Hybrids Diazine: Recent Advancements in Modern Antimicrobial Therapy


Дәйексөз келтіру

Толық мәтін

Аннотация

Nowadays, antimicrobial therapies have become a very challenging issue because of a large diversity of reasons such as antimicrobial resistance, over consumption and misuse of antimicrobial agents, etc. A modern, actual and very useful approach in antimicrobial therapy is represented by the use of hybrid drugs, especially combined five and six-membered ring azaheterocycles. In this review, we present an overview of the recent advanced data from the last five years in the field of hybrid diazine compounds with antimicrobial activity. In this respect, we highlight here essential data concerning the synthesis and antimicrobial activity of the main classes of diazine hybrids: pyridazine, pyrimidine, pyrazine, and their fused derivatives.

Авторлар туралы

Violeta Mangalagiu

Institute of Interdisciplinary Research – CERNESIM Center, Alexandru Ioan Cuza University of Iasi,

Email: info@benthamscience.net

Ramona Danac

Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi

Email: info@benthamscience.net

Dumitrela Diaconu

Institute of Interdisciplinary Research – CERNESIM Cente, Alexandru Ioan Cuza University of Iasi,

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Gheorghita Zbancioc

Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi

Email: info@benthamscience.net

Ionel Mangalagiu

Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Brunton, L.; Knollmann, B.; Hilal-Dandan, R. Goodman & Gilman’s the pharnacological bassis of therapeutics, 13th ed; McGraw-Hill: New York, 2013.
  2. Zbancioc, G.; Ciobanu, C.I.; Mangalagiu, I.I.; Moldoveanu, C. Ultrasound assisted synthesis of fluorescent azatetracyclic derivatives: An energy efficient approach. Molecules, 2022, 27(10), 1-10. doi: 10.3390/molecules27103180
  3. Amariucai‐Mantu, D.; Mangalagiu, V.; Mangalagiu, I.I. 3 + n cycloaddition reactions: A milestone approach for elaborating pyridazine of potential interest in medicinal chemistry and optoelectronics. Molecules, 2021, 26(11), 1-17. doi: 10.3390/molecules26113359
  4. Mangalagiu, I.; Baban, C.; Mardare, D.; Rusu, G.I.; Rusu, M. On the electrical properties of some new stable disubstituted ylides in thin films. Appl. Surf. Sci., 1997, 108(2), 205-210. doi: 10.1016/S0169-4332(97)80017-7
  5. Butnariu, R.; Risca, I.M.; Caprosu, M.; Drochioiu, G.; Mangalagiu, I.I. Biological activity of some new pyridazine derivatives in wheat germination experiments. Rom. Biotechnol. Lett., 2008, 13, 3837-3842.
  6. Mangalagiu, I.I. Recent achievements in the chemistry of 1,2-diazines. Curr. Org. Chem., 2011, 15, 730-752. doi: 10.2174/138527211794519050
  7. Bansal, Y.; Silakari, O. Multifunctional compounds: Smart molecules for multifactorial diseases. Eur. J. Med. Chem., 2014, 76, 31-42. doi: 10.1016/j.ejmech.2014.01.060 PMID: 24565571
  8. Chourasiya, S.S.; Kathuria, D.; Wani, A.A.; Bharatam, P.V. Azines: Synthesis, structure, electronic structure and their applications. Org. Biomol. Chem., 2019, 17(37), 8486-8521. doi: 10.1039/C9OB01272A PMID: 31503270
  9. Amariucai-Mantu, D.; Mangalagiu, V.; Danac, R.; Mangalagiu, I.I. Microwave assisted reactions of azaheterocycles for medicinal chemistry applications. Molecules, 2020, 25(3), 1-20. doi: 10.3390/molecules25030716
  10. Malik, A.; Mishra, R.; Mazumder, R.; Mazumder, A.; Mishra, P.S. A comprehensive study on synthesis and biological activities of pyridazine derivatives. Res. J. Pharm. Technol., 2021, 14, 3423-3429. doi: 10.52711/0974-360X.2021.00595
  11. Sangshetti, J.; Pathan, S.K.; Patil, R.; Akber Ansari, S.; Chhajed, S.; Arote, R.; Shinde, D.B. Synthesis and biological activity of structurally diverse phthalazine derivatives: A systematic review. Bioorg. Med. Chem., 2019, 27(18), 3979-3997. doi: 10.1016/j.bmc.2019.07.050 PMID: 31401008
  12. Kumar, S.; Narasimhan, B. Therapeutic potential of heterocyclic pyrimidine scaffolds. Chem. Cent. J., 2018, 12, 1-29. doi: 10.1186/s13065-018-0406-5
  13. Elattar, K.M.; El-Khateeb, A.Y.; Hamed, S.E. Insights into the recent progress in the medicinal chemistry of pyranopyrimidine analogs. RSC Med. Chem., 2022, 13(5), 522-567. doi: 10.1039/D2MD00076H PMID: 35694689
  14. Dehnavi, F.; Alizadeh, S.R.; Ebrahimzadeh, M.A. Pyrrolopyrazine derivatives: Synthetic approaches and biological activities. Med. Chem. Res., 2021, 30, 1981-2006. doi: 10.1007/s00044-021-02792-9
  15. Carmona-Martínez, V.; Ruiz-Alcaraz, A.J.; Vera, M.; Guirado, A.; Martínez-Esparza, M.; García-Peñarrubia, P. Therapeutic potential of pteridine derivatives: A comprehensive review. Med. Res. Rev., 2019, 39(2), 461-516. doi: 10.1002/med.21529 PMID: 30341778
  16. Ahmed, B.; Joseph, A.; Das, S.; Akbar, S.; Dewangan, R.P.; Iqubal, A.; Pottoo, F.H. Structural activity relationship based medicinal perspectives of pyrimidine derivatives as anti-Alzheimer’s agents: A comprehensive review. CNS Neurol. Disord. Drug Targets, 2022, 21(10), 926-939. doi: 10.2174/1871527320666210804161400 PMID: 34348636
  17. Varano, F.; Catarzi, D.; Vincenzi, F.; Pasquini, S.; Varani, K.; Colotta, V. Piperazine- and piperidine-containing thiazolo5,4-dpyrimidine derivatives as new potent and selective adenosine A(2A) receptor inverse agonists. Pharmaceutical, 2020, 13(8), 161. doi: 10.3390/ph13080161
  18. Jiang, X.; Wu, K.; Bai, R.; Zhang, P.; Zhang, Y. Functionalized quinoxalinones as privileged structures with broad-ranging pharmacological activities. Eur. J. Med. Chem., 2022, 229, 1-52. doi: 10.1016/j.ejmech.2021.114085
  19. Quintela, J.M.; Peinador, C.; Veiga, C.; González, L.; Botana, L.M.; Alfonso, A.; Riguera, R. Synthesis and antiallergic activity of pyridothienopyrimidines. Bioorg. Med. Chem., 1998, 6(10), 1911-1925. doi: 10.1016/S0968-0896(98)00150-3 PMID: 9839021
  20. Diaconu, D.; Antoci, V.; Mangalagiu, V.; Amariucai-Mantu, D.; Mangalagiu, I.I. Quinoline - imidazole/benzimidazole derivatives as dual- / multi- targeting hybrids inhibitors with anticancer and antimicrobial activity. Sci. Rep., 2022, 12, 1-15. doi: 10.1038/s41598-022-21435-6
  21. Radwan, H.A.; Ahmad, I.; Othman, I.; Gad-Elkareem, M.A.; Patel, H.; Aouadid, K.; Snoussif, M.; Kadri, A. Design, synthesis, in vitro anticancer and antimicrobial evaluation, SAR analysis, molecular docking and dynamic simulation of new pyrazoles, triazoles and pyridazines based isoxazole. J. Mol. Struct., 2022, 1264, 1-13. doi: 10.1016/j.molstruc.2022.133312
  22. Deshpande, S.R.; Chavan, P.S.; Nagarale, S.N.; Patil, M.V. Synthesis, spectral characterization and antimicrobial studies of new hybrid heterocyclic compounds bearing 1H-benzimidazol-2-yl thiomethyl motif. Indian J. Pharm. Sci., 2017, 79(3), 385-394. doi: 10.4172/pharmaceutical-sciences.1000241
  23. Aricu, A.; Ciocarlan, A.; Lungu, L.; Barba, A.; Shova, S.; Zbancioc, G.; Mangalagiu, I.I.; D’Ambrosio, M.; Vornicu, N. Synthesis, antibacterial, and antifungal activities of new drimane sesquiterpenoids with azaheterocyclic units. Med. Chem. Res., 2016, 25(10), 2316-2323. doi: 10.1007/s00044-016-1665-0
  24. Mourad, A.K.; Makhlouf, A.A.; Soliman, A.Y.; Mohamed, S.A. Phthalazines and phthalazine hybrids as antimicrobial agents: Synthesis and biological evaluation. J. Chem. Res., 2020, 44(1-2), 31-41. doi: 10.1177/1747519819883840
  25. Zaheer, Z.; Khan, F.A.K.; Sangshetti, J.N.; Patil, R.H.; Lohar, K.S. Novel amalgamation of phthalazine–quinolines as biofilm inhibitors: One-pot synthesis, biological evaluation and in silico ADME prediction with favorable metabolic fate. Bioorg. Med. Chem. Lett., 2016, 26(7), 1696-1703. doi: 10.1016/j.bmcl.2016.02.057 PMID: 26923699
  26. Vlasov, S.V.; Severina, H.I.; Borysov, O.V.; Krolenko, K.Y.; Shynkarenko, P.E.; Saidov, N.B.; Vlasov, V.S.; Georgiyants, V.A. Synthesis and antimicrobial evaluation of 2-(6-emidazo1,2-apyridin-2-yl-5-methyl-2,4-dioxo-3-phenyl-3, 4-dihydrothieno2,3-dpyrimidin-1(2H)-yl)-N-arylacetamide derivatives. Molbank, 2022, M1331, 1-9.
  27. Vlasov, S.V.; Vlasova, O.D.; Severina, H.I.; Krolenko, K.Y.; Borysov, O.V.; Abu Sharkh, A.I.M.; Vlasov, V.S.; Georgiyants, V.A. Design, synthesis and in vitro antimicrobial activity of 6-(1H-Benzimidazol-2-yl)- 3,5-dimethyl-4-oxo-2-thio-3,4-dihydrothieno2,3-dpyrimidines. Sci. Pharm., 2021, 89, 1-15.
  28. Tolba, M.S.; Sayed, M.; Kamal El-dean, A.M.; Hassanien, R.; Ahmed, M.; Abdel-Raheem, S.A.A. Design, synthesis and antimicrobial screening of some new thienopyrimidines. Org. Commun., 2021, 14(4), 365-376. doi: 10.25135/acg.oc.114.2109.2214
  29. El-Dash, Y.; Elzayat, E.; Abdou, A.M.; Hassan, R.A. Novel thienopyrimidine-aminothiazole hybrids: Design, synthesis, antimicrobial screening, anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis and VEGFR-2 inhibition. Bioorg. Chem., 2021, 114, 1-19. doi: 10.1016/j.bioorg.2021.105137
  30. Othman, I.M.M.; Gad-Elkareem, M.A.M.; Anouar, E.H.; Snoussi, M.; Aouadi, K.; Kadri, A. Novel fused pyridine derivatives containing pyrimidine moiety as prospective tyrosyl-tRNA synthetase inhibitors: Design, synthesis, pharmacokinetics and molecular docking studies. J. Mol. Struct., 2020, 1219, 128651. doi: 10.1016/j.molstruc.2020.128651
  31. Sanad, S.M.H.; Ahmed, A.A.M.; Mekky, A.E.M. Efficient synthesis and molecular docking of novel antibacterial pyrimidines and their related fused heterocyclic derivatives. J. Heterocycl. Chem., 2020, 57(2), 590-605. doi: 10.1002/jhet.3789
  32. El-Naggar, M.; Sallam, H.A.; Shaban, S.S.; Abdel-Wahab, S.S.; Amr, A.; Azab, M.E.; Nossier, E.S.; Al-Omar, M. Design, synthesis, and molecular docking study of novel heterocycles incorporating 1,3,4-thiadiazole moiety as potential antimicrobial and anticancer agents. Molecules, 2019, 24(6), 1066. doi: 10.3390/molecules24061066
  33. Šlachtová, V.; Janovská, L.; Brulíková, L. Solid phase synthesis of new thiazolidinedione-pyrimidine conjugates and their antibacterial properties. J. Mol. Struct., 2019, 1183, 182-189. doi: 10.1016/j.molstruc.2019.01.073
  34. Shiva Raju, K.; AnkiReddy, S.; Sabitha, G.; Siva Krishna, V.; Sriram, D.; Bharathi Reddy, K.; Rao Sagurthi, S. Synthesis and biological evaluation of 1H-pyrrolo2,3-dpyrimidine-1,2,3-triazole derivatives as novel anti-tubercular agents. Bioorg. Med. Chem. Lett., 2019, 29(2), 284-290. doi: 10.1016/j.bmcl.2018.11.036 PMID: 30497913
  35. Vekariya, M.K.; Patel, D.B.; Pandya, P.A.; Vekariya, R.H.; Shah, P.U.; Rajani, D.P.; Shah, N.K. Novel N-thioamide analogues of pyrazolylpyrimidine based piperazine: Design, synthesis, characterization, in-silico molecular docking study and biological evaluation. J. Mol. Struct., 2019, 1175, 551-565. doi: 10.1016/j.molstruc.2018.08.018
  36. Bhatia, S.K.; Samdhian, V.; Kaur, B. Bis-dihydropyrimidines: Catalyst-free, microwave-assisted organic synthesis, characterization and in vitro biological screenings. J. Heterocycl. Chem., 2018, 55(4), 935-942. doi: 10.1002/jhet.3121
  37. Bhatia, S.K.; Samdhian, V.; Kaur, B. Eco-friendly synthesis of solid-support bis-dihydropyrimidines and their antimicrobial studies. Asian J. Chem., 2019, 31(7), 1489-1494. doi: 10.14233/ajchem.2019.21923
  38. Naik, S.D.; Hosamani, K.M.; Vootla, S.K. Microwave synthesis, biological screening and computational studies of pyrimidine based novel coumarin scaffolds. Chem. Data Collect., 2018, 15-16, 207-222. doi: 10.1016/j.cdc.2018.06.002
  39. Mourad, A.K.; Mohamed, F.K.; Essawy, A.E.N.I.; Sayed, S.M. A comprehensive synthesis and antimicrobial evaluation of some fused heterocycles based on coumarin moiety. ARKIVOC, 2018, 2018(7), 407-422. doi: 10.24820/ark.5550190.p010.674
  40. Kaoukabi, H.; Kabri, Y.; Curti, C.; Taourirte, M.; Rodriguez-Ubis, J.C.; Snoeck, R.; Andrei, G.; Vanelle, P.; Lazrek, H.B. Dihydropyrimidinone/1,2,3-triazole hybrid molecules: Synthesis and anti-varicella-zoster virus (VZV) evaluation. Eur. J. Med. Chem., 2018, 155, 772-781. doi: 10.1016/j.ejmech.2018.06.028 PMID: 29945100
  41. Chikkula, K.V.; Sundararajan, R. Analgesic, anti-inflammatory, and antimicrobial activities of novel isoxazole/pyrimidine/pyrazole substituted benzimidazole analogs. Med. Chem. Res., 2017, 26(11), 3026-3037. doi: 10.1007/s00044-017-2000-0
  42. Kuchkova, K.; Aricu, A.; Secara, E.; Barba, A.; Vlad, P.; Ungur, N.; Tuchilus, C.; Shova, S.; Zbancioc, G.; Mangalagiu, I.I. Design, synthesis, and antimicrobial activity of some novel homodrimane sesquiterpenoids with diazine skeleton. Med. Chem. Res., 2014, 23(3), 1559-1568. doi: 10.1007/s00044-013-0720-3
  43. Malasala, S.; Ahmad, M.N.; Akunuri, R.; Shukla, M.; Kaul, G.; Dasgupta, A.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur. J. Med. Chem., 2021, 212, 112996. doi: 10.1016/j.ejmech.2020.112996
  44. Gu, X.; Pisoni, L.A.; Wang, Y.; Song, D.; Sykes, M.J.; Qin, Y.; Semple, S.j.; Polyak, S.W.; Venter, H.; Ma, S. Design and synthesis of novel 4-substituted quinazoline-2-carboxamide derivatives targeting AcrB to reverse the bacterial multidrug resistance. Bioorg. Chem., 2020, 105, 104394. doi: 10.1016/j.bioorg.2020.104394
  45. Maddali, N.K.; Viswanath, I.V.K.; Murthy, Y.L.N.; Bera, R.; Takhi, M.; Rao, N.S.; Gudla, V. Design, synthesis and molecular docking studies of quinazolin-4-ones linked to 1,2,3-triazol hybrids as Mycobacterium tuberculosis H37Rv inhibitors besides antimicrobial activity. Med. Chem. Res., 2019, 28(4), 559-570. doi: 10.1007/s00044-019-02313-9
  46. Asadi, P.; Khodarahmi, G.; Jahanian-Najafabadi, A.; Saghaie, L.; Hassanzadeh, F. Biologically active heterocyclic hybrids based on quinazolinone, benzofuran and imidazolium moieties: Synthesis, characterization, cytotoxic and antibacterial evaluation. Chem. Biodivers., 2017, 14(4), e1600411. doi: 10.1002/cbdv.201600411
  47. Bhandare, R.R.; Shaik, A.B. Assessment of the antimicrobial and antiproliferative activities of chloropyrazine-tethered pyrimidine derivatives: In vitro, molecular docking, and in-silico drug-likeness studies. Appl. Sci., 2021, 11(22), 10734. doi: 10.3390/app112210734
  48. Shaik, A.B.; Bhandare, R.R.; Nissankararao, S.; Lokesh, B.V.S.; Shahanaaz, S.; Rahman, M.M. Synthesis, and biological screening of chloropyrazine conjugated benzothiazepine derivatives as potential antimicrobial, antitubercular and cytotoxic agents. Arab. J. Chem., 2021, 14, 102915. doi: 10.1016/j.arabjc.2020.102915
  49. Bouz, G.; Juhas, M.; Pausas Otero, L.; Paredes De La Red, C.; Jandourek, O.; Konecna, K.; Paterova, P.; Kubıcek, V.; Janousek, J.; Dolezal, M. Substituted N-(pyrazin-2-yl) benzenesulfonamides; Synthesis, anti-infective evaluation, cytotoxicity, and in silico studies. Molecules, 2020, 25(1), 138. doi: 10.3390/molecules25010138
  50. Panda, S.S.; Detistov, O.S.; Girgis, A.S.; Mohapatra, P.P.; Samir, A.; Katritzky, A.R. Synthesis and molecular modeling of antimicrobial active fluoroquinolone–pyrazine conjugates with amino acid linkers. Bioorg. Med. Chem. Lett., 2016, 26(9), 2198-2205. doi: 10.1016/j.bmcl.2016.03.062 PMID: 27025339

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024