Modulation of the HIF-1α-NCOA4-FTH1 Signaling Axis Regulating Ferroptosis-induced Hepatic Stellate Cell Senescence to Explore the Anti-hepatic Fibrosis Mechanism of Curcumol


Cite item

Full Text

Abstract

Introduction:Senescence of activated hepatic stellate cells (HSC) reduces extracellular matrix expression to reverse liver fibrosis. Ferroptosis is closely related to cellular senescence, but its regulatory mechanisms need to be further investigated. The iron ions weakly bound to ferritin in the cell are called labile iron pool (LIP), and together with ferritin, they maintain cellular iron homeostasis and regulate the cell's sensitivity to ferroptosis.

Methods:We used lipopolysaccharide (LPS) to construct a pathological model group and divided the hepatic stellate cells into a blank group, a model group, and a curcumol 12.5 mg/L group, a curcumol 25 mg/L group, and a curcumol 50 mg/L group. HIF-1α-NCOA4- FTH1 signalling axis, ferroptosis and cellular senescence were detected by various cellular molecular biology experiments.

Result:We found that curcumol could induce hepatic stellate cell senescence by promoting iron death in hepatic stellate cells. Curcumol induced massive deposition of iron ions in hepatic stellate cells by activating the HIF-1α-NCOA4-FTH1 signalling axis, which further led to iron overload and lipid peroxidation-induced ferroptosis. Interestingly, our knockdown of HIF-1α rescued curcumol-induced LIP and iron deposition in hepatic stellate cells, suggesting that HIF-1α is a key target of curcumol in regulating iron metabolism and ferroptosis. We were able to rescue curcumol-induced hepatic stellate cell senescence when we reduced LIP and iron ion deposition using iron chelators.

Conclusion:Overall, curcumol induces ferroptosis and cellular senescence by increasing HIF-1α expression and increasing NCOA4 interaction with FTH1, leading to massive deposition of LIP and iron ions, which may be the molecular biological mechanism of its anti-liver fibrosis.

About the authors

Yang Zheng

Department of Medicine, Faculty of Chinese Medicine Science,, Guangxi University of Chinese Medicine,

Author for correspondence.
Email: info@benthamscience.net

Lei Wang

Department of Medicine, Faculty of Chinese Medicine Science,, Guangxi University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

Jiaru Wang

Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine

Email: info@benthamscience.net

Tiejian Zhao

Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine

Email: info@benthamscience.net

Jiahui Wang

Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine

Email: info@benthamscience.net

References

  1. Lambrecht, J.; van Grunsven, L.A.; Tacke, F. Current and emerging pharmacotherapeutic interventions for the treatment of liver fibrosis. Expert Opin. Pharmacother., 2020, 21(13), 1637-1649. doi: 10.1080/14656566.2020.1774553 PMID: 32543284
  2. Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells, 2020, 9(4), 875. doi: 10.3390/cells9040875 PMID: 32260126
  3. Chang, M.L.; Yang, S.S. Metabolic signature of hepatic fibrosis: From individual pathways to systems biology. Cells, 2019, 8(11), 1423. doi: 10.3390/cells8111423 PMID: 31726658
  4. Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(3), 151-166. doi: 10.1038/s41575-020-00372-7 PMID: 33128017
  5. Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(7), 397-411. doi: 10.1038/nrgastro.2017.38 PMID: 28487545
  6. Liang, D.; Minikes, A.M.; Jiang, X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell, 2022, 82(12), 2215-2227. doi: 10.1016/j.molcel.2022.03.022 PMID: 35390277
  7. Mehta, K.J.; Farnaud, S.J.; Sharp, P.A. Iron and liver fibrosis: Mechanistic and clinical aspects. World J. Gastroenterol., 2019, 25(5), 521-538. doi: 10.3748/wjg.v25.i5.521 PMID: 30774269
  8. Yuan, S.; Wei, C.; Liu, G.; Zhang, L.; Li, J.; Li, L.; Cai, S.; Fang, L. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway. Cell Prolif., 2022, 55(1), e13158. doi: 10.1111/cpr.13158 PMID: 34811833
  9. Roger, L.; Tomas, F.; Gire, V. Mechanisms and regulation of cellular senescence. Int. J. Mol. Sci., 2021, 22(23), 13173. doi: 10.3390/ijms222313173 PMID: 34884978
  10. Zhang, M.; Serna-Salas, S.; Damba, T.; Borghesan, M.; Demaria, M.; Moshage, H. Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives. Mech. Ageing Dev., 2021, 199, 111572. doi: 10.1016/j.mad.2021.111572 PMID: 34536446
  11. Maharajan, N.; Ganesan, C.D.; Moon, C.; Jang, C.H.; Oh, W.K.; Cho, G.W.; Licochalcone, D. Licochalcone D ameliorates oxidative stress-induced senescence via aMPK activation. Int. J. Mol. Sci., 2021, 22(14), 7324. doi: 10.3390/ijms22147324 PMID: 34298945
  12. Nakamura, T.; Naguro, I.; Ichijo, H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(9), 1398-1409. doi: 10.1016/j.bbagen.2019.06.010 PMID: 31229492
  13. Li, S.; Wang, M.; Wang, Y.; Guo, Y.; Tao, X.; Wang, X.; Cao, Y.; Tian, S.; Li, Q. p53-mediated ferroptosis is required for 1-methyl-4-phenylpyridinium-induced senescence of PC12 cells. Toxicol. In vitro, 2021, 73, 105146. doi: 10.1016/j.tiv.2021.105146 PMID: 33737050
  14. Zheng, Y.; Wang, J.; Zhao, T.; Wang, L.; Wang, J. Modulation of the VEGF/AKT/eNOS signaling pathway to regulate liver angiogenesis to explore the anti-hepatic fibrosis mechanism of curcumol. J. Ethnopharmacol., 2021, 280, 114480. doi: 10.1016/j.jep.2021.114480 PMID: 34358654
  15. Zheng, Y.; Wang, L.; Wang, J.; Liu, L.; Zhao, T. Effect of curcumol on NOD-like receptor thermoprotein domain 3 inflammasomes in liver fibrosis of mice. Chin. J. Integr. Med., 2022, 28(11), 992-999. doi: 10.1007/s11655-021-3310-0 PMID: 34319504
  16. Yuan, Y.; Zhai, Y.; Chen, J.; Xu, X.; Wang, H. Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 axis. Biomolecules, 2021, 11(7), 923. doi: 10.3390/biom11070923 PMID: 34206421
  17. Parola, M.; Pinzani, M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med., 2019, 65, 37-55. doi: 10.1016/j.mam.2018.09.002 PMID: 30213667
  18. Wu, A.; Feng, B.; Yu, J.; Yan, L.; Che, L.; Zhuo, Y.; Luo, Y.; Yu, B.; Wu, D.; Chen, D. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis. Redox Biol., 2021, 46, 102131. doi: 10.1016/j.redox.2021.102131 PMID: 34530349
  19. Wang, H.; Jiang, C.; Yang, Y.; Li, J.; Wang, Y.; Wang, C.; Gao, Y. Resveratrol ameliorates iron overload induced liver fibrosis in mice by regulating iron homeostasis. PeerJ, 2022, 10, e13592. doi: 10.7717/peerj.13592 PMID: 35698613
  20. Wang, F.; Li, Z.; Chen, L.; Yang, T.; Liang, B.; Zhang, Z.; Shao, J.; Xu, X.; Yin, G.; Wang, S.; Ding, H.; Zhang, F.; Zheng, S. Inhibition of ASCT2 induces hepatic stellate cell senescence with modified proinflammatory secretome through an IL-1α/NF-κB feedback pathway to inhibit liver fibrosis. Acta Pharm. Sin. B, 2022, 12(9), 3618-3638. doi: 10.1016/j.apsb.2022.03.014 PMID: 36176909
  21. Jiang, P.; Yang, F.; Zou, C.; Bao, T.; Wu, M.; Yang, D.; Bu, S. The construction and analysis of a ferroptosis-related gene prognostic signature for pancreatic cancer. Aging, 2021, 13(7), 10396-10414. doi: 10.18632/aging.202801 PMID: 33819918
  22. Yang, W.S.; Stockwell, B.R. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol., 2016, 26(3), 165-176. doi: 10.1016/j.tcb.2015.10.014 PMID: 26653790
  23. Wang, L.; Liu, Y.; Du, T.; Yang, H.; Lei, L.; Guo, M.; Ding, H.F.; Zhang, J.; Wang, H.; Chen, X.; Yan, C. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc–. Cell Death Differ., 2020, 27(2), 662-675. doi: 10.1038/s41418-019-0380-z PMID: 31273299
  24. Seibt, T.M.; Proneth, B.; Conrad, M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic. Biol. Med., 2019, 133, 144-152. doi: 10.1016/j.freeradbiomed.2018.09.014 PMID: 30219704
  25. Miao, Y.; Chen, Y.; Xue, F.; Liu, K.; Zhu, B.; Gao, J.; Yin, J.; Zhang, C.; Li, G. Contribution of ferroptosis and GPX4’s dual functions to osteoarthritis progression. E. Bio. Medicine, 2022, 76, 103847. doi: 10.1016/j.ebiom.2022.103847 PMID: 35101656
  26. Marku, A.; Galli, A.; Marciani, P.; Dule, N.; Perego, C.; Castagna, M. Iron metabolism in pancreatic beta-cell function and dysfunction. Cells, 2021, 10(11), 2841. doi: 10.3390/cells10112841 PMID: 34831062
  27. He, Y.J.; Liu, X.Y.; Xing, L.; Wan, X.; Chang, X.; Jiang, H.L. Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials, 2020, 241, 119911. doi: 10.1016/j.biomaterials.2020.119911 PMID: 32143060
  28. McGill, M.R.; Jaeschke, H. Biomarkers of drug-induced liver injury. Adv. Pharmacol., 2019, 85, 221-239. doi: 10.1016/bs.apha.2019.02.001 PMID: 31307588
  29. Douros, A.; Bronder, E.; Andersohn, F.; Klimpel, A.; Kreutz, R.; Garbe, E.; Bolbrinker, J. Herb-induced liver injury in the berlin case-control surveillance study. Int. J. Mol. Sci., 2016, 17(1), 114. doi: 10.3390/ijms17010114 PMID: 26784183
  30. Visentin, M.; Lenggenhager, D.; Gai, Z.; Kullak-Ublick, G.A. Drug-induced bile duct injury. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(4)(4 Pt B), 1498-1506. doi: 10.1016/j.bbadis.2017.08.033 PMID: 28882625
  31. Jaeschke, H.; Xie, Y.; McGill, M.R. Acetaminophen-induced liver injury: From animal models to humans. J. Clin. Transl. Hepatol., 2014, 2(3), 153-161. PMID: 26355817
  32. Chao, X.; Wang, H.; Jaeschke, H.; Ding, W.X. Role and mechanisms of autophagy in acetaminophen-induced liver injury. Liver Int., 2018, 38(8), 1363-1374. doi: 10.1111/liv.13866 PMID: 29682868
  33. Aluri, J.; Cooper, M.A.; Schuettpelz, L.G. Toll-like receptor signaling in the establishment and function of the immune system. Cells, 2021, 10(6), 1374. doi: 10.3390/cells10061374 PMID: 34199501
  34. Yang, T.; Wang, H.; Wang, X.; Li, J.; Jiang, L. The dual role of innate immune response in acetaminophen-induced liver injury. Biology, 2022, 11(7), 1057. doi: 10.3390/biology11071057 PMID: 36101435
  35. Yamada, N.; Karasawa, T.; Kimura, H.; Watanabe, S.; Komada, T.; Kamata, R.; Sampilvanjil, A.; Ito, J.; Nakagawa, K.; Kuwata, H.; Hara, S.; Mizuta, K.; Sakuma, Y.; Sata, N.; Takahashi, M. Ferroptosis driven by radical oxidation of n-6 polyunsaturated fatty acids mediates acetaminophen-induced acute liver failure. Cell Death Dis., 2020, 11(2), 144. doi: 10.1038/s41419-020-2334-2 PMID: 32094346
  36. Wu, Y.; Jiao, H.; Yue, Y.; He, K.; Jin, Y.; Zhang, J.; Zhang, J.; Wei, Y.; Luo, H.; Hao, Z.; Zhao, X.; Xia, Q.; Zhong, Q.; Zhang, J. Ubiquitin ligase E3 HUWE1/MULE targets transferrin receptor for degradation and suppresses ferroptosis in acute liver injury. Cell Death Differ., 2022, 29(9), 1705-1718. doi: 10.1038/s41418-022-00957-6 PMID: 35260822
  37. Niu, B.; Lei, X.; Xu, Q.; Ju, Y.; Xu, D.; Mao, L.; Li, J.; Zheng, Y.; Sun, N.; Zhang, X.; Mao, Y.; Li, X. Protecting mitochondria via inhibiting VDAC1 oligomerization alleviates ferroptosis in acetaminophen-induced acute liver injury. Cell Biol. Toxicol., 2022, 38(3), 505-530. doi: 10.1007/s10565-021-09624-x PMID: 34401974
  38. Wu, J.; Xue, R.; Wu, M.; Yin, X.; Xie, B.; Meng, Q. Nrf2-mediated ferroptosis inhibition exerts a protective effect on acute-on-chronic liver failure. Oxid. Med. Cell. Longev., 2022, 2022, 1-23. doi: 10.1155/2022/4505513 PMID: 35480867
  39. Li, L.; Wang, K.; Jia, R.; xie, J.; Ma, L.; Hao, Z.; Zhang, W.; Mo, J.; Ren, F. Ferroportin-dependent ferroptosis induced by ellagic acid retards liver fibrosis by impairing the SNARE complexes formation. Redox Biol., 2022, 56, 102435. doi: 10.1016/j.redox.2022.102435 PMID: 36029649
  40. You, Y.; Liu, C.; Liu, T.; Tian, M.; Wu, N.; Yu, Z.; Zhao, F.; Qi, J.; Zhu, Q. FNDC3B protects steatosis and ferroptosis via the AMPK pathway in alcoholic fatty liver disease. Free Radic. Biol. Med., 2022, 193(Pt 2), 808-819. doi: 10.1016/j.freeradbiomed.2022.10.322 PMID: 36336231
  41. Kowdley, K.V.; Belt, P.; Wilson, L.A.; Yeh, M.M.; Neuschwander-Tetri, B.A.; Chalasani, N.; Sanyal, A.J.; Nelson, J.E. Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology, 2012, 55(1), 77-85. doi: 10.1002/hep.24706 PMID: 21953442
  42. Gao, G.; Xie, Z.; Li, E.; Yuan, Y.; Fu, Y.; Wang, P.; Zhang, X.; Qiao, Y.; Xu, J.; Hölscher, C.; Wang, H.; Zhang, Z. Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis. J. Nat. Med., 2021, 75(3), 540-552. doi: 10.1007/s11418-021-01491-4 PMID: 33590347
  43. Chen, S.; Zhu, J.; Zang, X.; Zhai, Y. The emerging role of ferroptosis in liver diseases. Front. Cell Dev. Biol., 2021, 9, 801365. doi: 10.3389/fcell.2021.801365 PMID: 34970553
  44. Ali, N.; Ferrao, K.; Mehta, K.J. Liver iron loading in alcohol-associated liver disease. Am. J. Pathol., 2023, 193(10), 1427-1439. doi: 10.1016/j.ajpath.2022.08.010 PMID: 36306827
  45. Liu, C.Y.; Wang, M.; Yu, H.M.; Han, F.X.; Wu, Q.S.; Cai, X.J.; Kurihara, H.; Chen, Y.X.; Li, Y.F.; He, R.R. Ferroptosis is involved in alcohol-induced cell death in vivo and in vitro. Biosci. Biotechnol. Biochem., 2020, 84(8), 1621-1628. doi: 10.1080/09168451.2020.1763155 PMID: 32419644
  46. Gao, R.; Tang, H.; Mao, J. Programmed cell death in liver fibrosis. J. Inflamm. Res., 2023, 16, 3897-3910. doi: 10.2147/JIR.S427868 PMID: 37674533
  47. Wang, L.; Zhang, Z.; Li, M.; Wang, F.; Jia, Y.; Zhang, F.; Shao, J.; Chen, A.; Zheng, S. P53-dependent induction of ferroptosis is required for artemether to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation. IUBMB Life, 2019, 71(1), 45-56. doi: 10.1002/iub.1895 PMID: 30321484
  48. Wang, S.; Li, F.; Qiao, R.; Hu, X.; Liao, H.; Chen, L.; Wu, J.; Wu, H.; Zhao, M.; Liu, J.; Chen, R.; Ma, X.; Kim, D.; Sun, J.; Davis, T.P.; Chen, C.; Tian, J.; Hyeon, T.; Ling, D. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano, 2018, 12(12), 12380-12392. doi: 10.1021/acsnano.8b06399 PMID: 30495919
  49. He, G.N.; Bao, N.R.; Wang, S.; Xi, M.; Zhang, T.H.; Chen, F.S. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des. Devel. Ther., 2021, 15, 3965-3978. doi: 10.2147/DDDT.S332847 PMID: 34566408
  50. Yang, Y.; Wang, H.; Guo, Y.; Lei, W.; Wang, J.; Hu, X.; Yang, J.; He, Q. Metal ion imbalance-related oxidative stress is involved in the mechanisms of liver injury in a rat model of chronic aluminum exposure. Biol. Trace Elem. Res., 2016, 173(1), 126-131. doi: 10.1007/s12011-016-0627-1 PMID: 26811106
  51. Blázovics, A.; Sárdi, É.; Szentmihályi, K.; Váli, L.; Takács-Hájos, M.; Stefanovits-Bányai, É. Extreme consumption of beta vulgaris var. rubra can cause metal ion accumulation in the liver. Acta Biol. Hung., 2007, 58(3), 281-286. doi: 10.1556/ABiol.58.2007.3.4 PMID: 17899785
  52. Liu, Z.; Ma, H.; Lai, Z. The role of ferroptosis and cuproptosis in curcumin against hepatocellular carcinoma. Molecules, 2023, 28(4), 1623. doi: 10.3390/molecules28041623 PMID: 36838613
  53. Zatulovskaia, Y.A.; Ilyechova, E.Y.; Puchkova, L.V. The features of copper metabolism in the rat liver during development. PLoS One, 2015, 10(10), e0140797. doi: 10.1371/journal.pone.0140797 PMID: 26474410
  54. Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Fan, X.; Li, C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch., 2020, 472(10), 1415-1429. doi: 10.1007/s00424-020-02412-2 PMID: 32506322
  55. Hatano, R.; Ebara, M.; Fukuda, H.; Yoshikawa, M.; Sugiura, N.; Kondo, F.; Yukawa, M.; Saisho, H. Accumulation of copper in the liver and hepatic injury in chronic hepatitis C. J. Gastroenterol. Hepatol., 2000, 15(7), 786-791. doi: 10.1046/j.1440-1746.2000.02199.x PMID: 10937686
  56. Tassabehji, N.M.; Vanlandingham, J.W.; Levenson, C.W. Copper alters the conformation and transcriptional activity of the tumor suppressor protein p53 in human Hep G2 cells. Exp. Biol. Med., 2005, 230(10), 699-708. doi: 10.1177/153537020523001002 PMID: 16246896
  57. Mikhail, T.H.; Nicola, W.G.; Ibrahim, K.H.; Salama, S.H.; Emam, M. Abnormal zinc and copper metabolism in hepatic steatosis. Boll. Chim. Farm., 1996, 135(10), 591-597. PMID: 9048448
  58. Mousa, S.O.; Abd Alsamia, E.M.; Moness, H.M.; Mohamed, O.G. The effect of zinc deficiency and iron overload on endocrine and exocrine pancreatic function in children with transfusion-dependent thalassemia: A cross-sectional study. BMC Pediatr., 2021, 21(1), 468. doi: 10.1186/s12887-021-02940-5 PMID: 34686155
  59. Himoto, T.; Masaki, T. Associations between zinc deficiency and metabolic abnormalities in patients with chronic liver disease. Nutrients, 2018, 10(1), 88. doi: 10.3390/nu10010088 PMID: 29342898
  60. Rayssiguier, Y.; Chevalier, F.; Bonnet, M.; Kopp, J.; Durlach, J. Influence of magnesium deficiency on liver collagen after carbon tetrachloride or ethanol administration to rats. J. Nutr., 1985, 115(12), 1656-1662. doi: 10.1093/jn/115.12.1656 PMID: 4067656
  61. Dong, Z.; Yang, X.; Qiu, T.; an, Y.; Zhang, G.; Li, Q.; Jiang, L.; Yang, G.; Cao, J.; Sun, X.; Liu, X.; Liu, D.; Yao, X. Exosomal miR-181a-2-3p derived from citreoviridin-treated hepatocytes activates hepatic stellate cells trough inducing mitochondrial calcium overload. Chem. Biol. Interact., 2022, 358, 109899. doi: 10.1016/j.cbi.2022.109899 PMID: 35305974
  62. Birch, J.; Gil, J. Senescence and the SASP: Many therapeutic avenues. Genes Dev., 2020, 34(23-24), 1565-1576. doi: 10.1101/gad.343129.120 PMID: 33262144
  63. Mohamad Kamal, N.S.; Safuan, S.; Shamsuddin, S.; Foroozandeh, P. Aging of the cells: Insight into cellular senescence and detection methods. Eur. J. Cell Biol., 2020, 99(6), 151108. doi: 10.1016/j.ejcb.2020.151108 PMID: 32800277
  64. Wagner, V.; Gil, J. Senescence as a therapeutically relevant response to CDK4/6 inhibitors. Oncogene, 2020, 39(29), 5165-5176. doi: 10.1038/s41388-020-1354-9 PMID: 32541838
  65. Duan, J.L.; Ruan, B.; Song, P.; Fang, Z.Q.; Yue, Z.S.; Liu, J.J.; Dou, G.R.; Han, H.; Wang, L. Shear stress–induced cellular senescence blunts liver regeneration through Notch–sirtuin 1–P21/P16 axis. Hepatology, 2022, 75(3), 584-599. doi: 10.1002/hep.32209 PMID: 34687050
  66. Tchkonia, T.; Zhu, Y.; van Deursen, J.; Campisi, J.; Kirkland, J.L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest., 2013, 123(3), 966-972. doi: 10.1172/JCI64098 PMID: 23454759
  67. Krizhanovsky, V.; Yon, M.; Dickins, R.A.; Hearn, S.; Simon, J.; Miething, C.; Yee, H.; Zender, L.; Lowe, S.W. Senescence of activated stellate cells limits liver fibrosis. Cell, 2008, 134(4), 657-667. doi: 10.1016/j.cell.2008.06.049 PMID: 18724938
  68. Kong, X.; Feng, D.; Wang, H.; Hong, F.; Bertola, A.; Wang, F.S.; Gao, B. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology, 2012, 56(3), 1150-1159. doi: 10.1002/hep.25744 PMID: 22473749
  69. Jin, H.; Lian, N.; Zhang, F.; Chen, L.; Chen, Q.; Lu, C.; Bian, M.; Shao, J.; Wu, L.; Zheng, S. Activation of PPARγ/P53 signaling is required for curcumin to induce hepatic stellate cell senescence. Cell Death Dis., 2016, 7(4), e2189. doi: 10.1038/cddis.2016.92 PMID: 27077805
  70. Aravinthan, A.D.; Alexander, G.J.M. Senescence in chronic liver disease: Is the future in aging? J. Hepatol., 2016, 65(4), 825-834. doi: 10.1016/j.jhep.2016.05.030 PMID: 27245432
  71. Yuen, V.W.H.; Wong, C.C.L. Hypoxia-inducible factors and innate immunity in liver cancer. J. Clin. Invest., 2020, 130(10), 5052-5062. doi: 10.1172/JCI137553 PMID: 32750043
  72. Li, X.; Lozovatsky, L.; Sukumaran, A.; Gonzalez, L.; Jain, A.; Liu, D.; Ayala-Lopez, N.; Finberg, K.E. NCOA4 is regulated by HIF and mediates mobilization of murine hepatic iron stores after blood loss. Blood, 2020, 136(23), blood.2020006321. doi: 10.1182/blood.2020006321 PMID: 32659785
  73. Mancias, J.D.; Pontano Vaites, L.; Nissim, S.; Biancur, D.E.; Kim, A.J.; Wang, X.; Liu, Y.; Goessling, W.; Kimmelman, A.C.; Harper, J.W. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. eLife, 2015, 4, e10308. doi: 10.7554/eLife.10308 PMID: 26436293
  74. Fang, Y.; Chen, X.; Tan, Q.; Zhou, H.; Xu, J.; Gu, Q. Inhibiting ferroptosis through disrupting the NCOA4–FTH1 interaction: A new mechanism of action. ACS Cent. Sci., 2021, 7(6), 980-989. doi: 10.1021/acscentsci.0c01592 PMID: 34235259
  75. Muckenthaler, M.U.; Rivella, S.; Hentze, M.W.; Galy, B. A red carpet for iron metabolism. Cell, 2017, 168(3), 344-361. doi: 10.1016/j.cell.2016.12.034 PMID: 28129536
  76. Huang, Y.; Zhang, N.; Xie, C.; You, Y.; Guo, L.; Ye, F.; Xie, X.; Wang, J. Lipocalin-2 in neutrophils induces ferroptosis in septic cardiac dysfunction via increasing labile iron pool of cardiomyocytes. Front. Cardiovasc. Med., 2022, 9, 922534. doi: 10.3389/fcvm.2022.922534 PMID: 35990970

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers