The Therapeutic Effect of Natural Compounds on Osteoporosis through Ferroptosis


如何引用文章

全文:

详细

:Ferroptosis is a newly discovered non-apoptotic cell death whose key is lipid peroxidation. It has been reported that ferroptosis is involved in the occurrence and development of tumors and nervous system and musculoskeletal diseases. Cellular ferroptosis contributes to the imbalance of bone homeostasis and is involved in the development of osteoporosis; however, the detailed mechanism of which is still unclear though it may provide a new direction for anti-osteoporosis. The current drugs used in the treatment of osteoporosis, such as bisphosphonates and teriparatide, have many side effects, increasing people's search for natural compounds to treat osteoporosis. This review paper briefly summarizes the current research regarding the mechanisms of ferroptosis and natural anti-osteoporosis compounds targeting its pathway.

作者简介

Yong Zhang

Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University

Email: info@benthamscience.net

Zechao Qu

Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University

Email: info@benthamscience.net

Yiwei Zhao

Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University

Email: info@benthamscience.net

Bo Zhang

Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University

Email: info@benthamscience.net

Yining Gong

Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University

Email: info@benthamscience.net

Xiaohui Wang

Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University

Email: info@benthamscience.net

Xiangcheng Gao

Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University

Email: info@benthamscience.net

Dong Wang

Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University

Email: info@benthamscience.net

Liang Yan

Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet, 2019, 393(10169), 364-376. doi: 10.1016/S0140-6736(18)32112-3 PMID: 30696576
  2. Johnston, C.B.; Dagar, M. Osteoporosis in older adults. Med. Clin. North Am., 2020, 104(5), 873-884. doi: 10.1016/j.mcna.2020.06.004 PMID: 32773051
  3. Ensrud, K.E.; Crandall, C.J. Osteoporosis. Ann. Intern. Med., 2017, 167(3), ITC17-ITC32. doi: 10.7326/AITC201708010 PMID: 28761958
  4. Liu, P.; Wang, W.; Li, Z.; Li, Y.; Yu, X.; Tu, J.; Zhang, Z. Ferroptosis: A new regulatory mechanism in osteoporosis. Oxid. Med. Cell. Longev., 2022, 2022, 1-10. doi: 10.1155/2022/2634431 PMID: 35082963
  5. Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072. doi: 10.1016/j.cell.2012.03.042 PMID: 22632970
  6. Che, J.; Yang, J.; Zhao, B.; Zhang, G.; Wang, L.; Peng, S.; Shang, P. The effect of abnormal iron metabolism on osteoporosis. Biol. Trace Elem. Res., 2020, 195(2), 353-365. doi: 10.1007/s12011-019-01867-4 PMID: 31473898
  7. Verron, E.; Bouler, J.M. Is bisphosphonate therapy compromised by the emergence of adverse bone disorders? Drug Discov. Today, 2014, 19(3), 312-319. doi: 10.1016/j.drudis.2013.08.010 PMID: 23974069
  8. Li, R.; Zhang, J.; Zhou, Y.; Gao, Q.; Wang, R.; Fu, Y.; Zheng, L.; Yu, H. Transcriptome investigation and in vitro verification of curcumin-induced HO-1 as a feature of ferroptosis in breast cancer cells. Oxid. Med. Cell. Longev., 2020, 2020, 1-18. doi: 10.1155/2020/3469840 PMID: 33294119
  9. Jing, X.; Du, T.; Chen, K.; Guo, J.; Xiang, W.; Yao, X.; Sun, K.; Ye, Y.; Guo, F. Icariin protects against iron overload-induced bone loss via suppressing oxidative stress. J. Cell. Physiol., 2019, 234(7), 10123-10137. doi: 10.1002/jcp.27678 PMID: 30387158
  10. Ooko, E.; Saeed, M.E.M.; Kadioglu, O.; Sarvi, S.; Colak, M.; Elmasaoudi, K.; Janah, R.; Greten, H.J.; Efferth, T. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine, 2015, 22(11), 1045-1054. doi: 10.1016/j.phymed.2015.08.002 PMID: 26407947
  11. Jin, Y.; Wu, S.; Zhang, L.; Yao, G.; Zhao, H.; Qiao, P.; Zhang, J. Artesunate inhibits osteoclast differentiation by inducing ferroptosis and prevents iron overload-induced bone loss. Basic Clin. Pharmacol. Toxicol., 2023, 132(2), 144-153. doi: 10.1111/bcpt.13817 PMID: 36433916
  12. Salari, N.; Ghasemi, H.; Mohammadi, L.; Behzadi, M.; Rabieenia, E.; Shohaimi, S.; Mohammadi, M. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J. Orthop. Surg. Res., 2021, 16(1), 609. doi: 10.1186/s13018-021-02772-0 PMID: 34657598
  13. Skrzypulec, V.; Warcholińska, R.W.; Walaszek, A.; Drosdzol, A.; Nowosielski, K.; Piela, B. Osteoporosis-pathogenesis and prophylaxis. Wiad. Lek. Wars. Pol., 1960, 2004(57), 295-300.
  14. Capulli, M.; Paone, R.; Rucci, N. Osteoblast and osteocyte: Games without frontiers. Arch. Biochem. Biophys., 2014, 561, 3-12. doi: 10.1016/j.abb.2014.05.003 PMID: 24832390
  15. Ponzetti, M.; Rucci, N. Osteoblast differentiation and signaling: Established concepts and emerging topics. Int. J. Mol. Sci., 2021, 22(13), 6651. doi: 10.3390/ijms22136651 PMID: 34206294
  16. Wu, M.; Chen, G.; Li, Y.P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res., 2016, 4(1), 16009. doi: 10.1038/boneres.2016.9 PMID: 27563484
  17. Martínez-Gil, N.; Ugartondo, N.; Grinberg, D.; Balcells, S. Wnt pathway extracellular components and their essential roles in bone homeostasis. Genes, 2022, 13(1), 138. doi: 10.3390/genes13010138 PMID: 35052478
  18. Phimphilai, M.; Zhao, Z.; Boules, H.; Roca, H.; Franceschi, R.T. BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J. Bone Miner. Res., 2006, 21(4), 637-646. doi: 10.1359/jbmr.060109 PMID: 16598384
  19. Chen, G.; Deng, C.; Li, Y.P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci., 2012, 8(2), 272-288. doi: 10.7150/ijbs.2929 PMID: 22298955
  20. Lowery, J.W.; Rosen, V. The BMP pathway and its inhibitors in the skeleton. Physiol. Rev., 2018, 98(4), 2431-2452. doi: 10.1152/physrev.00028.2017 PMID: 30156494
  21. Derynck, R.; Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature, 2003, 425(6958), 577-584. doi: 10.1038/nature02006 PMID: 14534577
  22. Massagué, J.; Seoane, J.; Wotton, D. Smad transcription factors. Genes Dev., 2005, 19(23), 2783-2810. doi: 10.1101/gad.1350705 PMID: 16322555
  23. Gipson, G.R.; Goebel, E.J.; Hart, K.N.; Kappes, E.C.; Kattamuri, C.; McCoy, J.C.; Thompson, T.B. Structural perspective of BMP ligands and signaling. Bone, 2020, 140, 115549. doi: 10.1016/j.bone.2020.115549 PMID: 32730927
  24. Ampuja, M.; Kallioniemi, A. Transcription factors-Intricate players of the bone morphogenetic protein signaling pathway. Genes Chromosomes Cancer, 2018, 57(1), 3-11. doi: 10.1002/gcc.22502 PMID: 28857319
  25. Rim, E.Y.; Clevers, H.; Nusse, R. The Wnt pathway: From signaling mechanisms to synthetic modulators. Annu. Rev. Biochem., 2022, 91(1), 571-598. doi: 10.1146/annurev-biochem-040320-103615 PMID: 35303793
  26. Nusse, R. Wnt signaling. Cold Spring Harb. Perspect. Biol., 2012, 4(5), a011163. doi: 10.1101/cshperspect.a011163 PMID: 22550232
  27. Duan, P.; Bonewald, L.F. The role of the Wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int. J. Biochem. Cell Biol., 2016, 77(Pt A), 23-29. doi: 10.1016/j.biocel.2016.05.015 PMID: 27210503
  28. Almalki, S.G.; Agrawal, D.K. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation, 2016, 92(1-2), 41-51. doi: 10.1016/j.diff.2016.02.005 PMID: 27012163
  29. Marie, P.J.; Fromigué, O. Osteogenic differentiation of human marrow-derived mesenchymal stem cells. Regen. Med., 2006, 1(4), 539-548. doi: 10.2217/17460751.1.4.539 PMID: 17465848
  30. Komori, T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem. Cell Biol., 2018, 149(4), 313-323. doi: 10.1007/s00418-018-1640-6 PMID: 29356961
  31. Komori, T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int. J. Mol. Sci., 2019, 20(7), 1694. doi: 10.3390/ijms20071694 PMID: 30987410
  32. Harada, S.; Rodan, G.A. Control of osteoblast function and regulation of bone mass. Nature, 2003, 423(6937), 349-355. doi: 10.1038/nature01660 PMID: 12748654
  33. Hadjidakis, D.J.; Androulakis, I. Bone remodeling. Ann. N. Y. Acad. Sci., 2006, 1092(1), 385-396. doi: 10.1196/annals.1365.035 PMID: 17308163
  34. Boyce, B.F. Advances in the regulation of osteoclasts and osteoclast functions. J. Dent. Res., 2013, 92(10), 860-867. doi: 10.1177/0022034513500306 PMID: 23906603
  35. Takayanagi, H. RANKL as the master regulator of osteoclast differentiation. J. Bone Miner. Metab., 2021, 39(1), 13-18. doi: 10.1007/s00774-020-01191-1 PMID: 33385253
  36. Mizuno, A.; Amizuka, N.; Irie, K.; Murakami, A.; Fujise, N.; Kanno, T.; Sato, Y.; Nakagawa, N.; Yasuda, H.; Mochizuki, S.; Gomibuchi, T.; Yano, K.; Shima, N.; Washida, N.; Tsuda, E.; Morinaga, T.; Higashio, K.; Ozawa, H. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem. Biophys. Res. Commun., 1998, 247(3), 610-615. doi: 10.1006/bbrc.1998.8697 PMID: 9647741
  37. Yasuda, H. Discovery of the RANKL/RANK/OPG system. J. Bone Miner. Metab., 2021, 39(1), 2-11. doi: 10.1007/s00774-020-01175-1 PMID: 33389131
  38. Kurotaki, D.; Yoshida, H.; Tamura, T. Epigenetic and transcriptional regulation of osteoclast differentiation. Bone, 2020, 138, 115471. doi: 10.1016/j.bone.2020.115471 PMID: 32526404
  39. Udagawa, N.; Koide, M.; Nakamura, M.; Nakamichi, Y.; Yamashita, T.; Uehara, S.; Kobayashi, Y.; Furuya, Y.; Yasuda, H.; Fukuda, C.; Tsuda, E. Osteoclast differentiation by RANKL and OPG signaling pathways. J. Bone Miner. Metab., 2021, 39(1), 19-26. doi: 10.1007/s00774-020-01162-6 PMID: 33079279
  40. Ma, R.; Xu, J.; Dong, B.; Kauther, M.D.; Jäger, M.; Wedemeyer, C. Inhibition of osteoclastogenesis by RNA interference targeting RANK. BMC Musculoskelet. Disord., 2012, 13(1), 154. doi: 10.1186/1471-2474-13-154 PMID: 22913338
  41. Chen, X.; Wang, Z.; Duan, N.; Zhu, G.; Schwarz, E.M.; Xie, C. Osteoblast–osteoclast interactions. Connect. Tissue Res., 2018, 59(2), 99-107. doi: 10.1080/03008207.2017.1290085 PMID: 28324674
  42. Kim, J.M.; Lin, C.; Stavre, Z.; Greenblatt, M.B.; Shim, J.H. Osteoblast-osteoclast communication and bone homeostasis. Cells, 2020, 9(9), 2073. doi: 10.3390/cells9092073 PMID: 32927921
  43. Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell. Mol. Immunol., 2021, 18(5), 1106-1121. doi: 10.1038/s41423-020-00630-3 PMID: 33785842
  44. Carneiro, K.N.; Fitzgerald, K.A. Apoptosis, pyroptosis, and necroptosis-oh my! the many ways a cell can die. J. Mol. Biol., 2022, 434(4), 167378. doi: 10.1016/j.jmb.2021.167378 PMID: 34838807
  45. D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 2019, 43(6), 582-592. doi: 10.1002/cbin.11137 PMID: 30958602
  46. Wang, Y.; Kanneganti, T.D. From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput. Struct. Biotechnol. J., 2021, 19, 4641-4657. doi: 10.1016/j.csbj.2021.07.038 PMID: 34504660
  47. Obeng, E. Apoptosis (programmed cell death) and its signals - A review. Braz. J. Biol., 2021, 81(4), 1133-1143. doi: 10.1590/1519-6984.228437 PMID: 33111928
  48. Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and diseases. Signal Transduct. Target. Ther., 2021, 6(1), 128. doi: 10.1038/s41392-021-00507-5 PMID: 33776057
  49. Bedoui, S.; Herold, M.J.; Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol., 2020, 21(11), 678-695. doi: 10.1038/s41580-020-0270-8 PMID: 32873928
  50. Khoury, M.K.; Gupta, K.; Franco, S.R.; Liu, B. Necroptosis in the pathophysiology of disease. Am. J. Pathol., 2020, 190(2), 272-285. doi: 10.1016/j.ajpath.2019.10.012 PMID: 31783008
  51. Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol., 2021, 22(4), 266-282. doi: 10.1038/s41580-020-00324-8 PMID: 33495651
  52. Yang, W.S.; Stockwell, B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol., 2008, 15(3), 234-245. doi: 10.1016/j.chembiol.2008.02.010 PMID: 18355723
  53. Li, J.; Cao, F.; Yin, H.; Huang, Z.; Lin, Z.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis., 2020, 11(2), 88. doi: 10.1038/s41419-020-2298-2 PMID: 32015325
  54. Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Ferroptosis in infection, inflammation, and immunity. J. Exp. Med., 2021, 218(6), e20210518. doi: 10.1084/jem.20210518 PMID: 33978684
  55. Stockwell, B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell, 2022, 185(14), 2401-2421. doi: 10.1016/j.cell.2022.06.003 PMID: 35803244
  56. Gao, G.; Li, J.; Zhang, Y.; Chang, Y.Z. Cellular iron metabolism and regulation. Adv. Exp. Med. Biol., 2019, 1173, 21-32. doi: 10.1007/978-981-13-9589-5_2 PMID: 31456203
  57. Dev, S.; Babitt, J.L. Overview of iron metabolism in health and disease. Hemodial. Int. Int. Symp. Home Hemodial., 2017, 21(S1), pp. S6-S20. doi: 10.1111/hdi.12542
  58. Anderson, G.J.; Frazer, D.M. Current understanding of iron homeostasis. Am. J. Clin. Nutr., 2017, 106(S6), 1559S-1566S. doi: 10.3945/ajcn.117.155804 PMID: 29070551
  59. Liu, M.; Zhu, W.; Pei, D. System Xc−: A key regulatory target of ferroptosis in cancer. Invest. New Drugs, 2021, 39(4), 1123-1131. doi: 10.1007/s10637-021-01070-0 PMID: 33506324
  60. Levine, W.G. Glutathione and hepatic mixed-function oxidase activity. Drug Metab. Rev., 1983, 14(5), 909-930. doi: 10.3109/03602538308991416 PMID: 6418502
  61. Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun., 2017, 482(3), 419-425. doi: 10.1016/j.bbrc.2016.10.086 PMID: 28212725
  62. Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; Prokisch, H.; Trümbach, D.; Mao, G.; Qu, F.; Bayir, H.; Füllekrug, J.; Scheel, C.H.; Wurst, W.; Schick, J.A.; Kagan, V.E.; Angeli, J.P.F.; Conrad, M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol., 2017, 13(1), 91-98. doi: 10.1038/nchembio.2239 PMID: 27842070
  63. Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; Bassik, M.C.; Nomura, D.K.; Dixon, S.J.; Olzmann, J.A. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784), 688-692. doi: 10.1038/s41586-019-1705-2 PMID: 31634900
  64. Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Goya Grocin, A.; Xavier da Silva, T.N.; Panzilius, E.; Scheel, C.H.; Mourão, A.; Buday, K.; Sato, M.; Wanninger, J.; Vignane, T.; Mohana, V.; Rehberg, M.; Flatley, A.; Schepers, A.; Kurz, A.; White, D.; Sauer, M.; Sattler, M.; Tate, E.W.; Schmitz, W.; Schulze, A.; O’Donnell, V.; Proneth, B.; Popowicz, G.M.; Pratt, D.A.; Angeli, J.P.F.; Conrad, M. FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575(7784), 693-698. doi: 10.1038/s41586-019-1707-0 PMID: 31634899
  65. Koppula, P.; Lei, G.; Zhang, Y.; Yan, Y.; Mao, C.; Kondiparthi, L.; Shi, J.; Liu, X.; Horbath, A.; Das, M.; Li, W.; Poyurovsky, M.V.; Olszewski, K.; Gan, B. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat. Commun., 2022, 13(1), 2206. doi: 10.1038/s41467-022-29905-1 PMID: 35459868
  66. Kraft, V.A.N.; Bezjian, C.T.; Pfeiffer, S.; Ringelstetter, L.; Müller, C.; Zandkarimi, F.; Merl-Pham, J.; Bao, X.; Anastasov, N.; Kössl, J.; Brandner, S.; Daniels, J.D.; Schmitt-Kopplin, P.; Hauck, S.M.; Stockwell, B.R.; Hadian, K.; Schick, J.A. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci., 2020, 6(1), 41-53. doi: 10.1021/acscentsci.9b01063 PMID: 31989025
  67. Fang, X.; Ardehali, H.; Min, J.; Wang, F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol., 2023, 20(1), 7-23. doi: 10.1038/s41569-022-00735-4 PMID: 35788564
  68. Costa, I.; Barbosa, D.J.; Benfeito, S.; Silva, V.; Chavarria, D.; Borges, F.; Remião, F.; Silva, R. Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol. Ther., 2023, 244, 108373. doi: 10.1016/j.pharmthera.2023.108373 PMID: 36894028
  69. Zhao, D.; Yang, K.; Guo, H.; Zeng, J.; Wang, S.; Xu, H.; Ge, A.; Zeng, L.; Chen, S.; Ge, J. Mechanisms of ferroptosis in Alzheimer’s disease and therapeutic effects of natural plant products: A review. Biomed. Pharmacother., 2023, 164, 114312. doi: 10.1016/j.biopha.2023.114312 PMID: 37210894
  70. Liu, J.; Kang, R.; Tang, D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J., 2022, 289(22), 7038-7050. doi: 10.1111/febs.16059 PMID: 34092035
  71. Dolma, S.; Lessnick, S.L.; Hahn, W.C.; Stockwell, B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell, 2003, 3(3), 285-296. doi: 10.1016/S1535-6108(03)00050-3 PMID: 12676586
  72. Lőrincz, T.; Jemnitz, K.; Kardon, T.; Mandl, J.; Szarka, A. Ferroptosis is involved in acetaminophen induced cell death. Pathol. Oncol. Res., 2015, 21(4), 1115-1121. doi: 10.1007/s12253-015-9946-3 PMID: 25962350
  73. Sui, X.; Zhang, R.; Liu, S.; Duan, T.; Zhai, L.; Zhang, M.; Han, X.; Xiang, Y.; Huang, X.; Lin, H.; Xie, T. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front. Pharmacol., 2018, 9, 1371. doi: 10.3389/fphar.2018.01371 PMID: 30524291
  74. Shimada, K.; Skouta, R.; Kaplan, A.; Yang, W.S.; Hayano, M.; Dixon, S.J.; Brown, L.M.; Valenzuela, C.A.; Wolpaw, A.J.; Stockwell, B.R. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol., 2016, 12(7), 497-503. doi: 10.1038/nchembio.2079 PMID: 27159577
  75. Zhang, X.; Guo, Y.; Li, H.; Han, L. FIN56, a novel ferroptosis inducer, triggers lysosomal membrane permeabilization in a TFEB-dependent manner in glioblastoma. J. Cancer, 2021, 12(22), 6610-6619. doi: 10.7150/jca.58500 PMID: 34659551
  76. Zhang, Q.; Qu, H.; Chen, Y.; Luo, X.; Chen, C.; Xiao, B.; Ding, X.; Zhao, P.; Lu, Y.; Chen, A.F.; Yu, Y. Atorvastatin induces mitochondria-dependent ferroptosis via the modulation of Nrf2-xCT/GPx4 axis. Front. Cell Dev. Biol., 2022, 10, 806081. doi: 10.3389/fcell.2022.806081 PMID: 35309902
  77. Shan, L.; Xu, X.; Zhang, J.; Cai, P.; Gao, H.; Lu, Y.; Shi, J.; Guo, Y.; Su, Y. Increased hemoglobin and heme in MALDI-TOF MS analysis induce ferroptosis and promote degeneration of herniated human nucleus pulposus. Mol. Med., 2021, 27(1), 103. doi: 10.1186/s10020-021-00368-2 PMID: 34496740
  78. Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell Death Differ., 2016, 23(3), 369-379. doi: 10.1038/cdd.2015.158 PMID: 26794443
  79. Li, Q.; Han, X.; Lan, X.; Gao, Y.; Wan, J.; Durham, F.; Cheng, T.; Yang, J.; Wang, Z.; Jiang, C.; Ying, M.; Koehler, R.C.; Stockwell, B.R.; Wang, J. Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight, 2017, 2(7), e90777. doi: 10.1172/jci.insight.90777 PMID: 28405617
  80. Miotto, G.; Rossetto, M.; Di Paolo, M.L.; Orian, L.; Venerando, R.; Roveri, A.; Vučković, A.M.; Travain, B.V.; Zaccarin, M.; Zennaro, L.; Maiorino, M.; Toppo, S.; Ursini, F.; Cozza, G. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol., 2020, 28, 101328. doi: 10.1016/j.redox.2019.101328 PMID: 31574461
  81. Mishima, E.; Conrad, M. Nutritional and metabolic control of ferroptosis. Annu. Rev. Nutr., 2022, 42(1), 275-309. doi: 10.1146/annurev-nutr-062320-114541 PMID: 35650671
  82. Xie, Y.; Song, X.; Sun, X.; Huang, J.; Zhong, M.; Lotze, M.T.; Zeh, H.J., III; Kang, R.; Tang, D. Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochem. Biophys. Res. Commun., 2016, 473(4), 775-780. doi: 10.1016/j.bbrc.2016.03.052 PMID: 27037021
  83. Probst, L.; Dächert, J.; Schenk, B.; Fulda, S. Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death. Biochem. Pharmacol., 2017, 140, 41-52. doi: 10.1016/j.bcp.2017.06.112 PMID: 28595877
  84. Alim, I.; Caulfield, J.T.; Chen, Y.; Swarup, V.; Geschwind, D.H.; Ivanova, E.; Seravalli, J.; Ai, Y.; Sansing, L.H.; Ste Marie, E.J.; Hondal, R.J.; Mukherjee, S.; Cave, J.W.; Sagdullaev, B.T.; Karuppagounder, S.S.; Ratan, R.R. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell, 2019, 177(5), 1262-1279.e25. doi: 10.1016/j.cell.2019.03.032 PMID: 31056284
  85. Jiang, Z.; Wang, H.; Qi, G.; Jiang, C.; Chen, K.; Yan, Z. Iron overload-induced ferroptosis of osteoblasts inhibits osteogenesis and promotes osteoporosis: An in vitro and in vivo study. IUBMB Life, 2022, 74(11), 1052-1069. doi: 10.1002/iub.2656 PMID: 35638167
  86. Ni, S.; Yuan, Y.; Qian, Z.; Zhong, Z.; Lv, T.; Kuang, Y.; Yu, B. Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis. Free Radic. Biol. Med., 2021, 169, 271-282. doi: 10.1016/j.freeradbiomed.2021.04.027 PMID: 33895289
  87. Li, G.F.; Pan, Y.Z.; Sirois, P.; Li, K.; Xu, Y.J. Iron homeostasis in osteoporosis and its clinical implications. Osteoporos. Int., 2012, 23(10), 2403-2408. doi: 10.1007/s00198-012-1982-1 PMID: 22525981
  88. Guggenbuhl, P.; Filmon, R.; Mabilleau, G.; Baslé, M.F.; Chappard, D. Iron inhibits hydroxyapatite crystal growth in vitro. Metabolism, 2008, 57(7), 903-910. doi: 10.1016/j.metabol.2008.02.004 PMID: 18555830
  89. Ma, H.; Wang, X.; Zhang, W.; Li, H.; Zhao, W.; Sun, J.; Yang, M. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis. Oxid. Med. Cell. Longev., 2020, 2020, 1-18. doi: 10.1155/2020/9067610 PMID: 33343809
  90. Lin, Y.; Shen, X.; Ke, Y.; Lan, C.; Chen, X.; Liang, B.; Zhang, Y.; Yan, S. Activation of osteoblast ferroptosis via the METTL3/ASK1-p38 signaling pathway in high glucose and high fat (HGHF)-induced diabetic bone loss. FASEB J., 2022, 36(3), e22147. doi: 10.1096/fj.202101610R PMID: 35104016
  91. Ge, W.; Jie, J.; Yao, J.; Li, W.; Cheng, Y.; Lu, W. Advanced glycation end products promote osteoporosis by inducing ferroptosis in osteoblasts. Mol. Med. Rep., 2022, 25(4), 140. doi: 10.3892/mmr.2022.12656 PMID: 35211757
  92. Palacios, S. Medical treatment of osteoporosis. Climacteric, 2022, 25(1), 43-49. doi: 10.1080/13697137.2021.1951697 PMID: 34382489
  93. Zhang, Z.; Ji, C.; Wang, Y.N.; Liu, S.; Wang, M.; Xu, X.; Zhang, D. Maresin1 suppresses high-glucose-induced ferroptosis in osteoblasts via NRF2 activation in type 2 diabetic osteoporosis. Cells, 2022, 11(16), 2560. doi: 10.3390/cells11162560 PMID: 36010637
  94. Tao, Z.S.; Li, T.L.; Wei, S. Silymarin prevents iron overload induced bone loss by inhibiting oxidative stress in an ovariectomized animal model. Chem. Biol. Interact., 2022, 366, 110168. doi: 10.1016/j.cbi.2022.110168 PMID: 36087815
  95. Tan, D.X.; Manchester, L.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R. Melatonin as a potent and inducible endogenous antioxidant: Synthesis and metabolism. Molecules, 2015, 20(10), 18886-18906. doi: 10.3390/molecules201018886 PMID: 26501252
  96. Yang, F.; Yang, L.; Li, Y.; Yan, G.; Feng, C.; Liu, T.; Gong, R.; Yuan, Y.; Wang, N.; Idiiatullina, E.; Bikkuzin, T.; Pavlov, V.; Li, Y.; Dong, C.; Wang, D.; Cao, Y.; Han, Z.; Zhang, L.; Huang, Q.; Ding, F.; Bi, Z.; Cai, B. Melatonin protects bone marrow mesenchymal stem cells against iron overload-induced aberrant differentiation and senescence. J. Pineal Res., 2017, 63(3), e12422. doi: 10.1111/jpi.12422 PMID: 28500782
  97. Sun, X.; Xia, T.; Zhang, S.; Zhang, J.; Xu, L.; Han, T.; Xin, H. Hops extract and xanthohumol ameliorate bone loss induced by iron overload via activating Akt/GSK3β/Nrf2 pathway. J. Bone Miner. Metab., 2022, 40(3), 375-388. doi: 10.1007/s00774-021-01295-2 PMID: 35106609
  98. Zhang, Q.; Zhao, L.; Shen, Y.; He, Y.; Cheng, G.; Yin, M.; Zhang, Q.; Qin, L. Curculigoside protects against excess-iron-induced bone loss by attenuating akt-foxo1-dependent oxidative damage to mice and osteoblastic MC3T3-E1 cells. Oxid. Med. Cell. Longev., 2019, 2019, 1-14. doi: 10.1155/2019/9281481 PMID: 31949885
  99. Vijayan, V.; Khandelwal, M.; Manglani, K.; Singh, R.R.; Gupta, S.; Surolia, A. Homocysteine alters the osteoprotegerin/RANKL system in the osteoblast to promote bone loss: Pivotal role of the redox regulator forkhead O1. Free Radic. Biol. Med., 2013, 61, 72-84. doi: 10.1016/j.freeradbiomed.2013.03.004 PMID: 23500899
  100. Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; Pistell, P.J.; Poosala, S.; Becker, K.G.; Boss, O.; Gwinn, D.; Wang, M.; Ramaswamy, S.; Fishbein, K.W.; Spencer, R.G.; Lakatta, E.G.; Le Couteur, D.; Shaw, R.J.; Navas, P.; Puigserver, P.; Ingram, D.K.; de Cabo, R.; Sinclair, D.A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006, 444(7117), 337-342. doi: 10.1038/nature05354 PMID: 17086191
  101. Zhao, L.; Wang, Y.; Wang, Z.; Xu, Z.; Zhang, Q.; Yin, M. Effects of dietary resveratrol on excess-iron-induced bone loss via antioxidative character. J. Nutr. Biochem., 2015, 26(11), 1174-1182. doi: 10.1016/j.jnutbio.2015.05.009 PMID: 26239832
  102. Lee, N.K.; Choi, Y.G.; Baik, J.Y.; Han, S.Y.; Jeong, D.; Bae, Y.S.; Kim, N.; Lee, S.Y. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood, 2005, 106(3), 852-859. doi: 10.1182/blood-2004-09-3662 PMID: 15817678
  103. Zhang, J. The osteoprotective effects of artemisinin compounds and the possible mechanisms associated with intracellular iron: A review of in vivo and in vitro studies. Environ. Toxicol. Pharmacol., 2020, 76, 103358. doi: 10.1016/j.etap.2020.103358 PMID: 32143118
  104. Jin, H.; Du, J.; Ren, H.; Yang, G.; Wang, W.; Du, J.; Astragaloside, I.V. Astragaloside IV protects against iron loading-induced abnormal differentiation of bone marrow mesenchymal stem cells (BMSCs). FEBS Open Bio, 2021, 11(4), 1223-1236. doi: 10.1002/2211-5463.13082 PMID: 33445204

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024