An Update on Parkinson’s Disease and its Neurodegenerative Counterparts


Cite item

Full Text

Abstract

Introduction:Neurodegenerative disorders are a group of diseases that cause nerve cell degeneration in the brain, resulting in a variety of symptoms and are not treatable with drugs. Parkinson's disease (PD), prion disease, motor neuron disease (MND), Huntington's disease (HD), spinal cerebral dyskinesia (SCA), spinal muscle atrophy (SMA), multiple system atrophy, Alzheimer's disease (AD), spinocerebellar ataxia (SCA) (ALS), pantothenate kinase-related neurodegeneration, and TDP-43 protein disorder are examples of neurodegenerative diseases. Dementia is caused by the loss of brain and spinal cord nerve cells in neurodegenerative diseases.

Background:Even though environmental and genetic predispositions have also been involved in the process, redox metal abuse plays a crucial role in neurodegeneration since the preponderance of symptoms originates from abnormal metal metabolism.

Method:Hence, this review investigates several neurodegenerative diseases that may occur symptoms similar to Parkinson's disease to understand the differences and similarities between Parkinson's disease and other neurodegenerative disorders based on reviewing previously published papers.

Results:Based on the findings, the aggregation of alpha-synuclein occurs in Parkinson’s disease, multiple system atrophy, and dementia with Lewy bodies. Other neurodegenerative diseases occur with different protein aggregation or mutations

Conclusion:We can conclude that Parkinson's disease, Multiple system atrophy, and Dementia with Lewy bodies are closely related. Therefore, researchers must distinguish among the three diseases to avoid misdiagnosis of Multiple System Atrophy and Dementia with Lewy bodies with Parkinson's disease symptoms.

About the authors

Hussaini Adam

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP

Email: info@benthamscience.net

Subash Gopinath

Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP)

Author for correspondence.
Email: info@benthamscience.net

M.K. Arshad

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP)

Email: info@benthamscience.net

Tijjani Adam

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP

Email: info@benthamscience.net

Sreeramanan Subramaniam

School of Biological Sciences,, Universiti Sains Malaysia

Email: info@benthamscience.net

Uda Hashim

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP)

