Curcuminoids as Cell Signaling Pathway Modulators: A Potential Strategy for Cancer Prevention


Cite item

Full Text

Abstract

Despite substantial advancements in curative modern medicine in the last few decades, cancer risk and casualty rates have continued to mount globally. The exact reason for cancer's onset and progression is still unknown. However, skeletal and functional abnormalities in the genetic code are assumed to be the primary cause of cancer. Many lines of evidence reported that some medicinal plants can be utilized to curb cancer cell proliferation with a safe, fruitful, and cost-efficient perspective. Curcuminoid, isolated from Curcuma longa, have gotten a lot of focus due to their anticancer potential as they reduce tumor progression, invasion, and dissemination. Further, they modulated signal transduction routes like MAPK, PI3K/Akt/mTOR, JAK/STAT, and Wnt/β-catenin, etc., and triggered apoptosis as well as actuated autophagy in malignant cells without altering the normal cells, thus preventing cancer progression. Besides, Curcuminoid also regulate the function and expression of anti-tumor and carcinogenic miRNAs. Clinical studies also reported the therapeutic effect of Curcuminoid against various cancer through decreasing specific biomarkers like TNF-α, Bcl-2, COX-2, PGE2, VEGF, IκKβ, and various cytokines like IL-12p70, IL-10, IL-2, IFN-γ levels and increasing in p53 and Bax levels. Thus, in the present review, we abridged the modulation of several signal transduction routes by Curcuminoids in various malignancies, and its modulatory role in the initiation of tumor-suppressive miRNAs and suppression of the oncogenic miRNAs are explored. Additionally, various pharmacokinetic approaches have been projected to address the Curcuminoids bioavailability like the use of piperine as an adjuvant; nanotechnology- based Curcuminoids preparations utilizing Curcuminoids analogues are also discussed.

About the authors

Aneeza Noor

Natural Products Research Laboratory, Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir

Email: info@benthamscience.net

Saimeena Shafi

Natural Products Research Laboratory, Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir

Email: info@benthamscience.net

Nouroz Sehar

Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard

Email: info@benthamscience.net

Insha Qadir

Natural Products Research Laboratory, Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir

Email: info@benthamscience.net

Bilquees

Natural Products Research Laboratory, Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir

Email: info@benthamscience.net

Summya Rashid

Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University

Email: info@benthamscience.net

Azher Arafah

Department of Clinical Pharmacy, College of Pharmacy, King Saud University

Email: info@benthamscience.net

Saiema Rasool

Department of School Education, Govt. of Jammu & Kashmir

Email: info@benthamscience.net

Nawab Dar

Salk Institute, Cellular Neurobiology Laboratory (CNB-P)

Email: info@benthamscience.net

Mubashir Masoodi

Natural Products Research Laboratory, Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir

Email: info@benthamscience.net

Muneeb Rehman

Department of Clinical Pharmacy, College of Pharmacy, King Saud University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Afshari, A.R.; Jalili-Nik, M.; Abbasinezhad-Moud, F.; Javid, H.; Karimi, M.; Mollazadeh, H.; Jamialahmadi, T.; Sathyapalan, T.; Sahebkar, A. Anti-tumor effects of curcuminoids in glioblastoma multiforme: an updated literature review. Curr. Med. Chem., 2021, 28(39), 8116-8138. doi: 10.2174/1875533XMTExtNDA8x PMID: 33176632
  2. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789. doi: 10.1002/ijc.33588 PMID: 33818764
  3. Srivastava, N.S.; Srivastava, R.A.K. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine, 2019, 52, 117-128. doi: 10.1016/j.phymed.2018.09.224 PMID: 30599890
  4. Wei, M.M.; Zhao, S.J.; Dong, X.M.; Wang, Y.J.; Fang, C.; Wu, P.; Song, G.Q.; Gao, J.N.; Huang, Z.H.; Xie, T.; Zhou, J.L. A combination index and glycoproteomics-based approach revealed synergistic anticancer effects of curcuminoids of turmeric against prostate cancer PC3 cells. J. Ethnopharmacol., 2021, 267, 113467. doi: 10.1016/j.jep.2020.113467 PMID: 33058923
  5. Bordoloi, D.; Roy, N.K.; Monisha, J.; Padmavathi, G.; Kunnumakkara, A.B. Multi-targeted agents in cancer cell chemosensitization: What we learnt from curcumin thus far. Recent Pat. Anticancer Drug Discov., 2016, 11(1), 67-97. doi: 10.2174/1574892810666151020101706 PMID: 26537958
  6. Xu, X.; Qin, J.; Liu, W. Curcumin inhibits the invasion of thyroid cancer cells via down-regulation of PI3K/Akt signaling pathway. Gene, 2014, 546(2), 226-232. doi: 10.1016/j.gene.2014.06.006 PMID: 24910117
  7. Tuyaerts, S.; Rombauts, K.; Everaert, T.; Van Nuffel, A.M.T.; Amant, F. A phase 2 study to assess the immunomodulatory capacity of a lecithin-based delivery system of curcumin in endometrial cancer. Front. Nutr., 2019, 5, 138. doi: 10.3389/fnut.2018.00138 PMID: 30687714
  8. Mollazadeh, H.; Cicero, A.F.G.; Blesso, C.N.; Pirro, M.; Majeed, M.; Sahebkar, A. Immune modulation by curcumin: The role of interleukin-10. Crit. Rev. Food Sci. Nutr., 2019, 59(1), 89-101. doi: 10.1080/10408398.2017.1358139 PMID: 28799796
  9. Almatroodi, S.A.; Alrumaihi, F.; Alsahli, M.A.; Alhommrani, M.F.; Khan, A.; Rahmani, A.H. Curcumin, an active constituent of turmeric spice: implication in the prevention of lung injury induced by benzo (a) pyrene (BaP) in rats. Molecules, 2020, 25(3), 724. doi: 10.3390/molecules25030724 PMID: 32046055
  10. Ma, C.; Zhuang, Z.; Su, Q.; He, J.; Li, H. Curcumin has anti-proliferative and pro-apoptotic effects on tongue cancer in vitro: A study with bioinformatics analysis and in vitro experiments. Drug Des. Devel. Ther., 2020, 14, 509-518. doi: 10.2147/DDDT.S237830 PMID: 32099333
  11. Fu, Y.S.; Chen, T.H.; Weng, L.; Huang, L.; Lai, D.; Weng, C.F. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed. Pharmacother., 2021, 141, 111888. doi: 10.1016/j.biopha.2021.111888 PMID: 34237598
  12. Chen, L.; Zhan, C.Z.; Wang, T.; You, H.; Yao, R. Curcumin inhibits the proliferation, migration, invasion, and apoptosis of diffuse large B-cell lymphoma cell line by regulating MiR-21/VHL axis. Yonsei Med. J., 2020, 61(1), 20-29. doi: 10.3349/ymj.2020.61.1.20 PMID: 31887796
  13. Dimri, M.; Satyanarayana, A. Molecular signaling pathways and therapeutic targets in hepatocellular carcinoma. Cancers, 2020, 12(2), 491. doi: 10.3390/cancers12020491 PMID: 32093152
  14. Sultana, S.; Munir, N.; Mahmood, Z.; Riaz, M.; Akram, M.; Rebezov, M.; Kuderinova, N.; Moldabayeva, Z.; Shariati, M.A.; Rauf, A.; Rengasamy, K.R.R. Molecular targets for the management of cancer using Curcuma longa Linn. phytoconstituents: A review. Biomed. Pharmacother., 2021, 135, 111078. doi: 10.1016/j.biopha.2020.111078 PMID: 33433356
  15. Lee, S.Y.; Cho, S.S.; Li, Y.; Bae, C.S.; Park, K.M.; Park, D.H. Anti-inflammatory effect of curcuma longa and allium hookeri co-treatment via NF-κB and COX-2 pathways. Sci. Rep., 2020, 10(1), 5718. doi: 10.1038/s41598-020-62749-7 PMID: 31913322
  16. Bhatia, M.; Bhalerao, M.; Cruz-Martins, N.; Kumar, D. Curcumin and cancer biology: Focusing regulatory effects in different signalling pathways. Phytother Res, 2021, 35(9), 4913-4929. doi: 10.1002/ptr.7121
  17. KM, M.; Palaniswamy, D.S.; NP, D.; Jyothi, D.P. Therapeutic importance of curcumin with a special emphasis on mdr cancer cells and the factors influencing pharmacodynamics. Indones. J. Pharm., 2021, 429-441. doi: 10.22146/ijp.2280
  18. Jamialahmadi, T.; Guest, P.C.; Tasbandi, A.; Majeed, M.; Sahebkar, A. Testing the anti-inflammatory effects of curcuminoids in patients with colorectal cancer. Physical Exercise and Natural and Synthetic Products in Health and Disease; Springer, 2022, pp. 319-330. doi: 10.1007/978-1-0716-1558-4_23
  19. Noorolyai, S.; Shajari, N.; Baghbani, E.; Sadreddini, S.; Baradaran, B. The relation between PI3K/AKT signalling pathway and cancer. Gene, 2019, 698, 120-128. doi: 10.1016/j.gene.2019.02.076
  20. Cheng, J.; Huang, Y.; Zhang, X.; Yu, Y.; Wu, S.; Jiao, J.; Tran, L.; Zhang, W.; Liu, R.; Zhang, L.; Wang, M.; Wang, M.; Yan, W.; Wu, Y.; Chi, F.; Jiang, P.; Zhang, X.; Wu, H. TRIM21 and PHLDA3 negatively regulate the crosstalk between the PI3K/AKT pathway and PPP metabolism. Nat. Commun., 2020, 11(1), 1880. doi: 10.1038/s41467-020-15819-3 PMID: 32312982
  21. Hu, S.; Xu, Y.; Meng, L.; Huang, L.; Sun, H. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp. Ther. Med., 2018, 16(2), 1266-1272. doi: 10.3892/etm.2018.6345 PMID: 30116377
  22. Farghadani, R.; Naidu, R. Curcumin: Modulator of key molecular signaling pathways in hormone-independent breast cancer. Cancers, 2021, 13(14), 3427. doi: 10.3390/cancers13143427 PMID: 34298639
  23. Badr, G.; Gul, H.I.; Yamali, C.; Mohamed, A.A.M.; Badr, B.M.; Gul, M.; Abo Markeb, A.; Abo El-Maali, N. Curcumin analogue 1,5-bis(4-hydroxy-3-((4-methylpiperazin-1-yl)methyl)phenyl)penta-1,4-dien-3-one mediates growth arrest and apoptosis by targeting the PI3K/AKT/mTOR and PKC-theta signaling pathways in human breast carcinoma cells. Bioorg. Chem., 2018, 78, 46-57. doi: 10.1016/j.bioorg.2018.03.006 PMID: 29533214
  24. Ashrafizadeh, M.; Najafi, M.; Makvandi, P.; Zarrabi, A.; Farkhondeh, T.; Samarghandian, S. Versatile role of curcumin and its derivatives in lung cancer therapy. J. Cell. Physiol., 2020, 235(12), 241-9268. doi: 10.1002/jcp.29819
  25. Zhang, Q.; Qiao, H.; Wu, D.; Lu, H.; Liu, L.; Sang, X.; Li, D.; Zhou, Y. Curcumin potentiates the galbanic acid-induced anti-tumor effect in non-small cell lung cancer cells through inhibiting Akt/mTOR signaling pathway. Life Sci., 2019, 239, 117044. doi: 10.1016/j.lfs.2019.117044 PMID: 31715187
  26. Song, G.; Lu, H.; Chen, F.; Wang, Y.; Fan, W.; Shao, W.; Lu, H.; Lin, B. Tetrahydrocurcumin-induced autophagy via suppression of PI3K/Akt/mTOR in non-small cell lung carcinoma cells. Mol. Med. Rep., 2018, 17(4), 5964-5969. doi: 10.3892/mmr.2018.8600 PMID: 29436654
  27. Wang, H.J.; Yang, Z.X.; Dai, X.T.; Chen, Y.F.; Yang, H.P.; Zhou, X.D. Bisdemethoxycurcumin sensitizes cisplatin-resistant lung cancer cells to chemotherapy by inhibition of CA916798 and PI3K/AKT signaling. Apoptosis, 2017, 22(9), 1157-1168. doi: 10.1007/s10495-017-1395-x PMID: 28677094
  28. Chen, Y.; Wu, M. Demethoxycurcumin inhibits the growth of human lung cancer cells by targeting of PI3K/AKT/m- TOR signalling pathway, induction of apoptosis and inhibition of cell migration and invasion. Trop. J. Pharm. Res., 2022, 20(4), 687-693. doi: 10.4314/tjpr.v20i4.4
  29. Lee, H.Y.J.; Meng, M.; Liu, Y.; Su, T.; Kwan, H. Y. Medicinal herbs and bioactive compounds overcome the drug resistance to epidermal growth factor receptor inhibitors in non-small cell lung cancer (Review). Oncol Lett., 2021, 22(3), 646. doi: 10.3892/ol.2021.12907
  30. Wang, J.; Wang, C.; Bu, G. Curcumin inhibits the growth of liver cancer stem cells through the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Exp. Ther. Med., 2018, 15(4), 3650-3658. doi: 10.3892/etm.2018.5805 PMID: 29545895
  31. Zhu, X.; Zhu, R. Curcumin suppresses the progression of laryngeal squamous cell carcinoma through the upregulation of miR-145 and inhibition of the PI3K/Akt/mTOR pathway. OncoTargets Ther., 2018, 11, 3521-3531. doi: 10.2147/OTT.S159236 PMID: 29950857
  32. Wang, Y.; Lu, J.; Jiang, B.; Guo, J. The roles of curcumin in regulating the tumor immunosuppressive microenvironment (Review). Oncol Lett, 2020, 19(4), 3059-3070. doi: 10.3892/ol.2020.11437
  33. Li, W.; Jiang, Z.; Xiao, X.; Wang, Z.; Wu, Z.; Ma, Q.; Cao, L. Curcumin inhibits superoxide dismutase-induced epithelial-to-mesenchymal transition via the PI3K/Akt/NF-κB pathway in pancreatic cancer cells. Int. J. Oncol., 2018, 52(5), 1593-1602. doi: 10.3892/ijo.2018.4295 PMID: 29512729
  34. Hamzehzadeh, L.; Atkin, S.L.; Majeed, M.; Butler, A.E.; Sahebkar, A. The versatile role of curcumin in cancer prevention and treatment: A focus on PI3K/AKT pathway. J. Cell. Physiol., 2018, 233(10), 6530-6537. doi: 10.1002/jcp.26620
  35. Wahab, N.A.A.; Lajis, N.H.; Abas, F.; Othman, I.; Naidu, R. Mechanism of anti-cancer activity of curcumin on androgen-dependent and androgen-independent prostate cancer. Nutrients, 2020, 12(3), 679. doi: 10.3390/nu12030679
  36. Gong, X.; Jiang, L.; Li, W.; Liang, Q.; Li, Z. Curcumin induces apoptosis and autophagy inhuman renal cell carcinoma cells via Akt/mTOR suppression. Bioengineered, 2021, 12(1), 5017-5027. doi: 10.1080/21655979.2021.1960765 PMID: 34402718
  37. Wong, S.C.; Kamarudin, M.N.A.; Naidu, R. Anticancer mechanism of curcumin on human glioblastoma. Nutrients, 2021, 13(3), 950. doi: 10.3390/nu13030950 PMID: 33809462
  38. Wang, R.; Li, J.; Zhao, Y.; Li, Y.; Yin, L. Investigating the therapeutic potential and mechanism of curcumin in breast cancer based on RNA sequencing and bioinformatics analysis. Breast Cancer, 2018, 25(2), 206-212. doi: 10.1007/s12282-017-0816-6 PMID: 29139094
  39. Adewumi, H.; Carter, G.; Bhuiyan, S.; College, J. C. Bioresearch communications curcumin downregulates the expression of p44 / 42 MAPK and causes caspase-mediated cell inhibition in MCF-7 breast cancer cells. Cancer Cells, 2020, 06(01), 2020-2021.
  40. Mao, M.; Dengdi, H.; Jingjing, Y. Regulation of tamoxifen sensitivity by the PLAC8/MAPK pathway axis is antagonized by curcumin-induced protein stability change. J. Mol. Med., 2021, 99(6), 845-858. doi: 10.1007/s00109-021-02047-5
  41. Sun, M.; Zhang, Y.; He, Y.; Xiong, M.; Huang, H.; Pei, S.; Liao, J.; Wang, Y.; Shao, D. Green synthesis of carrier-free curcumin nanodrugs for light-activated breast cancer photodynamic therapy. Colloids Surf. B Biointerfaces, 2019, 180(March), 313-318. doi: 10.1016/j.colsurfb.2019.04.061 PMID: 31071571
  42. Hsieh, M.; Lu, C.; Kuo, S. Next-generation sequencing analysis reveals that MTH-3, a novel curcuminoid derivative,suppresses the invasion of MDA-MB-231 triple-negative breast adenocarcinoma cells. Oncol. Rep., 2021, 1-17. doi: 10.3892/or.2021.8084
  43. Shen, X.; Sun, X.; Chen, H.; Lu, B.; Qin, Y.; Zhang, C.; Liang, G.; Wang, J.; Yu, P.; Su, L.; Ma, Q.; Li, Y. Demethoxycucumin protects MDA-MB-231 cells induced bone destruction through JNK and ERK pathways inhibition. Cancer Chemother. Pharmacol., 2021, 87(4), 487-499. doi: 10.1007/s00280-020-04198-7 PMID: 33403398
  44. Liang, Z.; Rui, Z.; Wei, X. Curcumin reverses tobacco smoke-induced epithelial-mesenchymal transition by suppressing the MAPK pathway in the lungs of mice. Mol. Med. Rep., 2017, 17(1), 2019-2025. doi: 10.3892/mmr.2017.8028 PMID: 29138815
  45. Chien, M.H.; Yang, W.E.; Yang, Y.C.; Ku, C.C.; Lee, W.J.; Tsai, M.Y.; Lin, C.W.; Yang, S.F. Dual targeting of the p38 MAPK-HO-1 axis and cIAP1/XIAP by demethoxycurcumin triggers caspase-mediated apoptotic cell death in oral squamous cell carcinoma cells. Cancers, 2020, 12(3), 703. doi: 10.3390/cancers12030703 PMID: 32188144
  46. Shi, L.; Sun, G.; Zhu, H. Demethoxycurcumin analogue DMC-BH inhibits orthotopic growth of glioma stem cells by targeting JNK/ERK signaling. Aging, 2020, 12(14), 14718-14735. doi: 10.18632/aging.103531 PMID: 32710727
  47. Hsiao, P.C.; Chang, J.H.; Lee, W.J.; Ku, C.C.; Tsai, M.Y.; Yang, S.F.; Chien, M.H. The curcumin analogue, ef-24, triggers p38 mapkmediated apoptotic cell death via inducing pp2amodulated erk deactivation in human acute myeloid leukemia cells. Cancers, 2020, 12(8), 2163. doi: 10.3390/cancers12082163 PMID: 32759757
  48. Agarwal, A.; Kasinathan, A.; Ganesan, R.; Balasubramanian, A.; Bhaskaran, J.; Suresh, S.; Srinivasan, R.; Aravind, K.B.; Sivalingam, N. Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species–independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells. Nutr. Res., 2018, 51, 67-81. doi: 10.1016/j.nutres.2017.12.011 PMID: 29673545
  49. Huang, C.; Lu, H.F.; Chen, Y.H.; Chen, J.C.; Chou, W.H.; Huang, H.C. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin induced caspase-dependent and –independent apoptosis via Smad or Akt signaling pathways in HOS cells. BMC Complement. Med. Ther., 2020, 20(1), 68. doi: 10.1186/s12906-020-2857-1 PMID: 32126993
  50. Chen, Y.Y.; Lin, Y.J.; Huang, W.T.; Hung, C.C.; Lin, H.Y.; Tu, Y.C.; Liu, D.M.; Lan, S.J.; Sheu, M.J. Demethoxycurcumin-loaded chitosan nanoparticle downregulates DNA repair pathway to improve cisplatin-induced apoptosis in non-small cell lung cancer. Molecules, 2018, 23(12), 3217. doi: 10.3390/molecules23123217 PMID: 30563166
  51. Xiang, M.; Jiang, H.G.; Shu, Y.; Chen, Y.J.; Jin, J.; Zhu, Y.M.; Li, M.Y.; Wu, J.N.; Li, J. Bisdemethoxycurcumin enhances the sensitivity of non-small cell lung cancer cells to icotinib via dual induction of autophagy and apoptosis. Int. J. Biol. Sci., 2020, 16(9), 1536-1550. doi: 10.7150/ijbs.40042 PMID: 32226300
  52. Hsiao, Y.T.; Kuo, C.L.; Chueh, F.S.; Liu, K.C.; Bau, D.T.; Chung, J.G. Curcuminoids induce reactive oxygen species and autophagy to enhance apoptosis in human oral cancer cells. Am. J. Chin. Med., 2018, 46(5), 1145-1168. doi: 10.1142/S0192415X1850060X PMID: 29976081
  53. Kao, C.C.; Cheng, Y.C.; Yang, M.H.; Cha, T.L.; Sun, G.H.; Ho, C.T.; Lin, Y.C.; Wang, H.K.; Wu, S.T.; Way, T.D. Demethoxycurcumin induces apoptosis in HER2 overexpressing bladder cancer cells through degradation of HER2 and inhibiting the PI3K /Akt pathway. Environ. Toxicol., 2021, 36(11), 2186-2195. doi: 10.1002/tox.23332 PMID: 34291863
  54. Qiang, Z.; Meng, L.; Yi, C.; Yu, L.; Chen, W.; Sha, W. Curcumin regulates the miR-21/PTEN/Akt pathway and acts in synergy with PD98059 to induce apoptosis of human gastric cancer MGC-803 cells. J. Int. Med. Res., 2019, 47(3), 1288-1297. doi: 10.1177/0300060518822213 PMID: 30727807
  55. Hsia, T.C.; Peng, S.F.; Chueh, F.S.; Lu, K.W.; Yang, J.L.; Huang, A.C.; Hsu, F.T.; Wu, R.S.C. Bisdemethoxycurcumin induces cell apoptosis and inhibits human brain glioblastoma GBM 8401/Luc2 cell xenograft tumor in subcutaneous nude mice in vivo. Int. J. Mol. Sci., 2022, 23(1), 538. doi: 10.3390/ijms23010538 PMID: 35008959
  56. Verzella, D.; Alessandra, P.; Daria, C. Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis, 2020, 11(3), 210. doi: 10.1038/s41419-020-2399-y
  57. Xu, J.H.; Yang, H.P.; Zhou, X.D.; Wang, H.J.; Gong, L.; Tang, C.L. Autophagy accompanied with bisdemethoxycurcumin-induced apoptosis in non-small cell lung cancer cells. Biomed. Environ. Sci., 2015, 28(2), 105-115. doi: 10.3967/bes2015.013 PMID: 25716561
  58. Liu, F.; Gao, S.; Yang, Y.; Zhao, X.; Fan, Y.; Ma, W.; Yang, D.; Yang, A.; Yu, Y. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549. Oncol. Lett., 2017, 14(3), 2775-2782. doi: 10.3892/ol.2017.6565 PMID: 28928819
  59. Mao, X.; Zhang, X.; Zheng, X.; Chen, Y.; Xuan, Z.; Huang, P. Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathway. J. Nat. Med., 2021, 75(3), 590-601. doi: 10.1007/s11418-021-01505-1 PMID: 33713277
  60. Liu, L.D. Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells. Arch. Gynecol. Obstet., 2019, 299(6), 1627-1639. doi: 10.1007/s00404-019-05058-3
  61. Fu, H.; Wang, C.; Yang, D.; Wei, Z.; Xu, J.; Hu, Z.; Zhang, Y.; Wang, W.; Yan, R.; Cai, Q. Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. J. Cell. Physiol., 2018, 233(6), 4634-4642. doi: 10.1002/jcp.26190 PMID: 28926094
  62. Diederich; Gaascht, F.; Cronauer, M.; Henry, E.; Dicato, M.; Diederich, M. Anti-proliferative potential of curcumin in androgen-dependent prostate cancer cells occurs through modulation of the Wingless signaling pathway. Int. J. Oncol., 2011, 38(3), 603-611. doi: 10.3892/ijo.2011.905 PMID: 21240460
  63. Yang, C.; Ma, X.; Wang, Z.; Zeng, X.; Hu, Z.; Ye, Z.; Shen, G. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation. Drug Des. Devel. Ther., 2017, 11, 431-439. doi: 10.2147/DDDT.S126964 PMID: 28243065
  64. Lin, H.Y.; Lin, J-N.; Ma, J-W.; Yang, N-S.; Ho, C-T.; Kuo, S-C.; Way, T-D. Demethoxycurcumin induces autophagic and apoptotic responses on breast cancer cells in photodynamic therapy. J. Funct. Foods, 2015, 12, 439-449. doi: 10.1016/j.jff.2014.12.014
  65. Wang, K.; Zhang, C.; Bao, J.; Jia, X.; Liang, Y.; Wang, X.; Chen, M.; Su, H.; Li, P.; Wan, J.B.; He, C. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death. Sci. Rep., 2016, 6(1), 26064. doi: 10.1038/srep26064 PMID: 27263652
  66. Qureshy, Z.; Johnson, D.E.; Grandis, J.R. Targeting the JAK/STAT pathway in solid tumors. J. Cancer Metastasis Treat., 2020, 2020, 1-29. doi: 10.20517/2394-4722.2020.58 PMID: 33521321
  67. Wang, J.; Zhang, Y.; Song, H.; Yin, H.; Jiang, T.; Xu, Y.; Liu, L.; Wang, H.; Gao, H.; Wang, R.; Song, J. The circular RNA circSPARC enhances the migration and proliferation of colorectal cancer by regulating the JAK/STAT pathway. Mol. Cancer, 2021, 20(1), 81. doi: 10.1186/s12943-021-01375-x PMID: 34074294
  68. Wang, H.; Zhang, K.; Liu, J.; Yang, J.; Tian, Y.; Yang, C.; Li, Y.; Shao, M.; Su, W.; Song, N. Curcumin regulates cancer progression: Focus on ncRNAs and molecular signaling pathways. Front. Oncol., 2021, 11, 660712. doi: 10.3389/fonc.2021.660712 PMID: 33912467
  69. Li, Y.; Sun, W.; Han, N.; Zou, Y.; Yin, D. Curcumin inhibits proliferation, migration, invasion and promotes apoptosis of retinoblastoma cell lines through modulation of miR-99a and JAK/STAT pathway. BMC Cancer, 2018, 18(1), 1230. doi: 10.1186/s12885-018-5130-y PMID: 30526546
  70. Weissenberger, J.; Priester, M.; Bernreuther, C.; Rakel, S.; Glatzel, M.; Seifert, V.; Kögel, D. Dietary curcumin attenuates glioma growth in a syngeneic mouse model by inhibition of the JAK1,2/STAT3 signaling pathway. Clin. Cancer Res., 2010, 16(23), 5781-5795. doi: 10.1158/1078-0432.CCR-10-0446 PMID: 21138870
  71. Leng, L.; Zhong, X.; Sun, G.; Qiu, W.; Shi, L. Demethoxycurcumin was superior to temozolomide in the inhibition of the growth of glioblastoma stem cells in vivo. Tumour Biol., 2016, 37(12), 15847-15857. doi: 10.1007/s13277-016-5399-x PMID: 27757851
  72. Bharti, A.C.; Donato, N.; Aggarwal, B.B. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J. Immunol., 2003, 171(7), 3863-3871. doi: 10.4049/jimmunol.171.7.3863 PMID: 14500688
  73. Chen, J.; Wang, F.L.; Chen, W.D. Modulation of apoptosis-related cell signalling pathways by curcumin as a strategy to inhibit tumor progression. Mol. Biol. Rep., 2014, 41(7), 4583-4594. doi: 10.1007/s11033-014-3329-9 PMID: 24604727
  74. Tang, L.; Liu, J.; Zhu, L.; Chen, Q.; Meng, Z.; Sun, L.; Hu, J.; Ni, Z.; Wang, X. Curcumin inhibits growth of human NCI-H292 lung squamous cell carcinoma cells by increasing FOXA2 expression. Front. Pharmacol., 2018, 9(FEB), 60. doi: 10.3389/fphar.2018.00060 PMID: 29456509
  75. Alexandrow, M.G.; Song, L.J.; Altiok, S.; Gray, J.; Haura, E.B.; Kumar, N.B. Curcumin. Eur. J. Cancer Prev., 2012, 21(5), 407-412. doi: 10.1097/CEJ.0b013e32834ef194 PMID: 22156994
  76. Hu, A.; Huang, J.J.; Jin, X.J.; Li, J.P.; Tang, Y.J.; Huang, X.F.; Cui, H.J.; Xu, W.H.; Sun, G.B. Curcumin suppresses invasiveness and vasculogenic mimicry of squamous cell carcinoma of the larynx through the inhibition of JAK-2/STAT-3 signaling pathway. Am. J. Cancer Res., 2014, 5(1), 278-288. PMID: 25628937
  77. Selvendiran, K.; Tong, L.; Bratasz, A.; Kuppusamy, M.L.; Ahmed, S.; Ravi, Y.; Trigg, N.J.; Rivera, B.K.; Kálai, T.; Hideg, K.; Kuppusamy, P. Anticancer efficacy of a difluorodiarylidenyl piperidone (HO-3867) in human ovarian cancer cells and tumor xenografts. Mol. Cancer Ther., 2010, 9(5), 1169-1179. doi: 10.1158/1535-7163.MCT-09-1207 PMID: 20442315
  78. Pan, Y.; Sun, Y.; Liu, Z.; Zhang, C. miR-192-5p upregulation mediates the suppression of curcumin in human NSCLC cell proliferation, migration and invasion by targeting c-Myc and inactivating the Wnt/β-catenin signaling pathway. Mol. Med. Rep., 2020, 22(2), 1594-1604. doi: 10.3892/mmr.2020.11213 PMID: 32626956
  79. Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol., 2020, 13(1), 165. doi: 10.1186/s13045-020-00990-3 PMID: 33276800
  80. Li, B.; Shi, C.; Li, B.; Zhao, J.M.; Wang, L. The effects of curcumin on HCT-116 cells proliferation and apoptosis via the miR-491/PEG10 pathway. J. Cell. Biochem., 2018, 119(4), 3091-3098. doi: 10.1002/jcb.26449 PMID: 29058812
  81. Ryu, M.J.; Cho, M.; Song, J.Y.; Yun, Y.S.; Choi, I.W.; Kim, D.E.; Park, B.S.; Oh, S. Natural derivatives of curcumin attenuate the Wnt/β-catenin pathway through down-regulation of the transcriptional coactivator p300. Biochem. Biophys. Res. Commun., 2008, 377(4), 1304-1308. doi: 10.1016/j.bbrc.2008.10.171 PMID: 19000900
  82. Marjaneh, R.M.; Rahmani, F.; Hassanian, S.M.; Rezaei, N.; Hashemzehi, M.; Bahrami, A.; Ariakia, F.; Fiuji, H.; Sahebkar, A.; Avan, A.; Khazaei, M. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J. Cell. Physiol., 2018, 233(10), 6785-6798. doi: 10.1002/jcp.26538 PMID: 29737515
  83. Prasad, C.P.; Rath, G.; Mathur, S.; Bhatnagar, D.; Ralhan, R. Potent growth suppressive activity of curcumin in human breast cancer cells: Modulation of Wnt/β-catenin signaling. Chem. Biol. Interact., 2009, 181(2), 263-271. doi: 10.1016/j.cbi.2009.06.012 PMID: 19573523
  84. Leow, P.C.; Tian, Q.; Ong, Z.Y.; Yang, Z.; Ee, P.L.R. Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/β-catenin antagonists against human osteosarcoma cells. Invest. New Drugs, 2010, 28(6), 766-782. doi: 10.1007/s10637-009-9311-z PMID: 19730790
  85. He, M.; Li, Y.U.; Zhang, L.I.; Li, L.; Shen, Y.I.; Lin, L.; Zheng, W.; Chen, L.I.; Bian, X.; Ng, H.K.; Tang, L.I. Curcumin suppresses cell proliferation through inhibition of the Wnt/β-catenin signaling pathway in medulloblastoma. Oncol. Rep., 2014, 32(1), 173-180. doi: 10.3892/or.2014.3206 PMID: 24858998
  86. Yan, C.; Jamaluddin, M.S.; Aggarwal, B.; Myers, J.; Boyd, D.D. Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. Mol. Cancer Ther., 2005, 4(2), 233-241. doi: 10.1158/1535-7163.233.4.2 PMID: 15713895
  87. Qian, C.; Wang, B.; Zou, Y.; Zhang, Y.; Hu, X.; Sun, W.; Xiao, H.; Liu, H.; Shi, L. MicroRNA 145 enhances chemosensitivity of glioblastoma stem cells to demethoxycurcumin. Cancer Manag. Res., 2019, 11, 6829-6840. doi: 10.2147/CMAR.S210076 PMID: 31440081
  88. Zheng, R.; Deng, Q.; Liu, Y.; Zhao, P. Curcumin inhibits gastric carcinoma cell growth and induces apoptosis by suppressing the Wnt/β-Catenin signaling pathway. Med. Sci. Monit., 2017, 23, 163-171. doi: 10.12659/MSM.902711 PMID: 28077837
  89. Kim, H.J.; Park, S.Y.; Park, O.J.; Kim, Y.M. Curcumin suppresses migration and proliferation of Hep3B hepatocarcinoma cells through inhibition of the Wnt signaling pathway. Mol. Med. Rep., 2013, 8(1), 282-286. doi: 10.3892/mmr.2013.1497 PMID: 23723038
  90. Leichter, A.L.; Sullivan, M.J.; Eccles, M.R.; Chatterjee, A. MicroRNA expression patterns and signalling pathways in the development and progression of childhood solid tumours. Mol. Cancer, 2017, 16(1), 15. doi: 10.1186/s12943-017-0584-0 PMID: 28103887
  91. Zang, H.; Peng, J.; Wang, W.; Fan, S. Roles of microRNAs in the resistance to platinum based chemotherapy in the non-small cell lung cancer. J. Cancer, 2017, 8(18), 3856-3861. doi: 10.7150/jca.21267 PMID: 29151973
  92. Momtazi, A.A.; Shahabipour, F.; Khatibi, S.; Johnston, T.P.; Pirro, M.; Sahebkar, A. Curcumin as a microRNA regulator in cancer: A review. Rev. Physiol. Biochem. Pharmacol., 2016, 171, 1-38. doi: 10.1007/112_2016_3 PMID: 27457236
  93. Du, Z.; Sha, X. Demethoxycurcumin inhibited human epithelia ovarian cancer cells’ growth via up-regulating miR-551a. Tumour Biol., 2017, 39(3), 1010428317694302. doi: 10.1177/1010428317694302 PMID: 28345465
  94. Sun, M.; Estrov, Z.; Ji, Y.; Coombes, K.R.; Harris, D.H.; Kurzrock, R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol. Cancer Ther., 2008, 7(3), 464-473. doi: 10.1158/1535-7163.MCT-07-2272 PMID: 18347134
  95. Ali, S.; Ahmad, A.; Banerjee, S.; Padhye, S.; Dominiak, K.; Schaffert, J.M.; Wang, Z.; Philip, P.A.; Sarkar, F.H. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res., 2010, 70(9), 3606-3617. doi: 10.1158/0008-5472.CAN-09-4598 PMID: 20388782
  96. Wang, H.; Cai, X.; Ma, L. Curcumin modifies epithelial–mesenchymal transition in colorectal cancer through regulation of mir-200c/epm5. Cancer Manag. Res., 2020, 12, 9405-9415. doi: 10.2147/CMAR.S260129 PMID: 33061628
  97. Pan, L.; Sha, J.; Lin, W.; Wang, Y.; Bian, T.; Guo, J. Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axis. Exp. Ther. Med., 2021, 22(3), 969. doi: 10.3892/etm.2021.10401 PMID: 34335911
  98. Yang, C.H.; Yue, J.; Sims, M.; Pfeffer, L.M. The curcumin analog EF24 targets NF-κB and miRNA-21, and has potent anticancer activity in vitro and in vivo. PLoS One, 2013, 8(8), e71130. doi: 10.1371/journal.pone.0071130 PMID: 23940701
  99. Dahmke, I.N.; Backes, C.; Rudzitis-Auth, J.; Laschke, M.W.; Leidinger, P.; Menger, M.D.; Meese, E.; Mahlknecht, U. Curcumin intake affects miRNA signature in murine melanoma with mmu-miR-205-5p most significantly altered. PLoS One, 2013, 8(12), e81122. doi: 10.1371/journal.pone.0081122 PMID: 24349037
  100. Zhang, J.; Zhang, T.; Ti, X.; Shi, J.; Wu, C.; Ren, X.; Yin, H. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem. Biophys. Res. Commun., 2010, 399(1), 1-6. doi: 10.1016/j.bbrc.2010.07.013 PMID: 20627087
  101. Saini, S.; Arora, S.; Majid, S.; Shahryari, V.; Chen, Y.; Deng, G.; Yamamura, S.; Ueno, K.; Dahiya, R. Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev. Res. (Phila.), 2011, 4(10), 1698-1709. doi: 10.1158/1940-6207.CAPR-11-0267 PMID: 21836020
  102. Yu, D.; An, F.; He, X.; Cao, X. Curcumin inhibits the proliferation and invasion of human osteosarcoma cell line MG-63 by regulating miR-138. Int. J. Clin. Exp. Pathol., 2015, 8(11), 14946-14952. PMID: 26823826
  103. Zamani, M.; Sadeghizadeh, M.; Behmanesh, M.; Najafi, F. Dendrosomal curcumin increases expression of the long non-coding RNA gene MEG3 via up-regulation of epi-miRs in hepatocellular cancer. Phytomedicine, 2015, 22(10), 961-967. doi: 10.1016/j.phymed.2015.05.071 PMID: 26321746
  104. Sharma, R.A.; Euden, S.A.; Platton, S.L.; Cooke, D.N.; Shafayat, A.; Hewitt, H.R.; Marczylo, T.H.; Morgan, B.; Hemingway, D.; Plummer, S.M.; Pirmohamed, M.; Gescher, A.J.; Steward, W.P. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin. Cancer Res., 2004, 10(20), 6847-6854. doi: 10.1158/1078-0432.CCR-04-0744 PMID: 15501961
  105. Garcea, G.; Berry, D.P.; Jones, D.J.L.; Singh, R.; Dennison, A.R.; Farmer, P.B.; Sharma, R.A.; Steward, W.P.; Gescher, A.J. Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol. Biomarkers Prev., 2005, 14(1), 120-125. doi: 10.1158/1055-9965.120.14.1 PMID: 15668484
  106. He, Z.Y.; Shi, C.B.; Wen, H.; Li, F.L.; Wang, B.L.; Wang, J. Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Invest., 2011, 29(3), 208-213. doi: 10.3109/07357907.2010.550592 PMID: 21314329
  107. Plummer, S.M.; Hill, K.A.; Festing, M.F.; Steward, W.P.; Gescher, A.J.; Sharma, R.A. Clinical development of leukocyte cyclooxygenase 2 activity as a systemic biomarker for cancer chemopreventive agents. Cancer Epidemiol. Biomarkers Prev., 2001, 10(12), 1295-1299. PMID: 11751448
  108. Carroll, R.E.; Benya, R.V.; Turgeon, D.K.; Vareed, S.; Neuman, M.; Rodriguez, L.; Kakarala, M.; Carpenter, P.M.; McLaren, C.; Meyskens, F.L., Jr; Brenner, D.E. Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev. Res. (Phila.), 2011, 4(3), 354-364. doi: 10.1158/1940-6207.CAPR-10-0098 PMID: 21372035
  109. Irving, G.R.B.; Howells, L.M.; Sale, S.; Kralj-Hans, I.; Atkin, W.S.; Clark, S.K.; Britton, R.G.; Jones, D.J.L.; Scott, E.N.; Berry, D.P.; Hemingway, D.; Miller, A.S.; Brown, K.; Gescher, A.J.; Steward, W.P. Prolonged biologically active colonic tissue levels of curcumin achieved after oral administration-a clinical pilot study including assessment of patient acceptability. Cancer Prev. Res. (Phila.), 2013, 6(2), 119-128. doi: 10.1158/1940-6207.CAPR-12-0281 PMID: 23233733
  110. Cruz-Correa, M.; Shoskes, D.A.; Sanchez, P.; Zhao, R.; Hylind, L.M.; Wexner, S.D.; Giardiello, F.M. Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin. Gastroenterol. Hepatol., 2006, 4(8), 1035-1038. doi: 10.1016/j.cgh.2006.03.020 PMID: 16757216
  111. Cruz-Correa, M.; Hylind, L.M.; Marrero, J.H.; Zahurak, M.L.; Murray-Stewart, T.; Casero, R.A., Jr; Montgomery, E.A.; Iacobuzio-Donahue, C.; Brosens, L.A.; Offerhaus, G.J.; Umar, A.; Rodriguez, L.M.; Giardiello, F.M. Efficacy and safety of curcumin in treatment of intestinal adenomas in patients with familial adenomatous polyposis. Gastroenterology, 2018, 155(3), 668-673. doi: 10.1053/j.gastro.2018.05.031 PMID: 29802852
  112. Bayet-Robert, M.; Kwiatowski, F.; Leheurteur, M.; Gachon, F.; Planchat, E.; Abrial, C.; Mouret-Reynier, M.A.; Durando, X.; Barthomeuf, C.; Chollet, P. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol. Ther., 2010, 9(1), 8-14. doi: 10.4161/cbt.9.1.10392 PMID: 19901561
  113. Hejazi, J.; Rastmanesh, R.; Taleban, F.A.; Molana, S.H.; Hejazi, E.; Ehtejab, G.; Hara, N. Effect of curcumin supplementation during radiotherapy on oxidative status of patients with prostate cancer: a double blinded, randomized, placebo-controlled study. Nutr. Cancer, 2016, 68(1), 77-85. doi: 10.1080/01635581.2016.1115527 PMID: 26771294
  114. Ide, H.; Tokiwa, S.; Sakamaki, K.; Nishio, K.; Isotani, S.; Muto, S.; Hama, T.; Masuda, H.; Horie, S. Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate, 2010, 70(10), 1127-1133. doi: 10.1002/pros.21147 PMID: 20503397
  115. Ledda, A.; Belcaro, G.; Dugall, M.; Luzzi, R.; Scoccianti, M.; Togni, S.; Appendino, G.; Ciammaichella, G. Meriva®, a lecithinized curcumin delivery system, in the control of benign prostatic hyperplasia: a pilot, product evaluation registry study. Panminerva Med., 2012, 54(1)(Suppl. 4), 17-22. PMID: 23241931
  116. Elad, S.; Meidan, I.; Sellam, G.; Simaan, S.; Zeevi, I.; Waldman, E.; Weintraub, M.; Revel-Vilk, S. Topical curcumin for the prevention of oral mucositis in pediatric patients: case series. Altern. Ther. Health Med., 2013, 19(3), 21-24. PMID: 23709456
  117. Kim, S.G.; Veena, M.S.; Basak, S.K.; Han, E.; Tajima, T.; Gjertson, D.W.; Starr, J.; Eidelman, O.; Pollard, H.B.; Srivastava, M.; Srivatsan, E.S.; Wang, M.B. Curcumin treatment suppresses IKKβ kinase activity of salivary cells of patients with head and neck cancer: a pilot study. Clin. Cancer Res., 2011, 17(18), 5953-5961. doi: 10.1158/1078-0432.CCR-11-1272 PMID: 21821700
  118. Santos Filho, E.X.; Arantes, D.A.C.; Oton Leite, A.F.; Batista, A.C.; Mendonça, E.F.; Marreto, R.N.; Naves, L.N.; Lima, E.M.; Valadares, M.C. Randomized clinical trial of a mucoadhesive formulation containing curcuminoids (Zingiberaceae) and Bidens pilosa Linn (Asteraceae) extract (FITOPROT) for prevention and treatment of oral mucositis - phase I study. Chem. Biol. Interact., 2018, 291, 228-236. doi: 10.1016/j.cbi.2018.06.010 PMID: 29906455
  119. Arantes, D.A.C.; Silva, A.C.G.; Freitas, N.M.A.; Lima, E.M.; Oliveira, A.C.; Marreto, R.N.; Mendonça, E.F.; Valadares, M.C. Safety and efficacy of a mucoadhesive phytomedication containing curcuminoids and Bidens pilosa L. extract in the prevention and treatment of radiochemotherapy-induced oral mucositis: Triple-blind, randomized, placebo-controlled, clinical trial. Head Neck, 2021, 43(12), 3922-3934. doi: 10.1002/hed.26892 PMID: 34655135
  120. Dhillon, N.; Aggarwal, B.B.; Newman, R.A.; Wolff, R.A.; Kunnumakkara, A.B.; Abbruzzese, J.L.; Ng, C.S.; Badmaev, V.; Kurzrock, R. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res., 2008, 14(14), 4491-4499. doi: 10.1158/1078-0432.CCR-08-0024 PMID: 18628464
  121. Epelbaum, R.; Schaffer, M.; Vizel, B.; Badmaev, V.; Bar-Sela, G. Curcumin and gemcitabine in patients with advanced pancreatic cancer. Nutr. Cancer, 2010, 62(8), 1137-1141. doi: 10.1080/01635581.2010.513802 PMID: 21058202
  122. Pastorelli, D.; Fabricio, A.S.C.; Giovanis, P.; D’Ippolito, S.; Fiduccia, P.; Soldà, C.; Buda, A.; Sperti, C.; Bardini, R.; Da Dalt, G.; Rainato, G.; Gion, M.; Ursini, F. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective phase II trial. Pharmacol. Res., 2018, 132, 72-79. doi: 10.1016/j.phrs.2018.03.013 PMID: 29614381
  123. Purpura, M.; Lowery, R.P.; Wilson, J.M.; Mannan, H.; Münch, G.; Razmovski-Naumovski, V. Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. Eur. J. Nutr., 2018, 57(3), 929-938. doi: 10.1007/s00394-016-1376-9 PMID: 28204880
  124. Sri Ramya, P.V.; Angapelly, S.; Guntuku, L.; Singh Digwal, C.; Nagendra Babu, B.; Naidu, V.G.M.; Kamal, A. Synthesis and biological evaluation of curcumin inspired indole analogues as tubulin polymerization inhibitors. Eur. J. Med. Chem., 2017, 127, 100-114. doi: 10.1016/j.ejmech.2016.12.043 PMID: 28038323
  125. Rahimi, H.R.; Nedaeinia, R.; Sepehri Shamloo, A.; Nikdoust, S.; Kazemi Oskuee, R. Novel delivery system for natural products: Nano-curcumin formulations. Avicenna J. Phytomed., 2016, 6(4), 383-398. PMID: 27516979
  126. Liu, W.; Zhai, Y.; Heng, X.; Che, F.Y.; Chen, W.; Sun, D.; Zhai, G. Oral bioavailability of curcumin: problems and advancements. J. Drug Target., 2016, 24(8), 694-702. doi: 10.3109/1061186X.2016.1157883 PMID: 26942997
  127. Puneeth, H.R.; Ananda, H.; Kumar, K.S.S.; Rangappa, K.S.; Sharada, A.C. Synthesis and antiproliferative studies of curcumin pyrazole derivatives. Med. Chem. Res., 2016, 25(9), 1842-1851. doi: 10.1007/s00044-016-1628-5
  128. Aqil, F.; Munagala, R.; Jeyabalan, J.; Agrawal, A.K.; Gupta, R. Exosomes for the enhanced tissue bioavailability and efficacy of curcumin. AAPS J., 2017, 19(6), 1691-1702. doi: 10.1208/s12248-017-0154-9 PMID: 29047044
  129. Djurfeldt, M.; Hjorth, J.; Eppler, J.M.; Dudani, N.; Helias, M.; Potjans, T.C.; Bhalla, U.S.; Diesmann, M.; Hellgren Kotaleski, J.; Ekeberg, Ö. Run-time interoperability between neuronal network simulators based on the MUSIC framework. Neuroinformatics, 2010, 8(1), 43-60. doi: 10.1007/s12021-010-9064-z PMID: 20195795
  130. Bachmeier, B.E.; Mohrenz, I.V.; Mirisola, V.; Schleicher, E.; Romeo, F.; Höhneke, C.; Jochum, M.; Nerlich, A.G.; Pfeffer, U. Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFκB. Carcinogenesis, 2008, 29(4), 779-789. doi: 10.1093/carcin/bgm248 PMID: 17999991
  131. Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med., 1998, 64(4), 353-356. doi: 10.1055/s-2006-957450 PMID: 9619120
  132. Sasaki, H.; Sunagawa, Y.; Takahashi, K.; Imaizumi, A.; Fukuda, H.; Hashimoto, T.; Wada, H.; Katanasaka, Y.; Kakeya, H.; Fujita, M.; Hasegawa, K.; Morimoto, T. Innovative preparation of curcumin for improved oral bioavailability. Biol. Pharm. Bull., 2011, 34(5), 660-665. doi: 10.1248/bpb.34.660 PMID: 21532153
  133. Kanai, M.; Imaizumi, A.; Otsuka, Y.; Sasaki, H.; Hashiguchi, M.; Tsujiko, K.; Matsumoto, S.; Ishiguro, H.; Chiba, T. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother. Pharmacol., 2012, 69(1), 65-70. doi: 10.1007/s00280-011-1673-1 PMID: 21603867
  134. Sunagawa, Y.; Hirano, S.; Katanasaka, Y.; Miyazaki, Y.; Funamoto, M.; Okamura, N.; Hojo, Y.; Suzuki, H.; Doi, O.; Yokoji, T.; Morimoto, E.; Takahashi, T.; Ozawa, H.; Imaizumi, A.; Ueno, M.; Kakeya, H.; Shimatsu, A.; Wada, H.; Hasegawa, K.; Morimoto, T. Colloidal submicron-particle curcumin exhibits high absorption efficiency-a double-blind, 3-way crossover study. J. Nutr. Sci. Vitaminol. (Tokyo), 2015, 61(1), 37-44. doi: 10.3177/jnsv.61.37 PMID: 25994138
  135. Morimoto, T.; Sunagawa, Y.; Katanasaka, Y.; Hirano, S.; Namiki, M.; Watanabe, Y.; Suzuki, H.; Doi, O.; Suzuki, K.; Yamauchi, M.; Yokoji, T.; Miyoshi-Morimoto, E.; Otsuka, Y.; Hamada, T.; Imaizumi, A.; Nonaka, Y.; Fuwa, T.; Teramoto, T.; Kakeya, H.; Wada, H.; Hasegawa, K. Drinkable preparation of Theracurmin exhibits high absorption efficiency-a single-dose, double-blind, 4-way crossover study. Biol. Pharm. Bull., 2013, 36(11), 1708-1714. doi: 10.1248/bpb.b13-00150 PMID: 24189415
  136. Vareed, S.K.; Kakarala, M.; Ruffin, M.T.; Crowell, J.A.; Normolle, D.P.; Djuric, Z.; Brenner, D.E. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomarkers Prev., 2008, 17(6), 1411-1417. doi: 10.1158/1055-9965.EPI-07-2693 PMID: 18559556
  137. Volak, L.P.; Hanley, M.J.; Masse, G.; Hazarika, S.; Harmatz, J.S.; Badmaev, V.; Majeed, M.; Greenblatt, D.J.; Court, M.H. Effect of a herbal extract containing curcumin and piperine on midazolam, flurbiprofen and paracetamol (acetaminophen) pharmacokinetics in healthy volunteers. Br. J. Clin. Pharmacol., 2013, 75(2), 450-462. doi: 10.1111/j.1365-2125.2012.04364.x PMID: 22725836
  138. Jäger, R.; Lowery, R.P.; Calvanese, A.V.; Joy, J.M.; Purpura, M.; Wilson, J.M. Comparative absorption of curcumin formulations. Nutr. J., 2014, 13(1), 11. doi: 10.1186/1475-2891-13-11 PMID: 24461029
  139. Gopi, S.; Jacob, J.; Varma, K.; Jude, S.; Amalraj, A.; Arundhathy, C.A.; George, R.; Sreeraj, T.R.; Divya, C.; Kunnumakkara, A.B.; Stohs, S.J. Comparative oral absorption of curcumin in a natural turmeric matrix with two other curcumin formulations: An open-label parallel-arm study. Phytother. Res., 2017, 31(12), 1883-1891. doi: 10.1002/ptr.5931 PMID: 29027274
  140. Schiborr, C.; Kocher, A.; Behnam, D.; Jandasek, J.; Toelstede, S.; Frank, J. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol. Nutr. Food Res., 2014, 58(3), 516-527. doi: 10.1002/mnfr.201300724 PMID: 24402825
  141. Donaldson, K.; Aitken, R.; Tran, L.; Stone, V.; Duffin, R.; Forrest, G.; Alexander, A. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci., 2006, 92(1), 5-22. doi: 10.1093/toxsci/kfj130 PMID: 16484287
  142. Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small, 2008, 4(1), 26-49. doi: 10.1002/smll.200700595
  143. Medina, C.; Santos-Martinez, M.J.; Radomski, A.; Corrigan, O.I.; Radomski, M.W. Nanoparticles: pharmacological and toxicological significance. Br. J. Pharmacol., 2007, 150(5), 552-558. doi: 10.1038/sj.bjp.0707130 PMID: 17245366
  144. Bansal, S.S.; Kausar, H.; Aqil, F.; Jeyabalan, J.; Vadhanam, M.V.; Gupta, R.C.; Ravoori, S. Curcumin implants for continuous systemic delivery: safety and biocompatibility. Drug Deliv. Transl. Res., 2011, 1(4), 332-341. doi: 10.1007/s13346-011-0028-0 PMID: 25788367
  145. Kocher, A.; Bohnert, L.; Schiborr, C.; Frank, J. Highly bioavailable micellar curcuminoids accumulate in blood, are safe and do not reduce blood lipids and inflammation markers in moderately hyperlipidemic individuals. Mol. Nutr. Food Res., 2016, 60(7), 1555-1563. doi: 10.1002/mnfr.201501034 PMID: 26909743
  146. Wang, K.; Qiu, F. Curcuminoid metabolism and its contribution to the pharmacological effects. Curr. Drug Metab., 2013, 14(7), 791-806. doi: 10.2174/13892002113149990102 PMID: 23937173
  147. Naito, M.; Wu, X.; Nomura, H.; Kodama, M.; Kato, Y.; Kato, Y.; Osawa, T. The protective effects of tetrahydrocurcumin on oxidative stress in cholesterol-fed rabbits. J. Atheroscler. Thromb., 2002, 9(5), 243-250. doi: 10.5551/jat.9.243 PMID: 12409634
  148. Gao, Y.; Li, J.; Wu, L.; Zhou, C.; Wang, Q.; Li, X.; Zhou, M.; Wang, H. Tetrahydrocurcumin provides neuroprotection in rats after traumatic brain injury: autophagy and the PI3K/AKT pathways as a potential mechanism. J. Surg. Res., 2016, 206(1), 67-76. doi: 10.1016/j.jss.2016.07.014 PMID: 27916377
  149. Murugan, P.; Pari, L. Effect of tetrahydrocurcumin on lipid peroxidation and lipids in streptozotocin-nicotinamide-induced diabetic rats. Basic Clin. Pharmacol. Toxicol., 2006, 99(2), 122-127. doi: 10.1111/j.1742-7843.2006.pto_447.x PMID: 16918712
  150. Pari, L.; Murugan, P. Antihyperlipidemic effect of curcumin and tetrahydrocurcumin in experimental type 2 diabetic rats. Ren. Fail., 2007, 29(7), 881-889. doi: 10.1080/08860220701540326 PMID: 17994458
  151. Vijaya Saradhi, U.V.R.; Ling, Y.; Wang, J.; Chiu, M.; Schwartz, E.B.; Fuchs, J.R.; Chan, K.K.; Liu, Z. A liquid chromatography–tandem mass spectrometric method for quantification of curcuminoids in cell medium and mouse plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(30), 3045-3051. doi: 10.1016/j.jchromb.2010.08.039 PMID: 20934924
  152. Yu, Q.; Liu, Y.; Wu, Y.; Chen, Y. Dihydrocurcumin ameliorates the lipid accumulation, oxidative stress and insulin resistance in oleic acid-induced L02 and HepG2 cells. Biomed. Pharmacother., 2018, 103, 1327-1336. doi: 10.1016/j.biopha.2018.04.143 PMID: 29864915
  153. Gota, V.S.; Maru, G.B.; Soni, T.G.; Gandhi, T.R.; Kochar, N.; Agarwal, M.G. Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J. Agric. Food Chem., 2010, 58(4), 2095-2099. doi: 10.1021/jf9024807 PMID: 20092313
  154. Garcea, G.; Jones, D.J.L.; Singh, R.; Dennison, A.R.; Farmer, P.B.; Sharma, R.A.; Steward, W.P.; Gescher, A.J.; Berry, D.P. Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br. J. Cancer, 2004, 90(5), 1011-1015. doi: 10.1038/sj.bjc.6601623 PMID: 14997198
  155. Madhavi, D.; Kagan, D. Bioavailability of a sustained release formulation of curcumin. Integr. Med. (Encinitas), 2014, 13(3), 24-30. PMID: 26770097
  156. Sharma, R.A.; McLelland, H.R.; Hill, K.A.; Ireson, C.R.; Euden, S.A.; Manson, M.M.; Pirmohamed, M.; Marnett, L.J.; Gescher, A.J.; Steward, W.P. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin. Cancer Res., 2001, 7(7), 1894-1900. PMID: 11448902
  157. Lao, C.D.; Ruffin, M.T., IV; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med., 2006, 6(1), 10. doi: 10.1186/1472-6882-6-10 PMID: 16545122
  158. Antony, B.; Merina, B.; Iyer, V.S.; Judy, N.; Lennertz, K.; Joyal, S. A pilot cross-over study to evaluate human oral bioavailability of BCM-95® CG (BiocurcumaxTM ), a novel bioenhanced preparation of curcumin. Indian J. Pharm. Sci., 2008, 70(4), 445-449. doi: 10.4103/0250-474X.44591 PMID: 20046768
  159. Im, K.; Ravi, A.; Kumar, D.; Kuttan, R.; Maliakel, B. An enhanced bioavailable formulation of curcumin using fenugreek-derived soluble dietary fibre. J. Funct. Foods, 2012, 4(1), 348-357. doi: 10.1016/j.jff.2012.01.004
  160. Cuomo, J.; Appendino, G.; Dern, A.S.; Schneider, E.; McKinnon, T.P.; Brown, M.J.; Togni, S.; Dixon, B.M. Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J. Nat. Prod., 2011, 74(4), 664-669. doi: 10.1021/np1007262 PMID: 21413691
  161. Basnet, P.; Skalko-Basnet, N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules, 2011, 16(6), 4567-4598. doi: 10.3390/molecules16064567 PMID: 21642934
  162. Asher, G.N.; Spelman, K. Clinical utility of curcumin extract. Altern. Ther. Health Med., 2013, 19(2), 20-22. PMID: 23594449
  163. Panahi, Y.; Saadat, A.; Beiraghdar, F.; Hosseini Nouzari, S.M.; Jalalian, H.R.; Sahebkar, A. Antioxidant effects of bioavailability-enhanced curcuminoids in patients with solid tumors: A randomized double-blind placebo-controlled trial. J. Funct. Foods, 2014, 6, 615-622. doi: 10.1016/j.jff.2013.12.008
  164. Ryan, J.L.; Heckler, C.E.; Ling, M.; Katz, A.; Williams, J.P.; Pentland, A.P.; Morrow, G.R. Curcumin for radiation dermatitis: a randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat. Res., 2013, 180(1), 34-43. doi: 10.1667/RR3255.1 PMID: 23745991
  165. Molana, S.-H. A pilot clinical trial of radioprotective effects of curcumin supplementation in patients with prostate cancer. Int. J. Cancer. Sci. Ther., 2013, 5(10), 320-324. doi: 10.4172/1948-5956.1000222
  166. Ganiger, S.; Malleshappa, H.N.; Krishnappa, H.; Rajashekhar, G.; Ramakrishna Rao, V.; Sullivan, F. A two generation reproductive toxicity study with curcumin, turmeric yellow, in Wistar rats. Food Chem. Toxicol., 2007, 45(1), 64-69. doi: 10.1016/j.fct.2006.07.016 PMID: 16987575
  167. Sahebkar, A.; Henrotin, Y. Analgesic efficacy and safety of curcuminoids in clinical practice: a systematic review and meta-analysis of randomized controlled trials. Pain Med., 2016, 17(6), 1192-1202. PMID: 26814259
  168. Lamb, S.R.; Wilkinson, S.M. Contact allergy to tetrahydrocurcumin. Contact Dermat., 2003, 48(4), 227-227. doi: 10.1034/j.1600-0536.2003.00062.x PMID: 12786734
  169. Hsu, C.-H.; Cheng, A.-L. The molecular targets and therapeutic uses of curcumin in health and disease. Adv. Exp. Med. Biol., 2007, 471-480. doi: 10.1007/978-0-387-46401-5_21
  170. Cao, J.; Jia, L.; Zhou, H.M.; Liu, Y.; Zhong, L.F. Mitochondrial and nuclear DNA damage induced by curcumin in human hepatoma G2 cells. Toxicol. Sci., 2006, 91(2), 476-483. doi: 10.1093/toxsci/kfj153 PMID: 16537656
  171. DiSilvestro, R.A.; Joseph, E.; Zhao, S.; Bomser, J. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr. J., 2012, 11(1), 79. doi: 10.1186/1475-2891-11-79 PMID: 23013352
  172. Shep, D.; Khanwelkar, C.; Gade, P.; Karad, S. Efficacy and safety of combination of curcuminoid complex and diclofenac versus diclofenac in knee osteoarthritis. Medicine, 2020, 99(16), e19723. doi: 10.1097/MD.0000000000019723 PMID: 32311961
  173. Wang, Z.; Sun, W.; Huang, C.K.; Wang, L.; ia, M-M.; Cui, X.; Hu, G.X.; Wang, Z.S. Inhibitory effects of curcumin on activity of cytochrome P450 2C9 enzyme in human and 2C11 in rat liver microsomes. Drug Dev. Ind. Pharm., 2015, 41(4), 613-616. doi: 10.3109/03639045.2014.886697 PMID: 24517573
  174. Babu, P.S.; Srinivasan, K. Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats. Mol. Cell. Biochem., 1997, 166(1/2), 169-175. doi: 10.1023/A:1006819605211 PMID: 9046034
  175. Fan, C.; Wo, X.; Qian, Y.; Yin, J.; Gao, L. Effect of curcumin on the expression of LDL receptor in mouse macrophages. J. Ethnopharmacol., 2006, 105(1-2), 251-254. doi: 10.1016/j.jep.2005.11.009 PMID: 16406419
  176. Kim, D.C.; Kim, S.H.; Choi, B.H.; Baek, N.I.; Kim, D.; Kim, M.J.; Kim, K.T. Curcuma longa extract protects against gastric ulcers by blocking H2 histamine receptors. Biol. Pharm. Bull., 2005, 28(12), 2220-2224. doi: 10.1248/bpb.28.2220 PMID: 16327153
  177. Imam, Z. Drug induced liver injury attributed to a curcumin supplement. Case Rep. Gastroenterol., 2019. doi: 10.1155/2019/6029403
  178. Borsari, M.; Ferrari, E.; Grandi, R.; Saladini, M. Curcuminoids as potential new iron-chelating agents: spectroscopic, polarographic and potentiometric study on their Fe(III) complexing ability. Inorg. Chim. Acta, 2002, 328(1), 61-68. doi: 10.1016/S0020-1693(01)00687-9
  179. Jiao, Y.; Wilkinson, J., IV; Di, X.; Wang, W.; Hatcher, H.; Kock, N.D.; D’Agostino, R., Jr; Knovich, M.A.; Torti, F.M.; Torti, S.V. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood, 2009, 113(2), 462-469. doi: 10.1182/blood-2008-05-155952 PMID: 18815282
  180. Vijayalaxmi B. Genetic effects of turmeric and curcumin in mice and rats. Mutat. Res. Genet. Toxicol. Test., 1980, 79(2), 125-132. doi: 10.1016/0165-1218(80)90080-4 PMID: 7432370
  181. Abraham, S.K.; Kesavan, P. Genotoxicity of garlic, turmeric and asafoetida in mice. Mutat Res, 1984, 136(1), 85-88. doi: 10.1016/0165-1218(84)90138-1
  182. Kim, D.C.; Ku, S.K.; Bae, J.S. Anticoagulant activities of curcumin and its derivative. BMB Rep., 2012, 45(4), 221-226. doi: 10.5483/BMBRep.2012.45.4.221 PMID: 22531131
  183. Rasyid, A.; Lelo, A. The effect of curcumin and placebo on human gall-bladder function: an ultrasound study. Aliment. Pharmacol. Ther., 1999, 13(2), 245-249. doi: 10.1046/j.1365-2036.1999.00464.x PMID: 10102956
  184. Rasyid, A.; Rahman, A.R.A.; Jaalam, K.; Lelo, A. Effect of different curcumin dosages on human gall bladder. Asia Pac. J. Clin. Nutr., 2002, 11(4), 314-318. doi: 10.1046/j.1440-6047.2002.00296.x PMID: 12495265
  185. Tomeh, M.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci., 2019, 20(5), 1033. doi: 10.3390/ijms20051033 PMID: 30818786

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers