Recent Advances in Research on Active Compounds Against Hepatic Fibrosis


Cite item

Full Text

Abstract

Background:Almost all chronic liver diseases cause fibrosis, which can lead to cirrhosis and eventually liver cancer. Liver fibrosis is now considered to be a reversible pathophysiological process and suppression of fibrosis is necessary to prevent liver cancer. At present, no specific drugs have been found that have hepatic anti-fibrotic activity

Objective:The research progress of anti-hepatic fibrosis compounds in recent ten years was reviewed to provide a reference for the design and development of anti-hepatic fibrosis drugs.

Methods:According to the structure of the compounds, they are divided into monocyclic compounds, fused-heterocyclic compounds, and acyclic compounds.

Results:In this article, the natural products and synthetic compounds with anti-fibrotic activity in recent ten years were reviewed, with emphasis on their pharmacological activity and structure-activity relationship (SAR).

Conclusion:Most of these compounds are natural active products and their derivatives, and there are few researches on synthetic compounds and SAR studies on natural product.

About the authors

Chuang Liu

Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University

Email: info@benthamscience.net

Siqi Li

Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University

Email: info@benthamscience.net

Changhao Zhang

Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University

Email: info@benthamscience.net

Cheng-Hua Jin

Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sarin, S.K.; Kumar, M.; Eslam, M.; George, J.; Al Mahtab, M.; Akbar, S.M.F.; Jia, J.; Tian, Q.; Aggarwal, R.; Muljono, D.H.; Omata, M.; Ooka, Y.; Han, K.H.; Lee, H.W.; Jafri, W.; Butt, A.S.; Chong, C.H.; Lim, S.G.; Pwu, R.F.; Chen, D.S. Liver diseases in the Asia-Pacific region: A lancet gastroenterology & hepatology commission. Lancet Gastroenterol. Hepatol., 2020, 5(2), 167-228. doi: 10.1016/S2468-1253(19)30342-5 PMID: 31852635
  2. Shan, L.; Lium, Z.; Ci, L.; Shuai, C.; Lv, X.; Li, J. Research progress on the anti-hepatic fibrosis action and mechanism of natural products. Int. Immunopharmacol., 2019, 75, 105765. doi: 10.1016/j.intimp.2019.105765 PMID: 31336335
  3. Li, J.; Feng, W.; Dai, R.; Li, B. Rational design, synthesis and activities of phenanthrene derivatives against hepatic fibrosis. Fitoterapia, 2022, 159, 105176. doi: 10.1016/j.fitote.2022.105176 PMID: 35307511
  4. Ebrahimi, M.; Seyedi, S.A.; Nabipoorashrafi, S.A.; Rabizadeh, S.; Sarzaeim, M.; Yadegar, A.; Mohammadi, F.; Bahri, R.A.; Pakravan, P.; Shafiekhani, P.; Nakhjavani, M.; Esteghamati, A. Lipid accumulation product (LAP) index for the diagnosis of nonalcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis. Lipids Health Dis., 2023, 22(1), 41. doi: 10.1186/s12944-023-01802-6 PMID: 36922815
  5. Wallace, S.J.; Tacke, F.; Schwabe, R.F.; Henderson, N.C. Understanding the cellular interactome of non-alcoholic fatty liver disease. JHEP Reports, 2022, 4(8), 100524. doi: 10.1016/j.jhepr.2022.100524 PMID: 35845296
  6. Mitten, E.K.; Baffy, G. Mechanotransduction in the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol., 2022, 77(6), 1642-1656. doi: 10.1016/j.jhep.2022.08.028 PMID: 36063966
  7. Scorletti, E.; Carr, R.M. A new perspective on NAFLD: Focusing on lipid droplets. J. Hepatol., 2022, 76(4), 934-945. doi: 10.1016/j.jhep.2021.11.009 PMID: 34793866
  8. Hosack, T.; Damry, D.; Biswas, S. Drug-induced liver injury: A comprehensive review. Therap. Adv. Gastroenterol., 2023, 16. doi: 10.1177/17562848231163410 PMID: 36968618
  9. Chen, X.; Liu, M.; Tang, J.; Wang, N.; Feng, Y.; Ma, H. Research progress on the therapeutic effect of polysaccharides on non-alcoholic fatty liver disease through the regulation of the gut-liver axis. Int. J. Mol. Sci., 2022, 23(19), 11710. doi: 10.3390/ijms231911710 PMID: 36233011
  10. Ni, X.X.; Li, X.Y.; Wang, Q.; Hua, J. Regulation of peroxisome proliferator-activated receptor-gamma activity affects the hepatic stellate cell activation and the progression of NASH via TGF-β1/Smad signaling pathway. J. Physiol. Biochem., 2021, 77(1), 35-45. doi: 10.1007/s13105-020-00777-7 PMID: 33188625
  11. Ogawa, H.; Kaji, K.; Nishimura, N.; Takagi, H.; Ishida, K.; Takaya, H.; Kawaratani, H.; Moriya, K.; Namisaki, T.; Akahane, T.; Yoshiji, H. Lenvatinib prevents liver fibrosis by inhibiting hepatic stellate cell activation and sinusoidal capillarization in experimental liver fibrosis. J. Cell. Mol. Med., 2021, 25(8), 4001-4013. doi: 10.1111/jcmm.16363 PMID: 33609067
  12. Song, Z.; Liu, X.; Zhang, W.; Luo, Y.; Xiao, H.; Liu, Y.; Dai, G.; Hong, J.; Li, A. Ruxolitinib suppresses liver fibrosis progression and accelerates fibrosis reversal via selectively targeting Janus kinase 1/2. J. Transl. Med., 2022, 20(1), 157. doi: 10.1186/s12967-022-03366-y PMID: 35382859
  13. Su, T.H.; Shiau, C.W.; Jao, P.; Liu, C.H.; Liu, C.J.; Tai, W.T.; Jeng, Y.M.; Yang, H.C.; Tseng, T.C.; Huang, H.P.; Cheng, H.R.; Chen, P.J.; Chen, K.F.; Kao, J.H.; Chen, D.S. Sorafenib and its derivative SC-1 exhibit antifibrotic effects through signal transducer and activator of transcription 3 inhibition. Proc. Natl. Acad. Sci., 2015, 112(23), 7243-7248. doi: 10.1073/pnas.1507499112 PMID: 26039995
  14. Martí-Rodrigo, A.; Alegre, F.; Moragrega, Á.B.; García-García, F.; Martí-Rodrigo, P.; Fernández-Iglesias, A.; Gracia-Sancho, J.; Apostolova, N.; Esplugues, J.V.; Blas-García, A. Rilpivirine attenuates liver fibrosis through selective STAT1-mediated apoptosis in hepatic stellate cells. Gut, 2020, 69(5), 920-932. doi: 10.1136/gutjnl-2019-318372 PMID: 31530714
  15. Esmail, M.M.; Saeed, N.M.; Michel, H.E.; El-Naga, R.N. The ameliorative effect of niclosamide on bile duct ligation induced liver fibrosis via suppression of NOTCH and Wnt pathways. Toxicol. Lett., 2021, 347, 23-35. doi: 10.1016/j.toxlet.2021.04.018 PMID: 33961984
  16. Li, Y.; Li, P.K.; Roberts, M.J.; Arend, R.C.; Samant, R.S.; Buchsbaum, D.J. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett., 2014, 349(1), 8-14. doi: 10.1016/j.canlet.2014.04.003 PMID: 24732808
