Research Progress in Estrogen-related Receptor Gamma (ERRγ) Agonists and Inverse Agonists
- Authors: Zheng Y.1, Du Y.2, Zhang H.1, Lv H.1, Yan Z.1, Dong N.1, Li Q.3, Wang T.3
-
Affiliations:
- School of Chemistry & Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences
- School of Chemistry & Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences,
- Department of Pharmacy, Huashan Hospital, Fudan University
- Issue: Vol 31, No 24 (2024)
- Pages: 3653-3667
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/644836
- DOI: https://doi.org/10.2174/0929867330666230518140631
- ID: 644836
Cite item
Full Text
Abstract
Estrogen-related receptor gamma (ERRγ), one of three members of the ERR family, is an inducible transcription factor. ERRγ has dual functions in different tissues. The decreased expression of ERRγ in the brain, stomach, prostate, and fat cells can cause neuropsychological dysfunction, gastric cancer, prostate cancer, and obesity. However, when ERRγ is present in the liver, pancreas, and thyroid follicular cells, ERRγ overexpression is related to liver cancer, type II diabetes, oxidative liver injury, and anaplastic thyroid carcinoma. Signaling pathway studies have confirmed that ERRγ agonists or inverse agonists can regulate ERRγ expression to treat related diseases. The collision between residue Phe435 and the modulator is a key factor determining the activation or inhibition of ERRγ. Although more than 20 agonists and inverse agonists of ERRγ have been reported, no clinical studies have been found in the literature. This review summarizes the important relationship between ERRγ-related signaling pathways and diseases, research progress, and the structure-activity relationship of modulators. These findings provide guidance for further study on new ERRγ modulators.
About the authors
Yong Zheng
School of Chemistry & Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences
Email: info@benthamscience.net
Yongli Du
School of Chemistry & Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences,
Author for correspondence.
Email: info@benthamscience.net
Haibin Zhang
School of Chemistry & Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences
Email: info@benthamscience.net
Huiting Lv
School of Chemistry & Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences
Email: info@benthamscience.net
Zhijia Yan
School of Chemistry & Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences
Email: info@benthamscience.net
Ning Dong
School of Chemistry & Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences
Email: info@benthamscience.net
Qunyi Li
Department of Pharmacy, Huashan Hospital, Fudan University
Email: info@benthamscience.net
Tianxiao Wang
Department of Pharmacy, Huashan Hospital, Fudan University
Email: info@benthamscience.net
References
- Ghanbari, F.; Hebert-Losier, A.; Barry, J.; Poirier, D.; Giguere, V.; Mader, S.; Philip, A. Isolation and functional characterization of a novel endogenous inverse agonist of estrogen related receptors (ERRs) from human pregnancy urine. J. Steroid Biochem. Mol. Biol., 2019, 191, 105352. doi: 10.1016/j.jsbmb.2019.04.001 PMID: 30954508
- Schoepke, E.; Billon, C.; Haynes, K.M.; Avdagic, A.; Sitaula, S.; Sanders, R.; Adeyemi, C.M.; Walker, J.K.; Burris, T.P. A selective ERRα/γ inverse agonist, SLU-PP-1072, inhibits the warburg effect and induces apoptosis in prostate cancer cells. ACS Chem. Biol., 2020, 15(9), 2338-2345. doi: 10.1021/acschembio.0c00670 PMID: 32897058
- Zhou, W.; Lo, S.C.; Liu, J.H.; Hannink, M.; Lubahn, D.B. ERRβ: A potent inhibitor of Nrf2 transcriptional activity. Mol. Cell. Endocrinol., 2007, 278(1-2), 52-62. doi: 10.1016/j.mce.2007.08.011 PMID: 17920186
- Lim, J.; Choi, H.S.; Choi, H.J. Estrogen-related receptor gamma regulates dopaminergic neuronal phenotype by activating GSK3β/NFAT signaling in SH-SY5Y cells. J. Neurochem., 2015, 133(4), 544-557. doi: 10.1111/jnc.13085 PMID: 25727910
- Huang, B.; Mu, P.; Yu, Y.; Zhu, W.; Jiang, T.; Deng, R.; Feng, G.; Wen, J.; Zhu, X.; Deng, Y. Inhibition of EZH2 and activation of ERRγ synergistically suppresses gastric cancer by inhibiting FOXM1 signaling pathway. Gastric Cancer, 2021, 24(1), 72-84. doi: 10.1007/s10120-020-01097-x PMID: 32529327
- Yu, S.; Wang, X.; Ng, C.F.; Chen, S.; Chan, F.L. ERRgamma suppresses cell proliferation and tumor growth of androgen-sensitive and androgen-insensitive prostate cancer cells and its implication as a therapeutic target for prostate cancer. Cancer Res., 2007, 67(10), 4904-4914. doi: 10.1158/0008-5472.CAN-06-3855 PMID: 17510420
- Xu, S.; Mao, L.; Ding, P.; Zhuang, X.; Zhou, Y.; Yu, L.; Liu, Y.; Nie, T.; Xu, T.; Xu, Y.; Liu, J.; Smaill, J.; Ren, X.; Wu, D.; Ding, K. 1-Benzyl-4-phenyl-1H-1,2,3-triazoles improve the transcriptional functions of estrogen-related receptor γ and promote the browning of white adipose. Bioorg. Med. Chem., 2015, 23(13), 3751-3760. doi: 10.1016/j.bmc.2015.03.082 PMID: 25910584
- Kim, D.K.; Choi, H.S. Emerging role of the orphan nuclear receptor estrogen-related receptor gamma in liver metabolic diseases. Liver Res., 2019, 3(2), 99-105. doi: 10.1016/j.livres.2019.03.001
- Yoshihara, E.; Wei, Z.; Lin, C.S.; Fang, S.; Ahmadian, M.; Kida, Y.; Tseng, T.; Dai, Y.; Yu, R.T.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. ERRγ is required for the metabolic maturation of therapeutically functional glucose-responsive β cells. Cell Metab., 2016, 23(4), 622-634. doi: 10.1016/j.cmet.2016.03.005 PMID: 27076077
- Singh, T.D.; Song, J.; Kim, J.; Chin, J.; Ji, H.D.; Lee, J.E.; Lee, S.B.; Yoon, H.; Yu, J.H.; Kim, S.K.; Yoon, G.S.; Hwang, H.; Lee, H.W.; Oh, J.M.; Lee, S.W.; Lee, J.; Choi, H.S.; Na, S.Y.; Choi, W.I.; Park, Y.J.; Song, Y.S.; Kim, Y.A.; Lee, I.K.; Cho, S.J.; Jeon, Y.H. A novel orally active inverse agonist of Estrogen-related Receptor Gamma (ERRγ), DN200434, a booster of NIS in anaplastic thyroid cancer. Clin. Cancer Res., 2019, 25(16), 5069-5081. doi: 10.1158/1078-0432.CCR-18-3007 PMID: 31010838
- Kim, J.H.; Choi, Y.K.; Byun, J.K.; Kim, M.K.; Kang, Y.N.; Kim, S.H.; Lee, S.; Jang, B.K.; Park, K.G. Estrogen-related receptor γ is upregulated in liver cancer and its inhibition suppresses liver cancer cell proliferation via induction of p21 and p27. Exp. Mol. Med., 2016, 48(3), e213. doi: 10.1038/emm.2015.115 PMID: 26940882
- Kim, D.K.; Kim, Y.H.; Lee, J.H.; Jung, Y.S.; Kim, J.; Feng, R.; Jeon, T.I.; Lee, I.K.; Cho, S.J.; Im, S.S.; Dooley, S.; Osborne, T.F.; Lee, C.H.; Choi, H.S. Estrogen-related receptor γ controls sterol regulatory element-binding protein-1c expression and alcoholic fatty liver. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2019, 1864(12), 158521. doi: 10.1016/j.bbalip.2019.158521 PMID: 31479733
- Kim, J.; Song, J.; Ji, H.D.; Yoo, E.K.; Lee, J.E.; Lee, S.B.; Oh, J.M.; Lee, S.; Hwang, J.S.; Yoon, H.; Kim, D.S.; Lee, S.J.; Jeong, M.; Lee, S.; Kim, K.H.; Choi, H.S.; Lee, S.W.; Park, K.G.; Lee, I.K.; Kim, S.H.; Hwang, H.; Jeon, Y.H.; Chin, J.; Cho, S.J. Discovery of potent, selective, and orally bioavailable estrogen-related receptor-γ inverse agonists to restore the sodium iodide symporter function in anaplastic thyroid cancer. J. Med. Chem., 2019, 62(4), 1837-1858. doi: 10.1021/acs.jmedchem.8b01296 PMID: 30657313
- Seth, A.; Steel, J.H.; Nichol, D.; Pocock, V.; Kumaran, M.K.; Fritah, A.; Mobberley, M.; Ryder, T.A.; Rowlerson, A.; Scott, J.; Poutanen, M.; White, R.; Parker, M. The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle. Cell Metab., 2007, 6(3), 236-245. doi: 10.1016/j.cmet.2007.08.004 PMID: 17767910
- Misra, J.; Kim, D.K.; Choi, H.S. ERRγ: A junior orphan with a senior role in metabolism. Trends Endocrinol. Metab., 2017, 28(4), 261-272. doi: 10.1016/j.tem.2016.12.005 PMID: 28209382
- Kang, M.H.; Choi, H.; Oshima, M.; Cheong, J.H.; Kim, S.; Lee, J.H.; Park, Y.S.; Choi, H.S.; Kweon, M.N.; Pack, C.G.; Lee, J.S.; Mills, G.B.; Myung, S.J.; Park, Y.Y. Estrogen-related receptor gamma functions as a tumor suppressor in gastric cancer. Nat. Commun., 2018, 9(1), 1920. doi: 10.1038/s41467-018-04244-2 PMID: 29765046
- Gesta, S.; Tseng, Y.H.; Kahn, C.R. Developmental origin of fat: Tracking obesity to its source. Cell, 2007, 131(2), 242-256. doi: 10.1016/j.cell.2007.10.004 PMID: 17956727
- Dixen, K.; Basse, A.L.; Murholm, M.; Isidor, M.S.; Hansen, L.H.L.; Petersen, M.C.H.; Madsen, L.; Petrovic, N.; Nedergaard, J.; Quistorff, B.; Hansen, J.B. ERRγ enhances UCP1 expression and fatty acid oxidation in brown adipocytes. Obesity (Silver Spring), 2013, 21(3), 516-524. doi: 10.1002/oby.20067 PMID: 23404793
- Kim, D.K.; Ryu, D.; Koh, M.; Lee, M.W.; Lim, D.; Kim, M.J.; Kim, Y.H.; Cho, W.J.; Lee, C.H.; Park, S.B.; Koo, S.H.; Choi, H.S. Orphan nuclear receptor estrogen-related receptor γ (ERRγ) is key regulator of hepatic gluconeogenesis. J. Biol. Chem., 2012, 287(26), 21628-21639. doi: 10.1074/jbc.M111.315168 PMID: 22549789
- Vecchi, C.; Montosi, G.; Garuti, C.; Corradini, E.; Sabelli, M.; Canali, S.; Pietrangelo, A. Gluconeogenic signals regulate iron homeostasis via hepcidin in mice. Gastroenterology, 2014, 146(4), 1060-1069.e3. doi: 10.1053/j.gastro.2013.12.016 PMID: 24361124
- Martino, M.R.; Gutiérrez-Aguilar, M.; Yiew, N.K.H.; Lutkewitte, A.J.; Singer, J.M.; McCommis, K.S.; Ferguson, D.; Liss, K.H.H.; Yoshino, J.; Renkemeyer, M.K.; Smith, G.I.; Cho, K.; Fletcher, J.A.; Klein, S.; Patti, G.J.; Burgess, S.C.; Finck, B.N. Silencing alanine transaminase 2 in diabetic liver attenuates hyperglycemia by reducing gluconeogenesis from amino acids. Cell Rep., 2022, 41(7), 111633. doi: 10.1016/j.celrep.2022.111633 PMID: 36384117
- Choi, J.H.; Park, M.J.; Kim, K.W.; Choi, Y.H.; Park, S.H.; An, W.G.; Yang, U.S.; Cheong, J. Molecular mechanism of hypoxia-mediated hepatic gluconeogenesis by transcriptional regulation. FEBS Lett., 2005, 579(13), 2795-2801. doi: 10.1016/j.febslet.2005.03.097 PMID: 15907483
- Imperatore, R.; Morello, G.; Luongo, L.; Taschler, U.; Romano, R.; De Gregorio, D.; Belardo, C.; Maione, S.; Di Marzo, V.; Cristino, L. Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB 1 R signaling and anxiety-like behavior. J. Neurochem., 2015, 135(4), 799-813. doi: 10.1111/jnc.13267 PMID: 26223500
- Kim, T.; Kim, H.I.; Oh, H.; Jeon, Y.; Shin, H.; Kim, H.S.; Lim, J.; Lim, C.; Yoo, J.; Suh, Y.G.; Son, W.S.; Choi, H.J.; Kim, S.H. Discovery of new ERRγ agonists regulating dopaminergic neuronal phenotype in SH-SY5Y cells. Bioorg. Chem., 2022, 122, 105716. doi: 10.1016/j.bioorg.2022.105716 PMID: 35303621
- Kim, H.I.; Lee, S.; Lim, J.; Chung, S.; Koo, T.S.; Ji, Y.G.; Suh, Y.G.; Son, W.S.; Kim, S.H.; Choi, H.J. ERRγ ligand HPB2 upregulates BDNF-TrkB and enhances dopaminergic neuronal phenotype. Pharmacol. Res., 2021, 165, 105423. doi: 10.1016/j.phrs.2021.105423 PMID: 33434621
- Wang, L.; Zuercher, W.J.; Consler, T.G.; Lambert, M.H.; Miller, A.B.; Orband-Miller, L.A.; McKee, D.D.; Willson, T.M.; Nolte, R.T. X-ray crystal structures of the estrogen-related receptor-gamma ligand binding domain in three functional states reveal the molecular basis of small molecule regulation. J. Biol. Chem., 2006, 281(49), 37773-37781. doi: 10.1074/jbc.M608410200 PMID: 16990259
- Li, R.; Du, Y.; Shen, J. Designing of novel ERRγ inverse agonists by molecular modeling studies of docking and 3D-QSAR on hydroxytamoxifen derivatives. Med. Chem. Res., 2019, 28(10), 1661-1673. doi: 10.1007/s00044-019-02402-9
- Zuercher, W.J.; Gaillard, S.; Orband-Miller, L.A.; Chao, E.Y.H.; Shearer, B.G.; Jones, D.G.; Miller, A.B.; Collins, J.L.; McDonnell, D.P.; Willson, T.M. Identification and structure-activity relationship of phenolic acyl hydrazones as selective agonists for the estrogen-related orphan nuclear receptors ERRbeta and ERRgamma. J. Med. Chem., 2005, 48(9), 3107-3109. doi: 10.1021/jm050161j PMID: 15857113
- Yu, D.D.; Forman, B.M. Identification of an agonist ligand for estrogen-related receptors ERRβ/γ. Bioorg. Med. Chem. Lett., 2005, 15(5), 1311-1313. doi: 10.1016/j.bmcl.2005.01.025 PMID: 15713377
- Kim, Y.; Koh, M.; Kim, D.K.; Choi, H.S.; Park, S.B. Efficient discovery of selective small molecule agonists of estrogen-related receptor gamma using combinatorial approach. J. Comb. Chem., 2009, 11(5), 928-937. doi: 10.1021/cc900081j PMID: 19746993
- Lin, H.; Doebelin, C.; Patouret, R.; Garcia-Ordonez, R.D.; Chang, M.R.; Dharmarajan, V.; Bayona, C.R.; Cameron, M.D.; Griffin, P.R.; Kamenecka, T.M. Design, synthesis, and evaluation of simple phenol amides as ERRγ agonists. Bioorg. Med. Chem. Lett., 2018, 28(8), 1313-1319. doi: 10.1016/j.bmcl.2018.03.019 PMID: 29548571
- Takayanagi, S.; Tokunaga, T.; Liu, X.; Okada, H.; Matsushima, A.; Shimohigashi, Y. Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor γ (ERRγ) with high constitutive activity. Toxicol. Lett., 2006, 167(2), 95-105. doi: 10.1016/j.toxlet.2006.08.012 PMID: 17049190
- Matsushima, A.; Teramoto, T.; Okada, H.; Liu, X.; Tokunaga, T.; Kakuta, Y.; Shimohigashi, Y. ERRγ tethers strongly bisphenol A and 4-α-cumylphenol in an induced-fit manner. Biochem. Biophys. Res. Commun., 2008, 373(3), 408-413. doi: 10.1016/j.bbrc.2008.06.050 PMID: 18582436
- Suyama, K.; Kaneko, S.; Kesamaru, H.; Liu, X.; Matsushima, A.; Kakuta, Y.; Okubo, T.; Kasatani, K.; Nose, T. Evaluation of the influence of halogenation on the binding of bisphenol A to the estrogen-related receptor γ. Chem. Res. Toxicol., 2020, 33(4), 889-902. doi: 10.1021/acs.chemrestox.9b00379 PMID: 32105061
- Coward, P.; Lee, D.; Hull, M.V.; Lehmann, J.M. 4-Hydroxytamoxifen binds to and deactivates the estrogen-related receptor γ. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8880-8884. doi: 10.1073/pnas.151244398 PMID: 11447273
- Yu, D.D.; Huss, J.M.; Li, H.; Forman, B.M. Identification of novel inverse agonists of estrogen-related receptors ERRγ and ERRβ. Bioorg. Med. Chem., 2017, 25(5), 1585-1599. doi: 10.1016/j.bmc.2017.01.019 PMID: 28189393
- Chao, E.Y.H.; Collins, J.L.; Gaillard, S.; Miller, A.B.; Wang, L.; Orband-Miller, L.A.; Nolte, R.T.; McDonnell, D.P.; Willson, T.M.; Zuercher, W.J. Structure-guided synthesis of tamoxifen analogs with improved selectivity for the orphan ERRγ. Bioorg. Med. Chem. Lett., 2006, 16(4), 821-824. doi: 10.1016/j.bmcl.2005.11.030 PMID: 16307879
- Kim, J.; Chin, J.; Im, C.Y.; Yoo, E.K.; Woo, S.; Hwang, H.J.; Cho, J.; Seo, K.; Song, J.; Hwang, H.; Kim, K.H.; Kim, N.D.; Yoon, S.K.; Jeon, J.H.; Yoon, S.Y.; Jeon, Y.H.; Choi, H.S.; Lee, I.K.; Kim, S.H.; Cho, S.J. Synthesis and biological evaluation of novel 4-hydroxytamoxifen analogs as estrogen-related receptor gamma inverse agonists. Eur. J. Med. Chem., 2016, 120, 338-352. doi: 10.1016/j.ejmech.2016.04.076 PMID: 27236015
- Kim, J.; Im, C.Y.; Yoo, E.K.; Ma, M.J.; Kim, S.B.; Hong, E.; Chin, J.; Hwang, H.; Lee, S.; Kim, N.D.; Jeon, J.H.; Lee, I.K.; Jeon, Y.H.; Choi, H.S.; Kim, S.H..; Cho, S.J. Identification of selective ERRgamma inverse agonists. Molecules, 2016, 21(1), 80. doi: 10.3390/molecules21010080 PMID: 26771593
- Kim, J.; Woo, S.Y.; Im, C.Y.; Yoo, E.Y.; Lee, S.; Kim, H.J.; Hwang, H.J.; Cho, J.H.; Lee, W.S.; Yoon, H.; Kim, S.; Kwon, O.B.; Hwang, H.; Kim, K.H.; Jeon, J.H.; Singh, T.D.; Kim, S.W.; Hwang, S.Y.; Choi, H.S.; Lee, I.K.; Kim, S.H.; Jeon, Y.H.; Chin, J.; Cho, J. Insights of a lead optimization study and biological evaluation of novel 4-hydroxytamoxifen analogs as estrogen-related receptor gamma (ERRgamma) inverse agonists. J. Med. Chem., 2016, 59(22), 10209-10227. doi: 10.1021/acs.jmedchem.6b01204 PMID: 27805390
- Kim, J.; Hwang, H.; Yoon, H.; Lee, J.E.; Oh, J.M.; An, H.; Ji, H.D.; Lee, S.; Cha, E.; Ma, M.J.; Kim, D.S.; Lee, S.J.; Kadayat, T.M.; Song, J.; Lee, S.W.; Jeon, J.H.; Park, K.G.; Lee, I.K.; Jeon, Y.H.; Chin, J.; Cho, S.J. An orally available inverse agonist of estrogen-related receptor gamma showed expanded efficacy for the radioiodine therapy of poorly differentiated thyroid cancer. Eur. J. Med. Chem., 2020, 205, 112501. doi: 10.1016/j.ejmech.2020.112501 PMID: 32758860
- Yang, S.H.; Khadka, D.B.; Han, J.; Na, S.Y.; Shin, M.; Kim, D.K.; Oh, B.C.; Kim, E.Y.; Choi, H.S.; Cho, W.J. Structure-based discovery of pyrazolamides as novel ERRγ inverse agonists. Eur. J. Med. Chem., 2023, 250, 115174. doi: 10.1016/j.ejmech.2023.115174 PMID: 36805944
Supplementary files
