The Therapeutic Effect of Natural Compounds on Osteoporosis through Ferroptosis
- 作者: Zhang Y.1, Qu Z.1, Zhao Y.1, Zhang B.1, Gong Y.1, Wang X.1, Gao X.1, Wang D.1, Yan L.1
-
隶属关系:
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University
- 期: 卷 31, 编号 18 (2024)
- 页面: 2629-2648
- 栏目: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/644555
- DOI: https://doi.org/10.2174/0109298673258420230919103405
- ID: 644555
如何引用文章
全文:
详细
:Ferroptosis is a newly discovered non-apoptotic cell death whose key is lipid peroxidation. It has been reported that ferroptosis is involved in the occurrence and development of tumors and nervous system and musculoskeletal diseases. Cellular ferroptosis contributes to the imbalance of bone homeostasis and is involved in the development of osteoporosis; however, the detailed mechanism of which is still unclear though it may provide a new direction for anti-osteoporosis. The current drugs used in the treatment of osteoporosis, such as bisphosphonates and teriparatide, have many side effects, increasing people's search for natural compounds to treat osteoporosis. This review paper briefly summarizes the current research regarding the mechanisms of ferroptosis and natural anti-osteoporosis compounds targeting its pathway.
作者简介
Yong Zhang
Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University
Email: info@benthamscience.net
Zechao Qu
Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University
Email: info@benthamscience.net
Yiwei Zhao
Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University
Email: info@benthamscience.net
Bo Zhang
Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University
Email: info@benthamscience.net
Yining Gong
Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University
Email: info@benthamscience.net
Xiaohui Wang
Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University
Email: info@benthamscience.net
Xiangcheng Gao
Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University
Email: info@benthamscience.net
Dong Wang
Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University
Email: info@benthamscience.net
Liang Yan
Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet, 2019, 393(10169), 364-376. doi: 10.1016/S0140-6736(18)32112-3 PMID: 30696576
- Johnston, C.B.; Dagar, M. Osteoporosis in older adults. Med. Clin. North Am., 2020, 104(5), 873-884. doi: 10.1016/j.mcna.2020.06.004 PMID: 32773051
- Ensrud, K.E.; Crandall, C.J. Osteoporosis. Ann. Intern. Med., 2017, 167(3), ITC17-ITC32. doi: 10.7326/AITC201708010 PMID: 28761958
- Liu, P.; Wang, W.; Li, Z.; Li, Y.; Yu, X.; Tu, J.; Zhang, Z. Ferroptosis: A new regulatory mechanism in osteoporosis. Oxid. Med. Cell. Longev., 2022, 2022, 1-10. doi: 10.1155/2022/2634431 PMID: 35082963
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072. doi: 10.1016/j.cell.2012.03.042 PMID: 22632970
- Che, J.; Yang, J.; Zhao, B.; Zhang, G.; Wang, L.; Peng, S.; Shang, P. The effect of abnormal iron metabolism on osteoporosis. Biol. Trace Elem. Res., 2020, 195(2), 353-365. doi: 10.1007/s12011-019-01867-4 PMID: 31473898