  17. Younossi, Z.M.; Ratziu, V.; Loomba, R.; Rinella, M.; Anstee, Q.M.; Goodman, Z.; Bedossa, P.; Geier, A.; Beckebaum, S.; Newsome, P.N.; Sheridan, D.; Sheikh, M.Y.; Trotter, J.; Knapple, W.; Lawitz, E.; Abdelmalek, M.F.; Kowdley, K.V.; Montano-Loza, A.J.; Boursier, J.; Mathurin, P.; Bugianesi, E.; Mazzella, G.; Olveira, A.; Cortez-Pinto, H.; Graupera, I.; Orr, D.; Gluud, L.L.; Dufour, J.F.; Shapiro, D.; Campagna, J.; Zaru, L.; MacConell, L.; Shringarpure, R.; Harrison, S.; Sanyal, A.J.; Abdelmalek, M.; Abrams, G.; Aguilar, H.; Ahmed, A.; Aigner, E.; Aithal, G.; Ala, A.; Alazawi, W.; Albillos, A.; Allison, M.; Al-Shamma, S.; Andrade, R.; Andreone, P.; Angelico, M.; Ankoma-Sey, V.; Anstee, Q.; Anty, R.; Araya, V.; Arenas Ruiz, J.I.; Arkkila, P.; Arora, M.; Asselah, T.; Au, J.; Ayonrinde, O.; Bailey, R.J.; Balakrishnan, M.; Bambha, K.; Bansal, M.; Barritt, S.; Bate, J.; Beato, J.; Beckebaum, S.; Behari, J.; Bellot, P.; Ben Ari, Z.; Bennett, M.; Berenguer, M.; Beretta-Piccoli, B.T.; Berg, T.; Bonacini, M.; Bonet, L.; Borg, B.; Bourliere, M.; Boursier, J.; Bowman, W.; Bradley, D.; Brankovic, M.; Braun, M.; Bronowicki, J-P.; Bruno, S.; Bugianesi, E.; Cai, C.; Calderon, A.; Calleja Panero, J.L.; Carey, E.; Carmiel, M.; Carrión, J.A.; Cave, M.; Chagas, C.; Chami, T.; Chang, A.; Coates, A.; Cobbold, J.; Costentin, C.; Corey, K.; Corless, L.; Cortez-Pinto, H.; Crespo, J.; Cruz Pereira, O.; de Ledinghen, V.; deLemos, A.; Diago, M.; Dong, M.; Dufour, J-F.; Dugalic, P.; Dunn, W.; Elkhashab, M.; Epstein, M.; Escudero-Garcia, M.D.; Etzion, O.; Evans, L.; Falcone, R.; Fernandez, C.; Ferreira, J.; Fink, S.; Finnegan, K.; Firpi-Morell, R.; Floreani, A.; Fontanges, T.; Ford, R.; Forrest, E.; Fowell, A.; Fracanzani, A.L.; Francque, S.; Freilich, B.; Frias, J.; Fuchs, M.; Fuentes, J.; Galambos, M.; Gallegos, J.; Geerts, A.; Geier, A.; George, J.; Ghali, M.; Ghalib, R.; Gholam, P.; Gines, P.; Gitlin, N.; Gluud, L.L.; Goeser, T.; Goff, J.; Gordon, S.; Gordon, F.; Goria, O.; Greer, S.; Grigorian, A.; Gronbaek, H.; Guillaume, M.; Gunaratnam, N.; Halegoua-De Marzio, D.; Hameed, B.; Hametner, S.; Hamilton, J.; Harrison, S.; Hartleb, M.; Hassanein, T.; Häussinger, D.; Hellstern, P.; Herring, R.; Heurich, E.; Hezode, C.; Hinrichsen, H.; Holland Fischer, P.; Horsmans, Y.; Huang, J.; Hussaini, H.; Jakiche, A.; Jeffers, L.; Jones, B.; Jorge, R.; Jorquera, F.; Joshi, S.; Kahraman, A.; Kaita, K.; Karyotakis, N.; Kayali, Z.; Kechagias, S.; Kepczyk, T.; Khalili, M.; Khallafi, H.; Kluwe, J.; Knapple, W.; Kohli, A.; Korenblat, K.; Kowdley, K.; Krag, A.; Krause, R.; Kremer, A.; Krok, K.; Krstic, M.; Kugelmas, M.; Kumar, S.; Kuwada, S.; Labarriere, D.; Lai, M.; Laleman, W.; Lampertico, P.; Lawitz, E.; Lee, A.; Leroy, V.; Lidofsky, S.; Lim, T.H.; Lim, J.; Lipkis, D.; Little, E.; Lonardo, A.; Long, M.; Loomba, R.; Luketic, V.A.C.; Lurie, Y.; Macedo, G.; Magalhaes, J.; Makara, M.; Maliakkal, B.; Manns, M.; Manousou, P.; Mantry, P.; Marchesini, G.; Marinho, C.; Marotta, P.; Marschall, H-U.; Martinez, L.; Mathurin, P.; Mayo, M.; Mazzella, G.; McCullen, M.; McLaughlin, W.; Merle, U.; Merriman, R.; Modi, A.; Molina, E.; Montano-Loza, A.; Monteverde, C.; Morales Cardona, A.; Moreea, S.; Moreno, C.; Morisco, F.; Mubarak, A.; Muellhaupt, B.; Mukherjee, S.; Müller, T.; Nagorni, A.; Naik, J.; Neff, G.; Nevah, M.; Newsome, P.; Nguyen-Khac, E.; Noureddin, M.; Oben, J.; Olveira, A.; Orlent, H.; Orr, D.; Orr, J.; Ortiz-Lasanta, G.; Ozenne, V.; Pandya, P.; Paredes, A.; Park, J.; Patel, J.; Patel, K.; Paul, S.; Patton, H.; Peck-Radosavljevic, M.; Petta, S.; Pianko, S.; Piekarska, A.; Pimstone, N.; Pisegna, J.; Pockros, P.; Pol, S.; Porayko, M.; Poulos, J.; Pound, D.; Pouzar, J.; Presa Ramos, J.; Pyrsopoulos, N.; Rafiq, N.; Muller, K.; Ramji, A.; Ratziu, V.; Ravinuthala, R.; Reddy, C.; Reddy, K.G. G.; Reddy K R, K.R.; Regenstein, F.; Reindollar, R.; Reynolds, J.; Riera, A.; Rinella, M.; Rivera Acosta, J.; Robaeys, G.; Roberts, S.; Rodriguez-Perez, F.; Romero, S.; Romero-Gomez, M.; Rubin, R.; Rumi, M.; Rushbrook, S.; Rust, C.; Ryan, M.; Safadi, R.; Said, A.; Salminen, K.; Samuel, D.; Santoro, J.; Sanyal, A.; Sarkar, S.; Schaeffer, C.; Schattenberg, J.; Schiefke, I.; Schiff, E.; Schmidt, W.; Schneider, J.; Schouten, J.; Schultz, M.; Sebastiani, G.; Semela, D.; Sepe, T.; Sheikh, A.; Sheikh, M.; Sheridan, D.; Sherman, K.; Shibolet, O.; Shiffman, M.; Siddique, A.; Sieberhagen, C.; Sigal, S.; Sikorska, K.; Simon, K.; Sinclair, M.; Skoien, R.; Solis, J.; Sood, S.; Souder, B.; Spivey, J.; Stal, P.; Stinton, L.; Strasser, S.; Svorcan, P.; Szabo, G.; Talal, A.; Tam, E.; Tetri, B.; Thuluvath, P.; Tobias, H.; Tomasiewicz, K.; Torres, D.; Tran, A.; Trauner, M.; Trautwein, C.; Trotter, J.; Tsochatzis, E.; Unitt, E.; Vargas, V.; Varkonyi, I.; Veitsman, E.; Vespasiani Gentilucci, U.; Victor, D.; Vierling, J.; Vincent, C.; Vincze, A.; von der Ohe, M.; Von Roenn, N.; Vuppalanchi, R.; Waters, M.; Watt, K.; Wattacheril, J.; Weltman, M.; Wieland, A.; Wiener, G.; Williams A, A.; Williams J, J.; Wilson, J.; Yataco, M.; Yoshida, E.; Younes, Z.; Yuan, L.; Zivony, A.; Zogg, D.; Zoller, H.; Zoulim, F.; Zuckerman, E.; Zuin, M. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: Interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet, 2019, 394(10215), 2184-2196. doi: 10.1016/S0140-6736(19)33041-7 PMID: 31813633
  18. Makled, M.N.; Sharawy, M.H.; El-Awady, M.S. The dual PPAR-α/γ agonist saroglitazar ameliorates thioacetamide-induced liver fibrosis in rats through regulating leptin. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(12), 1569-1576. doi: 10.1007/s00210-019-01703-5 PMID: 31367862
  19. Huang, Y.; Feng, H.; Kan, T.; Huang, B.; Zhang, M.; Li, Y.; Shi, C.; Wu, M.; Luo, Y.; Yang, J.; Xu, F. Bevacizumab attenuates hepatic fibrosis in rats by inhibiting activation of hepatic stellate cells. PLoS One, 2013, 8(8), e73492. doi: 10.1371/journal.pone.0073492 PMID: 24023685
  20. Xu, X.Y.; Geng, Y.; Xu, H.X.; Ren, Y.; Liu, D.Y.; Mao, Y. Antrodia camphorata-derived antrodin C inhibits liver fibrosis by blocking TGF-beta and PDGF signaling pathways. Front. Mol. Biosci., 2022, 9, 835508. doi: 10.3389/fmolb.2022.835508 PMID: 35242813
  21. Seniutkin, O.; Furuya, S.; Luo, Y.S.; Cichocki, J.A.; Fukushima, H.; Kato, Y.; Sugimoto, H.; Matsumoto, T.; Uehara, T.; Rusyn, I. Effects of pirfenidone in acute and sub-chronic liver fibrosis, and an initiation-promotion cancer model in the mouse. Toxicol. Appl. Pharmacol., 2018, 339, 1-9. doi: 10.1016/j.taap.2017.11.024 PMID: 29197520
  22. Shi, X.; Yu, Z.; Zhu, C.; Jiang, L.; Geng, N.; Fan, X.; Guan, Z.; Lu, X. Synthesis and structure–activity relationships of pirfenidone derivatives as anti-fibrosis agents in vitro. RSC Medicinal Chemistry, 2022, 13(5), 610-621. doi: 10.1039/D1MD00403D PMID: 35694690
  23. Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V.B.; Rao, K.S.; Lee, H.J.; Park, S.J.; Park, H.J.; Lee, K.; Sheen, Y.Y.; Kim, D.K. Discovery of N-((4-(1,2,4triazolo1,5-apyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): A highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/antifibrotic agent. J. Med. Chem., 2014, 57(10), 4213-4238. doi: 10.1021/jm500115w PMID: 24786585
  24. Zhu, W.J.; Cui, B.W.; Wang, H.M.; Nan, J.X.; Piao, H.R.; Lian, L.H.; Jin, C.H. Design, synthesis, and antifibrosis evaluation of 4-(benzo-c1,2,5thiadiazol-5-yl)-3(5)-(6-methyl- pyridin-2-yl)pyrazole and 3(5)-(6-methylpyridin- 2-yl)-4-(thieno-3,2,-cpyridin-2-yl)pyrazole derivatives. Eur. J. Med. Chem., 2019, 180, 15-27. doi: 10.1016/j.ejmech.2019.07.013 PMID: 31299584
  25. Kim, M.J.; Park, S.A.; Kim, C.H.; Park, S.Y.; Kim, J.S.; Kim, D.K.; Nam, J.S.; Sheen, Y.Y. TGF-β type I receptor kinase inhibitor EW-7197 suppresses cholestatic liver fibrosis by inhibiting HIF1α-induced epithelial mesenchymal transition. Cell. Physiol. Biochem., 2016, 38(2), 571-588. doi: 10.1159/000438651 PMID: 26845171
  26. Zheng, G.H.; Liu, J.; Guo, F.Y.; Zhang, Z.H.; Jiang, Y.J.; Lin, Y.C.; Lan, X.Q.; Ren, J.; Wu, Y.L.; Nan, J.X.; Jin, C.H.; Lian, L.H. The in vitro and in vivo study of a pyrazole derivative, J-1063, as a novel anti-liver fibrosis agent: Synthesis, biological evaluation, and mechanistic analysis. Bioorg. Chem., 2022, 122, 105715. doi: 10.1016/j.bioorg.2022.105715 PMID: 35279552
  27. Luangmonkong, T.; Suriguga, S.; Adhyatmika, A.; Adlia, A.; Oosterhuis, D.; Suthisisang, C.; de Jong, K.P.; Mutsaers, H.A.M.; Olinga, P. In vitro and ex vivo anti-fibrotic effects of LY2109761, a small molecule inhibitor against TGF-β. Toxicol. Appl. Pharmacol., 2018, 355, 127-137. doi: 10.1016/j.taap.2018.07.001 PMID: 30008374
  28. Masuda, A.; Nakamura, T.; Abe, M.; Iwamoto, H.; Sakaue, T.; Tanaka, T.; Suzuki, H.; Koga, H.; Torimura, T. Promotion of liver regeneration and anti-fibrotic effects of the TGF β receptor kinase inhibitor galunisertib in CCl4 treated mice. Int. J. Mol. Med., 2020, 46(1), 427-438. doi: 10.3892/ijmm.2020.4594 PMID: 32377696
  29. Maccari, R.; Ciurleo, R.; Giglio, M.; Cappiello, M.; Moschini, R.; Corso, A.D.; Mura, U. Ottanà. Identification of new non-carboxylic acid containing inhibitors of aldose reductase. Bioorg. Med. Chem., 2010, 118(11), 4049-4055. doi: 10.1016/j.bmc.2010.04.016 PMID: 20452228
  30. Wang, Z.; Deng, C.; Zheng, H.; Xie, C.; Wang, X.; Luo, Y.; Chen, Z.; Cheng, P.; Chen, L. (Z)2-(5-(4-methoxybenzylidene)-2, 4-dioxothiazolidin-3-yl) acetic acid protects rats from CCl4-induced liver injury. J. Gastroenterol. Hepatol., 2012, 27(5), 966-973. doi: 10.1111/j.1440-1746.2011.06913.x PMID: 21913985
  31. França, M.E.R.; Rocha, S.W.S.; Oliveira, W.H.; Santos, L.A.; de Oliveira, A.G.V.; Barbosa, K.P.S.; Nunes, A.K.S.; Rodrigues, G.B.; Lós, D.B.; Peixoto, C.A. Diethylcarbamazine attenuates the expression of pro-fibrogenic markers and hepatic stellate cells activation in carbon tetrachloride-induced liver fibrosis. Inflammopharmacology, 2018, 26(2), 599-609. doi: 10.1007/s10787-017-0329-0 PMID: 28409388
  32. Wu, X.; Zhang, F.; Xiong, X.; Lu, C.; Lian, N.; Lu, Y.; Zheng, S. Tetramethylpyrazine reduces inflammation in liver fibrosis and inhibits inflammatory cytokine expression in hepatic stellate cells by modulating NLRP3 inflammasome pathway. IUBMB Life, 2015, 67(4), 312-321. doi: 10.1002/iub.1348 PMID: 25847612
  33. Zhao, S.; Zhang, Z.; Qian, L.; Lin, Q.; Zhang, C.; Shao, J.; Zhang, F.; Zheng, S. Tetramethylpyrazine attenuates carbon tetrachloride-caused liver injury and fibrogenesis and reduces hepatic angiogenesis in rats. Biomed. Pharmacother., 2017, 86, 521-530. doi: 10.1016/j.biopha.2016.11.122 PMID: 28024287
  34. Ogaly, H.A.; Aldulmani, S.A.A.; Al-Zahrani, F.A.M.; Abd-Elsalam, R.M. D-carvone attenuates CCl4-induced liver fibrosis in rats by inhibiting oxidative stress and TGF-ß 1/SMAD3 signaling pathway. Biology, 2022, 11(5), 739. doi: 10.3390/biology11050739 PMID: 35625467
  35. Bai, T.; Yang, Y.; Wu, Y.L.; Jiang, S.; Lee, J.J.; Lian, L.H.; Nan, J.X. Thymoquinone alleviates thioacetamide-induced hepatic fibrosis and inflammation by activating LKB1–AMPK signaling pathway in mice. Int. Immunopharmacol., 2014, 19(2), 351-357. doi: 10.1016/j.intimp.2014.02.006 PMID: 24560906
  36. Miao, Y.; Wu, Y.; Jin, Y.; Lei, M.; Nan, J.; Wu, X. Benzoquinone derivatives with antioxidant activity inhibit activated hepatic stellate cells and attenuate liver fibrosis in TAA-induced mice. Chem. Biol. Interact., 2020, 317, 108945. doi: 10.1016/j.cbi.2020.108945 PMID: 31935363
  37. Cui, B.; Yang, Z.; Wang, S.; Guo, M.; Li, Q.; Zhang, Q.; Bi, X. The protective role of protocatechuic acid against chemically induced liver fibrosis in vitro and in vivo. Pharmazie, 2021, 76(5), 232-238. doi: 10.1691/ph.2021.0909 PMID: 33964998
  38. Xing, Y.; Wang, J.Y.; Li, M.Y.; Zhang, Z.H.; Jin, H.L.; Zuo, H.X.; Ma, J.; Jin, X. Convallatoxin inhibits IL‐1β production by suppressing zinc finger protein 91 (ZFP91)‐mediated pro‐IL‐1β ubiquitination and caspase‐8 inflammasome activity. Br. J. Pharmacol., 2022, 179(9), 1887-1907. doi: 10.1111/bph.15758 PMID: 34825365
  39. Ma, Q.; Bian, M.; Gong, G.; Bai, C.; Liu, C.; Wei, C.; Quan, Z.; Du, H. Synthesis and evaluation of bakuchiol derivatives as potent anti-inflammatory agents in vitro and in vivo. J. Nat. Prod., 2022, 85(1), 15-24. doi: 10.1021/acs.jnatprod.1c00377 PMID: 35000392
  40. Zhang, Z.H.; Mi, C.; Wang, K.S.; Wang, Z.; Li, M.Y.; Zuo, H.X.; Xu, G.H.; Li, X.; Piao, L.X.; Ma, J.; Jin, X. Chelidonine inhibits TNF-induced inflammation by suppressing the NF-B pathways in HCT116 cells. Phytother. Res., 2018, 32, 65-75. doi: 10.1002/ptr.5948 PMID: 29044876
  41. Wu, J.; Ma, S.; Zhang, T-Y.; Wei, Z-Y.; Wang, H-M.; Guo, F-Y.; Zheng, C-J.; Piao, H-R. Synthesis and biological evaluation of ursolic acid derivatives containing an aminoguanidine moiety. Med. Chem. Res., 2019, 28(7), 959-973. doi: 10.1007/s00044-019-02349-x
  42. Zhang, T.Y.; Li, C.; Li, Y.R.; Li, X.Z.; Sun, L-P.; Zheng, C-J.; Piao, H-R. Synthesis and antimicrobial evaluation of aminoguanidine and 3-amino-1,2,4-triazole derivatives as potential antibacterial agents. Lett. Drug Des. Discov., 2016, 13(10), 1063-1075. doi: 10.2174/1570180813666160819151239
  43. Wei, Z.Y.; Liu, J.C.; Zhang, W.; Li, Y.R.; Li, C.; Zheng, C.J.; Piao, H.R. Synthesis and antimicrobial evaluation of (Z)-5-((3-phenyl-1H-pyrazol-4-yl)methylene)-2-thioxothia- zolidin-4-one derivatives. Med. Chem., 2016, 12(8), 751-759. doi: 10.2174/1573406412666160822160156 PMID: 27550428
  44. Yan Guo, F. Ji Zheng, C.; Wang, M.; Ai, J.; Ying Han, L.; Yang, L.; Fang Lu, Y.; Xuan Yang, Y.; Guan Piao, M.; Piao, H.R.; Jin, C.M.; Jin, C.H. Synthesis and antimicrobial activity evaluation of imidazole‐fused imidazo2,1‐b 1,3,4thiadiazole analogues. ChemMedChem, 2021, 16(15), 2354-2365. doi: 10.1002/cmdc.202100122 PMID: 33738962
  45. Yang, L.; W., Bo Xu Sun, L.; Zhang, C.; Hua Jin, C. SAR analysis of heterocyclic compounds with monocyclic and bicyclic structures as antifungal agents. ChemMedChem, 2022, 17(12), e202200221. doi: 10.1002/cmdc.202200221 PMID: 35475328
  46. Zheng, C.J.; Jin, C.H.; Zhao, L-M.; Guo, F.Y.; Wang, H.M.; Dou, T.; Da Qi, J.; Xu, W.B.; Piao, L.; Jin, X.; Chen, F-E.; Piao, H-R. Synthesis and evaluation of chiral rhodanine derivatives bearing quinoxalinyl imidazole moiety as ALK5 inhibitors. Med. Chem., 2022, 18(4), 509-520. doi: 10.2174/1573406417666210628144849 PMID: 34182915
  47. Sun, T.X.; Li, M.Y.; Zhang, Z.H.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jin, H.L.; Zuo, H.X.; Ma, J.; Jin, X.; Jin, X. Usnic acid suppresses cervical cancer cell proliferation by inhibiting PD‐L1 expression and enhancing T‐lymphocyte tumor‐killing activity. Phytother. Res., 2021, 35(7), 3916-3935. doi: 10.1002/ptr.7103 PMID: 33970512
  48. Wang, Z.; Li, M.Y.; Zhang, Z.H.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, H.L.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jiang, C.G.; Ma, J.; Jin, X. Panaxadiol inhibits programmed cell death-ligand 1 expression and tumour proliferation via hypoxia-inducible factor (HIF)-1α and STAT3 in human colon cancer cells. Pharmacol. Res., 2020, 155, 104727. doi: 10.1016/j.phrs.2020.104727 PMID: 32113874
  49. Zhang, Z.H.; Li, M.Y.; Wang, Z.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Jin, C.; Xu, G.; Piao, L.; Piao, H.; Ma, J.; Jin, X. Convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer. Phytomedicine, 2020, 68, 153172. doi: 10.1016/j.phymed.2020.153172 PMID: 32004989
  50. Hsieh, S.C.; Wu, C.H.; Wu, C.C.; Yen, J.H.; Liu, M.C.; Hsueh, C.M.; Hsu, S.L. Gallic acid selectively induces the necrosis of activated hepatic stellate cells via a calcium-dependent calpain I activation pathway. Life Sci., 2014, 102(1), 55-64. doi: 10.1016/j.lfs.2014.02.041 PMID: 24631138
  51. Ramadan, A.; Afifi, N.; Yassin, N.Z.; Abdel-Rahman, R.F.; Abd El-Rahman, S.S.; Fayed, H.M. Mesalazine, an osteopontin inhibitor: The potential prophylactic and remedial roles in induced liver fibrosis in rats. Chem. Biol. Interact., 2018, 289, 109-118. doi: 10.1016/j.cbi.2018.05.002 PMID: 29738702
  52. Wang, R.; Wang, J.; Song, F.; Li, S.; Yuan, Y. Tanshinol ameliorates CCl4-induced liver fibrosis in rats through the regulation of Nrf2/HO-1 and NF-κB/IκBα signaling pathway. Drug Des. Devel. Ther., 2018, 12, 1281-1292. doi: 10.2147/DDDT.S159546 PMID: 29844659
  53. Qiu, J.; Chai, Y.; Duan, F.; Zhang, H.; Han, X.; Chen, L.; Duan, F. 6-Shogaol alleviates CCl4-induced liver fibrosis by attenuating inflammatory response in mice through the NF-κB pathway. Acta Biochim. Pol., 2022, 69(2), 363-370. doi: 10.18388/abp.2020_5802 PMID: 35485077
  54. Sheng, J.; Zhang, B.; Chen, Y.; Yu, F. Capsaicin attenuates liver fibrosis by targeting Notch signaling to inhibit TNF-α secretion from M1 macrophages. Immunopharmacol. Immunotoxicol., 2020, 42(6), 556-563. doi: 10.1080/08923973.2020.1811308 PMID: 32811220
  55. Shang, Y.; Yang, H.X.; Li, X.; Zhang, Y.; Chen, N.; Jiang, X.L.; Zhang, Z.H.; Zuo, R.M.; Wang, H.; Lan, X.Q.; Ren, J.; Wu, Y.L.; Cui, Z.Y.; Nan, J.X.; Lian, L.H. Modulation of interleukin‐36 based inflammatory feedback loop through the hepatocyte‐derived IL‐36R‐P2X7R axis improves steatosis in alcoholic steatohepatitis. Br. J. Pharmacol., 2022, 179(17), 4378-4399. doi: 10.1111/bph.15858 PMID: 35481896
  56. Ge, B.; Zhao, P.; Li, H.; Sang, R.; Wang, M.; Zhou, H.; Zhang, X. Taraxacum mongolicum protects against Staphylococcus aureus-infected mastitis by exerting anti-inflammatory role via TLR2-NF-κB/MAPKs pathways in mice. J. Ethnopharmacol., 2021, 268, 113595. doi: 10.1016/j.jep.2020.113595 PMID: 33212175
  57. Cui, Z.Y.; Wang, G.; Zhang, J.; Song, J.; Jiang, Y.C.; Dou, J.Y.; Lian, L.H.; Nan, J.X.; Wu, Y.L. Parthenolide, bioactive compound of Chrysanthemum parthenium L., Ameliorates fibrogenesis and inflammation in hepatic fibrosis via regulating the crosstalk of TLR4 and STAT3 signaling pathway. Phytother. Res., 2021, 35(10), 5680-5693. doi: 10.1002/ptr.7214 PMID: 34250656
  58. Shi, H.; Shi, A.; Dong, L.; Lu, X.; Wang, Y.; Zhao, J.; Dai, F.; Guo, X. Chlorogenic acid protects against liver fibrosis in vivo and in vitro through inhibition of oxidative stress. Clin. Nutr., 2016, 35(6), 1366-1373. doi: 10.1016/j.clnu.2016.03.002 PMID: 27017478
  59. Zhou, M.; Zhao, X.; Liao, L.; Deng, Y.; Liu, M.; Wang, J.; Xue, X.; Li, Y.; Forsythiaside, A. Forsythiaside a regulates activation of hepatic stellate cells by inhibiting NOX4-dependent ROS. Oxid. Med. Cell. Longev., 2022, 2022, 1-17. doi: 10.1155/2022/9938392 PMID: 35035671
  60. Qiang, G.; Zhang, L.; Yang, X.; Xuan, Q.; Shi, L.; Zhang, H.; Chen, B.; Li, X.; Zu, M.; Zhou, D.; Guo, J.; Yang, H.; Du, G. Effect of valsartan on the pathological progression of hepatic fibrosis in rats with type 2 diabetes. Eur. J. Pharmacol., 2012, 685(1-3), 156-164. doi: 10.1016/j.ejphar.2012.04.028 PMID: 22546234
  61. Zhang, H.; Ju, B.; Zhang, X.; Zhu, Y.; Nie, Y.; Xu, Y.; Lei, Q. Magnolol attenuates concanavalin a-induced hepatic fibrosis, inhibits CD4+ T Helper 17 (Th17) cell differentiation and suppresses hepatic stellate cell activation: Blockade of Smad3/Smad4 signalling. Basic Clin. Pharmacol. Toxicol., 2017, 120(6), 560-570. doi: 10.1111/bcpt.12749 PMID: 28032440
  62. Lu, Z.; Li, S.; Luo, J.; Luo, Y.; Dai, M.; Zheng, X.; Qiu, J.; Yang, J.; Liu, A. Fenofibrate reverses liver fibrosis in cholestatic mice induced by alpha-naphthylisothiocyanate. Pharmazie, 2021, 76(2), 103-108. doi: 10.1691/ph.2021.0988 PMID: 33714287
  63. Choi, S.; Kim, J.A.; Li, H.; Jo, S.E.; Lee, H.; Kim, T.H.; Kim, M.; Kim, S.J.; Suh, S.H. Anti-inflammatory and anti-fibrotic effects of modafinil in nonalcoholic liver disease. Biomed. Pharmacother., 2021, 144, 112372. doi: 10.1016/j.biopha.2021.112372 PMID: 34794237
  64. Su, X.; Wang, Y.; Zhou, G.; Yang, X.; Yu, R.; Lin, Y.; Zheng, C. Probucol attenuates ethanol-induced liver fibrosis in rats by inhibiting oxidative stress, extracellular matrix protein accumulation and cytokine production. Clin. Exp. Pharmacol. Physiol., 2014, 41(1), 73-80. doi: 10.1111/1440-1681.12182 PMID: 24117782
  65. Zhou, W.; Yan, X.; Zhai, Y.; Liu, H.; Guan, L.; Qiao, Y.; Jiang, J.; Peng, L. Phillygenin ameliorates nonalcoholic fatty liver disease via TFEB-mediated lysosome biogenesis and lipophagy. Phytomedicine, 2022, 103, 154235. doi: 10.1016/j.phymed.2022.154235 PMID: 35716542
  66. Zhang, H.; Sun, Q.; Xu, T.; Hong, L.; Fu, R.; Wu, J.; Ding, J. Resveratrol attenuates the progress of liver fibrosis via the Akt/nuclear factor-κB pathways. Mol. Med. Rep., 2016, 13(1), 224-230. doi: 10.3892/mmr.2015.4497 PMID: 26530037
  67. Yu, B.; Qin, S.; Hu, B.; Qin, Q.; Jiang, H.; Luo, W. Resveratrol improves CCL4-induced liver fibrosis in mouse by upregulating endogenous IL-10 to reprogramme macrophages phenotype from M(LPS) to M(IL-4). Biomed. Pharmacother., 2019, 117, 109110. doi: 10.1016/j.biopha.2019.109110 PMID: 31252263
  68. ShamsEldeen. A.M.; Al-Ani, B.; Ebrahim, H.A.; Rashed, L.; Badr, A.M.; Attia, A.; Farag, A.M.; Kamar, S.S.; Haidara, M.A.; Al Humayed, S.; Ali Eshra, M. Resveratrol suppresses cholestasis‐induced liver injury and fibrosis in rats associated with the inhibition of TGFβ1–Smad3–miR21 axis and profibrogenic and hepatic injury biomarkers. Clin. Exp. Pharmacol. Physiol., 2021, 48(10), 1402-1411. doi: 10.1111/1440-1681.13546 PMID: 34157155
  69. Wang, H.; Jiang, C.; Yang, Y.; Li, J.; Wang, Y.; Wang, C.; Gao, Y. Resveratrol ameliorates iron overload induced liver fibrosis in mice by regulating iron homeostasis. PeerJ, 2022, 10, e13592. doi: 10.7717/peerj.13592 PMID: 35698613
  70. Abd-Elgawad, H.; Abu-Elsaad, N.; El-Karef, A.; Ibrahim, T. Piceatannol increases the expression of hepatocyte growth factor and IL-10 thereby protecting hepatocytes in thioacetamide-induced liver fibrosis. Can. J. Physiol. Pharmacol., 2016, 94(7), 779-787. doi: 10.1139/cjpp-2016-0001 PMID: 27186801
  71. Huang, S.; Wang, Y.; Xie, S.; Lai, Y.; Mo, C.; Zeng, T.; Kuang, S.; Zhou, C.; Zeng, Z.; Chen, Y.; Huang, S.; Gao, L.; Lv, Z. Isoliquiritigenin alleviates liver fibrosis through caveolin-1-mediated hepatic stellate cells ferroptosis in zebrafish and mice. Phytomedicine, 2022, 101, 154117. doi: 10.1016/j.phymed.2022.154117 PMID: 35489326
  72. Wang, M.E.; Chen, Y.C.; Chen, I.S.; Hsieh, S.C.; Chen, S.S.; Chiu, C.H. Curcumin protects against thioacetamide-induced hepatic fibrosis by attenuating the inflammatory response and inducing apoptosis of damaged hepatocytes. J. Nutr. Biochem., 2012, 23(10), 1352-1366. doi: 10.1016/j.jnutbio.2011.08.004 PMID: 22221674
  73. Zhao, X.A.; Chen, G.; Liu, Y.; Chen, Y.; Wu, H.; Xiong, Y.; Wang, G.; Jia, B.; Li, Y.; Xia, J.; Wang, J.; Yan, X.; Zhang, Z.; Huang, R.; Wu, C. Curcumin reduces Ly6Chi monocyte infiltration to protect against liver fibrosis by inhibiting Kupffer cells activation to reduce chemokines secretion. Biomed. Pharmacother., 2018, 106, 868-878. doi: 10.1016/j.biopha.2018.07.028 PMID: 30119257
  74. Yang, Y.; Kim, B.; Park, Y.K.; Koo, S.I.; Lee, J.Y. Astaxanthin prevents TGFβ1-induced pro-fibrogenic gene expression by inhibiting Smad3 activation in hepatic stellate cells. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(1), 178-185. doi: 10.1016/j.bbagen.2014.10.014 PMID: 25450180
  75. Choi, H.S.; Kang, J.W.; Lee, S.M. Melatonin attenuates carbon tetrachloride–induced liver fibrosis via inhibition of necroptosis. Transl. Res., 2015, 166(3), 292-303. doi: 10.1016/j.trsl.2015.04.002 PMID: 25936762
  76. Wang, Y.; Hong, R.; Xie, Y.; Xu, J. Melatonin ameliorates liver fibrosis induced by carbon tetrachloride in rats via inhibiting TGF-β1/Smad signaling pathway. Curr. Med. Sci., 2018, 38(2), 236-244. doi: 10.1007/s11596-018-1871-8 PMID: 30074181
  77. Findlay, A.D.; Foot, J.S.; Buson, A.; Deodhar, M.; Jarnicki, A.G.; Hansbro, P.M.; Liu, G.; Schilter, H.; Turner, C.I.; Zhou, W.; Jarolimek, W. Identification and optimization of mechanism-based fluoroallylamine inhibitors of lysyl Oxidase-like 2/3. J. Med. Chem., 2019, 62(21), 9874-9889. doi: 10.1021/acs.jmedchem.9b01283 PMID: 31580073
  78. Wollin, L.; Togbe, D.; Ryffel, B. Effects of nintedanib in an animal model of liver fibrosis. BioMed Res. Int., 2020, 2020, 1-9. doi: 10.1155/2020/3867198 PMID: 32337244
  79. Mansour, H.M.; Salama, A.A.A.; Abdel-Salam, R.M.; Ahmed, N.A.; Yassen, N.N.; Zaki, H.F. The anti-inflammatory and anti-fibrotic effects of tadalafil in thioacetamide-induced liver fibrosis in rats. Can. J. Physiol. Pharmacol., 2018, 96(12), 1308-1317. doi: 10.1139/cjpp-2018-0338 PMID: 30398909
  80. Elnfarawy, A.A.; Nashy, A.E.; Abozaid, A.M.; Komber, I.F.; Elweshahy, R.H.; Abdelrahman, R.S. Vinpocetine attenuates thioacetamide-induced liver fibrosis in rats. Hum. Exp. Toxicol., 2021, 40(2), 355-368. doi: 10.1177/0960327120947453 PMID: 32840391
  81. Zakaria, S.; El-Sisi, A. Rebamipide retards CCl4-induced hepatic fibrosis in rats: Possible role for PGE2. J. Immunotoxicol., 2016, 13(4), 453-462. doi: 10.3109/1547691X.2015.1128022 PMID: 26849241
  82. Li, M.; He, F.S.; Ji, L.S.; Gao, Y.T.; Zhang, X.; Yu, Z.; Fang, M.; Wu, J.; Gao, Y.Q. Synthesis and biological evaluation of fluorinated 3,4-dihydroquinolin-2(1H)-ones and 2-oxindoles for anti-hepatic fibrosis. RSC Advances, 2021, 11(11), 5923-5927. doi: 10.1039/D0RA09430G PMID: 35423132
  83. Lu, Z.N.; Shan, Q.; Hu, S.J.; Zhao, Y.; Zhang, G.N.; Zhu, M.; Yu, D.K.; Wang, J.X.; He, H.W. Discovery of 1,8-naphthalidine derivatives as potent anti-hepatic fibrosis agents via repressing PI3K/AKT/Smad and JAK2/STAT3 pathways. Bioorg. Med. Chem., 2021, 49, 116438. doi: 10.1016/j.bmc.2021.116438 PMID: 34610571
  84. Zhao, S.L.; Peng, Z.; Zhen, X.H.; Han, Y.; Jiang, H.Y.; Qu, Y.L.; Guan, L.P. 6-Bromo-2,3-dioxoindolin phenylacetamide derivatives: Synthesis, potent CDC25B, PTP1B Inhibitors and Anticancer Activity. Lett. Drug Des. Discov., 2015, 12(7), 529-536. doi: 10.2174/1570180812666141219003209
  85. Wang, Y.; Wang, S.; Wang, R.; Li, S.; Yuan, Y. Neferine exerts antioxidant and anti-inflammatory effects on carbon tetrachloride-induced liver fibrosis by inhibiting the MAPK and NF-κB/IκBα pathways. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-12. doi: 10.1155/2021/4136019 PMID: 33680053
  86. Du, G.; Wang, J.; Zhang, T.; Ding, Q.; Jia, X.; Zhao, X.; Dong, J.; Yang, X.; Lu, S.; Zhang, C.; Liu, Z.; Zeng, Z.; Safadi, R.; Qi, R.; Zhao, X.; Hong, Z.; Lu, Y. Targeting Src family kinase member Fyn by Saracatinib attenuated liver fibrosis in vitro and in vivo. Cell Death Dis., 2020, 11(2), 118. doi: 10.1038/s41419-020-2229-2 PMID: 32051399
  87. Wu, C.; Chen, W.; Ding, H.; Li, D.; Wen, G.; Zhang, C.; Lu, W.; Chen, M.; Yang, Y. Salvianolic acid B exerts anti-liver fibrosis effects via inhibition of MAPK-mediated phospho-Smad2/3 at linker regions in vivo and in vitro. Life Sci., 2019, 239, 116881. doi: 10.1016/j.lfs.2019.116881 PMID: 31678285
  88. Tao, S.; Duan, R.; Xu, T.; Hong, J.; Gu, W.; Lin, A.; Lian, L.; Huang, H.; Lu, J.; Li, T. Salvianolic acid B inhibits the progression of liver fibrosis in rats via modulation of the Hedgehog signaling pathway. Exp. Ther. Med., 2021, 23(2), 116. doi: 10.3892/etm.2021.11039 PMID: 34970339
  89. Son, M.K.; Ryu, Y.L.; Jung, K.H.; Lee, H.; Lee, H.S.; Yan, H.H.; Park, H.J.; Ryu, J.K.; Suh, J.K.; Hong, S.; Hong, S.S. HS-173, a novel PI3K inhibitor, attenuates the activation of hepatic stellate cells in liver fibrosis. Sci. Rep., 2013, 3(1), 3470. doi: 10.1038/srep03470 PMID: 24326778
  90. Sharawy, M.H.; El-Kashef, D.H.; Shaaban, A.A.; El-Agamy, D.S. Anti-fibrotic activity of sitagliptin against concanavalin A-induced hepatic fibrosis. Role of Nrf2 activation/NF-κB inhibition. Int. Immunopharmacol., 2021, 100, 108088. doi: 10.1016/j.intimp.2021.108088 PMID: 34454288
  91. Jiang, N.; Zhou, Y.; Zhu, M.; Zhang, J.; Cao, M.; Lei, H.; Guo, M.; Gong, P.; Su, G.; Zhai, X. Optimization and evaluation of novel tetrahydropyrido4,3-dpyrimidine derivatives as ATX inhibitors for cardiac and hepatic fibrosis. Eur. J. Med. Chem., 2020, 187, 111904. doi: 10.1016/j.ejmech.2019.111904 PMID: 31806537
  92. Li, Y.W.; Li, X.Y.; Li, S.; Zhao, L.M.; Ma, J.; Piao, H.R.; Jiang, Z.; Jin, C.H.; Jin, X. Synthesis and evaluation of the HIF-1α inhibitory activity of 3(5)-substituted-4-(quinolin-4-yl)- and 4-(2-phenylpyridin-4-yl)pyrazoles as inhibitors of ALK5. Bioorg. Med. Chem. Lett., 2020, 30(2), 126822. doi: 10.1016/j.bmcl.2019.126822 PMID: 31810777
  93. Zhang, Q.; Li, P.; Hong, L.; Li, R.; Wang, J.; Cui, X. The protein tyrosine kinase inhibitor genistein suppresses hypoxia-induced atrial natriuretic peptide secretion mediated by the PI3K/Akt-HIF-1α pathway in isolated beating rat atria. Can. J. Physiol. Pharmacol., 2021, 99(11), 1184-1190. doi: 10.1139/cjpp-2020-0503 PMID: 34612711
  94. Zhang, S.; Zhang, M.; Chen, J.; Zhao, J.; Su, J.; Zhang, X. Ginsenoside compound K regulates HIF-1α-mediated glycolysis through Bclaf1 to inhibit the proliferation of human liver cancer cells. Front. Pharmacol., 2020, 11, 583334. doi: 10.3389/fphar.2020.583334 PMID: 33363466
  95. Han, L.Z.; Jiang, C.; Mi, C.; Wang, K.S.; Zuo, H.X.; Wang, Z.; Li, M.Y.; Zhang, Z.H.; Jin, X. Excisanin A suppresses proliferation by inhibiting hypoxiainducible factor-1α expression in human hepatocellular carcinoma cells. Trop. J. Pharm. Res., 2021, 19(12), 2483-2489. doi: 10.4314/tjpr.v19i12.1
  96. Chen, B.B.; Jiang, L.Y.; Guo, F.Y.; Qu, L.L.; Wang, W.Q.; Jin, C.H.; Liu, F.F. Tolcapone derivative PCDNA inhibits Aβ42 fibrillogenesis and reduces its cytoxicity. Yao Xue Xue Bao, 2021, 56, 1063-1069. doi: 10.16438/j.0513-4870.2020-1853
  97. Chen, B.; Mou, C.; Guo, F.; Sun, Q.; Qu, L.; Li, L.; Cui, W.; Lu, F.; Jin, C.; Liu, F. Tolcapone derivative (Tol-D) inhibits Aβ42 fibrillogenesis and ameliorates Aβ42-induced cytotoxicity and cognitive impairment. ACS Chem. Neurosci., 2022, 13(5), 638-647. doi: 10.1021/acschemneuro.1c00771 PMID: 35148068
  98. Xiao, J.; Jin, C.; Liu, Z.; Guo, S.; Zhang, X.; Zhou, X.; Wu, X. The design, synthesis, and biological evaluation of novel YC-1 derivatives as potent anti-hepatic fibrosis agents. Org. Biomol. Chem., 2015, 13(26), 7257-7264. doi: 10.1039/C5OB00710K PMID: 26055070
  99. Wai, K.K.; Liang, Y.; Zhou, L.; Cai, L.; Liang, C.; Liu, L.; Lin, X.; Wu, H.; Lin, J. The protective effects of Acanthus ilicifolius alkaloid A and its derivatives on pro- and anti-inflammatory cytokines in rats with hepatic fibrosis. Biotechnol. Appl. Biochem., 2015, 62(4), 537-546. doi: 10.1002/bab.1292 PMID: 25204790
  100. Pandey, A.; Raj, P.; Goru, S.K.; Kadakol, A.; Malek, V.; Sharma, N.; Gaikwad, A.B. Esculetin ameliorates hepatic fibrosis in high fat diet induced non-alcoholic fatty liver disease by regulation of FoxO1 mediated pathway. Pharmacol. Rep., 2017, 69(4), 666-672. doi: 10.1016/j.pharep.2017.02.005 PMID: 28527877
  101. Xiong, Y.; Lu, H.; Xu, H. Galangin reverses hepatic fibrosis by inducing HSCs apoptosis via the PI3K/Akt, Bax/Bcl-2, and Wnt/β-Catenin pathway in LX-2 cells. Biol. Pharm. Bull., 2020, 43(11), 1634-1642. doi: 10.1248/bpb.b20-00258 PMID: 32893252
  102. Wan, Y.; Tang, M.H.; Chen, X.C.; Chen, L.J.; Wei, Y.Q.; Wang, Y.S. Inhibitory effect of liposomal quercetin on acute hepatitis and hepatic fibrosis induced by concanavalin A. Braz. J. Med. Biol. Res., 2014, 47(8), 655-661. doi: 10.1590/1414-431x20143704 PMID: 25098714
  103. Li, X.; Jin, Q.; Yao, Q.; Xu, B.; Li, Z.; Tu, C. Quercetin attenuates the activation of hepatic stellate cells and liver fibrosis in mice through modulation of HMGB1-TLR2/4-NF-κB signaling pathways. Toxicol. Lett., 2016, 261, 1-12. doi: 10.1016/j.toxlet.2016.09.002 PMID: 27601294
  104. Wang, R.; Zhang, H.; Wang, Y.; Song, F.; Yuan, Y. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα p38 MAPK, and Bcl-2/Bax signaling. Int. Immunopharmacol., 2017, 47, 126-133. doi: 10.1016/j.intimp.2017.03.029 PMID: 28391159
  105. Yang, J.H.; Kim, S.C.; Kim, K.M.; Jang, C.H.; Cho, S.S.; Kim, S.J.; Ku, S.K.; Cho, I.J.; Ki, S.H. Isorhamnetin attenuates liver fibrosis by inhibiting TGF-β/Smad signaling and relieving oxidative stress. Eur. J. Pharmacol., 2016, 783, 92-102. doi: 10.1016/j.ejphar.2016.04.042 PMID: 27151496
  106. Li, J.J.; Jiang, H.C.; Wang, A.; Bu, F.T.; Jia, P.C.; Zhu, S.; Zhu, L.; Huang, C.; Li, J. Hesperetin derivative-16 attenuates CCl4-induced inflammation and liver fibrosis by activating AMPK/SIRT3 pathway. Eur. J. Pharmacol., 2022, 915, 174530. doi: 10.1016/j.ejphar.2021.174530 PMID: 34902361
  107. Zhou, Y.; Tong, X.; Ren, S.; Wang, X.; Chen, J.; Mu, Y.; Sun, M.; Chen, G.; Zhang, H.; Liu, P. Synergistic anti-liver fibrosis actions of total astragalus saponins and glycyrrhizic acid via TGF-β1/Smads signaling pathway modulation. J. Ethnopharmacol., 2016, 190, 83-90. doi: 10.1016/j.jep.2016.06.011 PMID: 27282665
  108. Kang, R.; Tian, W.; Cao, W.; Sun, Y.; Zhang, H.N.; Feng, Y.D.; Li, C.; Li, Z.Z.; Li, X.Q. Ligustroflavone ameliorates CCl4-induced liver fibrosis through down-regulating the TGF-β/Smad signaling pathway. Chin. J. Nat. Med., 2021, 19(3), 170-180. doi: 10.1016/S1875-5364(21)60018-3 PMID: 33781450
  109. Zhu, Z.; Hu, R.; Li, J.; Xing, X.; Chen, J.; Zhou, Q.; Sun, J. Alpinetin exerts anti-inflammatory, anti-oxidative and anti-angiogenic effects through activating the Nrf2 pathway and inhibiting NLRP3 pathway in carbon tetrachloride-induced liver fibrosis. Int. Immunopharmacol., 2021, 96, 107660. doi: 10.1016/j.intimp.2021.107660 PMID: 33862553
  110. Zhou, Y-P.; Zhang, S-L.; Cheng, D.; Li, H-R.; Tang, Z-M.; Xue, J.; Cai, W.; Dong, J-H.; Zhao, L. Preliminary exploration on anti-fibrosis effect of kaempferol in mice with Schistosoma japonicum infection. Eur. J. Inflamm., 2013, 11(1), 161-168. doi: 10.1177/1721727X1301100115
  111. El-Mihi, K.A.; Kenawy, H.I.; El-Karef, A.; Elsherbiny, N.M.; Eissa, L.A. Naringin attenuates thioacetamide-induced liver fibrosis in rats through modulation of the PI3K/Akt pathway. Life Sci., 2017, 187, 50-57. doi: 10.1016/j.lfs.2017.08.019 PMID: 28830755
  112. Clichici, S.; Olteanu, D.; Filip, A.; Nagy, A.L.; Oros, A.; Mircea, P.A. Beneficial effects of silymarin after the discontinuation of CCl4-induced liver fibrosis. J. Med. Food, 2016, 19(8), 789-797. doi: 10.1089/jmf.2015.0104 PMID: 27441792
  113. Zong, Y.; Zhong, M.; Li, D.M.; Zhang, B.J.; Mai, Z.P.; Huo, X.K.; Huang, S.S.; Zhang, H.L.; Wang, C.; Ma, X.C.; Yu, S.M.; Yang, D.A. Phenolic constituents from the roots of Phyllodium pulchellum. J. Asian Nat. Prod. Res., 2014, 16(7), 741-746. doi: 10.1080/10286020.2014.910197 PMID: 24754631
  114. Yang, F.; Wang, Y.; Xue, J.; Ma, Q.; Zhang, J.; Chen, Y.F.; Shang, Z.Z.; Li, Q.Q.; Zhang, S.L.; Zhao, L. Effect of Corilagin on the miR-21/smad7/ERK signaling pathway in a schistosomiasis-induced hepatic fibrosis mouse model. Parasitol. Int., 2016, 65(4), 308-315. doi: 10.1016/j.parint.2016.03.001 PMID: 26946098
  115. Li, B.L.; Liang, H.J.; Li, Q.R.; Wang, Q.; Ao, Z.Y.; Fan, Y.W.; Zhang, W.J.; Lian, X.; Chen, J.Y.; Yuan, J.; Wu, J.W. Euryachincoside, a novel phenolic glycoside with anti-hepatic fibrosis activity from Eurya chinensis. Planta Med., 2023, 89(5), 516-525. doi: 10.1055/a-1828-2671 PMID: 35439837
  116. Lee, W.R.; Kim, K.H.; An, H.J.; Kim, J.Y.; Lee, S.J.; Han, S.M.; Pak, S.C.; Park, K. Apamin inhibits hepatic fibrosis through suppression of transforming growth factor β1-induced hepatocyte epithelial–mesenchymal transition. Biochem. Biophys. Res. Commun., 2014, 450(1), 195-201. doi: 10.1016/j.bbrc.2014.05.089 PMID: 24878534
  117. Zhang, C.; Liu, X.Q.; Sun, H.N.; Meng, X.M.; Bao, Y.W.; Zhang, H.P.; Pan, F.M.; Zhang, C. Octreotide attenuates hepatic fibrosis and hepatic stellate cells proliferation and activation by inhibiting Wnt/β-catenin signaling pathway, c-Myc and cyclin D1. Int. Immunopharmacol., 2018, 63, 183-190. doi: 10.1016/j.intimp.2018.08.005 PMID: 30098497
  118. Yi, J.; Wu, S.; Tan, S.; Qin, Y.; Wang, X.; Jiang, J.; Liu, H.; Wu, B. Berberine alleviates liver fibrosis through inducing ferrous redox to activate ROS-mediated hepatic stellate cells ferroptosis. Cell Death Discov., 2021, 7(1), 374. doi: 10.1038/s41420-021-00768-7 PMID: 34864819
  119. Zhao, H.; Zhang, Z.; Chai, X.; Li, G.; Cui, H.; Wang, H.; Meng, Y.; Liu, H.; Wang, J.; Li, R.; Bai, Z.; Xiao, X. Oxymatrine attenuates CCl4-induced hepatic fibrosis via modulation of TLR4-dependent inflammatory and TGF-β1 signaling pathways. Int. Immunopharmacol., 2016, 36, 249-255. doi: 10.1016/j.intimp.2016.04.040 PMID: 27179304
  120. Wang, K.; Guo, Z.; Bao, Y.; Pang, Y.; Li, Y.; He, H.; Song, D. Structure–activity relationship of aloperine derivatives as new anti–liver fibrogenic agents. Molecules, 2020, 25(21), 4977. doi: 10.3390/molecules25214977 PMID: 33121156
  121. Tang, S.; Li, Y.; Bao, Y.; Dai, Z.; Niu, T.; Wang, K.; He, H.; Song, D. Novel cytisine derivatives exert anti-liver fibrosis effect via PI3K/Akt/Smad pathway. Bioorg. Chem., 2019, 90, 103032. doi: 10.1016/j.bioorg.2019.103032 PMID: 31207450
  122. Niu, T.; Niu, W.; Bao, Y.; Liu, T.; Song, D.; Li, Y.; He, H. Discovery of matrinic thiadiazole derivatives as a novel family of anti-liver fibrosis agents via repression of the TGFβ/Smad pathway. Molecules, 2018, 23(7), 1644. doi: 10.3390/molecules23071644 PMID: 29976890
  123. Xiang, H.; Han, Y.; Zhang, Y.; Yan, W.; Xu, B.; Chu, F.; Xie, T.; Jia, M.; Yan, M.; Zhao, R.; Wang, P.; Lei, H. A new oleanolic acid derivative against CCl4-induced hepatic fibrosis in rats. Int. J. Mol. Sci., 2017, 18(3), 553. doi: 10.3390/ijms18030553 PMID: 28272302
  124. Wan, S.; Luo, F.; Huang, C.; Liu, C.; Luo, Q.; Zhu, X. Ursolic acid reverses liver fibrosis by inhibiting interactive NOX4/ROS and RhoA/ROCK1 signalling pathways. Aging, 2020, 12(11), 10614-10632. doi: 10.18632/aging.103282 PMID: 32496208
  125. Xu, J.; Wang, X.; Zhang, H.; Yue, J.; Sun, Y.; Zhang, X.; Zhao, Y. Synthesis of triterpenoid derivatives and their anti-tumor and anti-hepatic fibrosis activities. Nat. Prod. Res., 2020, 34(6), 766-772. doi: 10.1080/14786419.2018.1499642 PMID: 30445851
  126. Wang, Y.; Li, C.; Gu, J.; Chen, C.; Duanmu, J.; Miao, J.; Yao, W.; Tao, J.; Tu, M.; Xiong, B.; Zhao, L.; Liu, Z. Celastrol exerts anti‐inflammatory effect in liver fibrosis via activation of AMPK‐SIRT3 signalling. J. Cell. Mol. Med., 2020, 24(1), 941-953. doi: 10.1111/jcmm.14805 PMID: 31742890
  127. Tang, L.; He, R.; Yang, G.; Tan, J.; Zhou, L.; Meng, X.; Huang, X.R.; Lan, H.Y. Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad signaling in vivo and in vitro. PLoS One, 2012, 7(2), e31350. doi: 10.1371/journal.pone.0031350 PMID: 22363627
  128. Fan, J.; Chen, Q.; Wei, L.; Zhou, X.; Wang, R.; Zhang, H. Asiatic acid ameliorates CC l4-induced liver fibrosis in rats: involvement of Nrf2/ARE, NF-κB/IκBα and JAK1/STAT3 signaling pathways. Drug Des. Devel. Ther., 2018, 12, 3595-3605. doi: 10.2147/DDDT.S179876 PMID: 30464391
  129. Wan, Y.; Wu, Y.L.; Lian, L.H.; Xie, W.X.; Li, X.; OuYang, B.Q.; Bai, T.; Li, Q.; Yang, N.; Nan, J.X. The anti-fibrotic effect of betulinic acid is mediated through the inhibition of NF-κB nuclear protein translocation. Chem. Biol. Interact., 2012, 195(3), 215-223. doi: 10.1016/j.cbi.2012.01.002 PMID: 22285267
  130. Yue, J.; Sun, Y.; Xu, J.; Cao, J.; Chen, G.; Zhang, H.; Zhang, X.; Zhao, Y. Cucurbitane triterpenoids from the fruit of Momordica charantia L. and their anti-hepatic fibrosis and anti-hepatoma activities. Phytochemistry, 2019, 157, 21-27. doi: 10.1016/j.phytochem.2018.10.009 PMID: 30352327
  131. Wang, Y.H.; Li, R.K.; Fu, Y.; Li, J.; Yang, X.M.; Zhang, Y.L.; Zhu, L.; Yang, Q.; Gu, J.R.; Xing, X.; Zhang, Z.G. Exemestane attenuates hepatic fibrosis in rats by inhibiting activation of hepatic stellate cells and promoting the secretion of interleukin 10. J. Immunol. Res., 2017, 2017, 1-9. doi: 10.1155/2017/3072745 PMID: 29464186
  132. Tan, H.; He, Q.; Li, R.; Lei, F.; Lei, X. Trillin reduces liver chronic inflammation and fibrosis in carbon tetrachloride (CCl4) induced liver injury in mice. Immunol. Invest., 2016, 45(5), 371-382. doi: 10.3109/08820139.2015.1137935 PMID: 27219527
  133. Chen, S.; He, Z.; Xie, W.; Chen, X.; Lin, Z.; Ma, J.; Liu, Z.; Yang, S.; Wang, Y. Ginsenoside Rh2 attenuates CDAHFD-induced liver fibrosis in mice by improving intestinal microbial composition and regulating LPS-mediated autophagy. Phytomedicine, 2022, 101, 154121. doi: 10.1016/j.phymed.2022.154121 PMID: 35489327
  134. Hou, Y.L.; Tsai, Y.H.; Lin, Y.H.; Chao, J.C.J. Ginseng extract and ginsenoside Rb1 attenuate carbon tetrachloride-induced liver fibrosis in rats. BMC Complement. Altern. Med., 2014, 14(1), 415. doi: 10.1186/1472-6882-14-415 PMID: 25344394
  135. Mo, C.; Xie, S.; Zeng, T.; Lai, Y.; Huang, S.; Zhou, C.; Yan, W.; Huang, S.; Gao, L.; Lv, Z. Ginsenoside-Rg1 acts as an IDO1 inhibitor, protects against liver fibrosis via alleviating IDO1-mediated the inhibition of DCs maturation. Phytomedicine, 2021, 84, 153524. doi: 10.1016/j.phymed.2021.153524 PMID: 33667840
  136. Zhang, X.; Shi, G.; Liu, M.; Chen, R.; Wu, X.; Zhao, Y. Protective effects of dammarane-type triterpenes from hydrolyzate of Gynostemma pentaphyllum against H2O2-induced injury and anti-hepatic fibrosis activities. Phytochem. Lett., 2018, 25, 33-36. doi: 10.1016/j.phytol.2018.03.010
  137. Zhang, X.; Shi, G.; Liu, M.; Chen, R.; Wu, X.; Zhao, Y. Four new dammarane-type triterpenes derivatives from hydrolyzate of total Gynostemma pentaphyllum saponins and their bioactivities. Nat. Prod. Res., 2019, 33(11), 1605-1611. doi: 10.1080/14786419.2018.1428592 PMID: 29359589
  138. Zhang, X.; Shi, G.; Sun, Y.; Wu, X.; Zhao, Y. Triterpenes derived from hydrolyzate of total Gynostemma pentaphyllum saponins with anti-hepatic fibrosis and protective activity against H2O2-induced injury. Phytochemistry, 2017, 144, 226-232. doi: 10.1016/j.phytochem.2017.09.021 PMID: 28985570
  139. Zhang, Q.; Mohammed, E.A.H.; Wang, Y.; Bai, Z.; Zhao, Q.; He, D.; Wang, Z. Synthesis and anti-hepaticfibrosis of glycyrrhetinic acid derivatives with inhibiting COX-2. Bioorg. Chem., 2020, 99, 103804. doi: 10.1016/j.bioorg.2020.103804 PMID: 32272365
  140. Ge, M.; Liu, H.; Zhang, Y.; Li, N.; Zhao, S.; Zhao, W.; Zhen, Y.; Yu, J.; He, H.; Shao, R. The anti‐hepatic fibrosis effects of dihydrotanshinone I are mediated by disrupting the yes‐associated protein and transcriptional enhancer factor D2 complex and stimulating autophagy. Br. J. Pharmacol., 2017, 174(10), 1147-1160. doi: 10.1111/bph.13766 PMID: 28257144
  141. Bai, Y.; Wang, W.; Wang, L.; Ma, L.; Zhai, D.; Wang, F.; Shi, R.; Liu, C.; Xu, Q.; Chen, G.; Lu, Z. Obacunone attenuates liver fibrosis with enhancing anti-oxidant effects of GPx-4 and inhibition of EMT. Molecules, 2021, 26(2), 318. doi: 10.3390/molecules26020318 PMID: 33435504
  142. Wang, H.; Che, J.; Cui, K.; Zhuang, W.; Li, H.; Sun, J.; Chen, J.; Wang, C. Schisantherin A ameliorates liver fibrosis through TGF-β1mediated activation of TAK1/MAPK and NF-κB pathways in vitro and in vivo. Phytomedicine, 2021, 88, 153609. doi: 10.1016/j.phymed.2021.153609 PMID: 34126414
  143. Wang, H.Q.; Wan, Z.; Zhang, Q.; Su, T.; Yu, D.; Wang, F.; Zhang, C.; Li, W.; Xu, D.; Zhang, H. Schisandrin B targets cannabinoid 2 receptor in Kupffer cell to ameliorate CCl4-induced liver fibrosis by suppressing NF-κB and p38 MAPK pathway. Phytomedicine, 2022, 98, 153960. doi: 10.1016/j.phymed.2022.153960 PMID: 35121391
  144. Chen, Y.C.; Liaw, C.C.; Cheng, Y.B.; Lin, Y.C.; Chen, C.H.; Huang, Y.T.; Liou, S.S.; Chen, S.Y.; Chien, C.T.; Lee, G.C.; Shen, Y.C. Anti-liver fibrotic lignans from the fruits of Schisandra arisanensis and Schisandra sphenanthera. Bioorg. Med. Chem. Lett., 2013, 23(3), 880-885. doi: 10.1016/j.bmcl.2012.11.040 PMID: 23265871
  145. Liu, D.; Qin, H.; Yang, B.; Du, B.; Yun, X. Oridonin ameliorates carbon tetrachloride‐induced liver fibrosis in mice through inhibition of the NLRP3 inflammasome. Drug Dev. Res., 2020, 81(4), 526-533. doi: 10.1002/ddr.21649 PMID: 32219880
  146. Lv, J.; Bai, R.; Wang, L.; Gao, J.; Zhang, H. Artesunate may inhibit liver fibrosis via the FAK/Akt/β-catenin pathway in LX-2 cells. BMC Pharmacol. Toxicol., 2018, 19(1), 64. doi: 10.1186/s40360-018-0255-9 PMID: 30326962
  147. Li, S.; Gan, L.; Tian, Y.J.; Tian, Y.; Fan, R.Z.; Huang, D.; Yuan, F.Y.; Zhang, X.; Lin, Y.; Zhu, Q.F.; Tang, G.H.; Yan, X.L.; Yin, S. Presegetane diterpenoids from Euphorbia sieboldiana as a new type of anti-liver fibrosis agents that inhibit TGF-β/Smad signaling pathway. Bioorg. Chem., 2021, 114, 105222. doi: 10.1016/j.bioorg.2021.105222 PMID: 34375196
  148. Sharawy, M.H.; El-Awady, M.S.; Makled, M.N. Protective effects of paclitaxel on thioacetamide‐induced liver fibrosis in a rat model. J. Biochem. Mol. Toxicol., 2021, 35(5), e22745. doi: 10.1002/jbt.22745 PMID: 33749060
  149. Yu, Z.; Jv, Y.; Cai, L.; Tian, X.; Huo, X.; Wang, C.; Zhang, B.; Sun, C.; Ning, J.; Feng, L.; Zhang, H.; Ma, X. Gambogic acid attenuates liver fibrosis by inhibiting the PI3K/AKT and MAPK signaling pathways via inhibiting HSP90. Toxicol. Appl. Pharmacol., 2019, 371, 63-73. doi: 10.1016/j.taap.2019.03.028 PMID: 30953615
  150. Liu, R.X.; Ma, S.F.; Chen, Y.L.; Ma, L.F.; Wang, J.D.; Zhan, Z.J. Tetrodecadazinone, a novel tetrodecamycin-pyridazinone hybrid with anti-liver fibrosis activity from Streptomyces sp. HU051. Bioorg. Chem., 2022, 119, 105573. doi: 10.1016/j.bioorg.2021.105573 PMID: 34952245
  151. Park, Y.J.; Jeon, M.S.; Lee, S.; Kim, J.K.; Jang, T.S.; Chung, K.H.; Kim, K.H. Anti-fibrotic effects of brevilin A in hepatic fibrosis via inhibiting the STAT3 signaling pathway. Bioorg. Med. Chem. Lett., 2021, 41, 127989. doi: 10.1016/j.bmcl.2021.127989 PMID: 33794317
  152. Wang, J.P.; Li, T.Z.; Huang, X.Y.; Geng, C.A.; Shen, C.; Sun, J.J.; Xue, D.; Chen, J.J. Synthesis and anti-fibrotic effects of santamarin derivatives as cytotoxic agents against hepatic stellate cell line LX2. Bioorg. Med. Chem. Lett., 2021, 41, 127994. doi: 10.1016/j.bmcl.2021.127994 PMID: 33775837
  153. Zhang, S.; Wang, Z.; Zhu, J.; Xu, T.; Zhao, Y.; Zhao, H.; Tang, F.; Li, Z.; Zhou, J.; Gao, D.; Tian, X.; Yao, J. Carnosic acid alleviates BDL-induced liver fibrosis through miR-29b-3p-mediated inhibition of the high-mobility group box 1/Toll-like receptor 4 signaling pathway in rats. Front. Pharmacol., 2018, 8, 976. doi: 10.3389/fphar.2017.00976 PMID: 29403377
  154. Patil, R.; Ghosh, A.; Sun Cao, P. Sommer, R.D.; Grice, K.A.; Waris, G.; Patil, S. Novel 5-arylthio-5H-chromenopyridines as a new class of anti-fibrotic agents. Bioorg. Med. Chem. Lett., 2017, 27(5), 1129-1135. doi: 10.1016/j.bmcl.2017.01.089 PMID: 28190633
  155. Tseng, T.H.; Lin, W.L.; Chen, Z.H.; Lee, Y.J.; Shie, M.S.; Lee, K.F.; Shen, C.H.; Kuo, H.C. Moniliformediquinone as a potential therapeutic agent, inactivation of hepatic stellate cell and inhibition of liver fibrosis in vivo. J. Transl. Med., 2016, 14(1), 263. doi: 10.1186/s12967-016-1022-6 PMID: 27612633
  156. Li, X.; Shao, S.; Li, H.; Bi, Z.; Zhang, S.; Wei, Y.; Bai, J.; Zhang, R.; Ma, X.; Ma, B.; Zhang, L.; Xie, C.; Ning, W.; Zhou, H.; Yang, C. Byakangelicin protects against carbon tetrachloride–induced liver injury and fibrosis in mice. J. Cell. Mol. Med., 2020, 24(15), 8623-8635. doi: 10.1111/jcmm.15493 PMID: 32643868
  157. Zheng, Y.; Wang, L.; Wang, J.; Liu, L.; Zhao, T. Effect of curcumol on NOD-like receptor thermoprotein domain 3 inflammasomes in liver fibrosis of mice. Chin. J. Integr. Med., 2022, 28(11), 992-999. doi: 10.1007/s11655-021-3310-0 PMID: 34319504
  158. Zheng, Y.; Wang, J.; Zhao, T.; Wang, L.; Wang, J. Modulation of the VEGF/AKT/eNOS signaling pathway to regulate liver angiogenesis to explore the anti-hepatic fibrosis mechanism of curcumol. J. Ethnopharmacol., 2021, 280, 114480. doi: 10.1016/j.jep.2021.114480 PMID: 34358654
  159. Yan, H.; Huang, Z.; Bai, Q.; Sheng, Y.; Hao, Z.; Wang, Z.; Ji, L. Natural product andrographolide alleviated APAP-induced liver fibrosis by activating Nrf2 antioxidant pathway. Toxicology, 2018, 396-397, 1-12. doi: 10.1016/j.tox.2018.01.007 PMID: 29355602
  160. Younis, N.S.; Ghanim, A.M.H.; Elmorsy, M.A.; Metwaly, H.A. RETRACTED ARTICLE: Taurine ameliorates thioacetamide induced liver fibrosis in rats via modulation of toll like receptor 4/nuclear factor kappa B signaling pathway. Sci. Rep., 2021, 11(1), 12296. doi: 10.1038/s41598-021-91666-6 PMID: 34112866
  161. Zhao, Y.; Ma, X.; Wang, J.; He, X.; Zhang, Y.; Wang, Y.; Liu, H.; Shen, H.; Xiao, X. A system review of anti-fibrogenesis effects of compounds derived from chinese herbal medicine. Mini Rev. Med. Chem., 2015, 16(2), 163-175. doi: 10.2174/1389557515666150709121908 PMID: 26156416

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers