Electrochemical Label-free Methods for Ultrasensitive Multiplex Protein Profiling of Infectious Diseases
- Authors: Madhurantakam S.1, Churcher N.1, Kumar R.1, Prasad S.1
-
Affiliations:
- Department of Bioengineering, The University of Texas at Dallas
- Issue: Vol 31, No 25 (2024)
- Pages: 3857-3869
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/644876
- DOI: https://doi.org/10.2174/0929867330666230609112052
- ID: 644876
Cite item
Full Text
Abstract
Electrochemical detection methods are the more appropriate detection methods when it comes to the sensitive and specific determination of biomarkers. Biomarkers are the biological targets for disease diagnosis and monitoring. This review focuses on recent advances in label-free detection of biomarkers for infectious disease diagnosis. The current state of the art for rapid detection of infectious diseases and their clinical applications and challenges were discussed. Label-free electroanalytical methods are probably the most promising means to achieve this. We are currently in the early stages of the emerging technology of using label-free electrochemistry of proteins to develop biosensors. To date, antibody-based biosensors have been intensively developed, although many improvements in reproducibility and sensitivity are still needed. Moreover, there is no doubt that a growing number of aptamers and hopefully label-free biosensors based on nanomaterials will soon be used for disease diagnosis and therapy monitoring. And also here in this review article, we have discussed recent developments in the diagnosis of bacterial and viral infections, as well as the current status of the use of label-free electrochemical methods for monitoring inflammatory diseases.
Keywords
About the authors
Sasya Madhurantakam
Department of Bioengineering, The University of Texas at Dallas
Email: info@benthamscience.net
Nathan Churcher
Department of Bioengineering, The University of Texas at Dallas
Email: info@benthamscience.net
Ruchita Kumar
Department of Bioengineering, The University of Texas at Dallas
Email: info@benthamscience.net
Shalini Prasad
Department of Bioengineering, The University of Texas at Dallas
Author for correspondence.
Email: info@benthamscience.net
References
- Shiels, M.S.; Haque, A.T.; Berrington de González, A.; Freedman, N.D. Leading causes of death in the US during the COVID-19 Pandemic, March 2020 to October 2021. JAMA Intern. Med., 2022, 182(8), 883-886. doi: 10.1001/jamainternmed.2022.2476 PMID: 35788262
- Kalashgrani, M.Y.; Babapoor, A. Application of nano-antibiotics in the diagnosis and treatment of infectious diseases. Adv. Appl. NanoBio-Tech., 2022, 2022(1), 22-35. doi: 10.47227/AANBT/3(1)35
- Kim, J.H.; Suh, Y.J.; Park, D.; Yim, H.; Kim, H.; Kim, H.J.; Yoon, D.S.; Hwang, K.S. Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomed. Eng. Lett., 2021, 4(11), 309-334. doi: 10.1007/s13534-021-00204-w
- Jarockyte, G.; Karabanovas, V.; Rotomskis, R.; Mobasheri, A. Multiplexed nanobiosensors: Current trends in early diagnostics. Sensors, 2020, 20(23), 6890. doi: 10.3390/s20236890
- Pathogen testing: Immunoassay vs. molecular methods. 2020. Available from: https://www.eurofinsus.com/food-testing/resources/pathogen-testing-immunoassay-vs-molecular-methods/
- Liu, R.; Ye, X.; Cui, T. Recent progress of biomarker detection sensors. Research, 2020, 2020, 2020/7949037. doi: 10.34133/2020/7949037 PMID: 33123683
- Li, H.; Huang, Y.; Hou, G.; Xiao, A.; Chen, P.; Liang, H.; Huang, Y.; Zhao, X.; Liang, L.; Feng, X.; Guan, B-O. Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface. Available from: https://www.science.org
- Adeniyi, O.K.; Mashazi, P.N. Stable thin films of human P53 antigen on gold surface for the detection of tumour associated anti-P53 autoantibodies. Electrochim. Acta, 2020, 331, 135272. doi: 10.1016/j.electacta.2019.135272
- Gil Rosa, B.; Akingbade, O.E.; Guo, X.; Gonzalez-Macia, L.; Crone, M.A.; Cameron, L.P.; Freemont, P.; Choy, K.L.; Güder, F.; Yeatman, E.; Sharp, D.J.; Li, B. Multiplexed immunosensors for point-of-care diagnostic applications. Biosens. Bioelectron., 2022, 203, 114050. doi: 10.1016/j.bios.2022.114050 PMID: 35134685
- Haleem, A.; Javaid, M.; Singh, R. P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sensors Int., 2021, 2, 100100. doi: 10.1016/j.sintl.2021.100100
- Dennis, D.T. The biochemistry of energy utilization in plants; Springer Nature: Switzerland, 1987.
- Narayan, R. Encyclopedia of Sensors, and Biosensors, 1st ed.; Elsevier: Amsterdam, 2022.
- Sengupta, J.; Hussain, C. M. Decadal journey of CNT-based analytical biosensing platforms in the detection of human viruses. Nanomaterials, 2022, 12(23), 4132. doi: 10.3390/nano12234132
- Curulli, A. Electrochemical biosensors in food safety: Challenges and perspectives. Molecules, 2021, 26(10), 2940. doi: 10.3390/molecules26102940 PMID: 34063344
- Damborský, P.; vitel, J.; Katrlík, J. Optical biosensors. Essays Biochem., 2016, 60(1), 91-100. doi: 10.1042/EBC20150010 PMID: 27365039
- Borisov, S.M.; Wolfbeis, O.S. Optical biosensors. Chem. Rev., 2008, 108(2), 423-461. doi: 10.1021/cr068105t PMID: 18229952
- Cooper, M. A. Optical biosensors in drug discovery. Nat Rev Drug Discov., 2002, 1(7), 515-28. doi: 10.1038/nrd838
- Peltomaa, R.; Glahn-Martínez, B.; Benito-Peña, E.; Moreno-Bondi, M. Optical biosensors for label-free detection of small molecules. Sensors, 2018, 18(12), 4126. doi: 10.3390/s18124126 PMID: 30477248
- Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst, 2020, 145(5), 1605-1628. doi: 10.1039/C9AN01998G PMID: 31970360
- Rezaei, B.; Irannejad, N. Electrochemical detection techniques in biosensor applications. Electrochemical Biosensors; Elsevier Inc.: Amsterdam, 2019. doi: 10.1016/B978-0-12-816491-4.00002-4
- Schöning, M.J.; Poghossian, A. Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst, 2002, 127(9), 1137-1151. doi: 10.1039/B204444G PMID: 12375833
- Matsumoto, A.; Miyahara, Y. Current and emerging challenges of field effect transistor based bio-sensing. Nanoscale, 2013, 5(22), 10702-10718. doi: 10.1039/c3nr02703a PMID: 24064964
- Tu, J.; Gan, Y.; Liang, T.; Hu, Q.; Wang, Q.; Ren, T.; Sun, Q.; Wan, H.; Wang, P. Graphene FET array biosensor based on ssDNA aptamer for ultrasensitive Hg2+ detection in environmental pollutants. Front Chem., 2018, 6(AUG), 333. doi: 10.3389/fchem.2018.00333 PMID: 30155458
- Lowe, B.M.; Sun, K.; Zeimpekis, I.; Skylaris, C.K.; Green, N.G. Field-effect sensors from pH sensing to biosensing: Sensitivity enhancement using streptavidinbiotin as a model system. Analyst, 2017, 142(22), 4173-4200. doi: 10.1039/C7AN00455A PMID: 29072718
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors - sensor principles and architectures. Sensors, 2008, 8(3), 1400-1458. doi: 10.3390/s80314000 PMID: 27879772
- Huang, X.; Zhu, Y.; Kianfar, E. Nano biosensors: Properties, applications and electrochemical techniques. J. Mater. Res. Technol., 2021, 12, 1649-1672. doi: 10.1016/j.jmrt.2021.03.048
- Sang, S.; Wang, Y.; Feng, Q.; Wei, Y.; Ji, J.; Zhang, W. Progress of new label-free techniques for biosensors: A review. Crit Rev Biotechnol., 2016, 36(3), 465-81. doi: 10.3109/07388551.2014.991270
- Andryukov, B. G.; Besednova, N. N.; Romashko, R. V.; Zaporozhets, T. S.; Efimov, T. A. Label-free biosensors for laboratory-based diagnostics of infections: Current achievements and new trends. Biosensors, 2020, 10(2), 11. doi: 10.3390/bios10020011
- Hyun, J.J.; Seo, Y.S.; An, H.; Yim, S.Y.; Seo, M.H.; Kim, H.S.; Kim, C.H.; Kim, J.H.; Keum, B.; Kim, Y.S.; Yim, H.J.; Lee, H.S.; Um, S.H.; Kim, C.D.; Ryu, H.S. Optimal time for repeating the IgM anti-hepatitis A virus antibody test in acute hepatitis A patients with a negative initial test. Korean J. Hepatol., 2012, 18(1), 56-62. doi: 10.3350/kjhep.2012.18.1.56 PMID: 22511904
- Skinhøj, P.; Mikkelsen, F.; Hollinger, F.B. Hepatitis ain greenland: Importance of specific antibody testing in epidemiologic surveillance. Am. J. Epidemiol., 1977, 105(2), 140-147. doi: 10.1093/oxfordjournals.aje.a112366 PMID: 189600
- Nainan, O.V.; Xia, G.; Vaughan, G.; Margolis, H.S. Diagnosis of hepatitis a virus infection: A molecular approach. Clin. Microbiol. Rev., 2006, 19(1), 63-79. doi: 10.1128/CMR.19.1.63-79.2006 PMID: 16418523
- Wei, S.; Xiao, H.; Cao, L.; Chen, Z. A label-free immunosensor based on Graphene Oxide/Fe3O4/Prussian Blue nanocomposites for the electrochemical determination of HBsAg. Biosensors, 2020, 10(3), 24. doi: 10.3390/bios10030024 PMID: 32183297
- Vemula, S. V.; Zhao, J.; Liu, J.; Xue, X. W.; Biswas, S.; Hewlett, I. Current approaches for diagnosis of influenza virus infections in humans. Viruses, 2016, 8(4), 96. doi: 10.3390/v8040096
- Zhao, Y.; Zhang, Y.H.; Denney, L.; Young, D.; Powell, T.J.; Peng, Y.C.; Li, N.; Yan, H.P.; Wang, D.Y.; Shu, Y.L.; Kendrick, Y.; McMichael, A.J.; Ho, L.P.; Dong, T. High levels of virus-specific CD4+ T cells predict severe pandemic influenza A virus infection. Am. J. Respir. Crit. Care Med., 2012, 186(12), 1292-1297. doi: 10.1164/rccm.201207-1245OC PMID: 23087026
- Ingram, P.R.; Inglis, T.; Moxon, D.; Speers, D. Procalcitonin and C-reactive protein in severe 2009 H1N1 influenza infection. Intensive Care Med., 2010, 36(3), 528-532. doi: 10.1007/s00134-009-1746-3 PMID: 20069274
- Lin, J.; Wang, R.; Jiao, P.; Li, Y.; Li, Y.; Liao, M.; Yu, Y.; Wang, M. An impedance immunosensor based on low-cost microelectrodes and specific monoclonal antibodies for rapid detection of avian influenza virus H5N1 in chicken swabs. Biosens. Bioelectron., 2015, 67, 546-552. doi: 10.1016/j.bios.2014.09.037 PMID: 25263315
- Louten, J. Detection and diagnosis of viral infections. Essential Human Virology; Elsevier: Amsterdam, 2016, pp. 111-132. doi: 10.1016/B978-0-12-800947-5.00007-7
- Long, L.; Cai, R.; Liu, J.; Wu, X. A novel nanoprobe based on coreshell Au@Pt@Mesoporous SiO2 nanozyme with enhanced activity and stability for mumps virus diagnosis. Front Chem., 2020, 8, 463. doi: 10.3389/fchem.2020.00463 PMID: 32582637
- Zhang, L.; Yuan, R.; Huang, X.; Chai, Y.; Tang, D.; Cao, S. A new label-free amperometric immunosenor for rubella vaccine. Anal. Bioanal. Chem., 2005, 381(5), 1036-1040. doi: 10.1007/s00216-004-3021-3 PMID: 15761742
- Sadique, M.A.; Yadav, S.; Ranjan, P.; Khan, R.; Khan, F.; Kumar, A.; Biswas, D. Highly sensitive electrochemical immunosensor platforms for dual detection of SARS-CoV-2 antigen and antibody based on gold nanoparticle functionalized graphene oxide nanocomposites. ACS Appl. Bio Mater., 2022, 5(5), 2421-2430. doi: 10.1021/acsabm.2c00301 PMID: 35522141
- Soto, D.; Orozco, J. Peptide-based simple detection of SARS-CoV-2 with electrochemical readout. Anal. Chim. Acta, 2022, 1205, 339739. doi: 10.1016/j.aca.2022.339739 PMID: 35414399
- Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. Label-free and reagent-less electrochemical detection of nucleocapsid protein of SARS-CoV-2: An ultrasensitive and disposable biosensor. New J. Chem., 2022, 46(19), 9172-9183. doi: 10.1039/D2NJ00046F
- Ratautaite, V.; Boguzaite, R.; Brazys, E.; Ramanaviciene, A.; Ciplys, E.; Juozapaitis, M.; Slibinskas, R.; Bechelany, M.; Ramanavicius, A. Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2 spike glycoprotein. Electrochim. Acta, 2022, 403, 139581. doi: 10.1016/j.electacta.2021.139581 PMID: 34898691
- Shahdeo, D.; Roberts, A.; Archana, G.J.; Shrikrishna, N.S.; Mahari, S.; Nagamani, K.; Gandhi, S. Label free detection of SARS CoV-2 Receptor Binding Domain (RBD) protein by fabrication of gold nanorods deposited on electrochemical immunosensor (GDEI). Biosens. Bioelectron., 2022, 212, 114406. doi: 10.1016/j.bios.2022.114406 PMID: 35635976
- Peng, R.; Pan, Y.; Li, Z.; Qin, Z.; Rini, J.M.; Liu, X. SPEEDS: A portable serological testing platform for rapid electrochemical detection of SARS-CoV-2 antibodies. Biosens. Bioelectron., 2022, 197, 113762. doi: 10.1016/j.bios.2021.113762 PMID: 34773750
- Deng, Y.; Peng, Y.; Wang, L.; Wang, M.; Zhou, T.; Xiang, L.; Li, J.; Yang, J.; Li, G. Target-triggered cascade signal amplification for sensitive electrochemical detection of SARS-CoV-2 with clinical application. Anal. Chim. Acta, 2022, 1208, 339846. doi: 10.1016/j.aca.2022.339846 PMID: 35525596
- Hahm, J.B.; Breneman, J.W., IV; Liu, J.; Rabkina, S.; Zheng, W.; Zhou, S.; Walker, R.P.; Kaul, R. A fully automated multiplex assay for diagnosis of lyme disease with high specificity and improved early sensitivity. J. Clin. Microbiol., 2020, 58(5), e01785-19. doi: 10.1128/JCM.01785-19 PMID: 32132190
- Lerner, M.B.; Dailey, J.; Goldsmith, B.R.; Brisson, D.; Charlie Johnson, A.T. Detecting Lyme disease using antibody-functionalized single-walled carbon nanotube transistors. Biosens. Bioelectron., 2013, 45(1), 163-167. doi: 10.1016/j.bios.2013.01.035 PMID: 23475141
- Flynn, C.; Ignaszak, A. Lyme disease biosensors: A potential solution to a diagnostic dilemma Biosensors, 2020, 10(10), 197. doi: 10.3390/bios10100137
- Dou, M.; Sanchez, J.; Tavakoli, H.; Gonzalez, J.E.; Sun, J.; Dien Bard, J.; Li, X. A low-cost microfluidic platform for rapid and instrument-free detection of whooping cough. Anal. Chim. Acta, 2019, 1065, 71-78. doi: 10.1016/j.aca.2019.03.001 PMID: 31005153
- Sun, C.; Xiao, F.; Fu, J.; Huang, X.; Jia, N.; Xu, Z.; Wang, Y.; Cui, X. Loop-mediated isothermal amplification coupled with nanoparticle-based lateral biosensor for rapid, sensitive, and specific detection of Bordetella pertussis. Front. Bioeng. Biotechnol., 2022, 9, 797957. doi: 10.3389/fbioe.2021.797957 PMID: 35211469
- Rafique, S.; Idrees, M.; Bokhari, H.; Bhatti, A.S. Ellipsometric-based novel DNA biosensor for label-free, real-time detection of Bordetella parapertussis. J. Biol. Phys., 2019, 45(3), 275-291. doi: 10.1007/s10867-019-09528-2 PMID: 31375953
- Bacchu, M.S.; Ali, M.R.; Das, S.; Akter, S.; Sakamoto, H.; Suye, S.I.; Rahman, M.M.; Campbell, K.; Khan, M.Z.H. A DNA functionalized advanced electrochemical biosensor for identification of the foodborne pathogen Salmonella enterica serovar Typhi in real samples. Anal. Chim. Acta, 2022, 1192, 339332. doi: 10.1016/j.aca.2021.339332 PMID: 35057920
- Selvaraj, V.; Muthukumar, A.; Nagamony, P.; Chinnuswamy, V. Detection of typhoid fever by diatom-based optical biosensor. Environ. Sci. Pollut. Res. Int., 2018, 25(21), 20385-20390. doi: 10.1007/s11356-017-9362-1 PMID: 28577141
- Prado, I.C.; Chino, M.E.T.A.; dos Santos, A.L.; Souza, A.L.A.; Pinho, L.G.; Lemos, E.R.S.; De-Simone, S.G. Development of an electrochemical immunosensor for the diagnostic testing of spotted fever using synthetic peptides. Biosens. Bioelectron., 2018, 100, 115-121. doi: 10.1016/j.bios.2017.08.029 PMID: 28886455
- Ramos-Sono, D.; Laureano, R.; Rueda, D.; Gilman, R. H.; Rosa, A.; La; Ruiz, J.; León, R.; Sheen, P.; Zimic, M. An electrochemical biosensor for the detection of Mycobacterium tuberculosis dna from sputum and urine samples. PLoS One, 2020, 15(10), e0241067. doi: 10.1371/journal.pone.0241067
- Liu, Q.; Lim, B.K.L.; Lim, S.Y.; Tang, W.Y.; Gu, Z.; Chung, J.; Park, M.K.; Barkham, T. Label-free, real-time and multiplex detection of Mycobacterium tuberculosis based on silicon photonic microring sensors and asymmetric isothermal amplification technique (SPMS-AIA). Sens. Actuators B Chem., 2018, 255, 1595-1603. doi: 10.1016/j.snb.2017.08.181
- Jagannath, B.; Lin, K.C.; Pali, M.; Sankhala, D.; Muthukumar, S.; Prasad, S. A sweat-based wearable enabling technology for real-time monitoring of il-1β and crp as potential markers for inflammatory bowel disease. Inflamm. Bowel Dis., 2020, 26(10), 1533-1542. doi: 10.1093/ibd/izaa191 PMID: 32720974
- Tanak, A.S.; Muthukumar, S.; Krishnan, S.; Schully, K.L.; Clark, D.V.; Prasad, S. Multiplexed cytokine detection using electrochemical point-of-care sensing device towards rapid sepsis endotyping. Biosens. Bioelectron., 2021, 171, 112726. doi: 10.1016/j.bios.2020.112726 PMID: 33113386
Supplementary files