- Verron, E.; Bouler, J.M. Is bisphosphonate therapy compromised by the emergence of adverse bone disorders? Drug Discov. Today, 2014, 19(3), 312-319. doi: 10.1016/j.drudis.2013.08.010 PMID: 23974069
- Li, R.; Zhang, J.; Zhou, Y.; Gao, Q.; Wang, R.; Fu, Y.; Zheng, L.; Yu, H. Transcriptome investigation and in vitro verification of curcumin-induced HO-1 as a feature of ferroptosis in breast cancer cells. Oxid. Med. Cell. Longev., 2020, 2020, 1-18. doi: 10.1155/2020/3469840 PMID: 33294119
- Jing, X.; Du, T.; Chen, K.; Guo, J.; Xiang, W.; Yao, X.; Sun, K.; Ye, Y.; Guo, F. Icariin protects against iron overload-induced bone loss via suppressing oxidative stress. J. Cell. Physiol., 2019, 234(7), 10123-10137. doi: 10.1002/jcp.27678 PMID: 30387158
- Ooko, E.; Saeed, M.E.M.; Kadioglu, O.; Sarvi, S.; Colak, M.; Elmasaoudi, K.; Janah, R.; Greten, H.J.; Efferth, T. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine, 2015, 22(11), 1045-1054. doi: 10.1016/j.phymed.2015.08.002 PMID: 26407947
- Jin, Y.; Wu, S.; Zhang, L.; Yao, G.; Zhao, H.; Qiao, P.; Zhang, J. Artesunate inhibits osteoclast differentiation by inducing ferroptosis and prevents iron overload-induced bone loss. Basic Clin. Pharmacol. Toxicol., 2023, 132(2), 144-153. doi: 10.1111/bcpt.13817 PMID: 36433916
- Salari, N.; Ghasemi, H.; Mohammadi, L.; Behzadi, M.; Rabieenia, E.; Shohaimi, S.; Mohammadi, M. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J. Orthop. Surg. Res., 2021, 16(1), 609. doi: 10.1186/s13018-021-02772-0 PMID: 34657598
- Skrzypulec, V.; Warcholińska, R.W.; Walaszek, A.; Drosdzol, A.; Nowosielski, K.; Piela, B. Osteoporosis-pathogenesis and prophylaxis. Wiad. Lek. Wars. Pol., 1960, 2004(57), 295-300.
- Capulli, M.; Paone, R.; Rucci, N. Osteoblast and osteocyte: Games without frontiers. Arch. Biochem. Biophys., 2014, 561, 3-12. doi: 10.1016/j.abb.2014.05.003 PMID: 24832390
- Ponzetti, M.; Rucci, N. Osteoblast differentiation and signaling: Established concepts and emerging topics. Int. J. Mol. Sci., 2021, 22(13), 6651. doi: 10.3390/ijms22136651 PMID: 34206294
- Wu, M.; Chen, G.; Li, Y.P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res., 2016, 4(1), 16009. doi: 10.1038/boneres.2016.9 PMID: 27563484
- Martínez-Gil, N.; Ugartondo, N.; Grinberg, D.; Balcells, S. Wnt pathway extracellular components and their essential roles in bone homeostasis. Genes, 2022, 13(1), 138. doi: 10.3390/genes13010138 PMID: 35052478
- Phimphilai, M.; Zhao, Z.; Boules, H.; Roca, H.; Franceschi, R.T. BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J. Bone Miner. Res., 2006, 21(4), 637-646. doi: 10.1359/jbmr.060109 PMID: 16598384
- Chen, G.; Deng, C.; Li, Y.P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci., 2012, 8(2), 272-288. doi: 10.7150/ijbs.2929 PMID: 22298955
- Lowery, J.W.; Rosen, V. The BMP pathway and its inhibitors in the skeleton. Physiol. Rev., 2018, 98(4), 2431-2452. doi: 10.1152/physrev.00028.2017 PMID: 30156494
- Derynck, R.; Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature, 2003, 425(6958), 577-584. doi: 10.1038/nature02006 PMID: 14534577
- Massagué, J.; Seoane, J.; Wotton, D. Smad transcription factors. Genes Dev., 2005, 19(23), 2783-2810. doi: 10.1101/gad.1350705 PMID: 16322555
- Gipson, G.R.; Goebel, E.J.; Hart, K.N.; Kappes, E.C.; Kattamuri, C.; McCoy, J.C.; Thompson, T.B. Structural perspective of BMP ligands and signaling. Bone, 2020, 140, 115549. doi: 10.1016/j.bone.2020.115549 PMID: 32730927
- Ampuja, M.; Kallioniemi, A. Transcription factors-Intricate players of the bone morphogenetic protein signaling pathway. Genes Chromosomes Cancer, 2018, 57(1), 3-11. doi: 10.1002/gcc.22502 PMID: 28857319
- Rim, E.Y.; Clevers, H.; Nusse, R. The Wnt pathway: From signaling mechanisms to synthetic modulators. Annu. Rev. Biochem., 2022, 91(1), 571-598. doi: 10.1146/annurev-biochem-040320-103615 PMID: 35303793
- Nusse, R. Wnt signaling. Cold Spring Harb. Perspect. Biol., 2012, 4(5), a011163. doi: 10.1101/cshperspect.a011163 PMID: 22550232
- Duan, P.; Bonewald, L.F. The role of the Wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int. J. Biochem. Cell Biol., 2016, 77(Pt A), 23-29. doi: 10.1016/j.biocel.2016.05.015 PMID: 27210503
- Almalki, S.G.; Agrawal, D.K. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation, 2016, 92(1-2), 41-51. doi: 10.1016/j.diff.2016.02.005 PMID: 27012163
- Marie, P.J.; Fromigué, O. Osteogenic differentiation of human marrow-derived mesenchymal stem cells. Regen. Med., 2006, 1(4), 539-548. doi: 10.2217/17460751.1.4.539 PMID: 17465848
- Komori, T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem. Cell Biol., 2018, 149(4), 313-323. doi: 10.1007/s00418-018-1640-6 PMID: 29356961
- Komori, T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int. J. Mol. Sci., 2019, 20(7), 1694. doi: 10.3390/ijms20071694 PMID: 30987410
- Harada, S.; Rodan, G.A. Control of osteoblast function and regulation of bone mass. Nature, 2003, 423(6937), 349-355. doi: 10.1038/nature01660 PMID: 12748654
- Hadjidakis, D.J.; Androulakis, I. Bone remodeling. Ann. N. Y. Acad. Sci., 2006, 1092(1), 385-396. doi: 10.1196/annals.1365.035 PMID: 17308163
- Boyce, B.F. Advances in the regulation of osteoclasts and osteoclast functions. J. Dent. Res., 2013, 92(10), 860-867. doi: 10.1177/0022034513500306 PMID: 23906603
- Takayanagi, H. RANKL as the master regulator of osteoclast differentiation. J. Bone Miner. Metab., 2021, 39(1), 13-18. doi: 10.1007/s00774-020-01191-1 PMID: 33385253
- Mizuno, A.; Amizuka, N.; Irie, K.; Murakami, A.; Fujise, N.; Kanno, T.; Sato, Y.; Nakagawa, N.; Yasuda, H.; Mochizuki, S.; Gomibuchi, T.; Yano, K.; Shima, N.; Washida, N.; Tsuda, E.; Morinaga, T.; Higashio, K.; Ozawa, H. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem. Biophys. Res. Commun., 1998, 247(3), 610-615. doi: 10.1006/bbrc.1998.8697 PMID: 9647741
- Yasuda, H. Discovery of the RANKL/RANK/OPG system. J. Bone Miner. Metab., 2021, 39(1), 2-11. doi: 10.1007/s00774-020-01175-1 PMID: 33389131
- Kurotaki, D.; Yoshida, H.; Tamura, T. Epigenetic and transcriptional regulation of osteoclast differentiation. Bone, 2020, 138, 115471. doi: 10.1016/j.bone.2020.115471 PMID: 32526404
- Udagawa, N.; Koide, M.; Nakamura, M.; Nakamichi, Y.; Yamashita, T.; Uehara, S.; Kobayashi, Y.; Furuya, Y.; Yasuda, H.; Fukuda, C.; Tsuda, E. Osteoclast differentiation by RANKL and OPG signaling pathways. J. Bone Miner. Metab., 2021, 39(1), 19-26. doi: 10.1007/s00774-020-01162-6 PMID: 33079279
- Ma, R.; Xu, J.; Dong, B.; Kauther, M.D.; Jäger, M.; Wedemeyer, C. Inhibition of osteoclastogenesis by RNA interference targeting RANK. BMC Musculoskelet. Disord., 2012, 13(1), 154. doi: 10.1186/1471-2474-13-154 PMID: 22913338
- Chen, X.; Wang, Z.; Duan, N.; Zhu, G.; Schwarz, E.M.; Xie, C. Osteoblastosteoclast interactions. Connect. Tissue Res., 2018, 59(2), 99-107. doi: 10.1080/03008207.2017.1290085 PMID: 28324674
- Kim, J.M.; Lin, C.; Stavre, Z.; Greenblatt, M.B.; Shim, J.H. Osteoblast-osteoclast communication and bone homeostasis. Cells, 2020, 9(9), 2073. doi: 10.3390/cells9092073 PMID: 32927921
- Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell. Mol. Immunol., 2021, 18(5), 1106-1121. doi: 10.1038/s41423-020-00630-3 PMID: 33785842
- Carneiro, K.N.; Fitzgerald, K.A. Apoptosis, pyroptosis, and necroptosis-oh my! the many ways a cell can die. J. Mol. Biol., 2022, 434(4), 167378. doi: 10.1016/j.jmb.2021.167378 PMID: 34838807
- DArcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 2019, 43(6), 582-592. doi: 10.1002/cbin.11137 PMID: 30958602
- Wang, Y.; Kanneganti, T.D. From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput. Struct. Biotechnol. J., 2021, 19, 4641-4657. doi: 10.1016/j.csbj.2021.07.038 PMID: 34504660
- Obeng, E. Apoptosis (programmed cell death) and its signals - A review. Braz. J. Biol., 2021, 81(4), 1133-1143. doi: 10.1590/1519-6984.228437 PMID: 33111928
- Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and diseases. Signal Transduct. Target. Ther., 2021, 6(1), 128. doi: 10.1038/s41392-021-00507-5 PMID: 33776057
- Bedoui, S.; Herold, M.J.; Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol., 2020, 21(11), 678-695. doi: 10.1038/s41580-020-0270-8 PMID: 32873928
- Khoury, M.K.; Gupta, K.; Franco, S.R.; Liu, B. Necroptosis in the pathophysiology of disease. Am. J. Pathol., 2020, 190(2), 272-285. doi: 10.1016/j.ajpath.2019.10.012 PMID: 31783008
- Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol., 2021, 22(4), 266-282. doi: 10.1038/s41580-020-00324-8 PMID: 33495651
- Yang, W.S.; Stockwell, B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol., 2008, 15(3), 234-245. doi: 10.1016/j.chembiol.2008.02.010 PMID: 18355723
- Li, J.; Cao, F.; Yin, H.; Huang, Z.; Lin, Z.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis., 2020, 11(2), 88. doi: 10.1038/s41419-020-2298-2 PMID: 32015325
- Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Ferroptosis in infection, inflammation, and immunity. J. Exp. Med., 2021, 218(6), e20210518. doi: 10.1084/jem.20210518 PMID: 33978684
- Stockwell, B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell, 2022, 185(14), 2401-2421. doi: 10.1016/j.cell.2022.06.003 PMID: 35803244
- Gao, G.; Li, J.; Zhang, Y.; Chang, Y.Z. Cellular iron metabolism and regulation. Adv. Exp. Med. Biol., 2019, 1173, 21-32. doi: 10.1007/978-981-13-9589-5_2 PMID: 31456203
- Dev, S.; Babitt, J.L. Overview of iron metabolism in health and disease. Hemodial. Int. Int. Symp. Home Hemodial., 2017, 21(S1), pp. S6-S20. doi: 10.1111/hdi.12542
- Anderson, G.J.; Frazer, D.M. Current understanding of iron homeostasis. Am. J. Clin. Nutr., 2017, 106(S6), 1559S-1566S. doi: 10.3945/ajcn.117.155804 PMID: 29070551
- Liu, M.; Zhu, W.; Pei, D. System Xc−: A key regulatory target of ferroptosis in cancer. Invest. New Drugs, 2021, 39(4), 1123-1131. doi: 10.1007/s10637-021-01070-0 PMID: 33506324
- Levine, W.G. Glutathione and hepatic mixed-function oxidase activity. Drug Metab. Rev., 1983, 14(5), 909-930. doi: 10.3109/03602538308991416 PMID: 6418502
- Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun., 2017, 482(3), 419-425. doi: 10.1016/j.bbrc.2016.10.086 PMID: 28212725
- Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; Prokisch, H.; Trümbach, D.; Mao, G.; Qu, F.; Bayir, H.; Füllekrug, J.; Scheel, C.H.; Wurst, W.; Schick, J.A.; Kagan, V.E.; Angeli, J.P.F.; Conrad, M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol., 2017, 13(1), 91-98. doi: 10.1038/nchembio.2239 PMID: 27842070
- Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; Bassik, M.C.; Nomura, D.K.; Dixon, S.J.; Olzmann, J.A. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784), 688-692. doi: 10.1038/s41586-019-1705-2 PMID: 31634900
- Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Goya Grocin, A.; Xavier da Silva, T.N.; Panzilius, E.; Scheel, C.H.; Mourão, A.; Buday, K.; Sato, M.; Wanninger, J.; Vignane, T.; Mohana, V.; Rehberg, M.; Flatley, A.; Schepers, A.; Kurz, A.; White, D.; Sauer, M.; Sattler, M.; Tate, E.W.; Schmitz, W.; Schulze, A.; ODonnell, V.; Proneth, B.; Popowicz, G.M.; Pratt, D.A.; Angeli, J.P.F.; Conrad, M. FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575(7784), 693-698. doi: 10.1038/s41586-019-1707-0 PMID: 31634899
- Koppula, P.; Lei, G.; Zhang, Y.; Yan, Y.; Mao, C.; Kondiparthi, L.; Shi, J.; Liu, X.; Horbath, A.; Das, M.; Li, W.; Poyurovsky, M.V.; Olszewski, K.; Gan, B. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat. Commun., 2022, 13(1), 2206. doi: 10.1038/s41467-022-29905-1 PMID: 35459868
- Kraft, V.A.N.; Bezjian, C.T.; Pfeiffer, S.; Ringelstetter, L.; Müller, C.; Zandkarimi, F.; Merl-Pham, J.; Bao, X.; Anastasov, N.; Kössl, J.; Brandner, S.; Daniels, J.D.; Schmitt-Kopplin, P.; Hauck, S.M.; Stockwell, B.R.; Hadian, K.; Schick, J.A. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci., 2020, 6(1), 41-53. doi: 10.1021/acscentsci.9b01063 PMID: 31989025
- Fang, X.; Ardehali, H.; Min, J.; Wang, F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol., 2023, 20(1), 7-23. doi: 10.1038/s41569-022-00735-4 PMID: 35788564
- Costa, I.; Barbosa, D.J.; Benfeito, S.; Silva, V.; Chavarria, D.; Borges, F.; Remião, F.; Silva, R. Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol. Ther., 2023, 244, 108373. doi: 10.1016/j.pharmthera.2023.108373 PMID: 36894028
- Zhao, D.; Yang, K.; Guo, H.; Zeng, J.; Wang, S.; Xu, H.; Ge, A.; Zeng, L.; Chen, S.; Ge, J. Mechanisms of ferroptosis in Alzheimers disease and therapeutic effects of natural plant products: A review. Biomed. Pharmacother., 2023, 164, 114312. doi: 10.1016/j.biopha.2023.114312 PMID: 37210894
- Liu, J.; Kang, R.; Tang, D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J., 2022, 289(22), 7038-7050. doi: 10.1111/febs.16059 PMID: 34092035
- Dolma, S.; Lessnick, S.L.; Hahn, W.C.; Stockwell, B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell, 2003, 3(3), 285-296. doi: 10.1016/S1535-6108(03)00050-3 PMID: 12676586
- Lőrincz, T.; Jemnitz, K.; Kardon, T.; Mandl, J.; Szarka, A. Ferroptosis is involved in acetaminophen induced cell death. Pathol. Oncol. Res., 2015, 21(4), 1115-1121. doi: 10.1007/s12253-015-9946-3 PMID: 25962350
- Sui, X.; Zhang, R.; Liu, S.; Duan, T.; Zhai, L.; Zhang, M.; Han, X.; Xiang, Y.; Huang, X.; Lin, H.; Xie, T. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front. Pharmacol., 2018, 9, 1371. doi: 10.3389/fphar.2018.01371 PMID: 30524291
- Shimada, K.; Skouta, R.; Kaplan, A.; Yang, W.S.; Hayano, M.; Dixon, S.J.; Brown, L.M.; Valenzuela, C.A.; Wolpaw, A.J.; Stockwell, B.R. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol., 2016, 12(7), 497-503. doi: 10.1038/nchembio.2079 PMID: 27159577
- Zhang, X.; Guo, Y.; Li, H.; Han, L. FIN56, a novel ferroptosis inducer, triggers lysosomal membrane permeabilization in a TFEB-dependent manner in glioblastoma. J. Cancer, 2021, 12(22), 6610-6619. doi: 10.7150/jca.58500 PMID: 34659551
- Zhang, Q.; Qu, H.; Chen, Y.; Luo, X.; Chen, C.; Xiao, B.; Ding, X.; Zhao, P.; Lu, Y.; Chen, A.F.; Yu, Y. Atorvastatin induces mitochondria-dependent ferroptosis via the modulation of Nrf2-xCT/GPx4 axis. Front. Cell Dev. Biol., 2022, 10, 806081. doi: 10.3389/fcell.2022.806081 PMID: 35309902
- Shan, L.; Xu, X.; Zhang, J.; Cai, P.; Gao, H.; Lu, Y.; Shi, J.; Guo, Y.; Su, Y. Increased hemoglobin and heme in MALDI-TOF MS analysis induce ferroptosis and promote degeneration of herniated human nucleus pulposus. Mol. Med., 2021, 27(1), 103. doi: 10.1186/s10020-021-00368-2 PMID: 34496740
- Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell Death Differ., 2016, 23(3), 369-379. doi: 10.1038/cdd.2015.158 PMID: 26794443
- Li, Q.; Han, X.; Lan, X.; Gao, Y.; Wan, J.; Durham, F.; Cheng, T.; Yang, J.; Wang, Z.; Jiang, C.; Ying, M.; Koehler, R.C.; Stockwell, B.R.; Wang, J. Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight, 2017, 2(7), e90777. doi: 10.1172/jci.insight.90777 PMID: 28405617
- Miotto, G.; Rossetto, M.; Di Paolo, M.L.; Orian, L.; Venerando, R.; Roveri, A.; Vučković, A.M.; Travain, B.V.; Zaccarin, M.; Zennaro, L.; Maiorino, M.; Toppo, S.; Ursini, F.; Cozza, G. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol., 2020, 28, 101328. doi: 10.1016/j.redox.2019.101328 PMID: 31574461
- Mishima, E.; Conrad, M. Nutritional and metabolic control of ferroptosis. Annu. Rev. Nutr., 2022, 42(1), 275-309. doi: 10.1146/annurev-nutr-062320-114541 PMID: 35650671
- Xie, Y.; Song, X.; Sun, X.; Huang, J.; Zhong, M.; Lotze, M.T.; Zeh, H.J., III; Kang, R.; Tang, D. Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochem. Biophys. Res. Commun., 2016, 473(4), 775-780. doi: 10.1016/j.bbrc.2016.03.052 PMID: 27037021
- Probst, L.; Dächert, J.; Schenk, B.; Fulda, S. Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death. Biochem. Pharmacol., 2017, 140, 41-52. doi: 10.1016/j.bcp.2017.06.112 PMID: 28595877
- Alim, I.; Caulfield, J.T.; Chen, Y.; Swarup, V.; Geschwind, D.H.; Ivanova, E.; Seravalli, J.; Ai, Y.; Sansing, L.H.; Ste Marie, E.J.; Hondal, R.J.; Mukherjee, S.; Cave, J.W.; Sagdullaev, B.T.; Karuppagounder, S.S.; Ratan, R.R. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell, 2019, 177(5), 1262-1279.e25. doi: 10.1016/j.cell.2019.03.032 PMID: 31056284
- Jiang, Z.; Wang, H.; Qi, G.; Jiang, C.; Chen, K.; Yan, Z. Iron overload-induced ferroptosis of osteoblasts inhibits osteogenesis and promotes osteoporosis: An in vitro and in vivo study. IUBMB Life, 2022, 74(11), 1052-1069. doi: 10.1002/iub.2656 PMID: 35638167
- Ni, S.; Yuan, Y.; Qian, Z.; Zhong, Z.; Lv, T.; Kuang, Y.; Yu, B. Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis. Free Radic. Biol. Med., 2021, 169, 271-282. doi: 10.1016/j.freeradbiomed.2021.04.027 PMID: 33895289
- Li, G.F.; Pan, Y.Z.; Sirois, P.; Li, K.; Xu, Y.J. Iron homeostasis in osteoporosis and its clinical implications. Osteoporos. Int., 2012, 23(10), 2403-2408. doi: 10.1007/s00198-012-1982-1 PMID: 22525981
- Guggenbuhl, P.; Filmon, R.; Mabilleau, G.; Baslé, M.F.; Chappard, D. Iron inhibits hydroxyapatite crystal growth in vitro. Metabolism, 2008, 57(7), 903-910. doi: 10.1016/j.metabol.2008.02.004 PMID: 18555830
- Ma, H.; Wang, X.; Zhang, W.; Li, H.; Zhao, W.; Sun, J.; Yang, M. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis. Oxid. Med. Cell. Longev., 2020, 2020, 1-18. doi: 10.1155/2020/9067610 PMID: 33343809
- Lin, Y.; Shen, X.; Ke, Y.; Lan, C.; Chen, X.; Liang, B.; Zhang, Y.; Yan, S. Activation of osteoblast ferroptosis via the METTL3/ASK1-p38 signaling pathway in high glucose and high fat (HGHF)-induced diabetic bone loss. FASEB J., 2022, 36(3), e22147. doi: 10.1096/fj.202101610R PMID: 35104016
- Ge, W.; Jie, J.; Yao, J.; Li, W.; Cheng, Y.; Lu, W. Advanced glycation end products promote osteoporosis by inducing ferroptosis in osteoblasts. Mol. Med. Rep., 2022, 25(4), 140. doi: 10.3892/mmr.2022.12656 PMID: 35211757
- Palacios, S. Medical treatment of osteoporosis. Climacteric, 2022, 25(1), 43-49. doi: 10.1080/13697137.2021.1951697 PMID: 34382489
- Zhang, Z.; Ji, C.; Wang, Y.N.; Liu, S.; Wang, M.; Xu, X.; Zhang, D. Maresin1 suppresses high-glucose-induced ferroptosis in osteoblasts via NRF2 activation in type 2 diabetic osteoporosis. Cells, 2022, 11(16), 2560. doi: 10.3390/cells11162560 PMID: 36010637
- Tao, Z.S.; Li, T.L.; Wei, S. Silymarin prevents iron overload induced bone loss by inhibiting oxidative stress in an ovariectomized animal model. Chem. Biol. Interact., 2022, 366, 110168. doi: 10.1016/j.cbi.2022.110168 PMID: 36087815
- Tan, D.X.; Manchester, L.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R. Melatonin as a potent and inducible endogenous antioxidant: Synthesis and metabolism. Molecules, 2015, 20(10), 18886-18906. doi: 10.3390/molecules201018886 PMID: 26501252
- Yang, F.; Yang, L.; Li, Y.; Yan, G.; Feng, C.; Liu, T.; Gong, R.; Yuan, Y.; Wang, N.; Idiiatullina, E.; Bikkuzin, T.; Pavlov, V.; Li, Y.; Dong, C.; Wang, D.; Cao, Y.; Han, Z.; Zhang, L.; Huang, Q.; Ding, F.; Bi, Z.; Cai, B. Melatonin protects bone marrow mesenchymal stem cells against iron overload-induced aberrant differentiation and senescence. J. Pineal Res., 2017, 63(3), e12422. doi: 10.1111/jpi.12422 PMID: 28500782
- Sun, X.; Xia, T.; Zhang, S.; Zhang, J.; Xu, L.; Han, T.; Xin, H. Hops extract and xanthohumol ameliorate bone loss induced by iron overload via activating Akt/GSK3β/Nrf2 pathway. J. Bone Miner. Metab., 2022, 40(3), 375-388. doi: 10.1007/s00774-021-01295-2 PMID: 35106609
- Zhang, Q.; Zhao, L.; Shen, Y.; He, Y.; Cheng, G.; Yin, M.; Zhang, Q.; Qin, L. Curculigoside protects against excess-iron-induced bone loss by attenuating akt-foxo1-dependent oxidative damage to mice and osteoblastic MC3T3-E1 cells. Oxid. Med. Cell. Longev., 2019, 2019, 1-14. doi: 10.1155/2019/9281481 PMID: 31949885
- Vijayan, V.; Khandelwal, M.; Manglani, K.; Singh, R.R.; Gupta, S.; Surolia, A. Homocysteine alters the osteoprotegerin/RANKL system in the osteoblast to promote bone loss: Pivotal role of the redox regulator forkhead O1. Free Radic. Biol. Med., 2013, 61, 72-84. doi: 10.1016/j.freeradbiomed.2013.03.004 PMID: 23500899
- Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; Pistell, P.J.; Poosala, S.; Becker, K.G.; Boss, O.; Gwinn, D.; Wang, M.; Ramaswamy, S.; Fishbein, K.W.; Spencer, R.G.; Lakatta, E.G.; Le Couteur, D.; Shaw, R.J.; Navas, P.; Puigserver, P.; Ingram, D.K.; de Cabo, R.; Sinclair, D.A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006, 444(7117), 337-342. doi: 10.1038/nature05354 PMID: 17086191
- Zhao, L.; Wang, Y.; Wang, Z.; Xu, Z.; Zhang, Q.; Yin, M. Effects of dietary resveratrol on excess-iron-induced bone loss via antioxidative character. J. Nutr. Biochem., 2015, 26(11), 1174-1182. doi: 10.1016/j.jnutbio.2015.05.009 PMID: 26239832
- Lee, N.K.; Choi, Y.G.; Baik, J.Y.; Han, S.Y.; Jeong, D.; Bae, Y.S.; Kim, N.; Lee, S.Y. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood, 2005, 106(3), 852-859. doi: 10.1182/blood-2004-09-3662 PMID: 15817678
- Zhang, J. The osteoprotective effects of artemisinin compounds and the possible mechanisms associated with intracellular iron: A review of in vivo and in vitro studies. Environ. Toxicol. Pharmacol., 2020, 76, 103358. doi: 10.1016/j.etap.2020.103358 PMID: 32143118
- Jin, H.; Du, J.; Ren, H.; Yang, G.; Wang, W.; Du, J.; Astragaloside, I.V. Astragaloside IV protects against iron loading-induced abnormal differentiation of bone marrow mesenchymal stem cells (BMSCs). FEBS Open Bio, 2021, 11(4), 1223-1236. doi: 10.1002/2211-5463.13082 PMID: 33445204
补充文件
