Modulation of the HIF-1α-NCOA4-FTH1 Signaling Axis Regulating Ferroptosis-induced Hepatic Stellate Cell Senescence to Explore the Anti-hepatic Fibrosis Mechanism of Curcumol
- Authors: Zheng Y.1, Wang L.2, Wang J.3, Zhao T.3, Wang J.4
-
Affiliations:
- Department of Medicine, Faculty of Chinese Medicine Science,, Guangxi University of Chinese Medicine,
- Department of Medicine, Faculty of Chinese Medicine Science,, Guangxi University of Chinese Medicine
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine
- Issue: Vol 31, No 19 (2024)
- Pages: 2821-2837
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/644602
- DOI: https://doi.org/10.2174/0109298673271261231213051410
- ID: 644602
Cite item
Full Text
Abstract
Introduction:Senescence of activated hepatic stellate cells (HSC) reduces extracellular matrix expression to reverse liver fibrosis. Ferroptosis is closely related to cellular senescence, but its regulatory mechanisms need to be further investigated. The iron ions weakly bound to ferritin in the cell are called labile iron pool (LIP), and together with ferritin, they maintain cellular iron homeostasis and regulate the cell's sensitivity to ferroptosis.
Methods:We used lipopolysaccharide (LPS) to construct a pathological model group and divided the hepatic stellate cells into a blank group, a model group, and a curcumol 12.5 mg/L group, a curcumol 25 mg/L group, and a curcumol 50 mg/L group. HIF-1α-NCOA4- FTH1 signalling axis, ferroptosis and cellular senescence were detected by various cellular molecular biology experiments.
Result:We found that curcumol could induce hepatic stellate cell senescence by promoting iron death in hepatic stellate cells. Curcumol induced massive deposition of iron ions in hepatic stellate cells by activating the HIF-1α-NCOA4-FTH1 signalling axis, which further led to iron overload and lipid peroxidation-induced ferroptosis. Interestingly, our knockdown of HIF-1α rescued curcumol-induced LIP and iron deposition in hepatic stellate cells, suggesting that HIF-1α is a key target of curcumol in regulating iron metabolism and ferroptosis. We were able to rescue curcumol-induced hepatic stellate cell senescence when we reduced LIP and iron ion deposition using iron chelators.
Conclusion:Overall, curcumol induces ferroptosis and cellular senescence by increasing HIF-1α expression and increasing NCOA4 interaction with FTH1, leading to massive deposition of LIP and iron ions, which may be the molecular biological mechanism of its anti-liver fibrosis.
Keywords
About the authors
Yang Zheng
Department of Medicine, Faculty of Chinese Medicine Science,, Guangxi University of Chinese Medicine,
Author for correspondence.
Email: info@benthamscience.net
Lei Wang
Department of Medicine, Faculty of Chinese Medicine Science,, Guangxi University of Chinese Medicine
Author for correspondence.
Email: info@benthamscience.net
Jiaru Wang
Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine
Email: info@benthamscience.net
Tiejian Zhao
Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine
Email: info@benthamscience.net
Jiahui Wang
Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine
Email: info@benthamscience.net
References
- Lambrecht, J.; van Grunsven, L.A.; Tacke, F. Current and emerging pharmacotherapeutic interventions for the treatment of liver fibrosis. Expert Opin. Pharmacother., 2020, 21(13), 1637-1649. doi: 10.1080/14656566.2020.1774553 PMID: 32543284
- Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells, 2020, 9(4), 875. doi: 10.3390/cells9040875 PMID: 32260126
- Chang, M.L.; Yang, S.S. Metabolic signature of hepatic fibrosis: From individual pathways to systems biology. Cells, 2019, 8(11), 1423. doi: 10.3390/cells8111423 PMID: 31726658
- Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(3), 151-166. doi: 10.1038/s41575-020-00372-7 PMID: 33128017
- Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(7), 397-411. doi: 10.1038/nrgastro.2017.38 PMID: 28487545
- Liang, D.; Minikes, A.M.; Jiang, X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell, 2022, 82(12), 2215-2227. doi: 10.1016/j.molcel.2022.03.022 PMID: 35390277
- Mehta, K.J.; Farnaud, S.J.; Sharp, P.A. Iron and liver fibrosis: Mechanistic and clinical aspects. World J. Gastroenterol., 2019, 25(5), 521-538. doi: 10.3748/wjg.v25.i5.521 PMID: 30774269
- Yuan, S.; Wei, C.; Liu, G.; Zhang, L.; Li, J.; Li, L.; Cai, S.; Fang, L. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway. Cell Prolif., 2022, 55(1), e13158. doi: 10.1111/cpr.13158 PMID: 34811833
- Roger, L.; Tomas, F.; Gire, V. Mechanisms and regulation of cellular senescence. Int. J. Mol. Sci., 2021, 22(23), 13173. doi: 10.3390/ijms222313173 PMID: 34884978
- Zhang, M.; Serna-Salas, S.; Damba, T.; Borghesan, M.; Demaria, M.; Moshage, H. Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives. Mech. Ageing Dev., 2021, 199, 111572. doi: 10.1016/j.mad.2021.111572 PMID: 34536446
- Maharajan, N.; Ganesan, C.D.; Moon, C.; Jang, C.H.; Oh, W.K.; Cho, G.W.; Licochalcone, D. Licochalcone D ameliorates oxidative stress-induced senescence via aMPK activation. Int. J. Mol. Sci., 2021, 22(14), 7324. doi: 10.3390/ijms22147324 PMID: 34298945
- Nakamura, T.; Naguro, I.; Ichijo, H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(9), 1398-1409. doi: 10.1016/j.bbagen.2019.06.010 PMID: 31229492
- Li, S.; Wang, M.; Wang, Y.; Guo, Y.; Tao, X.; Wang, X.; Cao, Y.; Tian, S.; Li, Q. p53-mediated ferroptosis is required for 1-methyl-4-phenylpyridinium-induced senescence of PC12 cells. Toxicol. In vitro, 2021, 73, 105146. doi: 10.1016/j.tiv.2021.105146 PMID: 33737050
- Zheng, Y.; Wang, J.; Zhao, T.; Wang, L.; Wang, J. Modulation of the VEGF/AKT/eNOS signaling pathway to regulate liver angiogenesis to explore the anti-hepatic fibrosis mechanism of curcumol. J. Ethnopharmacol., 2021, 280, 114480. doi: 10.1016/j.jep.2021.114480 PMID: 34358654
- Zheng, Y.; Wang, L.; Wang, J.; Liu, L.; Zhao, T. Effect of curcumol on NOD-like receptor thermoprotein domain 3 inflammasomes in liver fibrosis of mice. Chin. J. Integr. Med., 2022, 28(11), 992-999. doi: 10.1007/s11655-021-3310-0 PMID: 34319504
- Yuan, Y.; Zhai, Y.; Chen, J.; Xu, X.; Wang, H. Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 axis. Biomolecules, 2021, 11(7), 923. doi: 10.3390/biom11070923 PMID: 34206421
- Parola, M.; Pinzani, M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med., 2019, 65, 37-55. doi: 10.1016/j.mam.2018.09.002 PMID: 30213667
- Wu, A.; Feng, B.; Yu, J.; Yan, L.; Che, L.; Zhuo, Y.; Luo, Y.; Yu, B.; Wu, D.; Chen, D. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis. Redox Biol., 2021, 46, 102131. doi: 10.1016/j.redox.2021.102131 PMID: 34530349
- Wang, H.; Jiang, C.; Yang, Y.; Li, J.; Wang, Y.; Wang, C.; Gao, Y. Resveratrol ameliorates iron overload induced liver fibrosis in mice by regulating iron homeostasis. PeerJ, 2022, 10, e13592. doi: 10.7717/peerj.13592 PMID: 35698613
- Wang, F.; Li, Z.; Chen, L.; Yang, T.; Liang, B.; Zhang, Z.; Shao, J.; Xu, X.; Yin, G.; Wang, S.; Ding, H.; Zhang, F.; Zheng, S. Inhibition of ASCT2 induces hepatic stellate cell senescence with modified proinflammatory secretome through an IL-1α/NF-κB feedback pathway to inhibit liver fibrosis. Acta Pharm. Sin. B, 2022, 12(9), 3618-3638. doi: 10.1016/j.apsb.2022.03.014 PMID: 36176909
- Jiang, P.; Yang, F.; Zou, C.; Bao, T.; Wu, M.; Yang, D.; Bu, S. The construction and analysis of a ferroptosis-related gene prognostic signature for pancreatic cancer. Aging, 2021, 13(7), 10396-10414. doi: 10.18632/aging.202801 PMID: 33819918
- Yang, W.S.; Stockwell, B.R. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol., 2016, 26(3), 165-176. doi: 10.1016/j.tcb.2015.10.014 PMID: 26653790
- Wang, L.; Liu, Y.; Du, T.; Yang, H.; Lei, L.; Guo, M.; Ding, H.F.; Zhang, J.; Wang, H.; Chen, X.; Yan, C. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ., 2020, 27(2), 662-675. doi: 10.1038/s41418-019-0380-z PMID: 31273299
- Seibt, T.M.; Proneth, B.; Conrad, M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic. Biol. Med., 2019, 133, 144-152. doi: 10.1016/j.freeradbiomed.2018.09.014 PMID: 30219704
- Miao, Y.; Chen, Y.; Xue, F.; Liu, K.; Zhu, B.; Gao, J.; Yin, J.; Zhang, C.; Li, G. Contribution of ferroptosis and GPX4s dual functions to osteoarthritis progression. E. Bio. Medicine, 2022, 76, 103847. doi: 10.1016/j.ebiom.2022.103847 PMID: 35101656
- Marku, A.; Galli, A.; Marciani, P.; Dule, N.; Perego, C.; Castagna, M. Iron metabolism in pancreatic beta-cell function and dysfunction. Cells, 2021, 10(11), 2841. doi: 10.3390/cells10112841 PMID: 34831062
- He, Y.J.; Liu, X.Y.; Xing, L.; Wan, X.; Chang, X.; Jiang, H.L. Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials, 2020, 241, 119911. doi: 10.1016/j.biomaterials.2020.119911 PMID: 32143060
- McGill, M.R.; Jaeschke, H. Biomarkers of drug-induced liver injury. Adv. Pharmacol., 2019, 85, 221-239. doi: 10.1016/bs.apha.2019.02.001 PMID: 31307588
- Douros, A.; Bronder, E.; Andersohn, F.; Klimpel, A.; Kreutz, R.; Garbe, E.; Bolbrinker, J. Herb-induced liver injury in the berlin case-control surveillance study. Int. J. Mol. Sci., 2016, 17(1), 114. doi: 10.3390/ijms17010114 PMID: 26784183
- Visentin, M.; Lenggenhager, D.; Gai, Z.; Kullak-Ublick, G.A. Drug-induced bile duct injury. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(4)(4 Pt B), 1498-1506. doi: 10.1016/j.bbadis.2017.08.033 PMID: 28882625
- Jaeschke, H.; Xie, Y.; McGill, M.R. Acetaminophen-induced liver injury: From animal models to humans. J. Clin. Transl. Hepatol., 2014, 2(3), 153-161. PMID: 26355817
- Chao, X.; Wang, H.; Jaeschke, H.; Ding, W.X. Role and mechanisms of autophagy in acetaminophen-induced liver injury. Liver Int., 2018, 38(8), 1363-1374. doi: 10.1111/liv.13866 PMID: 29682868
- Aluri, J.; Cooper, M.A.; Schuettpelz, L.G. Toll-like receptor signaling in the establishment and function of the immune system. Cells, 2021, 10(6), 1374. doi: 10.3390/cells10061374 PMID: 34199501
- Yang, T.; Wang, H.; Wang, X.; Li, J.; Jiang, L. The dual role of innate immune response in acetaminophen-induced liver injury. Biology, 2022, 11(7), 1057. doi: 10.3390/biology11071057 PMID: 36101435
- Yamada, N.; Karasawa, T.; Kimura, H.; Watanabe, S.; Komada, T.; Kamata, R.; Sampilvanjil, A.; Ito, J.; Nakagawa, K.; Kuwata, H.; Hara, S.; Mizuta, K.; Sakuma, Y.; Sata, N.; Takahashi, M. Ferroptosis driven by radical oxidation of n-6 polyunsaturated fatty acids mediates acetaminophen-induced acute liver failure. Cell Death Dis., 2020, 11(2), 144. doi: 10.1038/s41419-020-2334-2 PMID: 32094346
- Wu, Y.; Jiao, H.; Yue, Y.; He, K.; Jin, Y.; Zhang, J.; Zhang, J.; Wei, Y.; Luo, H.; Hao, Z.; Zhao, X.; Xia, Q.; Zhong, Q.; Zhang, J. Ubiquitin ligase E3 HUWE1/MULE targets transferrin receptor for degradation and suppresses ferroptosis in acute liver injury. Cell Death Differ., 2022, 29(9), 1705-1718. doi: 10.1038/s41418-022-00957-6 PMID: 35260822
- Niu, B.; Lei, X.; Xu, Q.; Ju, Y.; Xu, D.; Mao, L.; Li, J.; Zheng, Y.; Sun, N.; Zhang, X.; Mao, Y.; Li, X. Protecting mitochondria via inhibiting VDAC1 oligomerization alleviates ferroptosis in acetaminophen-induced acute liver injury. Cell Biol. Toxicol., 2022, 38(3), 505-530. doi: 10.1007/s10565-021-09624-x PMID: 34401974
- Wu, J.; Xue, R.; Wu, M.; Yin, X.; Xie, B.; Meng, Q. Nrf2-mediated ferroptosis inhibition exerts a protective effect on acute-on-chronic liver failure. Oxid. Med. Cell. Longev., 2022, 2022, 1-23. doi: 10.1155/2022/4505513 PMID: 35480867
- Li, L.; Wang, K.; Jia, R.; xie, J.; Ma, L.; Hao, Z.; Zhang, W.; Mo, J.; Ren, F. Ferroportin-dependent ferroptosis induced by ellagic acid retards liver fibrosis by impairing the SNARE complexes formation. Redox Biol., 2022, 56, 102435. doi: 10.1016/j.redox.2022.102435 PMID: 36029649
- You, Y.; Liu, C.; Liu, T.; Tian, M.; Wu, N.; Yu, Z.; Zhao, F.; Qi, J.; Zhu, Q. FNDC3B protects steatosis and ferroptosis via the AMPK pathway in alcoholic fatty liver disease. Free Radic. Biol. Med., 2022, 193(Pt 2), 808-819. doi: 10.1016/j.freeradbiomed.2022.10.322 PMID: 36336231
- Kowdley, K.V.; Belt, P.; Wilson, L.A.; Yeh, M.M.; Neuschwander-Tetri, B.A.; Chalasani, N.; Sanyal, A.J.; Nelson, J.E. Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology, 2012, 55(1), 77-85. doi: 10.1002/hep.24706 PMID: 21953442
- Gao, G.; Xie, Z.; Li, E.; Yuan, Y.; Fu, Y.; Wang, P.; Zhang, X.; Qiao, Y.; Xu, J.; Hölscher, C.; Wang, H.; Zhang, Z. Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis. J. Nat. Med., 2021, 75(3), 540-552. doi: 10.1007/s11418-021-01491-4 PMID: 33590347
- Chen, S.; Zhu, J.; Zang, X.; Zhai, Y. The emerging role of ferroptosis in liver diseases. Front. Cell Dev. Biol., 2021, 9, 801365. doi: 10.3389/fcell.2021.801365 PMID: 34970553
- Ali, N.; Ferrao, K.; Mehta, K.J. Liver iron loading in alcohol-associated liver disease. Am. J. Pathol., 2023, 193(10), 1427-1439. doi: 10.1016/j.ajpath.2022.08.010 PMID: 36306827
- Liu, C.Y.; Wang, M.; Yu, H.M.; Han, F.X.; Wu, Q.S.; Cai, X.J.; Kurihara, H.; Chen, Y.X.; Li, Y.F.; He, R.R. Ferroptosis is involved in alcohol-induced cell death in vivo and in vitro. Biosci. Biotechnol. Biochem., 2020, 84(8), 1621-1628. doi: 10.1080/09168451.2020.1763155 PMID: 32419644
- Gao, R.; Tang, H.; Mao, J. Programmed cell death in liver fibrosis. J. Inflamm. Res., 2023, 16, 3897-3910. doi: 10.2147/JIR.S427868 PMID: 37674533
- Wang, L.; Zhang, Z.; Li, M.; Wang, F.; Jia, Y.; Zhang, F.; Shao, J.; Chen, A.; Zheng, S. P53-dependent induction of ferroptosis is required for artemether to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation. IUBMB Life, 2019, 71(1), 45-56. doi: 10.1002/iub.1895 PMID: 30321484
- Wang, S.; Li, F.; Qiao, R.; Hu, X.; Liao, H.; Chen, L.; Wu, J.; Wu, H.; Zhao, M.; Liu, J.; Chen, R.; Ma, X.; Kim, D.; Sun, J.; Davis, T.P.; Chen, C.; Tian, J.; Hyeon, T.; Ling, D. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano, 2018, 12(12), 12380-12392. doi: 10.1021/acsnano.8b06399 PMID: 30495919
- He, G.N.; Bao, N.R.; Wang, S.; Xi, M.; Zhang, T.H.; Chen, F.S. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des. Devel. Ther., 2021, 15, 3965-3978. doi: 10.2147/DDDT.S332847 PMID: 34566408
- Yang, Y.; Wang, H.; Guo, Y.; Lei, W.; Wang, J.; Hu, X.; Yang, J.; He, Q. Metal ion imbalance-related oxidative stress is involved in the mechanisms of liver injury in a rat model of chronic aluminum exposure. Biol. Trace Elem. Res., 2016, 173(1), 126-131. doi: 10.1007/s12011-016-0627-1 PMID: 26811106
- Blázovics, A.; Sárdi, É.; Szentmihályi, K.; Váli, L.; Takács-Hájos, M.; Stefanovits-Bányai, É. Extreme consumption of beta vulgaris var. rubra can cause metal ion accumulation in the liver. Acta Biol. Hung., 2007, 58(3), 281-286. doi: 10.1556/ABiol.58.2007.3.4 PMID: 17899785
- Liu, Z.; Ma, H.; Lai, Z. The role of ferroptosis and cuproptosis in curcumin against hepatocellular carcinoma. Molecules, 2023, 28(4), 1623. doi: 10.3390/molecules28041623 PMID: 36838613
- Zatulovskaia, Y.A.; Ilyechova, E.Y.; Puchkova, L.V. The features of copper metabolism in the rat liver during development. PLoS One, 2015, 10(10), e0140797. doi: 10.1371/journal.pone.0140797 PMID: 26474410
- Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Fan, X.; Li, C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch., 2020, 472(10), 1415-1429. doi: 10.1007/s00424-020-02412-2 PMID: 32506322
- Hatano, R.; Ebara, M.; Fukuda, H.; Yoshikawa, M.; Sugiura, N.; Kondo, F.; Yukawa, M.; Saisho, H. Accumulation of copper in the liver and hepatic injury in chronic hepatitis C. J. Gastroenterol. Hepatol., 2000, 15(7), 786-791. doi: 10.1046/j.1440-1746.2000.02199.x PMID: 10937686
- Tassabehji, N.M.; Vanlandingham, J.W.; Levenson, C.W. Copper alters the conformation and transcriptional activity of the tumor suppressor protein p53 in human Hep G2 cells. Exp. Biol. Med., 2005, 230(10), 699-708. doi: 10.1177/153537020523001002 PMID: 16246896
- Mikhail, T.H.; Nicola, W.G.; Ibrahim, K.H.; Salama, S.H.; Emam, M. Abnormal zinc and copper metabolism in hepatic steatosis. Boll. Chim. Farm., 1996, 135(10), 591-597. PMID: 9048448
- Mousa, S.O.; Abd Alsamia, E.M.; Moness, H.M.; Mohamed, O.G. The effect of zinc deficiency and iron overload on endocrine and exocrine pancreatic function in children with transfusion-dependent thalassemia: A cross-sectional study. BMC Pediatr., 2021, 21(1), 468. doi: 10.1186/s12887-021-02940-5 PMID: 34686155
- Himoto, T.; Masaki, T. Associations between zinc deficiency and metabolic abnormalities in patients with chronic liver disease. Nutrients, 2018, 10(1), 88. doi: 10.3390/nu10010088 PMID: 29342898
- Rayssiguier, Y.; Chevalier, F.; Bonnet, M.; Kopp, J.; Durlach, J. Influence of magnesium deficiency on liver collagen after carbon tetrachloride or ethanol administration to rats. J. Nutr., 1985, 115(12), 1656-1662. doi: 10.1093/jn/115.12.1656 PMID: 4067656
- Dong, Z.; Yang, X.; Qiu, T.; an, Y.; Zhang, G.; Li, Q.; Jiang, L.; Yang, G.; Cao, J.; Sun, X.; Liu, X.; Liu, D.; Yao, X. Exosomal miR-181a-2-3p derived from citreoviridin-treated hepatocytes activates hepatic stellate cells trough inducing mitochondrial calcium overload. Chem. Biol. Interact., 2022, 358, 109899. doi: 10.1016/j.cbi.2022.109899 PMID: 35305974
- Birch, J.; Gil, J. Senescence and the SASP: Many therapeutic avenues. Genes Dev., 2020, 34(23-24), 1565-1576. doi: 10.1101/gad.343129.120 PMID: 33262144
- Mohamad Kamal, N.S.; Safuan, S.; Shamsuddin, S.; Foroozandeh, P. Aging of the cells: Insight into cellular senescence and detection methods. Eur. J. Cell Biol., 2020, 99(6), 151108. doi: 10.1016/j.ejcb.2020.151108 PMID: 32800277
- Wagner, V.; Gil, J. Senescence as a therapeutically relevant response to CDK4/6 inhibitors. Oncogene, 2020, 39(29), 5165-5176. doi: 10.1038/s41388-020-1354-9 PMID: 32541838
- Duan, J.L.; Ruan, B.; Song, P.; Fang, Z.Q.; Yue, Z.S.; Liu, J.J.; Dou, G.R.; Han, H.; Wang, L. Shear stressinduced cellular senescence blunts liver regeneration through Notchsirtuin 1P21/P16 axis. Hepatology, 2022, 75(3), 584-599. doi: 10.1002/hep.32209 PMID: 34687050
- Tchkonia, T.; Zhu, Y.; van Deursen, J.; Campisi, J.; Kirkland, J.L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest., 2013, 123(3), 966-972. doi: 10.1172/JCI64098 PMID: 23454759
- Krizhanovsky, V.; Yon, M.; Dickins, R.A.; Hearn, S.; Simon, J.; Miething, C.; Yee, H.; Zender, L.; Lowe, S.W. Senescence of activated stellate cells limits liver fibrosis. Cell, 2008, 134(4), 657-667. doi: 10.1016/j.cell.2008.06.049 PMID: 18724938
- Kong, X.; Feng, D.; Wang, H.; Hong, F.; Bertola, A.; Wang, F.S.; Gao, B. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology, 2012, 56(3), 1150-1159. doi: 10.1002/hep.25744 PMID: 22473749
- Jin, H.; Lian, N.; Zhang, F.; Chen, L.; Chen, Q.; Lu, C.; Bian, M.; Shao, J.; Wu, L.; Zheng, S. Activation of PPARγ/P53 signaling is required for curcumin to induce hepatic stellate cell senescence. Cell Death Dis., 2016, 7(4), e2189. doi: 10.1038/cddis.2016.92 PMID: 27077805
- Aravinthan, A.D.; Alexander, G.J.M. Senescence in chronic liver disease: Is the future in aging? J. Hepatol., 2016, 65(4), 825-834. doi: 10.1016/j.jhep.2016.05.030 PMID: 27245432
- Yuen, V.W.H.; Wong, C.C.L. Hypoxia-inducible factors and innate immunity in liver cancer. J. Clin. Invest., 2020, 130(10), 5052-5062. doi: 10.1172/JCI137553 PMID: 32750043
- Li, X.; Lozovatsky, L.; Sukumaran, A.; Gonzalez, L.; Jain, A.; Liu, D.; Ayala-Lopez, N.; Finberg, K.E. NCOA4 is regulated by HIF and mediates mobilization of murine hepatic iron stores after blood loss. Blood, 2020, 136(23), blood.2020006321. doi: 10.1182/blood.2020006321 PMID: 32659785
- Mancias, J.D.; Pontano Vaites, L.; Nissim, S.; Biancur, D.E.; Kim, A.J.; Wang, X.; Liu, Y.; Goessling, W.; Kimmelman, A.C.; Harper, J.W. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. eLife, 2015, 4, e10308. doi: 10.7554/eLife.10308 PMID: 26436293
- Fang, Y.; Chen, X.; Tan, Q.; Zhou, H.; Xu, J.; Gu, Q. Inhibiting ferroptosis through disrupting the NCOA4FTH1 interaction: A new mechanism of action. ACS Cent. Sci., 2021, 7(6), 980-989. doi: 10.1021/acscentsci.0c01592 PMID: 34235259
- Muckenthaler, M.U.; Rivella, S.; Hentze, M.W.; Galy, B. A red carpet for iron metabolism. Cell, 2017, 168(3), 344-361. doi: 10.1016/j.cell.2016.12.034 PMID: 28129536
- Huang, Y.; Zhang, N.; Xie, C.; You, Y.; Guo, L.; Ye, F.; Xie, X.; Wang, J. Lipocalin-2 in neutrophils induces ferroptosis in septic cardiac dysfunction via increasing labile iron pool of cardiomyocytes. Front. Cardiovasc. Med., 2022, 9, 922534. doi: 10.3389/fcvm.2022.922534 PMID: 35990970
Supplementary files
