity in hcc cells via targeting AURKA. Technol. Cancer Res. Treat., 2019, 18, 1533033851833. doi: 10.1177/1533033819851833 PMID: 31570091
Supplementary files