Email: info@benthamscience.net

References

  1. Teissier, T.; Boulanger, E.; Deramecourt, V. Normal ageing of the brain: Histological and biological aspects. Rev. Neurol., 2020, 176(9), 649-660. doi: 10.1016/j.neurol.2020.03.017 PMID: 32418702
  2. Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035. doi: 10.1101/cshperspect.a028035 PMID: 28062563
  3. Wareham, L.K.; Liddelow, S.A.; Temple, S.; Benowitz, L.I.; Di Polo, A.; Wellington, C.; Goldberg, J.L.; He, Z.; Duan, X.; Bu, G.; Davis, A.A.; Shekhar, K.; Torre, A.L.; Chan, D.C.; Canto-Soler, M.V.; Flanagan, J.G.; Subramanian, P.; Rossi, S.; Brunner, T.; Bovenkamp, D.E.; Calkins, D.J. Solving neurodegeneration: Common mechanisms and strategies for new treatments. Mol. Neurodegener., 2022, 17(1), 23. doi: 10.1186/s13024-022-00524-0 PMID: 35313950
  4. Picca, A.; Calvani, R.; Coelho-Júnior, H.J.; Landi, F.; Bernabei, R.; Marzetti, E. Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration. Antioxidants, 2020, 9(8), 647. doi: 10.3390/antiox9080647 PMID: 32707949
  5. Deture, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener, 2019, 5, 1-8. doi: 10.1186/s13024-019-0333-5 PMID: 31375134
  6. Gustavsson, A.; Norton, N.; Fast, T.; Frölich, L.; Georges, J.; Holzapfel, D.; Kirabali, T.; Krolak-Salmon, P.; Rossini, P.M.; Ferretti, M.T.; Lanman, L.; Chadha, A.S.; van der Flier, W.M. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement., 2022, 1-13. PMID: 35652476
  7. Wilkaniec, A.; Gąssowska-Dobrowolska, M.; Strawski, M.; Adamczyk, A.; Czapski, G.A. Inhibition of cyclin-dependent kinase 5 affects early neuroinflammatory signalling in murine model of amyloid beta toxicity. J. Neuroinflammation, 2018, 15(1), 1-18. doi: 10.1186/s12974-017-1027-y PMID: 29301548
  8. Shupp, A.; Casimiro, M.C.; Pestell, R.G. Biological functions of CDK5 and potential CDK5 targeted clinical treatments. Oncotarget, 2017, 8(10), 17373-17382. doi: 10.18632/oncotarget.14538 PMID: 28077789
  9. Zahoor, I.; Shafi, A.; Haq, E. Parkinson’s disease (Book); Inc Animal Model Review, 2018.
  10. McKay, J.L.; Hackney, M.E.; Factor, S.A.; Ting, L.H. Lower limb rigidity is associated with frequent falls in Parkinson’s disease. Mov. Disord. Clin. Pract., 2019, 6(6), 446-451. doi: 10.1002/mdc3.12784 PMID: 31392245
  11. Emanuele, M.; Chieregatti, E. Mechanisms of alpha-synuclein action on neurotransmission: Cell-autonomous and non-cell autonomous role. Biomolecules, 2015, 5(2), 865-892. doi: 10.3390/biom5020865 PMID: 25985082
  12. Novellino, F.; Salsone, M.; Riccelli, R.; Chiriaco, C.; Argirò, G.; Quattrone, A.; Madrigal, J.L.M.; Ferini Strambi, L.; Quattrone, A. Connectivity Alterations in Vascular Parkinsonism: A Structural Covariance Study; Applied Sciences: Switzerland, 2022, p. 12.
  13. Son, S.J.; Kim, M.; Park, H. Imaging analysis of Parkinson’s disease patients using SPECT and tractography. Sci. Rep., 2016, 6(1), 38070. doi: 10.1038/srep38070 PMID: 27901100
  14. Ray, B.; Mahalakshmi, A.M.; Tuladhar, S.; Bhat, A.; Srinivasan, A.; Pellegrino, C.; Kannan, A.; Bolla, S.R.; Chidambaram, S.B.; Sakharkar, M.K. "Janus-faced" α-synuclein: Role in Parkinson’s disease. Front. Cell Dev. Biol., 2021, 9, 673395. doi: 10.3389/fcell.2021.673395 PMID: 34124057
  15. Nishida, N.; Miyamoto, T. Prion disease. Nippon Naika Gakkai Zasshi, 1997, 86(7), 1262-1268. PMID: 9379109
  16. Hartmann, K.; Sepulveda-Falla, D.; Rose, I.V.L.; Madore, C.; Muth, C.; Matschke, J.; Butovsky, O.; Liddelow, S.; Glatzel, M.; Krasemann, S. Complement 3+-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. Acta Neuropathol. Commun., 2019, 7(1), 83. doi: 10.1186/s40478-019-0735-1 PMID: 31118110
  17. Dirzius, E.; Balnyte, R.; Steibliene, V.; Gleizniene, R.; Gudinaviciene, I.; Radziunas, A.; Petrikonis, K. Sporadic Creutzfeldt-Jakob disease with unusual initial presentation as posterior reversible encephalopathy syndrome: A case report. BMC Neurol., 2016, 16(1), 234. doi: 10.1186/s12883-016-0751-8 PMID: 27876002
  18. Bernardi, L.; Bruni, A.C. Mutations in prion protein gene: Pathogenic mechanisms in c-terminal vs. n-terminal domain, a review. Int. J. Mol. Sci., 2019, 20(14), 3606. doi: 10.3390/ijms20143606 PMID: 31340582
  19. Asante, E.A.; Linehan, J.M.; Tomlinson, A.; Jakubcova, T.; Hamdan, S.; Grimshaw, A.; Smidak, M.; Jeelani, A.; Nihat, A.; Mead, S.; Brandner, S.; Wadsworth, J.D.F.; Collinge, J. Spontaneous generation of prions and transmissible PrP amyloid in a humanised transgenic mouse model of A117V GSS. PLoS Biol., 2020, 18(6), e3000725. doi: 10.1371/journal.pbio.3000725 PMID: 32516343
  20. Brown, P.; Brandel, J.P.; Sato, T.; Nakamura, Y.; MacKenzie, J.; Will, R.G.; Ladogana, A.; Pocchiari, M.; Leschek, E.W.; Schonberger, L.B. Iatrogenic Creutzfeldt-Jakob disease, final assessment. Emerg. Infect. Dis., 2012, 18(6), 901-907. doi: 10.3201/eid1806.120116 PMID: 22607808
  21. Llorens, F.; Villar-Piqué, A.; Hermann, P.; Schmitz, M.; Calero, O.; Stehmann, C.; Sarros, S.; Moda, F.; Ferrer, I.; Poleggi, A.; Pocchiari, M.; Catania, M.; Klotz, S.; O’Regan, C.; Brett, F.; Heffernan, J.; Ladogana, A.; Collins, S.J.; Calero, M.; Kovacs, G.G.; Zerr, I. Diagnostic accuracy of prion disease biomarkers in iatrogenic creutzfeldt-jakob disease. Biomolecules, 2020, 10(2), 290. doi: 10.3390/biom10020290 PMID: 32059611
  22. Watson, N.; Brandel, J.P.; Green, A.; Hermann, P.; Ladogana, A.; Lindsay, T.; Mackenzie, J.; Pocchiari, M.; Smith, C.; Zerr, I.; Pal, S. The importance of ongoing international surveillance for Creutzfeldt–Jakob disease. Nat. Rev. Neurol., 2021, 17(6), 362-379. doi: 10.1038/s41582-021-00488-7 PMID: 33972773
  23. Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; Fleischmann-Struzek, C.; Machado, F.R.; Reinhart, K.K.; Rowan, K.; Seymour, C.W.; Watson, R.S.; West, T.E.; Marinho, F.; Hay, S.I.; Lozano, R.; Lopez, A.D.; Angus, D.C.; Murray, C.J.L.; Naghavi, M. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet, 2020, 395(10219), 200-211. doi: 10.1016/S0140-6736(19)32989-7 PMID: 31954465
  24. Hermann, P.; Appleby, B.; Brandel, J.P.; Caughey, B.; Collins, S.; Geschwind, M.D.; Green, A.; Haïk, S.; Kovacs, G.G.; Ladogana, A.; Llorens, F.; Mead, S.; Nishida, N.; Pal, S.; Parchi, P.; Pocchiari, M.; Satoh, K.; Zanusso, G.; Zerr, I. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol., 2021, 20(3), 235-246. doi: 10.1016/S1474-4422(20)30477-4 PMID: 33609480
  25. Li, B.; Chen, M.; Zhu, C. Neuroinflammation in prion disease. Int. J. Mol. Sci., 2021, 22(4), 2196. doi: 10.3390/ijms22042196 PMID: 33672129
  26. Ragagnin, A.M.G.; Shadfar, S.; Vidal, M.; Jamali, M.S.; Atkin, J.D. Motor neuron susceptibility in ALS/FTD. Front. Neurosci., 2019, 13, 532. doi: 10.3389/fnins.2019.00532 PMID: 31316328
  27. De Marchi, F.; Carrarini, C.; De Martino, A.; Diamanti, L.; Fasano, A.; Lupica, A.; Russo, M.; Salemme, S.; Spinelli, E.G.; Bombaci, A. Cognitive dysfunction in amyotrophic lateral sclerosis: Can we predict it? Neurol. Sci., 2021, 42(6), 2211-2222. doi: 10.1007/s10072-021-05188-0 PMID: 33772353
  28. Benbrika, S.; Desgranges, B.; Eustache, F.; Viader, F. Cognitive, emotional and psychological manifestations in amyotrophic lateral sclerosis at baseline and overtime: A review. Front. Neurosci., 2019, 13, 951. doi: 10.3389/fnins.2019.00951 PMID: 31551700
  29. Potter, H.; Chial, H.J.; Caneus, J.; Elos, M.; Elder, N.; Borysov, S.; Granic, A. Chromosome instability and mosaic aneuploidy in neurodegenerative and neurodevelopmental disorders. Front. Genet., 2019, 10, 1092. doi: 10.3389/fgene.2019.01092 PMID: 31788001
  30. Shin, J.W.; Kim, K.H.; Chao, M.J.; Atwal, R.S.; Gillis, T.; MacDonald, M.E.; Gusella, J.F.; Lee, J.M. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum. Mol. Genet., 2016, 25(20), ddw286. doi: 10.1093/hmg/ddw286 PMID: 28172889
  31. Nopoulos, P.C. Huntington disease: A single-gene degenerative disorder of the striatum. Dialogues Clin. Neurosci., 2016, 18(1), 91-98. doi: 10.31887/DCNS.2016.18.1/pnopoulos PMID: 27069383
  32. Delatycki, M.B.; Bandmann, O. Huntington disease. Neurology, 2016, 87(3), 247-248. doi: 10.1212/WNL.0000000000002874 PMID: 27335111
  33. Caron, N.S.; Wright, G.E.B.; Hayden, M.R.; Frcp, C. Huntington Disease Summary Suggestive Findings; GeneReviews, 2019, pp. 1-34.
  34. Ready, R.E.; Boileau, N.R.; Barton, S.K.; Lai, J.S.; McCormack, M.K.; Cella, D.; Fritz, N.E.; Paulsen, J.S.; Carlozzi, N.E. Positive affect and well-being in Huntington’s disease moderates the association between functional impairment and HRQOL outcomes. J. Huntingtons Dis., 2019, 8(2), 221-232. doi: 10.3233/JHD-180341 PMID: 31045519
  35. Irfan, Z.; Khanam, S.; Karmakar, V.; Firdous, S.M.; El Khier, B.S.I.A.; Khan, I.; Rehman, M.U.; Khan, A. Pathogenesis of Huntington’s disease: An emphasis on molecular pathways and prevention by natural remedies. Brain Sci., 2022, 12(10), 1389. doi: 10.3390/brainsci12101389 PMID: 36291322
  36. Feustel, A.C.; MacPherson, A.; Fergusson, D.A.; Kieburtz, K.; Kimmelman, J. Risks and benefits of unapproved disease-modifying treatments for neurodegenerative disease. Neurology, 2020, 94(1), e1-e14. doi: 10.1212/WNL.0000000000008699 PMID: 31792092
  37. Cummings, J.; Ritter, A.; Zhong, K. Clinical trials for disease-modifying therapies in Alzheimer’s disease: A primer, lessons learned, and a blueprint for the future. J. Alzheimers Dis., 2018, 64(s1), S3-S22. doi: 10.3233/JAD-179901 PMID: 29562511
  38. Ellerby, L.M. Repeat expansion disorders: Mechanisms and therapeutics. Neurotherapeutics, 2019, 16(4), 924-927. doi: 10.1007/s13311-019-00823-3 PMID: 31907874
  39. Park, J.Y.; Joo, K.; Woo, S.J. Ophthalmic manifestations and genetics of the polyglutamine autosomal dominant spinocerebellar ataxias: A review. Front. Neurosci., 2020, 14, 892. doi: 10.3389/fnins.2020.00892 PMID: 32973440
  40. Storey, E. Spinocerebellar Ataxia Type 15 Summary Genetic Counseling Clinical Diagnosis; GeneReviews, 2019, pp. 1-12.
  41. Perlman, S. Hereditary Ataxia Overview 1; Clinical Characteristics of Primary Hereditary Ataxia, 2022, pp. 1-20.
  42. Anon. Inheriting Genetic Conditions. Me, Help Genetics, Understand Services, Human; , 2012, pp. 10-11.
  43. Matsuura, T.; Ashizawa, T. Spinocerebellar Ataxia Type 10 Summary Genetic Counseling Suggestive Findings; GeneReviews, 2019, pp. 1-20.
  44. Chintalaphani, S.R.; Pineda, S.S.; Deveson, I.W.; Kumar, K.R. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol. Commun., 2021, 9(1), 98. doi: 10.1186/s40478-021-01201-x PMID: 34034831
  45. Tisdale, S.; Pellizzoni, L. Disease mechanisms and therapeutic approaches in spinal muscular atrophy. J. Neurosci., 2015, 35(23), 8691-8700. doi: 10.1523/JNEUROSCI.0417-15.2015 PMID: 26063904
  46. Tisdale, S.; Pellizzoni, L. Spinal muscular atrophy: Mutations, testing, and clinical relekeinath, Melissa C. prior, devivance. Appl. Clin. Genet., 2021, 14, 11-25. doi: 10.2147/TACG.S239603
  47. Keinath, M.C.; Prior, D.E.; Prior, T.W. Spinal muscular atrophy: Mutations, testing, and clinical relevance. Appl. Clin. Genet., 2021, 14, 11-25. doi: 10.2147/TACG.S239603 PMID: 33531827
  48. Butchbach, M.E.R. Copy number variations in the survival motor neuron genes: Implications for spinal muscular atrophy and other neurodegenerative diseases. Front. Mol. Biosci., 2016, 3, 7. doi: 10.3389/fmolb.2016.00007 PMID: 27014701
  49. Kraszewski, J.N.; Kay, D.M.; Stevens, C.F.; Koval, C.; Haser, B.; Ortiz, V.; Albertorio, A.; Cohen, L.L.; Jain, R.; Andrew, S.P.; Young, S.D.; LaMarca, N.M.; De Vivo, D.C.; Caggana, M.; Chung, W.K. Pilot study of population-based newborn screening for spinal muscular atrophy in New York state. Genet. Med., 2018, 20(6), 608-613. doi: 10.1038/gim.2017.152 PMID: 29758563
  50. Vijzelaar, R.; Snetselaar, R.; Clausen, M.; Mason, A.G.; Rinsma, M.; Zegers, M.; Molleman, N.; Boschloo, R.; Yilmaz, R.; Kuilboer, R.; Lens, S.; Sulchan, S.; Schouten, J. The frequency of SMN gene variants lacking exon 7 and 8 is highly population dependent. PLoS One, 2019, 14(7), e0220211. doi: 10.1371/journal.pone.0220211 PMID: 31339938
  51. Niba, E.T.E.; Ar Rochmah, M.; Harahap, N.I.F.; Awano, H.; Morioka, I.; Iijima, K.; Saito, T.; Saito, K.; Takeuchi, A.; Lai, P.S.; Bouike, Y.; Nishio, H.; Shinohara, M. SMA diagnosis: Detection of SMN1 deletion with real-time mCOP-PCR system using fresh blood DNA. Kobe J. Med. Sci., 2017, 63(3), E80-E83. PMID: 29434179
  52. Pellecchia, M.T.; Stankovic, I.; Fanciulli, A.; Krismer, F.; Meissner, W.G.; Palma, J.A.; Panicker, J.N.; Seppi, K.; Wenning, G.K.; Barone, P.; Kostic, V.; Sabanovic, M.; Bajaj, S.; Kaufmann, H.; Quinn, N.; Antonini, A.; Bang, J.; Pantelyat, A.; Berardelli, A.; Berg, D.; Biaggioni, I.; Bloem, B.; Brooks, D.J.; Calandra-Buonaura, G.; Cortelli, P.; Colosimo, C.; Ferreira, J.; Fox, S.; Frauscher, B.; Freeman, R.; Fung, V.; Gasser, T.; Gerhard, A.; Goldstein, D.; Hallett, M.; Halliday, G.; Höglinger, G.U.; Holton, J.L.; Houlden, H.; Iodice, V.; Klockgether, T.; Lang, A.; Ling, H.; Low, P.; Litvan, I.; Miki, Y.; Nomura, T.; Orimo, S.; Ozawa, T.; Postuma, R.; Rascol, O.; Robertson, D.; Sakakibara, R.; Sampaio, C.; Schmahmann, J.D.; Scholz, S.; Senard, J-M.; Sharma, M.; Singer, W.; Stamelou, M.; Takeda, A.; Tolosa, E.; Tsuji, S.; Vignatelli, L.; Walter, U.; Watanabe, H.; Weintraub, D.; Siebert, U.; Poewe, W. Can autonomic testing and imaging contribute to the early diagnosis of multiple system atrophy? a systematic review and recommendations by the movement disorder society multiple system atrophy study group. Mov. Disord. Clin. Pract., 2020, 7(7), 750-762. doi: 10.1002/mdc3.13052 PMID: 33043073
  53. Jellinger, K.A. Multiple system atrophy: An oligodendroglioneural synucleinopathy1. J. Alzheimers Dis., 2018, 62(3), 1141-1179. doi: 10.3233/JAD-170397 PMID: 28984582
  54. Kim, H.J.; Jeon, B.; Fung, V.S.C. Role of magnetic resonance imaging in the diagnosis of multiple system atrophy. Mov. Disord. Clin. Pract., 2017, 4(1), 12-20. doi: 10.1002/mdc3.12404 PMID: 30363358
  55. Blesa, J.; Trigo-Damas, I.; Dileone, M.; del Rey, N.L.G.; Hernandez, L.F.; Obeso, J.A. Compensatory mechanisms in Parkinson’s disease: Circuits adaptations and role in disease modification. Exp. Neurol., 2017, 298(Pt B), 148-161. doi: 10.1016/j.expneurol.2017.10.002 PMID: 28987461
  56. Kim, M.; Ahn, J.H.; Cho, Y.; Kim, J.S.; Youn, J.; Cho, J.W. Differential value of brain magnetic resonance imaging in multiple system atrophy cerebellar phenotype and spinocerebellar ataxias. Sci. Rep., 2019, 9(1), 17329. doi: 10.1038/s41598-019-53980-y PMID: 31758059
  57. Chen, H.J.; Gao, Y.Q.; Che, C.H.; Lin, H.; Ruan, X.L. Diffusion tensor imaging with tract-based spatial statistics reveals white matter abnormalities in patients with vascular cognitive impairment. Front. Neuroanat., 2018, 12, 53. doi: 10.3389/fnana.2018.00053 PMID: 29997482
  58. Zhang, Y.; Burock, M.A. Corrigendum: Diffusion tensor imaging in Parkinson’s disease and parkinsonian syndrome: A systematic review. Front. Neurol., 2020, 11, 612069. doi: 10.3389/fneur.2020.612069
  59. Cao, Z.; Wu, Y.; Liu, G.; Jiang, Y.; Wang, X.; Wang, Z.; Feng, T. Differential diagnosis of multiple system atrophy-parkinsonism and Parkinson’s disease using α-synuclein and external anal sphincter electromyography. Front. Neurol., 2020, 11, 1043. doi: 10.3389/fneur.2020.01043 PMID: 33041984
  60. Compagnoni, G.M.; Di Fonzo, A. Understanding the pathogenesis of multiple system atrophy: state of the art and future perspectives. Acta Neuropathol. Commun., 2019, 7(1), 113. doi: 10.1186/s40478-019-0730-6 PMID: 31300049
  61. Lechtzin, N. Predicting respiratory failure in amyotrophic lateral sclerosis: recruiting a few good pulmonologists. Eur. Respir. J., 2019, 53(4), 1900360. doi: 10.1183/13993003.00360-2019 PMID: 31000666
  62. Soiza, R.L.; Donaldson, A.I.C.; Myint, P.K. Vaccine against arteriosclerosis: An update. Ther. Adv. Vaccines, 2018, 9, 259-261.
  63. Masrori, P.; Van Damme, P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol., 2020, 27(10), 1918-1929. doi: 10.1111/ene.14393 PMID: 32526057
  64. Re, D.B.; Yan, B.; Calderón-Garcidueñas, L.; Andrew, A.S.; Tischbein, M.; Stommel, E.W. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: Identifying exposures determining higher ALS risk. J. Neurol., 2022, 269(5), 2359-2377. doi: 10.1007/s00415-021-10928-5 PMID: 34973105
  65. Alzheimer’s disease facts and figures. Alzheimers Dement., 2020, 16(3), 391-460. doi: 10.1002/alz.12068
  66. Bonanni, L.; Franciotti, R.; Pizzi, S.D.; Thomas, A.; Onofrj, M. Lewy Body Dementia. NeurodegeneratIve Diseases: Clinical Aspects; Molecular Genetics and Biomarkers, 2018, pp. 297-312. doi: 10.1007/978-3-319-72938-1_14
  67. Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W.; Unit, M.D.; Service, N.; Barcelona, U.; De Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol, 2022, 20, 385-397.
  68. Outeiro, T.F.; Koss, D.J.; Erskine, D.; Walker, L.; Kurzawa-Akanbi, M.; Burn, D.; Donaghy, P.; Morris, C.; Taylor, J.P.; Thomas, A.; Attems, J.; McKeith, I. Dementia with Lewy bodies: An update and outlook. Mol. Neurodegener., 2019, 14(1), 5. doi: 10.1186/s13024-019-0306-8 PMID: 30665447
  69. Alzheimer’s disease facts and figures. Alzheimers Dement., 2021, 17(3), 327-406. doi: 10.1002/alz.12328 PMID: 33756057
  70. Jellinger, K.A.; Korczyn, A.D. Are dementia with Lewy bodies and Parkinson’s disease dementia the same disease? BMC Med., 2018, 16(1), 34. doi: 10.1186/s12916-018-1016-8 PMID: 29510692
  71. Capouch, S.D.; Farlow, M.R.; Brosch, J.R. A review of dementia with Lewy bodies’ impact, diagnostic criteria and treatment. Neurol. Ther., 2018, 7(2), 249-263. doi: 10.1007/s40120-018-0104-1 PMID: 29987534
  72. Ruangritchankul, S.; Gray, L.C. Adverse drug reactions of acetylcholinesterase inhibitors in older people living with dementia : A comprehensive literature review. Ther Clin Risk Manag, 2021, 17, 927-949. doi: 10.2147/TCRM.S323387
  73. Parra, H.H.; Cortés, H.; Arturo, J.; Fuentes, A.; Del, M.; Audelo, P.; Florán, B.; Gómez, G.L.; Rad, J.S.; Cho, W.C. Repositioning of drugs for Parkinson’s disease and pharmaceutical nanotechnology tools for their optimization. J. Nanobiotechnology, 2022, 20(1), 413.
  74. Budayr, A.; Tan, T.C.; Lo, J.C.; Zaroff, J.G.; Tabada, G.H.; Yang, J.; Go, A.S. Cardiac valvular abnormalities associated with use and cumulative exposure of cabergoline for hyperprolactinemia: The CATCH study. BMC Endocr Disord, 2020, 20(1), 25.
  75. Cepeda, C.; Murphy, K.P.S.; Parent, M.; Levine, M.S.; Disabilities, D.; Behavior, H.; Keynes, M.; City, Q. The role of dopamine in Huntington’s disease. Prog Brain Res, 2015, 211, 235-254. doi: 10.1016/B978-0-444-63425-2.00010-6 PMID: 24968783
  76. Sellner, J.; Hauer, L.; Illes, Z.; Warnke, C.; Laurent, S.; Levy, M. Immunological aspects of approved MS therapeutics. Front. Immunol., 2019, 10, 1-24.
  77. Cong, W.; Bai, R.; Li, Y.F.; Wang, L.; Chen, C. Selenium nanoparticles as an efficient nanomedicine for the therapy of Huntington’s disease. ACS Appl. Mater. Interfaces, 2019, 11(38), 34725-34735. doi: 10.1021/acsami.9b12319 PMID: 31479233
  78. Monge-Fuentes, V.; Biolchi Mayer, A.; Lima, M.R.; Geraldes, L.R.; Zanotto, L.N.; Moreira, K.G.; Martins, O.P.; Piva, H.L.; Felipe, M.S.S.; Amaral, A.C.; Bocca, A.L.; Tedesco, A.C.; Mortari, M.R. Dopamine-loaded nanoparticle systems circumvent the blood–brain barrier restoring motor function in mouse model for Parkinson’s disease. Sci. Rep., 2021, 11(1), 15185. doi: 10.1038/s41598-021-94175-8 PMID: 34312413
  79. Díaz-García, D.; Ferrer-Donato, Á.; Méndez-Arriaga, J.M.; Cabrera-Pinto, M.; Díaz-Sánchez, M.; Prashar, S.; Fernandez-Martos, C.M.; Gómez-Ruiz, S. Design of mesoporous silica nanoparticles for the treatment of amyotrophic lateral sclerosis (ALS) with a therapeutic cocktail based on leptin and pioglitazone. ACS Biomater. Sci. Eng., 2022, 8(11), 4838-4849. doi: 10.1021/acsbiomaterials.2c00865 PMID: 36240025
  80. Wang, Z.; Cheng, Y.; Zhao, D.; Pliss, A.; Liu, J.; Luan, P. Synergic treatment of Alzheimer’s disease with brain targeted nanoparticles incorporating NgR-siRNA and brain derived neurotrophic factor. Smart Materials in Medicine, 2020, 1, 125-130. doi: 10.1016/j.smaim.2020.08.001
  81. Bhattacharya, T.; Soares, G.A.B.; Chopra, H.; Rahman, M.M.; Hasan, Z.; Swain, S.S.; Cavalu, S. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials, 2022, 15(3), 804. doi: 10.3390/ma15030804 PMID: 35160749
  82. Pinheiro, R.G.R.; Coutinho, A.J.; Pinheiro, M.; Neves, A.R. Nanoparticles for targeted brain drug delivery: What do we know? Int. J. Mol. Sci., 2021, 22(21), 11654. doi: 10.3390/ijms222111654 PMID: 34769082
  83. Satapathy, M.K.; Yen, T.L.; Jan, J.S.; Tang, R.D.; Wang, J.Y.; Taliyan, R.; Yang, C.H. Solid lipid nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB. Pharmaceutics, 2021, 13(8), 1183. doi: 10.3390/pharmaceutics13081183 PMID: 34452143
  84. Bellettato, C.M.; Scarpa, M. Possible strategies to cross the blood–brain barrier. Ital. J. Pediatr., 2018, 44(S2), 131. doi: 10.1186/s13052-018-0563-0 PMID: 30442184
  85. Niu, X.; Chen, J.; Gao, J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J. Pharm. Sci., 2019, 14(5), 480-496. doi: 10.1016/j.ajps.2018.09.005 PMID: 32104476
  86. Delello, L.; Filippo, D.; Duarte, J.L.; Luiz, M.T.; Thayanne, J.; Araújo, C.; De; Chorilli, M. Drug delivery nanosystems in glioblastoma multiforme treatment: Current state of the art. Curr. Neuropharmacol, 2021, 19(6), 787-812.
  87. Acidic, G.F. Drug Delivery Nanosystems in Glioblastoma Multiforme Treatment: Current state of the Art.M Curr Neuropharmacol, 2021, 19(6), 787-812.
  88. Krzyzowska, M.; Janicka, M.; Tomaszewska, E.; Ranoszek-soliwoda, K.; Celichowski, G.; Grobelny, J.; Szymanski, P. Lactoferrin-conjugated nanoparticles as new antivirals. Pharmaceutics., 2022, 14(9), 1862. doi: 10.3390/pharmaceutics14091862
  89. Haney, M.J.; Zhao, Y.; Fay, J.; Duhyeong, H.; Wang, M.; Wang, H.; Li, Z.; Lee, Y.Z.; Karuppan, M.K.; El-Hage, N.; Kabanov, A.V.; Batrakova, E.V. Genetically modified macrophages accomplish targeted gene delivery to the inflamed brain in transgenic Parkin Q311X(A) mice: Importance of administration routes. Sci. Rep., 2020, 10(1), 11818. doi: 10.1038/s41598-020-68874-7 PMID: 32678262
  90. Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124. doi: 10.1038/s41573-020-0090-8 PMID: 33277608
  91. Khan, N.H.; Mir, M.; Ngowi, E.E.; Zafar, U.; Khakwani, M.M.A.K.; Khattak, S.; Zhai, Y.K.; Jiang, E.S.; Zheng, M.; Duan, S.F.; Wei, J.S.; Wu, D.D.; Ji, X.Y. Nanomedicine: A promising way to manage alzheimer’s disease. Front. Bioeng. Biotechnol., 2021, 9, 630055. doi: 10.3389/fbioe.2021.630055 PMID: 33996777
  92. Wang, W.W.; Zhang, X.R.; Lin, J.Y.; Zhang, Z.R.; Wang, Z.; Chen, S.Y.; Xie, C.L. Levodopa/benserazide PLGA microsphere prevents l-dopa–induced dyskinesia via lower β-arrestin2 in 6-hydroxydopamine Parkinson’s rats. Front. Pharmacol., 2019, 10, 660. doi: 10.3389/fphar.2019.00660 PMID: 31275144
  93. Rahman, M.M.; Lendel, C. Extracellular protein components of amyloid plaques and their roles in Alzheimer’s disease pathology. Mol. Neurodegener., 2021, 16(1), 59. doi: 10.1186/s13024-021-00465-0 PMID: 34454574
  94. Miculas, D.C.; Negru, P.A.; Bungau, S.G.; Behl, T.; Hassan, S.S.; Tit, D.M. Pharmacotherapy evolution in Alzheimer’s disease: Current framework and relevant directions. Cells, 2022, 12(1), 131. doi: 10.3390/cells12010131 PMID: 36611925
  95. Visanji, N.P.; Lang, A.E.; Kovacs, G.G. Beyond the synucleinopathies: Alpha synuclein as a driving force in neurodegenerative comorbidities. Transl. Neurodegener., 2019, 8(1), 28. doi: 10.1186/s40035-019-0172-x PMID: 31508228
  96. Mar, H.; Widman, E.; Johansson, A. Personalized medicine approach in treating Parkinson’s disease, using oral administration of levodopa/carbidopa microtablets in clinical practice. J. Pers. Med., 2021, 11(8), 720.
  97. Mahul-Mellier, A.L.; Burtscher, J.; Maharjan, N.; Weerens, L.; Croisier, M.; Kuttler, F.; Leleu, M.; Knott, G.W.; Lashuel, H.A. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc. Natl. Acad. Sci., 2020, 117(9), 4971-4982. doi: 10.1073/pnas.1913904117 PMID: 32075919
  98. Taylor, J.P.; McKeith, I.G.; Burn, D.J.; Boeve, B.F.; Weintraub, D.; Bamford, C.; Allan, L.M.; Thomas, A.J.; O’Brien, J.T. New evidence on the management of Lewy body dementia. Lancet Neurol., 2020, 19(2), 157-169. doi: 10.1016/S1474-4422(19)30153-X PMID: 31519472
  99. Lee, H.J.; Ricarte, D.; Ortiz, D.; Lee, S.J. Models of multiple system atrophy. Exp. Mol. Med., 2019, 51(11), 1-10. PMID: 31740682
  100. Ortiz, J.F.; Betté, S.; Tambo, W.; Tao, F.; Cozar, J.C.; Isaacson, S. Multiple system atrophy – cerebellar type: clinical picture and treatment of an often-overlooked disorder. Cureus, 2020, 12. doi: 10.7759/cureus.10741
  101. Hickman, R.A.; Faust, P.L.; Marder, K.; Yamamoto, A.; Vonsattel, J.P. The distribution and density of Huntingtin inclusions across the Huntington disease neocortex: regional correlations with Huntingtin repeat expansion independent of pathologic grade. Acta Neuropathol. Commun., 2022, 10(1), 55. doi: 10.1186/s40478-022-01364-1 PMID: 35440014
  102. Claassen, D.O.; Ayyagari, R.; Garcia-Horton, V.; Zhang, S.; Alexander, J.; Leo, S. Real-world adherence to tetrabenazine or deutetrabenazine among patients with Huntington’s disease: A retrospective database analysis. Neurol. Ther., 2022, 11(1), 435-448. doi: 10.1007/s40120-021-00309-5 PMID: 34905160
  103. Suk, T.R.; Rousseaux, M.W.C. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol. Neurodegener., 2020, 15(1), 45. doi: 10.1186/s13024-020-00397-1 PMID: 32799899
  104. Xu, X.; Shen, D.; Gao, Y.; Zhou, Q.; Ni, Y.; Meng, H.; Shi, H.; Le, W.; Chen, S.; Chen, S. A perspective on therapies for amyotrophic lateral sclerosis: Can disease progression be curbed? Transl. Neurodegener., 2021, 10(1), 29. doi: 10.1186/s40035-021-00250-5 PMID: 34372914

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers