Recent Advances in Research on Active Compounds Against Hepatic Fibrosis
- Authors: Liu C.1, Li S.1, Zhang C.1, Jin C.1
-
Affiliations:
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University
- Issue: Vol 31, No 18 (2024)
- Pages: 2571-2628
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/644547
- DOI: https://doi.org/10.2174/0929867331666230727102016
- ID: 644547
Cite item
Full Text
Abstract
Background:Almost all chronic liver diseases cause fibrosis, which can lead to cirrhosis and eventually liver cancer. Liver fibrosis is now considered to be a reversible pathophysiological process and suppression of fibrosis is necessary to prevent liver cancer. At present, no specific drugs have been found that have hepatic anti-fibrotic activity
Objective:The research progress of anti-hepatic fibrosis compounds in recent ten years was reviewed to provide a reference for the design and development of anti-hepatic fibrosis drugs.
Methods:According to the structure of the compounds, they are divided into monocyclic compounds, fused-heterocyclic compounds, and acyclic compounds.
Results:In this article, the natural products and synthetic compounds with anti-fibrotic activity in recent ten years were reviewed, with emphasis on their pharmacological activity and structure-activity relationship (SAR).
Conclusion:Most of these compounds are natural active products and their derivatives, and there are few researches on synthetic compounds and SAR studies on natural product.
Keywords
About the authors
Chuang Liu
Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University
Email: info@benthamscience.net
Siqi Li
Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University
Email: info@benthamscience.net
Changhao Zhang
Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University
Email: info@benthamscience.net
Cheng-Hua Jin
Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University
Author for correspondence.
Email: info@benthamscience.net
References
- Sarin, S.K.; Kumar, M.; Eslam, M.; George, J.; Al Mahtab, M.; Akbar, S.M.F.; Jia, J.; Tian, Q.; Aggarwal, R.; Muljono, D.H.; Omata, M.; Ooka, Y.; Han, K.H.; Lee, H.W.; Jafri, W.; Butt, A.S.; Chong, C.H.; Lim, S.G.; Pwu, R.F.; Chen, D.S. Liver diseases in the Asia-Pacific region: A lancet gastroenterology & hepatology commission. Lancet Gastroenterol. Hepatol., 2020, 5(2), 167-228. doi: 10.1016/S2468-1253(19)30342-5 PMID: 31852635
- Shan, L.; Lium, Z.; Ci, L.; Shuai, C.; Lv, X.; Li, J. Research progress on the anti-hepatic fibrosis action and mechanism of natural products. Int. Immunopharmacol., 2019, 75, 105765. doi: 10.1016/j.intimp.2019.105765 PMID: 31336335
- Li, J.; Feng, W.; Dai, R.; Li, B. Rational design, synthesis and activities of phenanthrene derivatives against hepatic fibrosis. Fitoterapia, 2022, 159, 105176. doi: 10.1016/j.fitote.2022.105176 PMID: 35307511
- Ebrahimi, M.; Seyedi, S.A.; Nabipoorashrafi, S.A.; Rabizadeh, S.; Sarzaeim, M.; Yadegar, A.; Mohammadi, F.; Bahri, R.A.; Pakravan, P.; Shafiekhani, P.; Nakhjavani, M.; Esteghamati, A. Lipid accumulation product (LAP) index for the diagnosis of nonalcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis. Lipids Health Dis., 2023, 22(1), 41. doi: 10.1186/s12944-023-01802-6 PMID: 36922815
- Wallace, S.J.; Tacke, F.; Schwabe, R.F.; Henderson, N.C. Understanding the cellular interactome of non-alcoholic fatty liver disease. JHEP Reports, 2022, 4(8), 100524. doi: 10.1016/j.jhepr.2022.100524 PMID: 35845296
- Mitten, E.K.; Baffy, G. Mechanotransduction in the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol., 2022, 77(6), 1642-1656. doi: 10.1016/j.jhep.2022.08.028 PMID: 36063966
- Scorletti, E.; Carr, R.M. A new perspective on NAFLD: Focusing on lipid droplets. J. Hepatol., 2022, 76(4), 934-945. doi: 10.1016/j.jhep.2021.11.009 PMID: 34793866
- Hosack, T.; Damry, D.; Biswas, S. Drug-induced liver injury: A comprehensive review. Therap. Adv. Gastroenterol., 2023, 16. doi: 10.1177/17562848231163410 PMID: 36968618
- Chen, X.; Liu, M.; Tang, J.; Wang, N.; Feng, Y.; Ma, H. Research progress on the therapeutic effect of polysaccharides on non-alcoholic fatty liver disease through the regulation of the gut-liver axis. Int. J. Mol. Sci., 2022, 23(19), 11710. doi: 10.3390/ijms231911710 PMID: 36233011
- Ni, X.X.; Li, X.Y.; Wang, Q.; Hua, J. Regulation of peroxisome proliferator-activated receptor-gamma activity affects the hepatic stellate cell activation and the progression of NASH via TGF-β1/Smad signaling pathway. J. Physiol. Biochem., 2021, 77(1), 35-45. doi: 10.1007/s13105-020-00777-7 PMID: 33188625
- Ogawa, H.; Kaji, K.; Nishimura, N.; Takagi, H.; Ishida, K.; Takaya, H.; Kawaratani, H.; Moriya, K.; Namisaki, T.; Akahane, T.; Yoshiji, H. Lenvatinib prevents liver fibrosis by inhibiting hepatic stellate cell activation and sinusoidal capillarization in experimental liver fibrosis. J. Cell. Mol. Med., 2021, 25(8), 4001-4013. doi: 10.1111/jcmm.16363 PMID: 33609067
- Song, Z.; Liu, X.; Zhang, W.; Luo, Y.; Xiao, H.; Liu, Y.; Dai, G.; Hong, J.; Li, A. Ruxolitinib suppresses liver fibrosis progression and accelerates fibrosis reversal via selectively targeting Janus kinase 1/2. J. Transl. Med., 2022, 20(1), 157. doi: 10.1186/s12967-022-03366-y PMID: 35382859
- Su, T.H.; Shiau, C.W.; Jao, P.; Liu, C.H.; Liu, C.J.; Tai, W.T.; Jeng, Y.M.; Yang, H.C.; Tseng, T.C.; Huang, H.P.; Cheng, H.R.; Chen, P.J.; Chen, K.F.; Kao, J.H.; Chen, D.S. Sorafenib and its derivative SC-1 exhibit antifibrotic effects through signal transducer and activator of transcription 3 inhibition. Proc. Natl. Acad. Sci., 2015, 112(23), 7243-7248. doi: 10.1073/pnas.1507499112 PMID: 26039995
- Martí-Rodrigo, A.; Alegre, F.; Moragrega, Á.B.; García-García, F.; Martí-Rodrigo, P.; Fernández-Iglesias, A.; Gracia-Sancho, J.; Apostolova, N.; Esplugues, J.V.; Blas-García, A. Rilpivirine attenuates liver fibrosis through selective STAT1-mediated apoptosis in hepatic stellate cells. Gut, 2020, 69(5), 920-932. doi: 10.1136/gutjnl-2019-318372 PMID: 31530714
- Esmail, M.M.; Saeed, N.M.; Michel, H.E.; El-Naga, R.N. The ameliorative effect of niclosamide on bile duct ligation induced liver fibrosis via suppression of NOTCH and Wnt pathways. Toxicol. Lett., 2021, 347, 23-35. doi: 10.1016/j.toxlet.2021.04.018 PMID: 33961984
- Li, Y.; Li, P.K.; Roberts, M.J.; Arend, R.C.; Samant, R.S.; Buchsbaum, D.J. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett., 2014, 349(1), 8-14. doi: 10.1016/j.canlet.2014.04.003 PMID: 24732808
- Younossi, Z.M.; Ratziu, V.; Loomba, R.; Rinella, M.; Anstee, Q.M.; Goodman, Z.; Bedossa, P.; Geier, A.; Beckebaum, S.; Newsome, P.N.; Sheridan, D.; Sheikh, M.Y.; Trotter, J.; Knapple, W.; Lawitz, E.; Abdelmalek, M.F.; Kowdley, K.V.; Montano-Loza, A.J.; Boursier, J.; Mathurin, P.; Bugianesi, E.; Mazzella, G.; Olveira, A.; Cortez-Pinto, H.; Graupera, I.; Orr, D.; Gluud, L.L.; Dufour, J.F.; Shapiro, D.; Campagna, J.; Zaru, L.; MacConell, L.; Shringarpure, R.; Harrison, S.; Sanyal, A.J.; Abdelmalek, M.; Abrams, G.; Aguilar, H.; Ahmed, A.; Aigner, E.; Aithal, G.; Ala, A.; Alazawi, W.; Albillos, A.; Allison, M.; Al-Shamma, S.; Andrade, R.; Andreone, P.; Angelico, M.; Ankoma-Sey, V.; Anstee, Q.; Anty, R.; Araya, V.; Arenas Ruiz, J.I.; Arkkila, P.; Arora, M.; Asselah, T.; Au, J.; Ayonrinde, O.; Bailey, R.J.; Balakrishnan, M.; Bambha, K.; Bansal, M.; Barritt, S.; Bate, J.; Beato, J.; Beckebaum, S.; Behari, J.; Bellot, P.; Ben Ari, Z.; Bennett, M.; Berenguer, M.; Beretta-Piccoli, B.T.; Berg, T.; Bonacini, M.; Bonet, L.; Borg, B.; Bourliere, M.; Boursier, J.; Bowman, W.; Bradley, D.; Brankovic, M.; Braun, M.; Bronowicki, J-P.; Bruno, S.; Bugianesi, E.; Cai, C.; Calderon, A.; Calleja Panero, J.L.; Carey, E.; Carmiel, M.; Carrión, J.A.; Cave, M.; Chagas, C.; Chami, T.; Chang, A.; Coates, A.; Cobbold, J.; Costentin, C.; Corey, K.; Corless, L.; Cortez-Pinto, H.; Crespo, J.; Cruz Pereira, O.; de Ledinghen, V.; deLemos, A.; Diago, M.; Dong, M.; Dufour, J-F.; Dugalic, P.; Dunn, W.; Elkhashab, M.; Epstein, M.; Escudero-Garcia, M.D.; Etzion, O.; Evans, L.; Falcone, R.; Fernandez, C.; Ferreira, J.; Fink, S.; Finnegan, K.; Firpi-Morell, R.; Floreani, A.; Fontanges, T.; Ford, R.; Forrest, E.; Fowell, A.; Fracanzani, A.L.; Francque, S.; Freilich, B.; Frias, J.; Fuchs, M.; Fuentes, J.; Galambos, M.; Gallegos, J.; Geerts, A.; Geier, A.; George, J.; Ghali, M.; Ghalib, R.; Gholam, P.; Gines, P.; Gitlin, N.; Gluud, L.L.; Goeser, T.; Goff, J.; Gordon, S.; Gordon, F.; Goria, O.; Greer, S.; Grigorian, A.; Gronbaek, H.; Guillaume, M.; Gunaratnam, N.; Halegoua-De Marzio, D.; Hameed, B.; Hametner, S.; Hamilton, J.; Harrison, S.; Hartleb, M.; Hassanein, T.; Häussinger, D.; Hellstern, P.; Herring, R.; Heurich, E.; Hezode, C.; Hinrichsen, H.; Holland Fischer, P.; Horsmans, Y.; Huang, J.; Hussaini, H.; Jakiche, A.; Jeffers, L.; Jones, B.; Jorge, R.; Jorquera, F.; Joshi, S.; Kahraman, A.; Kaita, K.; Karyotakis, N.; Kayali, Z.; Kechagias, S.; Kepczyk, T.; Khalili, M.; Khallafi, H.; Kluwe, J.; Knapple, W.; Kohli, A.; Korenblat, K.; Kowdley, K.; Krag, A.; Krause, R.; Kremer, A.; Krok, K.; Krstic, M.; Kugelmas, M.; Kumar, S.; Kuwada, S.; Labarriere, D.; Lai, M.; Laleman, W.; Lampertico, P.; Lawitz, E.; Lee, A.; Leroy, V.; Lidofsky, S.; Lim, T.H.; Lim, J.; Lipkis, D.; Little, E.; Lonardo, A.; Long, M.; Loomba, R.; Luketic, V.A.C.; Lurie, Y.; Macedo, G.; Magalhaes, J.; Makara, M.; Maliakkal, B.; Manns, M.; Manousou, P.; Mantry, P.; Marchesini, G.; Marinho, C.; Marotta, P.; Marschall, H-U.; Martinez, L.; Mathurin, P.; Mayo, M.; Mazzella, G.; McCullen, M.; McLaughlin, W.; Merle, U.; Merriman, R.; Modi, A.; Molina, E.; Montano-Loza, A.; Monteverde, C.; Morales Cardona, A.; Moreea, S.; Moreno, C.; Morisco, F.; Mubarak, A.; Muellhaupt, B.; Mukherjee, S.; Müller, T.; Nagorni, A.; Naik, J.; Neff, G.; Nevah, M.; Newsome, P.; Nguyen-Khac, E.; Noureddin, M.; Oben, J.; Olveira, A.; Orlent, H.; Orr, D.; Orr, J.; Ortiz-Lasanta, G.; Ozenne, V.; Pandya, P.; Paredes, A.; Park, J.; Patel, J.; Patel, K.; Paul, S.; Patton, H.; Peck-Radosavljevic, M.; Petta, S.; Pianko, S.; Piekarska, A.; Pimstone, N.; Pisegna, J.; Pockros, P.; Pol, S.; Porayko, M.; Poulos, J.; Pound, D.; Pouzar, J.; Presa Ramos, J.; Pyrsopoulos, N.; Rafiq, N.; Muller, K.; Ramji, A.; Ratziu, V.; Ravinuthala, R.; Reddy, C.; Reddy, K.G. G.; Reddy K R, K.R.; Regenstein, F.; Reindollar, R.; Reynolds, J.; Riera, A.; Rinella, M.; Rivera Acosta, J.; Robaeys, G.; Roberts, S.; Rodriguez-Perez, F.; Romero, S.; Romero-Gomez, M.; Rubin, R.; Rumi, M.; Rushbrook, S.; Rust, C.; Ryan, M.; Safadi, R.; Said, A.; Salminen, K.; Samuel, D.; Santoro, J.; Sanyal, A.; Sarkar, S.; Schaeffer, C.; Schattenberg, J.; Schiefke, I.; Schiff, E.; Schmidt, W.; Schneider, J.; Schouten, J.; Schultz, M.; Sebastiani, G.; Semela, D.; Sepe, T.; Sheikh, A.; Sheikh, M.; Sheridan, D.; Sherman, K.; Shibolet, O.; Shiffman, M.; Siddique, A.; Sieberhagen, C.; Sigal, S.; Sikorska, K.; Simon, K.; Sinclair, M.; Skoien, R.; Solis, J.; Sood, S.; Souder, B.; Spivey, J.; Stal, P.; Stinton, L.; Strasser, S.; Svorcan, P.; Szabo, G.; Talal, A.; Tam, E.; Tetri, B.; Thuluvath, P.; Tobias, H.; Tomasiewicz, K.; Torres, D.; Tran, A.; Trauner, M.; Trautwein, C.; Trotter, J.; Tsochatzis, E.; Unitt, E.; Vargas, V.; Varkonyi, I.; Veitsman, E.; Vespasiani Gentilucci, U.; Victor, D.; Vierling, J.; Vincent, C.; Vincze, A.; von der Ohe, M.; Von Roenn, N.; Vuppalanchi, R.; Waters, M.; Watt, K.; Wattacheril, J.; Weltman, M.; Wieland, A.; Wiener, G.; Williams A, A.; Williams J, J.; Wilson, J.; Yataco, M.; Yoshida, E.; Younes, Z.; Yuan, L.; Zivony, A.; Zogg, D.; Zoller, H.; Zoulim, F.; Zuckerman, E.; Zuin, M. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: Interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet, 2019, 394(10215), 2184-2196. doi: 10.1016/S0140-6736(19)33041-7 PMID: 31813633
- Makled, M.N.; Sharawy, M.H.; El-Awady, M.S. The dual PPAR-α/γ agonist saroglitazar ameliorates thioacetamide-induced liver fibrosis in rats through regulating leptin. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(12), 1569-1576. doi: 10.1007/s00210-019-01703-5 PMID: 31367862
- Huang, Y.; Feng, H.; Kan, T.; Huang, B.; Zhang, M.; Li, Y.; Shi, C.; Wu, M.; Luo, Y.; Yang, J.; Xu, F. Bevacizumab attenuates hepatic fibrosis in rats by inhibiting activation of hepatic stellate cells. PLoS One, 2013, 8(8), e73492. doi: 10.1371/journal.pone.0073492 PMID: 24023685
- Xu, X.Y.; Geng, Y.; Xu, H.X.; Ren, Y.; Liu, D.Y.; Mao, Y. Antrodia camphorata-derived antrodin C inhibits liver fibrosis by blocking TGF-beta and PDGF signaling pathways. Front. Mol. Biosci., 2022, 9, 835508. doi: 10.3389/fmolb.2022.835508 PMID: 35242813
- Seniutkin, O.; Furuya, S.; Luo, Y.S.; Cichocki, J.A.; Fukushima, H.; Kato, Y.; Sugimoto, H.; Matsumoto, T.; Uehara, T.; Rusyn, I. Effects of pirfenidone in acute and sub-chronic liver fibrosis, and an initiation-promotion cancer model in the mouse. Toxicol. Appl. Pharmacol., 2018, 339, 1-9. doi: 10.1016/j.taap.2017.11.024 PMID: 29197520
- Shi, X.; Yu, Z.; Zhu, C.; Jiang, L.; Geng, N.; Fan, X.; Guan, Z.; Lu, X. Synthesis and structureactivity relationships of pirfenidone derivatives as anti-fibrosis agents in vitro. RSC Medicinal Chemistry, 2022, 13(5), 610-621. doi: 10.1039/D1MD00403D PMID: 35694690
- Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V.B.; Rao, K.S.; Lee, H.J.; Park, S.J.; Park, H.J.; Lee, K.; Sheen, Y.Y.; Kim, D.K. Discovery of N-((4-(1,2,4triazolo1,5-apyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): A highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/antifibrotic agent. J. Med. Chem., 2014, 57(10), 4213-4238. doi: 10.1021/jm500115w PMID: 24786585
- Zhu, W.J.; Cui, B.W.; Wang, H.M.; Nan, J.X.; Piao, H.R.; Lian, L.H.; Jin, C.H. Design, synthesis, and antifibrosis evaluation of 4-(benzo-c1,2,5thiadiazol-5-yl)-3(5)-(6-methyl- pyridin-2-yl)pyrazole and 3(5)-(6-methylpyridin- 2-yl)-4-(thieno-3,2,-cpyridin-2-yl)pyrazole derivatives. Eur. J. Med. Chem., 2019, 180, 15-27. doi: 10.1016/j.ejmech.2019.07.013 PMID: 31299584
- Kim, M.J.; Park, S.A.; Kim, C.H.; Park, S.Y.; Kim, J.S.; Kim, D.K.; Nam, J.S.; Sheen, Y.Y. TGF-β type I receptor kinase inhibitor EW-7197 suppresses cholestatic liver fibrosis by inhibiting HIF1α-induced epithelial mesenchymal transition. Cell. Physiol. Biochem., 2016, 38(2), 571-588. doi: 10.1159/000438651 PMID: 26845171
- Zheng, G.H.; Liu, J.; Guo, F.Y.; Zhang, Z.H.; Jiang, Y.J.; Lin, Y.C.; Lan, X.Q.; Ren, J.; Wu, Y.L.; Nan, J.X.; Jin, C.H.; Lian, L.H. The in vitro and in vivo study of a pyrazole derivative, J-1063, as a novel anti-liver fibrosis agent: Synthesis, biological evaluation, and mechanistic analysis. Bioorg. Chem., 2022, 122, 105715. doi: 10.1016/j.bioorg.2022.105715 PMID: 35279552
- Luangmonkong, T.; Suriguga, S.; Adhyatmika, A.; Adlia, A.; Oosterhuis, D.; Suthisisang, C.; de Jong, K.P.; Mutsaers, H.A.M.; Olinga, P. In vitro and ex vivo anti-fibrotic effects of LY2109761, a small molecule inhibitor against TGF-β. Toxicol. Appl. Pharmacol., 2018, 355, 127-137. doi: 10.1016/j.taap.2018.07.001 PMID: 30008374
- Masuda, A.; Nakamura, T.; Abe, M.; Iwamoto, H.; Sakaue, T.; Tanaka, T.; Suzuki, H.; Koga, H.; Torimura, T. Promotion of liver regeneration and anti-fibrotic effects of the TGF β receptor kinase inhibitor galunisertib in CCl4 treated mice. Int. J. Mol. Med., 2020, 46(1), 427-438. doi: 10.3892/ijmm.2020.4594 PMID: 32377696
- Maccari, R.; Ciurleo, R.; Giglio, M.; Cappiello, M.; Moschini, R.; Corso, A.D.; Mura, U. Ottanà. Identification of new non-carboxylic acid containing inhibitors of aldose reductase. Bioorg. Med. Chem., 2010, 118(11), 4049-4055. doi: 10.1016/j.bmc.2010.04.016 PMID: 20452228
- Wang, Z.; Deng, C.; Zheng, H.; Xie, C.; Wang, X.; Luo, Y.; Chen, Z.; Cheng, P.; Chen, L. (Z)2-(5-(4-methoxybenzylidene)-2, 4-dioxothiazolidin-3-yl) acetic acid protects rats from CCl4-induced liver injury. J. Gastroenterol. Hepatol., 2012, 27(5), 966-973. doi: 10.1111/j.1440-1746.2011.06913.x PMID: 21913985
- França, M.E.R.; Rocha, S.W.S.; Oliveira, W.H.; Santos, L.A.; de Oliveira, A.G.V.; Barbosa, K.P.S.; Nunes, A.K.S.; Rodrigues, G.B.; Lós, D.B.; Peixoto, C.A. Diethylcarbamazine attenuates the expression of pro-fibrogenic markers and hepatic stellate cells activation in carbon tetrachloride-induced liver fibrosis. Inflammopharmacology, 2018, 26(2), 599-609. doi: 10.1007/s10787-017-0329-0 PMID: 28409388
- Wu, X.; Zhang, F.; Xiong, X.; Lu, C.; Lian, N.; Lu, Y.; Zheng, S. Tetramethylpyrazine reduces inflammation in liver fibrosis and inhibits inflammatory cytokine expression in hepatic stellate cells by modulating NLRP3 inflammasome pathway. IUBMB Life, 2015, 67(4), 312-321. doi: 10.1002/iub.1348 PMID: 25847612
- Zhao, S.; Zhang, Z.; Qian, L.; Lin, Q.; Zhang, C.; Shao, J.; Zhang, F.; Zheng, S. Tetramethylpyrazine attenuates carbon tetrachloride-caused liver injury and fibrogenesis and reduces hepatic angiogenesis in rats. Biomed. Pharmacother., 2017, 86, 521-530. doi: 10.1016/j.biopha.2016.11.122 PMID: 28024287
- Ogaly, H.A.; Aldulmani, S.A.A.; Al-Zahrani, F.A.M.; Abd-Elsalam, R.M. D-carvone attenuates CCl4-induced liver fibrosis in rats by inhibiting oxidative stress and TGF-ß 1/SMAD3 signaling pathway. Biology, 2022, 11(5), 739. doi: 10.3390/biology11050739 PMID: 35625467
- Bai, T.; Yang, Y.; Wu, Y.L.; Jiang, S.; Lee, J.J.; Lian, L.H.; Nan, J.X. Thymoquinone alleviates thioacetamide-induced hepatic fibrosis and inflammation by activating LKB1AMPK signaling pathway in mice. Int. Immunopharmacol., 2014, 19(2), 351-357. doi: 10.1016/j.intimp.2014.02.006 PMID: 24560906
- Miao, Y.; Wu, Y.; Jin, Y.; Lei, M.; Nan, J.; Wu, X. Benzoquinone derivatives with antioxidant activity inhibit activated hepatic stellate cells and attenuate liver fibrosis in TAA-induced mice. Chem. Biol. Interact., 2020, 317, 108945. doi: 10.1016/j.cbi.2020.108945 PMID: 31935363
- Cui, B.; Yang, Z.; Wang, S.; Guo, M.; Li, Q.; Zhang, Q.; Bi, X. The protective role of protocatechuic acid against chemically induced liver fibrosis in vitro and in vivo. Pharmazie, 2021, 76(5), 232-238. doi: 10.1691/ph.2021.0909 PMID: 33964998
- Xing, Y.; Wang, J.Y.; Li, M.Y.; Zhang, Z.H.; Jin, H.L.; Zuo, H.X.; Ma, J.; Jin, X. Convallatoxin inhibits IL‐1β production by suppressing zinc finger protein 91 (ZFP91)‐mediated pro‐IL‐1β ubiquitination and caspase‐8 inflammasome activity. Br. J. Pharmacol., 2022, 179(9), 1887-1907. doi: 10.1111/bph.15758 PMID: 34825365
- Ma, Q.; Bian, M.; Gong, G.; Bai, C.; Liu, C.; Wei, C.; Quan, Z.; Du, H. Synthesis and evaluation of bakuchiol derivatives as potent anti-inflammatory agents in vitro and in vivo. J. Nat. Prod., 2022, 85(1), 15-24. doi: 10.1021/acs.jnatprod.1c00377 PMID: 35000392
- Zhang, Z.H.; Mi, C.; Wang, K.S.; Wang, Z.; Li, M.Y.; Zuo, H.X.; Xu, G.H.; Li, X.; Piao, L.X.; Ma, J.; Jin, X. Chelidonine inhibits TNF-induced inflammation by suppressing the NF-B pathways in HCT116 cells. Phytother. Res., 2018, 32, 65-75. doi: 10.1002/ptr.5948 PMID: 29044876
- Wu, J.; Ma, S.; Zhang, T-Y.; Wei, Z-Y.; Wang, H-M.; Guo, F-Y.; Zheng, C-J.; Piao, H-R. Synthesis and biological evaluation of ursolic acid derivatives containing an aminoguanidine moiety. Med. Chem. Res., 2019, 28(7), 959-973. doi: 10.1007/s00044-019-02349-x
- Zhang, T.Y.; Li, C.; Li, Y.R.; Li, X.Z.; Sun, L-P.; Zheng, C-J.; Piao, H-R. Synthesis and antimicrobial evaluation of aminoguanidine and 3-amino-1,2,4-triazole derivatives as potential antibacterial agents. Lett. Drug Des. Discov., 2016, 13(10), 1063-1075. doi: 10.2174/1570180813666160819151239
- Wei, Z.Y.; Liu, J.C.; Zhang, W.; Li, Y.R.; Li, C.; Zheng, C.J.; Piao, H.R. Synthesis and antimicrobial evaluation of (Z)-5-((3-phenyl-1H-pyrazol-4-yl)methylene)-2-thioxothia- zolidin-4-one derivatives. Med. Chem., 2016, 12(8), 751-759. doi: 10.2174/1573406412666160822160156 PMID: 27550428
- Yan Guo, F. Ji Zheng, C.; Wang, M.; Ai, J.; Ying Han, L.; Yang, L.; Fang Lu, Y.; Xuan Yang, Y.; Guan Piao, M.; Piao, H.R.; Jin, C.M.; Jin, C.H. Synthesis and antimicrobial activity evaluation of imidazole‐fused imidazo2,1‐b 1,3,4thiadiazole analogues. ChemMedChem, 2021, 16(15), 2354-2365. doi: 10.1002/cmdc.202100122 PMID: 33738962
- Yang, L.; W., Bo Xu Sun, L.; Zhang, C.; Hua Jin, C. SAR analysis of heterocyclic compounds with monocyclic and bicyclic structures as antifungal agents. ChemMedChem, 2022, 17(12), e202200221. doi: 10.1002/cmdc.202200221 PMID: 35475328
- Zheng, C.J.; Jin, C.H.; Zhao, L-M.; Guo, F.Y.; Wang, H.M.; Dou, T.; Da Qi, J.; Xu, W.B.; Piao, L.; Jin, X.; Chen, F-E.; Piao, H-R. Synthesis and evaluation of chiral rhodanine derivatives bearing quinoxalinyl imidazole moiety as ALK5 inhibitors. Med. Chem., 2022, 18(4), 509-520. doi: 10.2174/1573406417666210628144849 PMID: 34182915
- Sun, T.X.; Li, M.Y.; Zhang, Z.H.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jin, H.L.; Zuo, H.X.; Ma, J.; Jin, X.; Jin, X. Usnic acid suppresses cervical cancer cell proliferation by inhibiting PD‐L1 expression and enhancing T‐lymphocyte tumor‐killing activity. Phytother. Res., 2021, 35(7), 3916-3935. doi: 10.1002/ptr.7103 PMID: 33970512
- Wang, Z.; Li, M.Y.; Zhang, Z.H.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, H.L.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jiang, C.G.; Ma, J.; Jin, X. Panaxadiol inhibits programmed cell death-ligand 1 expression and tumour proliferation via hypoxia-inducible factor (HIF)-1α and STAT3 in human colon cancer cells. Pharmacol. Res., 2020, 155, 104727. doi: 10.1016/j.phrs.2020.104727 PMID: 32113874
- Zhang, Z.H.; Li, M.Y.; Wang, Z.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Jin, C.; Xu, G.; Piao, L.; Piao, H.; Ma, J.; Jin, X. Convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer. Phytomedicine, 2020, 68, 153172. doi: 10.1016/j.phymed.2020.153172 PMID: 32004989
- Hsieh, S.C.; Wu, C.H.; Wu, C.C.; Yen, J.H.; Liu, M.C.; Hsueh, C.M.; Hsu, S.L. Gallic acid selectively induces the necrosis of activated hepatic stellate cells via a calcium-dependent calpain I activation pathway. Life Sci., 2014, 102(1), 55-64. doi: 10.1016/j.lfs.2014.02.041 PMID: 24631138
- Ramadan, A.; Afifi, N.; Yassin, N.Z.; Abdel-Rahman, R.F.; Abd El-Rahman, S.S.; Fayed, H.M. Mesalazine, an osteopontin inhibitor: The potential prophylactic and remedial roles in induced liver fibrosis in rats. Chem. Biol. Interact., 2018, 289, 109-118. doi: 10.1016/j.cbi.2018.05.002 PMID: 29738702
- Wang, R.; Wang, J.; Song, F.; Li, S.; Yuan, Y. Tanshinol ameliorates CCl4-induced liver fibrosis in rats through the regulation of Nrf2/HO-1 and NF-κB/IκBα signaling pathway. Drug Des. Devel. Ther., 2018, 12, 1281-1292. doi: 10.2147/DDDT.S159546 PMID: 29844659
- Qiu, J.; Chai, Y.; Duan, F.; Zhang, H.; Han, X.; Chen, L.; Duan, F. 6-Shogaol alleviates CCl4-induced liver fibrosis by attenuating inflammatory response in mice through the NF-κB pathway. Acta Biochim. Pol., 2022, 69(2), 363-370. doi: 10.18388/abp.2020_5802 PMID: 35485077
- Sheng, J.; Zhang, B.; Chen, Y.; Yu, F. Capsaicin attenuates liver fibrosis by targeting Notch signaling to inhibit TNF-α secretion from M1 macrophages. Immunopharmacol. Immunotoxicol., 2020, 42(6), 556-563. doi: 10.1080/08923973.2020.1811308 PMID: 32811220
- Shang, Y.; Yang, H.X.; Li, X.; Zhang, Y.; Chen, N.; Jiang, X.L.; Zhang, Z.H.; Zuo, R.M.; Wang, H.; Lan, X.Q.; Ren, J.; Wu, Y.L.; Cui, Z.Y.; Nan, J.X.; Lian, L.H. Modulation of interleukin‐36 based inflammatory feedback loop through the hepatocyte‐derived IL‐36R‐P2X7R axis improves steatosis in alcoholic steatohepatitis. Br. J. Pharmacol., 2022, 179(17), 4378-4399. doi: 10.1111/bph.15858 PMID: 35481896
- Ge, B.; Zhao, P.; Li, H.; Sang, R.; Wang, M.; Zhou, H.; Zhang, X. Taraxacum mongolicum protects against Staphylococcus aureus-infected mastitis by exerting anti-inflammatory role via TLR2-NF-κB/MAPKs pathways in mice. J. Ethnopharmacol., 2021, 268, 113595. doi: 10.1016/j.jep.2020.113595 PMID: 33212175
- Cui, Z.Y.; Wang, G.; Zhang, J.; Song, J.; Jiang, Y.C.; Dou, J.Y.; Lian, L.H.; Nan, J.X.; Wu, Y.L. Parthenolide, bioactive compound of Chrysanthemum parthenium L., Ameliorates fibrogenesis and inflammation in hepatic fibrosis via regulating the crosstalk of TLR4 and STAT3 signaling pathway. Phytother. Res., 2021, 35(10), 5680-5693. doi: 10.1002/ptr.7214 PMID: 34250656
- Shi, H.; Shi, A.; Dong, L.; Lu, X.; Wang, Y.; Zhao, J.; Dai, F.; Guo, X. Chlorogenic acid protects against liver fibrosis in vivo and in vitro through inhibition of oxidative stress. Clin. Nutr., 2016, 35(6), 1366-1373. doi: 10.1016/j.clnu.2016.03.002 PMID: 27017478
- Zhou, M.; Zhao, X.; Liao, L.; Deng, Y.; Liu, M.; Wang, J.; Xue, X.; Li, Y.; Forsythiaside, A. Forsythiaside a regulates activation of hepatic stellate cells by inhibiting NOX4-dependent ROS. Oxid. Med. Cell. Longev., 2022, 2022, 1-17. doi: 10.1155/2022/9938392 PMID: 35035671
- Qiang, G.; Zhang, L.; Yang, X.; Xuan, Q.; Shi, L.; Zhang, H.; Chen, B.; Li, X.; Zu, M.; Zhou, D.; Guo, J.; Yang, H.; Du, G. Effect of valsartan on the pathological progression of hepatic fibrosis in rats with type 2 diabetes. Eur. J. Pharmacol., 2012, 685(1-3), 156-164. doi: 10.1016/j.ejphar.2012.04.028 PMID: 22546234
- Zhang, H.; Ju, B.; Zhang, X.; Zhu, Y.; Nie, Y.; Xu, Y.; Lei, Q. Magnolol attenuates concanavalin a-induced hepatic fibrosis, inhibits CD4+ T Helper 17 (Th17) cell differentiation and suppresses hepatic stellate cell activation: Blockade of Smad3/Smad4 signalling. Basic Clin. Pharmacol. Toxicol., 2017, 120(6), 560-570. doi: 10.1111/bcpt.12749 PMID: 28032440
- Lu, Z.; Li, S.; Luo, J.; Luo, Y.; Dai, M.; Zheng, X.; Qiu, J.; Yang, J.; Liu, A. Fenofibrate reverses liver fibrosis in cholestatic mice induced by alpha-naphthylisothiocyanate. Pharmazie, 2021, 76(2), 103-108. doi: 10.1691/ph.2021.0988 PMID: 33714287
- Choi, S.; Kim, J.A.; Li, H.; Jo, S.E.; Lee, H.; Kim, T.H.; Kim, M.; Kim, S.J.; Suh, S.H. Anti-inflammatory and anti-fibrotic effects of modafinil in nonalcoholic liver disease. Biomed. Pharmacother., 2021, 144, 112372. doi: 10.1016/j.biopha.2021.112372 PMID: 34794237
- Su, X.; Wang, Y.; Zhou, G.; Yang, X.; Yu, R.; Lin, Y.; Zheng, C. Probucol attenuates ethanol-induced liver fibrosis in rats by inhibiting oxidative stress, extracellular matrix protein accumulation and cytokine production. Clin. Exp. Pharmacol. Physiol., 2014, 41(1), 73-80. doi: 10.1111/1440-1681.12182 PMID: 24117782
- Zhou, W.; Yan, X.; Zhai, Y.; Liu, H.; Guan, L.; Qiao, Y.; Jiang, J.; Peng, L. Phillygenin ameliorates nonalcoholic fatty liver disease via TFEB-mediated lysosome biogenesis and lipophagy. Phytomedicine, 2022, 103, 154235. doi: 10.1016/j.phymed.2022.154235 PMID: 35716542
- Zhang, H.; Sun, Q.; Xu, T.; Hong, L.; Fu, R.; Wu, J.; Ding, J. Resveratrol attenuates the progress of liver fibrosis via the Akt/nuclear factor-κB pathways. Mol. Med. Rep., 2016, 13(1), 224-230. doi: 10.3892/mmr.2015.4497 PMID: 26530037
- Yu, B.; Qin, S.; Hu, B.; Qin, Q.; Jiang, H.; Luo, W. Resveratrol improves CCL4-induced liver fibrosis in mouse by upregulating endogenous IL-10 to reprogramme macrophages phenotype from M(LPS) to M(IL-4). Biomed. Pharmacother., 2019, 117, 109110. doi: 10.1016/j.biopha.2019.109110 PMID: 31252263
- ShamsEldeen. A.M.; Al-Ani, B.; Ebrahim, H.A.; Rashed, L.; Badr, A.M.; Attia, A.; Farag, A.M.; Kamar, S.S.; Haidara, M.A.; Al Humayed, S.; Ali Eshra, M. Resveratrol suppresses cholestasis‐induced liver injury and fibrosis in rats associated with the inhibition of TGFβ1Smad3miR21 axis and profibrogenic and hepatic injury biomarkers. Clin. Exp. Pharmacol. Physiol., 2021, 48(10), 1402-1411. doi: 10.1111/1440-1681.13546 PMID: 34157155
- Wang, H.; Jiang, C.; Yang, Y.; Li, J.; Wang, Y.; Wang, C.; Gao, Y. Resveratrol ameliorates iron overload induced liver fibrosis in mice by regulating iron homeostasis. PeerJ, 2022, 10, e13592. doi: 10.7717/peerj.13592 PMID: 35698613
- Abd-Elgawad, H.; Abu-Elsaad, N.; El-Karef, A.; Ibrahim, T. Piceatannol increases the expression of hepatocyte growth factor and IL-10 thereby protecting hepatocytes in thioacetamide-induced liver fibrosis. Can. J. Physiol. Pharmacol., 2016, 94(7), 779-787. doi: 10.1139/cjpp-2016-0001 PMID: 27186801
- Huang, S.; Wang, Y.; Xie, S.; Lai, Y.; Mo, C.; Zeng, T.; Kuang, S.; Zhou, C.; Zeng, Z.; Chen, Y.; Huang, S.; Gao, L.; Lv, Z. Isoliquiritigenin alleviates liver fibrosis through caveolin-1-mediated hepatic stellate cells ferroptosis in zebrafish and mice. Phytomedicine, 2022, 101, 154117. doi: 10.1016/j.phymed.2022.154117 PMID: 35489326
- Wang, M.E.; Chen, Y.C.; Chen, I.S.; Hsieh, S.C.; Chen, S.S.; Chiu, C.H. Curcumin protects against thioacetamide-induced hepatic fibrosis by attenuating the inflammatory response and inducing apoptosis of damaged hepatocytes. J. Nutr. Biochem., 2012, 23(10), 1352-1366. doi: 10.1016/j.jnutbio.2011.08.004 PMID: 22221674
- Zhao, X.A.; Chen, G.; Liu, Y.; Chen, Y.; Wu, H.; Xiong, Y.; Wang, G.; Jia, B.; Li, Y.; Xia, J.; Wang, J.; Yan, X.; Zhang, Z.; Huang, R.; Wu, C. Curcumin reduces Ly6Chi monocyte infiltration to protect against liver fibrosis by inhibiting Kupffer cells activation to reduce chemokines secretion. Biomed. Pharmacother., 2018, 106, 868-878. doi: 10.1016/j.biopha.2018.07.028 PMID: 30119257
- Yang, Y.; Kim, B.; Park, Y.K.; Koo, S.I.; Lee, J.Y. Astaxanthin prevents TGFβ1-induced pro-fibrogenic gene expression by inhibiting Smad3 activation in hepatic stellate cells. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(1), 178-185. doi: 10.1016/j.bbagen.2014.10.014 PMID: 25450180
- Choi, H.S.; Kang, J.W.; Lee, S.M. Melatonin attenuates carbon tetrachlorideinduced liver fibrosis via inhibition of necroptosis. Transl. Res., 2015, 166(3), 292-303. doi: 10.1016/j.trsl.2015.04.002 PMID: 25936762
- Wang, Y.; Hong, R.; Xie, Y.; Xu, J. Melatonin ameliorates liver fibrosis induced by carbon tetrachloride in rats via inhibiting TGF-β1/Smad signaling pathway. Curr. Med. Sci., 2018, 38(2), 236-244. doi: 10.1007/s11596-018-1871-8 PMID: 30074181
- Findlay, A.D.; Foot, J.S.; Buson, A.; Deodhar, M.; Jarnicki, A.G.; Hansbro, P.M.; Liu, G.; Schilter, H.; Turner, C.I.; Zhou, W.; Jarolimek, W. Identification and optimization of mechanism-based fluoroallylamine inhibitors of lysyl Oxidase-like 2/3. J. Med. Chem., 2019, 62(21), 9874-9889. doi: 10.1021/acs.jmedchem.9b01283 PMID: 31580073
- Wollin, L.; Togbe, D.; Ryffel, B. Effects of nintedanib in an animal model of liver fibrosis. BioMed Res. Int., 2020, 2020, 1-9. doi: 10.1155/2020/3867198 PMID: 32337244
- Mansour, H.M.; Salama, A.A.A.; Abdel-Salam, R.M.; Ahmed, N.A.; Yassen, N.N.; Zaki, H.F. The anti-inflammatory and anti-fibrotic effects of tadalafil in thioacetamide-induced liver fibrosis in rats. Can. J. Physiol. Pharmacol., 2018, 96(12), 1308-1317. doi: 10.1139/cjpp-2018-0338 PMID: 30398909
- Elnfarawy, A.A.; Nashy, A.E.; Abozaid, A.M.; Komber, I.F.; Elweshahy, R.H.; Abdelrahman, R.S. Vinpocetine attenuates thioacetamide-induced liver fibrosis in rats. Hum. Exp. Toxicol., 2021, 40(2), 355-368. doi: 10.1177/0960327120947453 PMID: 32840391
- Zakaria, S.; El-Sisi, A. Rebamipide retards CCl4-induced hepatic fibrosis in rats: Possible role for PGE2. J. Immunotoxicol., 2016, 13(4), 453-462. doi: 10.3109/1547691X.2015.1128022 PMID: 26849241
- Li, M.; He, F.S.; Ji, L.S.; Gao, Y.T.; Zhang, X.; Yu, Z.; Fang, M.; Wu, J.; Gao, Y.Q. Synthesis and biological evaluation of fluorinated 3,4-dihydroquinolin-2(1H)-ones and 2-oxindoles for anti-hepatic fibrosis. RSC Advances, 2021, 11(11), 5923-5927. doi: 10.1039/D0RA09430G PMID: 35423132
- Lu, Z.N.; Shan, Q.; Hu, S.J.; Zhao, Y.; Zhang, G.N.; Zhu, M.; Yu, D.K.; Wang, J.X.; He, H.W. Discovery of 1,8-naphthalidine derivatives as potent anti-hepatic fibrosis agents via repressing PI3K/AKT/Smad and JAK2/STAT3 pathways. Bioorg. Med. Chem., 2021, 49, 116438. doi: 10.1016/j.bmc.2021.116438 PMID: 34610571
- Zhao, S.L.; Peng, Z.; Zhen, X.H.; Han, Y.; Jiang, H.Y.; Qu, Y.L.; Guan, L.P. 6-Bromo-2,3-dioxoindolin phenylacetamide derivatives: Synthesis, potent CDC25B, PTP1B Inhibitors and Anticancer Activity. Lett. Drug Des. Discov., 2015, 12(7), 529-536. doi: 10.2174/1570180812666141219003209
- Wang, Y.; Wang, S.; Wang, R.; Li, S.; Yuan, Y. Neferine exerts antioxidant and anti-inflammatory effects on carbon tetrachloride-induced liver fibrosis by inhibiting the MAPK and NF-κB/IκBα pathways. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-12. doi: 10.1155/2021/4136019 PMID: 33680053
- Du, G.; Wang, J.; Zhang, T.; Ding, Q.; Jia, X.; Zhao, X.; Dong, J.; Yang, X.; Lu, S.; Zhang, C.; Liu, Z.; Zeng, Z.; Safadi, R.; Qi, R.; Zhao, X.; Hong, Z.; Lu, Y. Targeting Src family kinase member Fyn by Saracatinib attenuated liver fibrosis in vitro and in vivo. Cell Death Dis., 2020, 11(2), 118. doi: 10.1038/s41419-020-2229-2 PMID: 32051399
- Wu, C.; Chen, W.; Ding, H.; Li, D.; Wen, G.; Zhang, C.; Lu, W.; Chen, M.; Yang, Y. Salvianolic acid B exerts anti-liver fibrosis effects via inhibition of MAPK-mediated phospho-Smad2/3 at linker regions in vivo and in vitro. Life Sci., 2019, 239, 116881. doi: 10.1016/j.lfs.2019.116881 PMID: 31678285
- Tao, S.; Duan, R.; Xu, T.; Hong, J.; Gu, W.; Lin, A.; Lian, L.; Huang, H.; Lu, J.; Li, T. Salvianolic acid B inhibits the progression of liver fibrosis in rats via modulation of the Hedgehog signaling pathway. Exp. Ther. Med., 2021, 23(2), 116. doi: 10.3892/etm.2021.11039 PMID: 34970339
- Son, M.K.; Ryu, Y.L.; Jung, K.H.; Lee, H.; Lee, H.S.; Yan, H.H.; Park, H.J.; Ryu, J.K.; Suh, J.K.; Hong, S.; Hong, S.S. HS-173, a novel PI3K inhibitor, attenuates the activation of hepatic stellate cells in liver fibrosis. Sci. Rep., 2013, 3(1), 3470. doi: 10.1038/srep03470 PMID: 24326778
- Sharawy, M.H.; El-Kashef, D.H.; Shaaban, A.A.; El-Agamy, D.S. Anti-fibrotic activity of sitagliptin against concanavalin A-induced hepatic fibrosis. Role of Nrf2 activation/NF-κB inhibition. Int. Immunopharmacol., 2021, 100, 108088. doi: 10.1016/j.intimp.2021.108088 PMID: 34454288
- Jiang, N.; Zhou, Y.; Zhu, M.; Zhang, J.; Cao, M.; Lei, H.; Guo, M.; Gong, P.; Su, G.; Zhai, X. Optimization and evaluation of novel tetrahydropyrido4,3-dpyrimidine derivatives as ATX inhibitors for cardiac and hepatic fibrosis. Eur. J. Med. Chem., 2020, 187, 111904. doi: 10.1016/j.ejmech.2019.111904 PMID: 31806537
- Li, Y.W.; Li, X.Y.; Li, S.; Zhao, L.M.; Ma, J.; Piao, H.R.; Jiang, Z.; Jin, C.H.; Jin, X. Synthesis and evaluation of the HIF-1α inhibitory activity of 3(5)-substituted-4-(quinolin-4-yl)- and 4-(2-phenylpyridin-4-yl)pyrazoles as inhibitors of ALK5. Bioorg. Med. Chem. Lett., 2020, 30(2), 126822. doi: 10.1016/j.bmcl.2019.126822 PMID: 31810777
- Zhang, Q.; Li, P.; Hong, L.; Li, R.; Wang, J.; Cui, X. The protein tyrosine kinase inhibitor genistein suppresses hypoxia-induced atrial natriuretic peptide secretion mediated by the PI3K/Akt-HIF-1α pathway in isolated beating rat atria. Can. J. Physiol. Pharmacol., 2021, 99(11), 1184-1190. doi: 10.1139/cjpp-2020-0503 PMID: 34612711
- Zhang, S.; Zhang, M.; Chen, J.; Zhao, J.; Su, J.; Zhang, X. Ginsenoside compound K regulates HIF-1α-mediated glycolysis through Bclaf1 to inhibit the proliferation of human liver cancer cells. Front. Pharmacol., 2020, 11, 583334. doi: 10.3389/fphar.2020.583334 PMID: 33363466
- Han, L.Z.; Jiang, C.; Mi, C.; Wang, K.S.; Zuo, H.X.; Wang, Z.; Li, M.Y.; Zhang, Z.H.; Jin, X. Excisanin A suppresses proliferation by inhibiting hypoxiainducible factor-1α expression in human hepatocellular carcinoma cells. Trop. J. Pharm. Res., 2021, 19(12), 2483-2489. doi: 10.4314/tjpr.v19i12.1
- Chen, B.B.; Jiang, L.Y.; Guo, F.Y.; Qu, L.L.; Wang, W.Q.; Jin, C.H.; Liu, F.F. Tolcapone derivative PCDNA inhibits Aβ42 fibrillogenesis and reduces its cytoxicity. Yao Xue Xue Bao, 2021, 56, 1063-1069. doi: 10.16438/j.0513-4870.2020-1853
- Chen, B.; Mou, C.; Guo, F.; Sun, Q.; Qu, L.; Li, L.; Cui, W.; Lu, F.; Jin, C.; Liu, F. Tolcapone derivative (Tol-D) inhibits Aβ42 fibrillogenesis and ameliorates Aβ42-induced cytotoxicity and cognitive impairment. ACS Chem. Neurosci., 2022, 13(5), 638-647. doi: 10.1021/acschemneuro.1c00771 PMID: 35148068
- Xiao, J.; Jin, C.; Liu, Z.; Guo, S.; Zhang, X.; Zhou, X.; Wu, X. The design, synthesis, and biological evaluation of novel YC-1 derivatives as potent anti-hepatic fibrosis agents. Org. Biomol. Chem., 2015, 13(26), 7257-7264. doi: 10.1039/C5OB00710K PMID: 26055070
- Wai, K.K.; Liang, Y.; Zhou, L.; Cai, L.; Liang, C.; Liu, L.; Lin, X.; Wu, H.; Lin, J. The protective effects of Acanthus ilicifolius alkaloid A and its derivatives on pro- and anti-inflammatory cytokines in rats with hepatic fibrosis. Biotechnol. Appl. Biochem., 2015, 62(4), 537-546. doi: 10.1002/bab.1292 PMID: 25204790
- Pandey, A.; Raj, P.; Goru, S.K.; Kadakol, A.; Malek, V.; Sharma, N.; Gaikwad, A.B. Esculetin ameliorates hepatic fibrosis in high fat diet induced non-alcoholic fatty liver disease by regulation of FoxO1 mediated pathway. Pharmacol. Rep., 2017, 69(4), 666-672. doi: 10.1016/j.pharep.2017.02.005 PMID: 28527877
- Xiong, Y.; Lu, H.; Xu, H. Galangin reverses hepatic fibrosis by inducing HSCs apoptosis via the PI3K/Akt, Bax/Bcl-2, and Wnt/β-Catenin pathway in LX-2 cells. Biol. Pharm. Bull., 2020, 43(11), 1634-1642. doi: 10.1248/bpb.b20-00258 PMID: 32893252
- Wan, Y.; Tang, M.H.; Chen, X.C.; Chen, L.J.; Wei, Y.Q.; Wang, Y.S. Inhibitory effect of liposomal quercetin on acute hepatitis and hepatic fibrosis induced by concanavalin A. Braz. J. Med. Biol. Res., 2014, 47(8), 655-661. doi: 10.1590/1414-431x20143704 PMID: 25098714
- Li, X.; Jin, Q.; Yao, Q.; Xu, B.; Li, Z.; Tu, C. Quercetin attenuates the activation of hepatic stellate cells and liver fibrosis in mice through modulation of HMGB1-TLR2/4-NF-κB signaling pathways. Toxicol. Lett., 2016, 261, 1-12. doi: 10.1016/j.toxlet.2016.09.002 PMID: 27601294
- Wang, R.; Zhang, H.; Wang, Y.; Song, F.; Yuan, Y. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα p38 MAPK, and Bcl-2/Bax signaling. Int. Immunopharmacol., 2017, 47, 126-133. doi: 10.1016/j.intimp.2017.03.029 PMID: 28391159
- Yang, J.H.; Kim, S.C.; Kim, K.M.; Jang, C.H.; Cho, S.S.; Kim, S.J.; Ku, S.K.; Cho, I.J.; Ki, S.H. Isorhamnetin attenuates liver fibrosis by inhibiting TGF-β/Smad signaling and relieving oxidative stress. Eur. J. Pharmacol., 2016, 783, 92-102. doi: 10.1016/j.ejphar.2016.04.042 PMID: 27151496
- Li, J.J.; Jiang, H.C.; Wang, A.; Bu, F.T.; Jia, P.C.; Zhu, S.; Zhu, L.; Huang, C.; Li, J. Hesperetin derivative-16 attenuates CCl4-induced inflammation and liver fibrosis by activating AMPK/SIRT3 pathway. Eur. J. Pharmacol., 2022, 915, 174530. doi: 10.1016/j.ejphar.2021.174530 PMID: 34902361
- Zhou, Y.; Tong, X.; Ren, S.; Wang, X.; Chen, J.; Mu, Y.; Sun, M.; Chen, G.; Zhang, H.; Liu, P. Synergistic anti-liver fibrosis actions of total astragalus saponins and glycyrrhizic acid via TGF-β1/Smads signaling pathway modulation. J. Ethnopharmacol., 2016, 190, 83-90. doi: 10.1016/j.jep.2016.06.011 PMID: 27282665
- Kang, R.; Tian, W.; Cao, W.; Sun, Y.; Zhang, H.N.; Feng, Y.D.; Li, C.; Li, Z.Z.; Li, X.Q. Ligustroflavone ameliorates CCl4-induced liver fibrosis through down-regulating the TGF-β/Smad signaling pathway. Chin. J. Nat. Med., 2021, 19(3), 170-180. doi: 10.1016/S1875-5364(21)60018-3 PMID: 33781450
- Zhu, Z.; Hu, R.; Li, J.; Xing, X.; Chen, J.; Zhou, Q.; Sun, J. Alpinetin exerts anti-inflammatory, anti-oxidative and anti-angiogenic effects through activating the Nrf2 pathway and inhibiting NLRP3 pathway in carbon tetrachloride-induced liver fibrosis. Int. Immunopharmacol., 2021, 96, 107660. doi: 10.1016/j.intimp.2021.107660 PMID: 33862553
- Zhou, Y-P.; Zhang, S-L.; Cheng, D.; Li, H-R.; Tang, Z-M.; Xue, J.; Cai, W.; Dong, J-H.; Zhao, L. Preliminary exploration on anti-fibrosis effect of kaempferol in mice with Schistosoma japonicum infection. Eur. J. Inflamm., 2013, 11(1), 161-168. doi: 10.1177/1721727X1301100115
- El-Mihi, K.A.; Kenawy, H.I.; El-Karef, A.; Elsherbiny, N.M.; Eissa, L.A. Naringin attenuates thioacetamide-induced liver fibrosis in rats through modulation of the PI3K/Akt pathway. Life Sci., 2017, 187, 50-57. doi: 10.1016/j.lfs.2017.08.019 PMID: 28830755
- Clichici, S.; Olteanu, D.; Filip, A.; Nagy, A.L.; Oros, A.; Mircea, P.A. Beneficial effects of silymarin after the discontinuation of CCl4-induced liver fibrosis. J. Med. Food, 2016, 19(8), 789-797. doi: 10.1089/jmf.2015.0104 PMID: 27441792
- Zong, Y.; Zhong, M.; Li, D.M.; Zhang, B.J.; Mai, Z.P.; Huo, X.K.; Huang, S.S.; Zhang, H.L.; Wang, C.; Ma, X.C.; Yu, S.M.; Yang, D.A. Phenolic constituents from the roots of Phyllodium pulchellum. J. Asian Nat. Prod. Res., 2014, 16(7), 741-746. doi: 10.1080/10286020.2014.910197 PMID: 24754631
- Yang, F.; Wang, Y.; Xue, J.; Ma, Q.; Zhang, J.; Chen, Y.F.; Shang, Z.Z.; Li, Q.Q.; Zhang, S.L.; Zhao, L. Effect of Corilagin on the miR-21/smad7/ERK signaling pathway in a schistosomiasis-induced hepatic fibrosis mouse model. Parasitol. Int., 2016, 65(4), 308-315. doi: 10.1016/j.parint.2016.03.001 PMID: 26946098
- Li, B.L.; Liang, H.J.; Li, Q.R.; Wang, Q.; Ao, Z.Y.; Fan, Y.W.; Zhang, W.J.; Lian, X.; Chen, J.Y.; Yuan, J.; Wu, J.W. Euryachincoside, a novel phenolic glycoside with anti-hepatic fibrosis activity from Eurya chinensis. Planta Med., 2023, 89(5), 516-525. doi: 10.1055/a-1828-2671 PMID: 35439837
- Lee, W.R.; Kim, K.H.; An, H.J.; Kim, J.Y.; Lee, S.J.; Han, S.M.; Pak, S.C.; Park, K. Apamin inhibits hepatic fibrosis through suppression of transforming growth factor β1-induced hepatocyte epithelialmesenchymal transition. Biochem. Biophys. Res. Commun., 2014, 450(1), 195-201. doi: 10.1016/j.bbrc.2014.05.089 PMID: 24878534
- Zhang, C.; Liu, X.Q.; Sun, H.N.; Meng, X.M.; Bao, Y.W.; Zhang, H.P.; Pan, F.M.; Zhang, C. Octreotide attenuates hepatic fibrosis and hepatic stellate cells proliferation and activation by inhibiting Wnt/β-catenin signaling pathway, c-Myc and cyclin D1. Int. Immunopharmacol., 2018, 63, 183-190. doi: 10.1016/j.intimp.2018.08.005 PMID: 30098497
- Yi, J.; Wu, S.; Tan, S.; Qin, Y.; Wang, X.; Jiang, J.; Liu, H.; Wu, B. Berberine alleviates liver fibrosis through inducing ferrous redox to activate ROS-mediated hepatic stellate cells ferroptosis. Cell Death Discov., 2021, 7(1), 374. doi: 10.1038/s41420-021-00768-7 PMID: 34864819
- Zhao, H.; Zhang, Z.; Chai, X.; Li, G.; Cui, H.; Wang, H.; Meng, Y.; Liu, H.; Wang, J.; Li, R.; Bai, Z.; Xiao, X. Oxymatrine attenuates CCl4-induced hepatic fibrosis via modulation of TLR4-dependent inflammatory and TGF-β1 signaling pathways. Int. Immunopharmacol., 2016, 36, 249-255. doi: 10.1016/j.intimp.2016.04.040 PMID: 27179304
- Wang, K.; Guo, Z.; Bao, Y.; Pang, Y.; Li, Y.; He, H.; Song, D. Structureactivity relationship of aloperine derivatives as new antiliver fibrogenic agents. Molecules, 2020, 25(21), 4977. doi: 10.3390/molecules25214977 PMID: 33121156
- Tang, S.; Li, Y.; Bao, Y.; Dai, Z.; Niu, T.; Wang, K.; He, H.; Song, D. Novel cytisine derivatives exert anti-liver fibrosis effect via PI3K/Akt/Smad pathway. Bioorg. Chem., 2019, 90, 103032. doi: 10.1016/j.bioorg.2019.103032 PMID: 31207450
- Niu, T.; Niu, W.; Bao, Y.; Liu, T.; Song, D.; Li, Y.; He, H. Discovery of matrinic thiadiazole derivatives as a novel family of anti-liver fibrosis agents via repression of the TGFβ/Smad pathway. Molecules, 2018, 23(7), 1644. doi: 10.3390/molecules23071644 PMID: 29976890
- Xiang, H.; Han, Y.; Zhang, Y.; Yan, W.; Xu, B.; Chu, F.; Xie, T.; Jia, M.; Yan, M.; Zhao, R.; Wang, P.; Lei, H. A new oleanolic acid derivative against CCl4-induced hepatic fibrosis in rats. Int. J. Mol. Sci., 2017, 18(3), 553. doi: 10.3390/ijms18030553 PMID: 28272302
- Wan, S.; Luo, F.; Huang, C.; Liu, C.; Luo, Q.; Zhu, X. Ursolic acid reverses liver fibrosis by inhibiting interactive NOX4/ROS and RhoA/ROCK1 signalling pathways. Aging, 2020, 12(11), 10614-10632. doi: 10.18632/aging.103282 PMID: 32496208
- Xu, J.; Wang, X.; Zhang, H.; Yue, J.; Sun, Y.; Zhang, X.; Zhao, Y. Synthesis of triterpenoid derivatives and their anti-tumor and anti-hepatic fibrosis activities. Nat. Prod. Res., 2020, 34(6), 766-772. doi: 10.1080/14786419.2018.1499642 PMID: 30445851
- Wang, Y.; Li, C.; Gu, J.; Chen, C.; Duanmu, J.; Miao, J.; Yao, W.; Tao, J.; Tu, M.; Xiong, B.; Zhao, L.; Liu, Z. Celastrol exerts anti‐inflammatory effect in liver fibrosis via activation of AMPK‐SIRT3 signalling. J. Cell. Mol. Med., 2020, 24(1), 941-953. doi: 10.1111/jcmm.14805 PMID: 31742890
- Tang, L.; He, R.; Yang, G.; Tan, J.; Zhou, L.; Meng, X.; Huang, X.R.; Lan, H.Y. Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad signaling in vivo and in vitro. PLoS One, 2012, 7(2), e31350. doi: 10.1371/journal.pone.0031350 PMID: 22363627
- Fan, J.; Chen, Q.; Wei, L.; Zhou, X.; Wang, R.; Zhang, H. Asiatic acid ameliorates CC l4-induced liver fibrosis in rats: involvement of Nrf2/ARE, NF-κB/IκBα and JAK1/STAT3 signaling pathways. Drug Des. Devel. Ther., 2018, 12, 3595-3605. doi: 10.2147/DDDT.S179876 PMID: 30464391
- Wan, Y.; Wu, Y.L.; Lian, L.H.; Xie, W.X.; Li, X.; OuYang, B.Q.; Bai, T.; Li, Q.; Yang, N.; Nan, J.X. The anti-fibrotic effect of betulinic acid is mediated through the inhibition of NF-κB nuclear protein translocation. Chem. Biol. Interact., 2012, 195(3), 215-223. doi: 10.1016/j.cbi.2012.01.002 PMID: 22285267
- Yue, J.; Sun, Y.; Xu, J.; Cao, J.; Chen, G.; Zhang, H.; Zhang, X.; Zhao, Y. Cucurbitane triterpenoids from the fruit of Momordica charantia L. and their anti-hepatic fibrosis and anti-hepatoma activities. Phytochemistry, 2019, 157, 21-27. doi: 10.1016/j.phytochem.2018.10.009 PMID: 30352327
- Wang, Y.H.; Li, R.K.; Fu, Y.; Li, J.; Yang, X.M.; Zhang, Y.L.; Zhu, L.; Yang, Q.; Gu, J.R.; Xing, X.; Zhang, Z.G. Exemestane attenuates hepatic fibrosis in rats by inhibiting activation of hepatic stellate cells and promoting the secretion of interleukin 10. J. Immunol. Res., 2017, 2017, 1-9. doi: 10.1155/2017/3072745 PMID: 29464186
- Tan, H.; He, Q.; Li, R.; Lei, F.; Lei, X. Trillin reduces liver chronic inflammation and fibrosis in carbon tetrachloride (CCl4) induced liver injury in mice. Immunol. Invest., 2016, 45(5), 371-382. doi: 10.3109/08820139.2015.1137935 PMID: 27219527
- Chen, S.; He, Z.; Xie, W.; Chen, X.; Lin, Z.; Ma, J.; Liu, Z.; Yang, S.; Wang, Y. Ginsenoside Rh2 attenuates CDAHFD-induced liver fibrosis in mice by improving intestinal microbial composition and regulating LPS-mediated autophagy. Phytomedicine, 2022, 101, 154121. doi: 10.1016/j.phymed.2022.154121 PMID: 35489327
- Hou, Y.L.; Tsai, Y.H.; Lin, Y.H.; Chao, J.C.J. Ginseng extract and ginsenoside Rb1 attenuate carbon tetrachloride-induced liver fibrosis in rats. BMC Complement. Altern. Med., 2014, 14(1), 415. doi: 10.1186/1472-6882-14-415 PMID: 25344394
- Mo, C.; Xie, S.; Zeng, T.; Lai, Y.; Huang, S.; Zhou, C.; Yan, W.; Huang, S.; Gao, L.; Lv, Z. Ginsenoside-Rg1 acts as an IDO1 inhibitor, protects against liver fibrosis via alleviating IDO1-mediated the inhibition of DCs maturation. Phytomedicine, 2021, 84, 153524. doi: 10.1016/j.phymed.2021.153524 PMID: 33667840
- Zhang, X.; Shi, G.; Liu, M.; Chen, R.; Wu, X.; Zhao, Y. Protective effects of dammarane-type triterpenes from hydrolyzate of Gynostemma pentaphyllum against H2O2-induced injury and anti-hepatic fibrosis activities. Phytochem. Lett., 2018, 25, 33-36. doi: 10.1016/j.phytol.2018.03.010
- Zhang, X.; Shi, G.; Liu, M.; Chen, R.; Wu, X.; Zhao, Y. Four new dammarane-type triterpenes derivatives from hydrolyzate of total Gynostemma pentaphyllum saponins and their bioactivities. Nat. Prod. Res., 2019, 33(11), 1605-1611. doi: 10.1080/14786419.2018.1428592 PMID: 29359589
- Zhang, X.; Shi, G.; Sun, Y.; Wu, X.; Zhao, Y. Triterpenes derived from hydrolyzate of total Gynostemma pentaphyllum saponins with anti-hepatic fibrosis and protective activity against H2O2-induced injury. Phytochemistry, 2017, 144, 226-232. doi: 10.1016/j.phytochem.2017.09.021 PMID: 28985570
- Zhang, Q.; Mohammed, E.A.H.; Wang, Y.; Bai, Z.; Zhao, Q.; He, D.; Wang, Z. Synthesis and anti-hepaticfibrosis of glycyrrhetinic acid derivatives with inhibiting COX-2. Bioorg. Chem., 2020, 99, 103804. doi: 10.1016/j.bioorg.2020.103804 PMID: 32272365
- Ge, M.; Liu, H.; Zhang, Y.; Li, N.; Zhao, S.; Zhao, W.; Zhen, Y.; Yu, J.; He, H.; Shao, R. The anti‐hepatic fibrosis effects of dihydrotanshinone I are mediated by disrupting the yes‐associated protein and transcriptional enhancer factor D2 complex and stimulating autophagy. Br. J. Pharmacol., 2017, 174(10), 1147-1160. doi: 10.1111/bph.13766 PMID: 28257144
- Bai, Y.; Wang, W.; Wang, L.; Ma, L.; Zhai, D.; Wang, F.; Shi, R.; Liu, C.; Xu, Q.; Chen, G.; Lu, Z. Obacunone attenuates liver fibrosis with enhancing anti-oxidant effects of GPx-4 and inhibition of EMT. Molecules, 2021, 26(2), 318. doi: 10.3390/molecules26020318 PMID: 33435504
- Wang, H.; Che, J.; Cui, K.; Zhuang, W.; Li, H.; Sun, J.; Chen, J.; Wang, C. Schisantherin A ameliorates liver fibrosis through TGF-β1mediated activation of TAK1/MAPK and NF-κB pathways in vitro and in vivo. Phytomedicine, 2021, 88, 153609. doi: 10.1016/j.phymed.2021.153609 PMID: 34126414
- Wang, H.Q.; Wan, Z.; Zhang, Q.; Su, T.; Yu, D.; Wang, F.; Zhang, C.; Li, W.; Xu, D.; Zhang, H. Schisandrin B targets cannabinoid 2 receptor in Kupffer cell to ameliorate CCl4-induced liver fibrosis by suppressing NF-κB and p38 MAPK pathway. Phytomedicine, 2022, 98, 153960. doi: 10.1016/j.phymed.2022.153960 PMID: 35121391
- Chen, Y.C.; Liaw, C.C.; Cheng, Y.B.; Lin, Y.C.; Chen, C.H.; Huang, Y.T.; Liou, S.S.; Chen, S.Y.; Chien, C.T.; Lee, G.C.; Shen, Y.C. Anti-liver fibrotic lignans from the fruits of Schisandra arisanensis and Schisandra sphenanthera. Bioorg. Med. Chem. Lett., 2013, 23(3), 880-885. doi: 10.1016/j.bmcl.2012.11.040 PMID: 23265871
- Liu, D.; Qin, H.; Yang, B.; Du, B.; Yun, X. Oridonin ameliorates carbon tetrachloride‐induced liver fibrosis in mice through inhibition of the NLRP3 inflammasome. Drug Dev. Res., 2020, 81(4), 526-533. doi: 10.1002/ddr.21649 PMID: 32219880
- Lv, J.; Bai, R.; Wang, L.; Gao, J.; Zhang, H. Artesunate may inhibit liver fibrosis via the FAK/Akt/β-catenin pathway in LX-2 cells. BMC Pharmacol. Toxicol., 2018, 19(1), 64. doi: 10.1186/s40360-018-0255-9 PMID: 30326962
- Li, S.; Gan, L.; Tian, Y.J.; Tian, Y.; Fan, R.Z.; Huang, D.; Yuan, F.Y.; Zhang, X.; Lin, Y.; Zhu, Q.F.; Tang, G.H.; Yan, X.L.; Yin, S. Presegetane diterpenoids from Euphorbia sieboldiana as a new type of anti-liver fibrosis agents that inhibit TGF-β/Smad signaling pathway. Bioorg. Chem., 2021, 114, 105222. doi: 10.1016/j.bioorg.2021.105222 PMID: 34375196
- Sharawy, M.H.; El-Awady, M.S.; Makled, M.N. Protective effects of paclitaxel on thioacetamide‐induced liver fibrosis in a rat model. J. Biochem. Mol. Toxicol., 2021, 35(5), e22745. doi: 10.1002/jbt.22745 PMID: 33749060
- Yu, Z.; Jv, Y.; Cai, L.; Tian, X.; Huo, X.; Wang, C.; Zhang, B.; Sun, C.; Ning, J.; Feng, L.; Zhang, H.; Ma, X. Gambogic acid attenuates liver fibrosis by inhibiting the PI3K/AKT and MAPK signaling pathways via inhibiting HSP90. Toxicol. Appl. Pharmacol., 2019, 371, 63-73. doi: 10.1016/j.taap.2019.03.028 PMID: 30953615
- Liu, R.X.; Ma, S.F.; Chen, Y.L.; Ma, L.F.; Wang, J.D.; Zhan, Z.J. Tetrodecadazinone, a novel tetrodecamycin-pyridazinone hybrid with anti-liver fibrosis activity from Streptomyces sp. HU051. Bioorg. Chem., 2022, 119, 105573. doi: 10.1016/j.bioorg.2021.105573 PMID: 34952245
- Park, Y.J.; Jeon, M.S.; Lee, S.; Kim, J.K.; Jang, T.S.; Chung, K.H.; Kim, K.H. Anti-fibrotic effects of brevilin A in hepatic fibrosis via inhibiting the STAT3 signaling pathway. Bioorg. Med. Chem. Lett., 2021, 41, 127989. doi: 10.1016/j.bmcl.2021.127989 PMID: 33794317
- Wang, J.P.; Li, T.Z.; Huang, X.Y.; Geng, C.A.; Shen, C.; Sun, J.J.; Xue, D.; Chen, J.J. Synthesis and anti-fibrotic effects of santamarin derivatives as cytotoxic agents against hepatic stellate cell line LX2. Bioorg. Med. Chem. Lett., 2021, 41, 127994. doi: 10.1016/j.bmcl.2021.127994 PMID: 33775837
- Zhang, S.; Wang, Z.; Zhu, J.; Xu, T.; Zhao, Y.; Zhao, H.; Tang, F.; Li, Z.; Zhou, J.; Gao, D.; Tian, X.; Yao, J. Carnosic acid alleviates BDL-induced liver fibrosis through miR-29b-3p-mediated inhibition of the high-mobility group box 1/Toll-like receptor 4 signaling pathway in rats. Front. Pharmacol., 2018, 8, 976. doi: 10.3389/fphar.2017.00976 PMID: 29403377
- Patil, R.; Ghosh, A.; Sun Cao, P. Sommer, R.D.; Grice, K.A.; Waris, G.; Patil, S. Novel 5-arylthio-5H-chromenopyridines as a new class of anti-fibrotic agents. Bioorg. Med. Chem. Lett., 2017, 27(5), 1129-1135. doi: 10.1016/j.bmcl.2017.01.089 PMID: 28190633
- Tseng, T.H.; Lin, W.L.; Chen, Z.H.; Lee, Y.J.; Shie, M.S.; Lee, K.F.; Shen, C.H.; Kuo, H.C. Moniliformediquinone as a potential therapeutic agent, inactivation of hepatic stellate cell and inhibition of liver fibrosis in vivo. J. Transl. Med., 2016, 14(1), 263. doi: 10.1186/s12967-016-1022-6 PMID: 27612633
- Li, X.; Shao, S.; Li, H.; Bi, Z.; Zhang, S.; Wei, Y.; Bai, J.; Zhang, R.; Ma, X.; Ma, B.; Zhang, L.; Xie, C.; Ning, W.; Zhou, H.; Yang, C. Byakangelicin protects against carbon tetrachlorideinduced liver injury and fibrosis in mice. J. Cell. Mol. Med., 2020, 24(15), 8623-8635. doi: 10.1111/jcmm.15493 PMID: 32643868
- Zheng, Y.; Wang, L.; Wang, J.; Liu, L.; Zhao, T. Effect of curcumol on NOD-like receptor thermoprotein domain 3 inflammasomes in liver fibrosis of mice. Chin. J. Integr. Med., 2022, 28(11), 992-999. doi: 10.1007/s11655-021-3310-0 PMID: 34319504
- Zheng, Y.; Wang, J.; Zhao, T.; Wang, L.; Wang, J. Modulation of the VEGF/AKT/eNOS signaling pathway to regulate liver angiogenesis to explore the anti-hepatic fibrosis mechanism of curcumol. J. Ethnopharmacol., 2021, 280, 114480. doi: 10.1016/j.jep.2021.114480 PMID: 34358654
- Yan, H.; Huang, Z.; Bai, Q.; Sheng, Y.; Hao, Z.; Wang, Z.; Ji, L. Natural product andrographolide alleviated APAP-induced liver fibrosis by activating Nrf2 antioxidant pathway. Toxicology, 2018, 396-397, 1-12. doi: 10.1016/j.tox.2018.01.007 PMID: 29355602
- Younis, N.S.; Ghanim, A.M.H.; Elmorsy, M.A.; Metwaly, H.A. RETRACTED ARTICLE: Taurine ameliorates thioacetamide induced liver fibrosis in rats via modulation of toll like receptor 4/nuclear factor kappa B signaling pathway. Sci. Rep., 2021, 11(1), 12296. doi: 10.1038/s41598-021-91666-6 PMID: 34112866
- Zhao, Y.; Ma, X.; Wang, J.; He, X.; Zhang, Y.; Wang, Y.; Liu, H.; Shen, H.; Xiao, X. A system review of anti-fibrogenesis effects of compounds derived from chinese herbal medicine. Mini Rev. Med. Chem., 2015, 16(2), 163-175. doi: 10.2174/1389557515666150709121908 PMID: 26156416
Supplementary files
