Recent Updates on Interaction Studies and Drug Delivery of Antimalarials with Serum Albumin Proteins


Дәйексөз келтіру

Толық мәтін

Аннотация

This review focuses on recent trends in the binding study of various antimalarial agents with serum albumins in detail. Serum albumin has a significant role in the transport of drugs and endogenous ligands. The nature and magnitude of serum albumin and drug interactions have a tremendous impact on the pharmacological behavior and toxicity of that drug. Binding of drug to serum albumin not only controls its free and active concentration, but also provides a reservoir for a long duration of action. This ultimately affects drug absorption, distribution, metabolism, and excretion. Such interaction determines the actual drug efficacy as the drug action can be correlated with the amount of unbound drug. With the advancement in spectroscopic techniques and simulation studies, binding studies play an increasingly important role in biophysical and biomedical science, especially in the field of drug delivery and development. This review assesses the insight we have gained so far to improve drug delivery and discovery of antimalarials on the basis of a plethora of drug-serum protein interaction studies done so far.

Авторлар туралы

Kashish Azeem

Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia

Email: info@benthamscience.net

Iram Irfan

Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia

Email: info@benthamscience.net

Qudsia Rashid

Department of Clinical Biochemistry, Government Degree College

Email: info@benthamscience.net

Shailja Singh

Host-Parasite Interaction Biology, Laboratory Special Centre for Molecular Medicine, Jawaharlal Nehru University

Email: info@benthamscience.net

Rajan Patel

Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Mohammad Abid

Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Belinskaia, D.A.; Voronina, P.A.; Shmurak, V.I.; Jenkins, R.O.; Goncharov, N.V. Serum albumin in health and disease: Esterase, antioxidant, transporting and signaling properties. Int. J. Mol. Sci., 2021, 22(19), 10318. doi: 10.3390/ijms221910318 PMID: 34638659
  2. Aneja, B.; Azam, M.; Alam, S.; Perwez, A.; Maguire, R.; Yadava, U.; Kavanagh, K.; Daniliuc, C.G.; Rizvi, M.M.A.; Haq, Q.M.R.; Abid, M. Natural product-based 1, 2, 3-triazole/sulfonate analogues as potential chemotherapeutic agents for bacterial infections. ACS Omega, 2018, 3(6), 6912-6930. doi: 10.1021/acsomega.8b00582 PMID: 30023966
  3. Ali, A.; Hasan, P.; Irfan, M.; Uddin, A.; Khan, A.; Saraswat, J.; Maguire, R.; Kavanagh, K.; Patel, R.; Joshi, M.C.; Azam, A.; Mohsin, M.; Haque, Q.M.R.; Abid, M. Development of oxadiazole-sulfonamide-based compounds as potential antibacterial agents. ACS Omega, 2021, 6(42), 27798-27813. doi: 10.1021/acsomega.1c03379 PMID: 34722980
  4. Bolognesi, M.L.; Cavalli, A. Wiley Online Library, 2016, 11, 1190-1192.
  5. Bujacz, A. Structures of bovine, equine and leporine serum albumin. Acta Crystallogr. D Biol. Crystallogr., 2012, 68(10), 1278-1289. doi: 10.1107/S0907444912027047 PMID: 22993082
  6. Merlot, A.M.; Kalinowski, D.S.; Richardson, D.R. Unraveling the mysteries of serum albuminâ€"more than just a serum protein. Front. Physiol., 2014, 5, 299. doi: 10.3389/fphys.2014.00299 PMID: 25161624
  7. Schmidt, E.G.W.; Hvam, M.L.; Antunes, F.; Cameron, J.; Viuff, D.; Andersen, B.; Kristensen, N.N.; Howard, K.A. Direct demonstration of a neonatal Fc receptor (FcRn)-driven endosomal sorting pathway for cellular recycling of albumin. J. Biol. Chem., 2017, 292(32), 13312-13322. doi: 10.1074/jbc.M117.794248 PMID: 28637874
  8. Sleep, D. Albumin and its application in drug delivery. Expert Opin. Drug Deliv., 2015, 12(5), 793-812. doi: 10.1517/17425247.2015.993313 PMID: 25518870
  9. Siddiqui, S.; Ameen, F.; ur Rehman, S.; Sarwar, T.; Tabish, M. Studying the interaction of drug/ligand with serum albumin. J. Mol. Liq., 2021, 336, 116200. doi: 10.1016/j.molliq.2021.116200
  10. Motta, A.A.E.A.; de Castro, M.C.S.; Silva, D.; Cortez, C.M. A mathematical model to estimate binding sites for ligands in HSA and BSA based on spectrofluorimetry. J. Mol. Struct., 2021, 1223, 129224. doi: 10.1016/j.molstruc.2020.129224
  11. Marković, O.S.; Cvijetić, I.N.; Zlatović, M.V.; Opsenica, I.M.; Konstantinović, J.M.; Terzić Jovanović, N.V.; Šolaja, B.A.; Verbić, T.Ž. Human serum albumin binding of certain antimalarials. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 192, 128-139. doi: 10.1016/j.saa.2017.10.061 PMID: 29128746
  12. Yu, X.; Liao, Z.; Jiang, B.; Hu, X.; Li, X. Spectroscopic analyses on interaction of bovine serum albumin with novel spirocyclopropane-pyrrolizin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 129-136. doi: 10.1016/j.saa.2014.08.098 PMID: 25218221
  13. Yang, F.; Zhang, Y.; Liang, H. Interactive association of drugs binding to human serum albumin. Int. J. Mol. Sci., 2014, 15(3), 3580-3595. doi: 10.3390/ijms15033580 PMID: 24583848
  14. Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm., 2021, 601, 120571. doi: 10.1016/j.ijpharm.2021.120571 PMID: 33812967
  15. Larsen, M.T.; Kuhlmann, M.; Hvam, M.L.; Howard, K.A. Albumin-based drug delivery: Harnessing nature to cure disease. Mol. Cell. Ther., 2016, 4(1), 3. doi: 10.1186/s40591-016-0048-8 PMID: 26925240
  16. Hassan, M.I.; Mathur, Y.; Mohammad, T.; Anjum, F.; Shafie, A.; Elasbali, A.M.; Uversky, V.N. PyPAn: An automated graphical user interface for protein sequence and structure analyses. Protein Pept. Lett., 2022, 29(4), 306-312. doi: 10.2174/0929866529666220210155421 PMID: 35142267
  17. Gelamo, E.L.; Silva, C.H.T.P.; Imasato, H.; Tabak, M. Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 2002, 1594(1), 84-99. doi: 10.1016/S0167-4838(01)00287-4 PMID: 11825611
  18. Eskew, M.W.; Benight, A.S. Ligand binding constants for human serum albumin evaluated by ratiometric analysis of DSC thermograms. Anal. Biochem., 2021, 628, 114293. doi: 10.1016/j.ab.2021.114293 PMID: 34181905
  19. Lee, P.; Wu, X. Review: modifications of human serum albumin and their binding effect. Curr. Pharm. Des., 2015, 21(14), 1862-1865. doi: 10.2174/1381612821666150302115025 PMID: 25732553
  20. Tahir, A.E.L.; Malhotra, P.; Chauhan, V.S. Uptake of proteins and degradation of human serum albumin by Plasmodium falciparum-infected human erythrocytes. Malar. J., 2003, 2(1), 11. doi: 10.1186/1475-2875-2-11 PMID: 12801422
  21. Bhat, A.R.; Wani, F.A.; Behera, K.; Khan, A.B.; Patel, R. Formulation of biocompatible microemulsions for encapsulation of anti-TB drug rifampicin: A physicochemical and spectroscopic study. Colloids Surf. A Physicochem. Eng. Asp., 2022, 645, 128846. doi: 10.1016/j.colsurfa.2022.128846
  22. Wani, F.A.; Ahmad, R.; Patel, R. Synthesis and interfacial properties of novel benzimidazolium based gemini surfactants and their binding with crocin. Ind. Eng. Chem. Res., 2020, 59(37), 16283-16295. doi: 10.1021/acs.iecr.0c02824
  23. Parray, M.; Mir, M.U.H.; Dohare, N.; Maurya, N.; Khan, A.B.; Borse, M.S.; Patel, R. Effect of cationic gemini surfactant and its monomeric counterpart on the conformational stability and esterase activity of human serum albumin. J. Mol. Liq., 2018, 260, 65-77. doi: 10.1016/j.molliq.2018.03.070
  24. Siddiquee, M.A.; Parray, M.; Mehdi, S.H.; Alzahrani, K.A.; Alshehri, A.A.; Malik, M.A.; Patel, R. Green synthesis of silver nanoparticles from Delonix regia leaf extracts: In-vitro cytotoxicity and interaction studies with bovine serum albumin. Mater. Chem. Phys., 2020, 242, 122493. doi: 10.1016/j.matchemphys.2019.122493
  25. Patel, R.; Maurya, N.; Parray, M.; Farooq, N.; Siddique, A.; Verma, K.L.; Dohare, N. Esterase activity and conformational changes of bovine serum albumin toward interaction with mephedrone: Spectroscopic and computational studies. J. Mol. Recognit., 2018, 31(11), e2734. doi: 10.1002/jmr.2734 PMID: 29920814
  26. Peters, T., Jr All about albumin: biochemistry, genetics, and medical applications; Academic press, 1995.
  27. Bertucci, C.; Domenici, E. Reversible and covalent binding of drugs to human serum albumin: methodological approaches and physiological relevance. Curr. Med. Chem., 2002, 9(15), 1463-1481. doi: 10.2174/0929867023369673 PMID: 12173977
  28. Rabbani, G.; Ahn, S.N. Review: Roles of human serum albumin in prediction, diagnoses and treatment of COVID-19. Int. J. Biol. Macromol., 2021, 193(Pt A), 948-955. doi: 10.1016/j.ijbiomac.2021.10.095 PMID: 34673106
  29. Tayyab, S.; Feroz, S.R. Serum albumin: Clinical significance of drug binding and development as drug delivery vehicle. Adv. Protein Chem. Struct. Biol., 2021, 123, 193-218. doi: 10.1016/bs.apcsb.2020.08.003 PMID: 33485484
  30. Rondeau, P.; Bourdon, E. The glycation of albumin: Structural and functional impacts. Biochimie, 2011, 93(4), 645-658. doi: 10.1016/j.biochi.2010.12.003 PMID: 21167901
  31. Nakatani, S.; Yasukawa, K.; Ishimura, E.; Nakatani, A.; Toi, N.; Uedono, H.; Tsuda, A.; Yamada, S.; Ikeda, H.; Mori, K.; Emoto, M.; Yatomi, Y.; Inaba, M. Non-mercaptalbumin, oxidized form of serum albumin, significantly associated with renal function and anemia in chronic kidney disease patients. Sci. Rep., 2018, 8(1), 16796. doi: 10.1038/s41598-018-35177-x PMID: 30429539
  32. Azeem, K.; Ahmed, M.; Mohammad, T.; Uddin, A.; Shamsi, A.; Hassan, M.I.; Singh, S.; Patel, R.; Abid, M. A multi-spectroscopic and computational simulations study to delineate the interaction between antimalarial drug hydroxychloroquine and human serum albumin. J. Biomol. Struct. Dyn., 2022, 1-17. doi: 10.1080/07391102.2022.2107077 PMID: 35924780
  33. Behera, S.; Mohanty, P.; Behura, R.; Nath, B.; Barick, A.K.; Jali, B.R. Antibacterial properties of quinoline derivatives: A mini-review. Biointerface Res. Appl. Chem., 2021, 12(5), 6078-6092.
  34. Foley, M.; Tilley, L. Quinoline antimalarials: Mechanisms of action and resistance. Int. J. Parasitol., 1997, 27(2), 231-240. doi: 10.1016/S0020-7519(96)00152-X PMID: 9088993
  35. Ducharme, J.; Farinotti, R. Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin. Pharmacokinet., 1996, 31(4), 257-274. doi: 10.2165/00003088-199631040-00003 PMID: 8896943
  36. Sibley, C.H.; Guerin, P.J.; Ringwald, P. Monitoring antimalarial resistance: Launching a cooperative effort. Trends Parasitol., 2010, 26(5), 221-224. doi: 10.1016/j.pt.2010.02.008 PMID: 20304706
  37. Kandeel, M.; Kitade, Y. Analysis of the molecular interactions and complexation of chloroquine with bovine serum albumin. Drug Metabol. Drug Interact., 2012, 27(1), 41-46. doi: 10.1515/dmdi.2011.030
  38. Zhou, W.; Wang, H.; Yang, Y.; Chen, Z.S.; Zou, C.; Zhang, J. Chloroquine against malaria, cancers and viral diseases. Drug Discov. Today, 2020, 25(11), 2012-2022. doi: 10.1016/j.drudis.2020.09.010 PMID: 32947043
  39. Stevens, D.M.; Crist, R.M.; Stern, S.T. Nanomedicine reformulation of chloroquine and hydroxychloroquine. Molecules, 2020, 26(1), 175. doi: 10.3390/molecules26010175 PMID: 33396545
  40. Tunç, S.; Duman, O.; Bozoğlan, B.K. Studies on the interactions of chloroquine diphosphate and phenelzine sulfate drugs with human serum albumin and human hemoglobin proteins by spectroscopic techniques. J. Lumin., 2013, 140, 87-94. doi: 10.1016/j.jlumin.2013.03.015
  41. Cortopassi, W.A.; Gunderson, E.; Annunciato, Y.; Silva, A.E.S.; dos Santos, F.A.; Garcia Teles, C.B.; Pimentel, A.S.; Ramamoorthi, R.; Gazarini, M.L.; Meneghetti, M.R.; Guido, R.V.C.; Pereira, D.B.; Jacobson, M.P.; Krettli, A.U.; Caroline, C.A.A. Fighting Plasmodium chloroquine resistance with acetylenic chloroquine analogues. Int. J. Parasitol. Drugs Drug Resist., 2022, 20, 121-128. doi: 10.1016/j.ijpddr.2022.10.003 PMID: 36375339
  42. da Silva Neto, G.J.; Silva, L.R.; de Omena, R.J.M.; Aguiar, A.C.C.; Annunciato, Y.; Rossetto, B.S.; Gazarini, M.L.; Heimfarth, L.; Quintans-Júnior, L.J.; da Silva-Júnior, E.F.; Meneghetti, M.R. Dual quinoline-hybrid compounds with antimalarial activity against Plasmodium falciparum parasites. New J. Chem., 2022, 46(14), 6502-6518. doi: 10.1039/D1NJ05598D
  43. Rogóż, W.; Lemańska, O.; Pożycka, J.; Owczarzy, A.; Kulig, K.; Muhammetoglu, T.; Maciążek-Jurczyk, M. Spectroscopic analysis of an antimalarial drug’s (Quinine) influence on human serum albumin reduction and antioxidant potential. Molecules, 2022, 27(18), 6027. doi: 10.3390/molecules27186027 PMID: 36144764
  44. Boonyasuppayakorn, S.; Reichert, E.D.; Manzano, M.; Nagarajan, K.; Padmanabhan, R. Amodiaquine, an antimalarial drug, inhibits dengue virus type 2 replication and infectivity. Antiviral Res., 2014, 106, 125-134. doi: 10.1016/j.antiviral.2014.03.014 PMID: 24680954
  45. Olliaro, P.L.; Mussano, P. Amodiaquine for treating malaria. Cochrane Database Syst. Rev., 2003, 2000(2), CD000016. doi: 10.1002/14651858.CD000016
  46. Samari, F.; Shamsipur, M.; Hemmateenejad, B.; Khayamian, T.; Gharaghani, S. Investigation of the interaction between amodiaquine and human serum albumin by fluorescence spectroscopy and molecular modeling. Eur. J. Med. Chem., 2012, 54, 255-263. doi: 10.1016/j.ejmech.2012.05.007 PMID: 22658498
  47. Singh, S.; Sharma, K.; Awasthi, S.K. The interaction of (7-chloroquinolin-4-yl)-(2,5-dimethoxyphenyl)-amine hydrochloride dihydrate with serum albumin proteins, inputs from spectroscopic, molecular docking and X-ray diffraction studies. RSC Advances, 2015, 5(104), 85854-85861. doi: 10.1039/C5RA02815A
  48. Wu, W.; Liang, Y.; Wu, G.; Su, Y.; Zhang, H.; Zhang, Z.; Deng, C.; Wang, Q.; Huang, B.; Tan, B.; Zhou, C.; Song, J. Effect of artemisinin-piperaquine treatment on the electrocardiogram of malaria patients. Rev. Soc. Bras. Med. Trop., 2019, 52, e20180453. doi: 10.1590/0037-8682-0453-2018 PMID: 31141053
  49. Davis, T.M.E.; Hung, T.Y.; Sim, I.K.; Karunajeewa, H.A.; Ilett, K.F. Piperaquine. Drugs, 2005, 65(1), 75-87. doi: 10.2165/00003495-200565010-00004 PMID: 15610051
  50. Chinh, N.T.; Travers, T.; Edstein, M.D.; Thanh, N.X.; Dai, B.; Quang, N.N. Pharmacokinetics of the antimalarial drug piperaquine in healthy Vietnamese subjects. Am. J. Trop. Med. Hyg., 2008, 79(4), 620-623. doi: 10.4269/ajtmh.2008.79.620 PMID: 18840754
  51. Ma, R.; Guo, D.X.; Li, H.F.; Liu, H.X.; Zhang, Y.R.; Ji, J.B.; Xing, J.; Wang, S.Q. Spectroscopic methodologies and molecular docking studies on the interaction of antimalarial drug piperaquine and its metabolites with human serum albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 222, 117158. doi: 10.1016/j.saa.2019.117158 PMID: 31181505
  52. Huang, L.; Sok, V.; Aslam-Mir, U.; Marzan, F.; Whalen, M.; Rosenthal, P.J.; Aweeka, F. Determination of unbound piperaquine in human plasma by ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatography Open, 2022, 2, 100042. doi: 10.1016/j.jcoa.2022.100042 PMID: 35531322
  53. Gupta, Y.K.; Gupta, M.; Aneja, S.; Kohli, K. Current drug therapy of protozoal diarrhoea. Indian J. Pediatr., 2004, 71(1), 55-58. doi: 10.1007/BF02725657 PMID: 14979387
  54. Phopin, K.; Sinthupoom, N.; Treeratanapiboon, L.; Kunwittaya, S.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes. EXCLI J., 2016, 15, 144-152. PMID: 27103894
  55. Ruankham, W.; Phopin, K.; Pingaew, R.; Prachayasittikul, S.; Prachayasittikul, V.; Tantimongcolwat, T. In silico and multi-spectroscopic analyses on the interaction of 5-amino-8-hydroxyquinoline and bovine serum albumin as a potential anticancer agent. Sci. Rep., 2021, 11(1), 20187. doi: 10.1038/s41598-021-99690-2 PMID: 34642420
  56. Terkuile, F.; White, N.J.; Holloway, P.; Pasvol, G.; Krishna, S. Plasmodium falciparum: in vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. Exp. Parasitol., 1993, 76(1), 85-95. doi: 10.1006/expr.1993.1010 PMID: 8467901
  57. Veerappan, A.; Eichhorn, T.; Zeino, M.; Efferth, T.; Schneider, D. Differential interactions of the broad spectrum drugs artemisinin, dihydroartemisinin and artesunate with serum albumin. Phytomedicine, 2013, 20(11), 969-974. doi: 10.1016/j.phymed.2013.04.003 PMID: 23684544
  58. Titulaer, H A C.; Zuidema, J.; Kager, P.A.; Wetsteyn, J.C F M.; Lugt, C.B.; Merkus, F.W.H.M. The pharmacokinetics of artemisinin after oral, intramuscular and rectal administration to volunteers. J. Pharm. Pharmacol., 2011, 42(11), 810-813. doi: 10.1111/j.2042-7158.1990.tb07030.x PMID: 1982311
  59. Olliaro, P.L.; Nair, N.K.; Sathasivam, K.; Mansor, S.M.; Navaratnam, V. Pharmacokinetics of artesunate after single oral administration to rats. BMC Pharmacol., 2001, 1(1), 12. doi: 10.1186/1471-2210-1-12 PMID: 11835690
  60. Jeong, H.; Ranallo, S.; Rossetti, M.; Heo, J.; Shin, J.; Park, K.; Ricci, F.; Hong, J. Electronic activation of a DNA nanodevice using a multilayer nanofilm. Small, 2016, 12(40), 5572-5578. doi: 10.1002/smll.201601273 PMID: 27577954
  61. Ginosyan, S.; Grabski, H.; Tiratsuyan, S. In vitro and in silico determination of the interaction of artemisinin with human serum albumin. Mol. Biol., 2020, 54(4), 653-666. PMID: 32799228
  62. Ginosyan, S.; Grabski, H.; Tiratsuyan, S. In vitro and in silico identification of the mechanism of interaction of antimalarial drug–artemisinin with human serum albumin and genomic DNA. bioRxiv, 2019, 519710. doi: 10.1101/519710
  63. Primikyri, A.; Papamokos, G.; Venianakis, T.; Sakka, M.; Kontogianni, V.G.; Gerothanassis, I.P. Structural basis of artemisinin binding sites in serum albumin with the combined use of nmr and docking calculations. Molecules, 2022, 27(18), 5912. doi: 10.3390/molecules27185912 PMID: 36144648
  64. Arai, Y.; Watanabe, S.; Kimira, M.; Shimoi, K.; Mochizuki, R.; Kinae, N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J. Nutr., 2000, 130(9), 2243-2250. doi: 10.1093/jn/130.9.2243 PMID: 10958819
  65. Pal, H.C.; Pearlman, R.L.; Afaq, F. Fisetin and its role in chronic diseases. Adv. Exp. Med. Biol., 2016, 928, 213-244. doi: 10.1007/978-3-319-41334-1_10
  66. Jin, H.; Xu, Z.; Cui, K.; Zhang, T.; Lu, W.; Huang, J. Dietary flavonoids fisetin and myricetin: Dual inhibitors of Plasmodium falciparum falcipain-2 and plasmepsin II. Fitoterapia, 2014, 94, 55-61. doi: 10.1016/j.fitote.2014.01.017 PMID: 24468190
  67. Singha Roy, A.; Kumar Dinda, A.; Dasgupta, S. Study of the interaction between fisetin and human serum albumin: A biophysical approach. Protein Pept. Lett., 2012, 19(6), 604-615. doi: 10.2174/092986612800493995 PMID: 22519532
  68. Park, J.M.; Do, V.; Seo, Y.S.; Duong, M.; Ahn, H.C.; Huh, H.; Lee, M.Y. Application of fisetin to the quantitation of serum albumin. J. Clin. Med., 2020, 9(2), 459. doi: 10.3390/jcm9020459 PMID: 32046075
  69. Awasthi, S.; Saraswathi, N.T. Elucidating the molecular interaction of sinigrin, a potent anticancer glucosinolate from cruciferous vegetables with bovine serum albumin: effect of methylglyoxal modification. J. Biomol. Struct. Dyn., 2016, 34(10), 2224-2232. doi: 10.1080/07391102.2015.1110835 PMID: 26488200
  70. Okeola, V.O.; Adaramoye, O.A.; Nneji, C.M.; Falade, C.O.; Farombi, E.O.; Ademowo, O.G. Antimalarial and antioxidant activities of methanolic extract of Nigella sativa seeds (black cumin) in mice infected with Plasmodium yoelli nigeriensis. Parasitol. Res., 2011, 108(6), 1507-1512. doi: 10.1007/s00436-010-2204-4 PMID: 21153838
  71. Ali, M.S.; Rehman, M.T.; Al-Lohedan, H.; AlAjmi, M.F. Spectroscopic and molecular docking investigation on the interaction of cumin components with plasma protein: Assessment of the comparative interactions of aldehyde and alcohol with human serum albumin. Int. J. Mol. Sci., 2022, 23(8), 4078. doi: 10.3390/ijms23084078 PMID: 35456897
  72. Andromeda, S.E.; Berbudi, A. The role of curcumin as an antimalarial agent. Systematic Reviews in Pharmacy, 2020, 11(7), 18-25.
  73. Kar, T.; Basak, P.; Sen, S.; Ghosh, R.K.; Bhattacharyya, M. Analysis of curcumin interaction with human serum albumin using spectroscopic studies with molecular simulation. Front. Biol., 2017, 12(3), 199-209. doi: 10.1007/s11515-017-1449-z
  74. Sahoo, B.K.; Ghosh, K.S.; Dasgupta, S. Molecular interactions of isoxazolcurcumin with human serum albumin: Spectroscopic and molecular modeling studies. Biopolymers, 2009, 91(2), 108-119. doi: 10.1002/bip.21092 PMID: 18814316
  75. Hudson, E.A.; de Paula, H.M.C.; Ferreira, G.M.D.; Ferreira, G.M.D.; Hespanhol, M.C.; da Silva, L.H.M.; Pires, A.C.S. Thermodynamic and kinetic analyses of curcumin and bovine serum albumin binding. Food Chem., 2018, 242, 505-512. doi: 10.1016/j.foodchem.2017.09.092 PMID: 29037721
  76. Peng, X.; Wang, J.; Peng, W.; Wu, F-X.; Pan, Y. Protein-protein interactions: Detection, reliability assessment and applications. Brief. Bioinform., 2017, 18(5), 798-819. PMID: 27444371
  77. Behjati Hosseini, S.; Asadzadeh-Lotfabad, M.; Erfani, M.; Babayan-Mashhadi, F.; Mokaberi, P.; Amiri-Tehranizadeh, Z.; Saberi, M.R.; Chamani, J. A novel vision into the binding behavior of curcumin with human serum albumin-holo transferrin complex: molecular dynamic simulation and multi-spectroscopic perspectives. J. Biomol. Struct. Dyn., 2021, 1-19. PMID: 34328379
  78. Jahanban-Esfahlan, A.; Roufegarinejad, L.; Jahanban-Esfahlan, R.; Tabibiazar, M.; Amarowicz, R. Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers. Talanta, 2020, 207, 120317. doi: 10.1016/j.talanta.2019.120317 PMID: 31594596
  79. Croom, E. Metabolism of xenobiotics of human environments. Prog. Mol. Biol. Transl. Sci., 2012, 112, 31-88. doi: 10.1016/B978-0-12-415813-9.00003-9 PMID: 22974737
  80. Hu, X.L.; Gao, C.; Xu, Z.; Liu, M.L.; Feng, L.S.; Zhang, G.D. Recent development of coumarin derivatives as potential antiplasmodial and antimalarial agents. Curr. Top. Med. Chem., 2018, 18(2), 114-123. doi: 10.2174/1568026618666171215101158 PMID: 29243579
  81. Yeggoni, D.P.; Gokara, M.; Mark Manidhar, D.; Rachamallu, A.; Nakka, S.; Reddy, C.S.; Subramanyam, R. Binding and molecular dynamics studies of 7-hydroxycoumarin derivatives with human serum albumin and its pharmacological importance. Mol. Pharm., 2014, 11(4), 1117-1131. doi: 10.1021/mp500051f PMID: 24495045
  82. Khan, S.; Zafar, A.; Naseem, I. Probing the interaction of a coumarin-di(2-picolyl)amine hybrid drug-like molecular entity with human serum albumin: Multiple spectroscopic and molecular modeling techniques. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 223, 117330. doi: 10.1016/j.saa.2019.117330 PMID: 31280128
  83. Sharma, K.; Yadav, P.; Sharma, B.; Pandey, M.; Awasthi, S.K. Interaction of coumarin triazole analogs to serum albumins: Spectroscopic analysis and molecular docking studies. J. Mol. Recognit., 2020, 33(6), e2834. doi: 10.1002/jmr.2834 PMID: 32017307
  84. Pillai, L.S.; Nair, B.R. Molecular docking studies using Sinigrin and Tamoxifen. J. Pharmacogn. Phytochem., 2018, 7(2), 3217-3221.
  85. Walter, N.S.; Gorki, V.; Chauhan, M.; Dhingra, N.; Kaur, S. Sinigrin in combination with artesunate provides protection against lethal murine malaria via falcipain-3 inhibition and immune modulation. Int. Immunopharmacol., 2021, 101(Pt A), 108320. doi: 10.1016/j.intimp.2021.108320 PMID: 34741871
  86. Toovey, S. Mefloquine neurotoxicity: A literature review. Travel Med. Infect. Dis., 2009, 7(1), 2-6. doi: 10.1016/j.tmaid.2008.12.004 PMID: 19174293
  87. Lee, S.J.; ter Kuile, F.O.; Price, R.N.; Luxemburger, C.; Nosten, F. Adverse effects of mefloquine for the treatment of uncomplicated malaria in Thailand: A pooled analysis of 19, 850 individual patients. PLoS One, 2017, 12(2), e0168780. doi: 10.1371/journal.pone.0168780 PMID: 28192434
  88. Musa, K.A.; Ridzwan, N.F.W.; Mohamad, S.B.; Tayyab, S. Combination mode of antimalarial drug mefloquine and human serum albumin: Insights from spectroscopic and docking approaches. Biopolymers, 2020, 111(2), e23337. doi: 10.1002/bip.23337 PMID: 31691964
  89. Organization, W.H. Guidelines for the treatment of malaria; World Health Organization, 2015.
  90. Musa, K.A.; Ridzwan, N.F.W.; Mohamad, S.B.; Tayyab, S. Exploring the combination characteristics of lumefantrine, an antimalarial drug and human serum albumin through spectroscopic and molecular docking studies. J. Biomol. Struct. Dyn., 2021, 39(2), 691-702. doi: 10.1080/07391102.2020.1713215 PMID: 31913089
  91. Mishra, K.; Dash, A.P.; Dey, N. Andrographolide: A novel antimalarial diterpene lactone compound from andrographis paniculata and its interaction with curcumin and artesunate. J. Trop. Med., 2011, 2011, 579518. doi: 10.1155/2011/579518
  92. Yeggoni, D.P.; Kuehne, C.; Rachamallu, A.; Subramanyam, R. Elucidating the binding interaction of andrographolide with the plasma proteins: Biophysical and computational approach. RSC Advances, 2017, 7(9), 5002-5012. doi: 10.1039/C6RA25671F
  93. Bhattacharjee, M.K. In Chemistry of antibiotics and related drugs; Springer, 2016, pp. 95-108. doi: 10.1007/978-3-319-40746-3_4
  94. Bareng, A.P.; Espino, F.E.; Chaijaroenkul, W.; Na-Bangchang, K. Molecular monitoring of dihydrofolatereductase (dhfr) and dihydropteroatesynthetase (dhps) associated with sulfadoxine-pyrimethamine resistance in Plasmodium vivax isolates of Palawan, Philippines. Acta Trop., 2018, 180, 81-87. doi: 10.1016/j.actatropica.2018.01.006 PMID: 29352991
  95. Bagalkoti, J.T.; Joshi, S.D.; Nandibewoor, S.T. Spectral and molecular modelling studies of sulfadoxine interaction with bovine serum albumin. J. Photochem. Photobiol. Chem., 2019, 382, 111871. doi: 10.1016/j.jphotochem.2019.111871
  96. Francis, J.A.; Shalauddin, M.; Ridzwan, N.F.W.; Mohamad, S.B.; Basirun, W.J.; Tayyab, S. Interaction mechanism of an antimalarial drug, sulfadoxine with human serum albumin. Spectrosc. Lett., 2020, 53(5), 391-405. doi: 10.1080/00387010.2020.1764588
  97. Zsila, F.; Visy, J.; Mády, G.; Fitos, I. Selective plasma protein binding of antimalarial drugs to α1-acid glycoprotein. Bioorg. Med. Chem., 2008, 16(7), 3759-3772. doi: 10.1016/j.bmc.2008.01.053 PMID: 18289858
  98. Najahi, E.; Valentin, A.; Fabre, P.L.; Reybier, K.; Nepveu, F. 2-Aryl-3H-indol-3-ones: Synthesis, electrochemical behaviour and antiplasmodial activities. Eur. J. Med. Chem., 2014, 78, 269-274. doi: 10.1016/j.ejmech.2014.03.059 PMID: 24686013
  99. Nepveu, F.; Kim, S.; Boyer, J.; Chatriant, O.; Ibrahim, H.; Reybier, K.; Monje, M.C.; Chevalley, S.; Perio, P.; Lajoie, B.H.; Bouajila, J.; Deharo, E.; Sauvain, M.; Tahar, R.; Basco, L.; Pantaleo, A.; Turini, F.; Arese, P.; Valentin, A.; Thompson, E.; Vivas, L.; Petit, S.; Nallet, J.P. Synthesis and antiplasmodial activity of new indolone N-oxide derivatives. J. Med. Chem., 2010, 53(2), 699-714. doi: 10.1021/jm901300d PMID: 20014857
  100. Rakotoarivelo, N.V.; Perio, P.; Najahi, E.; Nepveu, F. Interaction between antimalarial 2-aryl-3H-indol-3-one derivatives and human serum albumin. J. Phys. Chem. B, 2014, 118(47), 13477-13485. doi: 10.1021/jp507569e PMID: 25360713
  101. Pasricha, S.; Sharma, D.; Ojha, H.; Gahlot, P.; Pathak, M.; Basu, M.; Chawla, R.; Singhal, S.; Singh, A.; Goel, R.; Kukreti, S.; Shukla, S. Luminescence, circular dichroism and in silico studies of binding interaction of synthesized naphthylchalcone derivatives with bovine serum albumin. Luminescence, 2017, 32(7), 1252-1262. doi: 10.1002/bio.3319 PMID: 28512990
  102. Gupta, S.P. Hydroxamic acids: a unique family of chemicals with multiple biological activities; Springer, 2013. doi: 10.1007/978-3-642-38111-9
  103. Vinh, N.B.; Drinkwater, N.; Malcolm, T.R.; Kassiou, M.; Lucantoni, L.; Grin, P.M.; Butler, G.S.; Duffy, S.; Overall, C.M.; Avery, V.M.; Scammells, P.J.; McGowan, S. Hydroxamic acid inhibitors provide cross-species inhibition of Plasmodium M1 and M17 aminopeptidases. J. Med. Chem., 2019, 62(2), 622-640. doi: 10.1021/acs.jmedchem.8b01310 PMID: 30537832
  104. Agrawal, R.; Siddiqi, M.K.; Thakur, Y.; Tripathi, M.; Asatkar, A.K.; Khan, R.H.; Pande, R. Explication of bovine serum albumin binding with naphthyl hydroxamic acids using a multispectroscopic and molecular docking approach along with its antioxidant activity. Luminescence, 2019, 34(6), 628-643. doi: 10.1002/bio.3645 PMID: 31190435
  105. Tuite, E.M.; Kelly, J.M. Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J. Photochem. Photobiol. B, 1993, 21(2-3), 103-124. doi: 10.1016/1011-1344(93)80173-7 PMID: 8301408
  106. Kishen, A.; Upadya, M.; Tegos, G.P.; Hamblin, M.R. Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm. Photochem. Photobiol., 2010, 86(6), 1343-1349. doi: 10.1111/j.1751-1097.2010.00792.x PMID: 20860692
  107. Vennerstrom, J.L.; Makler, M.T.; Angerhofer, C.K.; Williams, J.A. Antimalarial dyes revisited: Xanthenes, azines, oxazines, and thiazines. Antimicrob. Agents Chemother., 1995, 39(12), 2671-2677. doi: 10.1128/AAC.39.12.2671 PMID: 8593000
  108. Das, S.; Islam, M.M.; Jana, G.C.; Patra, A.; Jha, P.K.; Hossain, M. Molecular binding of toxic phenothiazinium derivatives, azures to bovine serum albumin: A comparative spectroscopic, calorimetric, and in silico study. J. Mol. Recognit., 2017, 30(7), e2609. doi: 10.1002/jmr.2609 PMID: 28101950
  109. Yadav, P.; Sharma, B.; Sharma, C.; Singh, P.; Awasthi, S.K. Interaction between the antimalarial drug dispiro-tetraoxanes and human serum albumin: A combined study with spectroscopic methods and computational studies. ACS Omega, 2020, 5(12), 6472-6480. doi: 10.1021/acsomega.9b04095 PMID: 32258882
  110. Fonte, M.; Tassi, N.; Gomes, P.; Teixeira, C. Acridine-based antimalarials—from the very first synthetic antimalarial to recent developments. Molecules, 2021, 26(3), 600. doi: 10.3390/molecules26030600 PMID: 33498868
  111. de M Silva, M.; Macedo, T.S.; Teixeira, H.M.P.; Moreira, D.R.M.; Soares, M.B.P.; da C Pereira, A.L.; de L Serafim, V.; Mendonça-Júnior, F.J.B.; do Carmo A de Lima, M.; de Moura, R.O.; da Silva-Júnior, E.F.; de Araújo-Júnior, J.X.; de A Dantas, M.D.; de O O Nascimento, E.; Maciel, T.M.S.; de Aquino, T.M.; Figueiredo, I.M.; Santos, J.C.C. Correlation between DNA/HSA-interactions and antimalarial activity of acridine derivatives: Proposing a possible mechanism of action. J. Photochem. Photobiol. B, 2018, 189, 165-175. doi: 10.1016/j.jphotobiol.2018.10.016 PMID: 30366283
  112. Liu, H.; Qin, Y.; Zhai, D.; Zhang, Q.; Gu, J.; Tang, Y.; Yang, J.; Li, K.; Yang, L.; Chen, S.; Zhong, W.; Meng, J.; Liu, Y.; Sun, T.; Yang, C. Antimalarial drug pyrimethamine plays a dual role in antitumor proliferation and metastasis through targeting DHFR and TP. Mol. Cancer Ther., 2019, 18(3), 541-555. doi: 10.1158/1535-7163.MCT-18-0936 PMID: 30642883
  113. Ramakrishnan, G.; Chandra, N.; Srinivasan, N. Exploring anti-malarial potential of FDA approved drugs: An in silico approach. Malar. J., 2017, 16(1), 290. doi: 10.1186/s12936-017-1937-2 PMID: 28720135
  114. Musa, K.A.; Ning, T.; Mohamad, S.B.; Tayyab, S. Intermolecular recognition between pyrimethamine, an antimalarial drug and human serum albumin: Spectroscopic and docking study. J. Mol. Liq., 2020, 311, 113270. doi: 10.1016/j.molliq.2020.113270
  115. Winter, R.W.; Kelly, J.X.; Smilkstein, M.J.; Dodean, R.; Bagby, G.C.; Rathbun, R.K.; Levin, J.I.; Hinrichs, D.; Riscoe, M.K. Evaluation and lead optimization of anti-malarial acridones. Exp. Parasitol., 2006, 114(1), 47-56. doi: 10.1016/j.exppara.2006.03.014 PMID: 16828746
  116. Winter, R.W.; Kelly, J.X.; Smilkstein, M.J.; Dodean, R.; Hinrichs, D.; Riscoe, M.K. Antimalarial quinolones: Synthesis, potency, and mechanistic studies. Exp. Parasitol., 2008, 118(4), 487-497. doi: 10.1016/j.exppara.2007.10.016 PMID: 18082162
  117. Balogun, T.A.; Omoboyowa, D.A.; Saibu, O.A. In silico anti-malaria activity of quinolone compounds against Plasmodium falciparum dihydrofolate reductase (pfDHFR). Int. J. Biochem. Res. Rev., 2020, 29(8), 10-17. doi: 10.9734/ijbcrr/2020/v29i830208
  118. Verma, G.; Chashoo, G.; Ali, A.; Khan, M.F.; Akhtar, W.; Ali, I.; Akhtar, M.; Alam, M.M.; Shaquiquzzaman, M. Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents. Bioorg. Chem., 2018, 77, 106-124. doi: 10.1016/j.bioorg.2018.01.007 PMID: 29353728
  119. Verma, G.; Khan, M.F.; Mohan Nainwal, L.; Ishaq, M.; Akhter, M.; Bakht, A.; Anwer, T.; Afrin, F.; Islamuddin, M.; Husain, I.; Alam, M.M.; Shaquiquzzaman, M. Targeting malaria and leishmaniasis: Synthesis and pharmacological evaluation of novel pyrazole-1,3,4-oxadiazole hybrids. Part II. Bioorg. Chem., 2019, 89, 102986. doi: 10.1016/j.bioorg.2019.102986 PMID: 31146198
  120. Ladani, G.G.; Patel, M.P. Novel 1,3,4-oxadiazole motifs bearing a quinoline nucleus: synthesis, characterization and biological evaluation of their antimicrobial, antitubercular, antimalarial and cytotoxic activities. New J. Chem., 2015, 39(12), 9848-9857. doi: 10.1039/C5NJ02566D
  121. Al-Wahaibi, L.H.; Santhosh Kumar, N.; El-Emam, A.A.; Venkataramanan, N.S.; Ghabbour, H.A.; Al-Tamimi, A.M.S.; Percino, J.; Thamotharan, S. Investigation of potential anti-malarial lead candidate 2-(4-fluorobenzylthio)-5-(5-bromothiophen-2-yl)-1,3,4-oxadiazole: Insights from crystal structure, DFT, QTAIM and hybrid QM/MM binding energy analysis. J. Mol. Struct., 2019, 1175, 230-240. doi: 10.1016/j.molstruc.2018.07.102
  122. Verma, G.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Akhter, M.; Shaquiquzzaman, M. A review exploring therapeutic worth of 1, 3, 4-oxadiazole tailored compounds. Mini Rev. Med. Chem., 2019, 19(6), 477-509. doi: 10.2174/1389557518666181015152433 PMID: 30324877
  123. Laskar, K.; Alam, P.; Khan, R.H.; Rauf, A. Synthesis, characterization and interaction studies of 1,3,4-oxadiazole derivatives of fatty acid with human serum albumin (HSA): A combined multi-spectroscopic and molecular docking study. Eur. J. Med. Chem., 2016, 122, 72-78. doi: 10.1016/j.ejmech.2016.06.012 PMID: 27343854
  124. Mishra, N.P.; Satish, L.; Mohapatra, S.; Nayak, S.; Sahoo, H. A spectroscopic insight into the interaction of chromene 1,2,4-oxadiazole-based compounds with bovine serum albumin. Res. Chem. Intermed., 2021, 47(3), 1181-1195. doi: 10.1007/s11164-020-04323-4
  125. Rudrapal, M.; Chetia, D. Plant flavonoids as potential source of future antimalarial leads. System. Rev. Pharm., 2016, 8(1), 13-18. doi: 10.5530/srp.2017.1.4
  126. Hidayati, A.R.; Widyawaruyanti, A.; Ilmi, H.; Tanjung, M.; Widiandani, T.; Siswandono S, S.; Syafruddin, D.; Hafid, A.F. Antimalarial activity of flavonoid compound isolated from leaves of artocarpus altilis. Pharmacogn. J., 2020, 12(4), 835-842. doi: 10.5530/pj.2020.12.120
  127. Olusola, A.; Ogunsina, O.; Olusola, A. Antimalarial potential of flavonoid-rich extract of Lannea acida and chloroquine in mice infected with Plasmodium berghei. Int. J. Sci. Eng. Res., 2020, 11(3), 201-206.
  128. Herlina, T.; Rudiana, T.; Julaeha, E.; Parubak, A. In Journal of Physics: Conference Series. IOP Publishing, 2019, 1280, 022010.
  129. Francis, P.; Suseem, S.R. Antimalarial potential of isolated flavonoids-a review. Res. J. Pharm. Technol., 2017, 10(11), 4057-4062. doi: 10.5958/0974-360X.2017.00736.3
  130. Khan, J.; Deb, P.K.; Priya, S.; Medina, K.D.; Devi, R.; Walode, S.G.; Rudrapal, M. Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 2021, 26(13), 4021. doi: 10.3390/molecules26134021 PMID: 34209338
  131. Rauf, A.; Raza, M.; Humayun Khan, M.; Hemeg, H.A.; Al-Awthan, Y.S.; Bahattab, O.; Bawazeer, S.; Naz, S.; Basoglu, F.; Saleem, M.; Khan, M.; Seyyedamirhossein, H.; Mubarak, M.S.; Erdogan, O.I. In vitro and in silico studies on clinically important enzymes inhibitory activities of flavonoids isolated from Euphorbia pulcherrima. Ann. Med., 2022, 54(1), 495-506. doi: 10.1080/07853890.2022.2033826 PMID: 35112936
  132. Medić-Šarić, M.; Rastija, V.; Bojić, M.; Maleš, Ž. From functional food to medicinal product: Systematic approach in analysis of polyphenolics from propolis and wine. Nutr. J., 2009, 8(1), 33. doi: 10.1186/1475-2891-8-33 PMID: 19624827
  133. Bolli, A.; Marino, M.; Rimbach, G.; Fanali, G.; Fasano, M.; Ascenzi, P. Flavonoid binding to human serum albumin. Biochem. Biophys. Res. Commun., 2010, 398(3), 444-449. doi: 10.1016/j.bbrc.2010.06.096 PMID: 20599706
  134. Liu, S.; Guo, C.; Guo, Y.; Yu, H.; Greenaway, F.; Sun, M-Z. Comparative binding affinities of flavonoid phytochemicals with bovine serum albumin. Iran. J. Pharm. Res., 2014, 13(3), 1019-1028. PMID: 25276204
  135. Wang, B.; Qin, Q.; Chang, M.; Li, S.; Shi, X.; Xu, G. Molecular interaction study of flavonoids with human serum albumin using native mass spectrometry and molecular modeling. Anal. Bioanal. Chem., 2018, 410(3), 827-837. doi: 10.1007/s00216-017-0564-7 PMID: 28840311
  136. Zothantluanga, J.H.; Aswin, S.K.; Rudrapal, M.; Cheita, D. ntimalarial flavonoid-glycoside from acacia pennata with inhibitory potential against PfDHFR-TS: An in silico study. Biointerface Res. Appl. Chem., 2021, 12(4), 4871-4887.
  137. Chaianantakul, N.; Sirawaraporn, R.; Sirawaraporn, W. Insights into the role of the junctional region of Plasmodium falciparum dihydrofolate reductase-thymidylate synthase. Malar. J., 2013, 12(1), 91. doi: 10.1186/1475-2875-12-91 PMID: 23497065
  138. Xue, P.; Zhang, G.; Zhang, J.; Ren, L. Interaction of flavonoids with serum albumin: A review. Curr. Protein Pept. Sci., 2021, 22(3), 217-227. doi: 10.2174/1389203721666201109112220 PMID: 33167830
  139. Gujjari, L.; Kalani, H.; Pindiprolu, S.K.; Arakareddy, B.P.; Yadagiri, G. Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria. Parasite Epidemiol. Control, 2022, 17, e00244. doi: 10.1016/j.parepi.2022.e00244 PMID: 35243049
  140. Chamundeeswari, M.; Jeslin, J.; Verma, M.L. Nanocarriers for drug delivery applications. Environ. Chem. Lett., 2019, 17(2), 849-865. doi: 10.1007/s10311-018-00841-1
  141. Sidhaye, A.A.; Bhuran, K.C.; Zambare, S.; Abubaker, M.; Nirmalan, N.; Singh, K.K. Bio-inspired artemether-loaded human serum albumin nanoparticles for effective control of malaria-infected erythrocytes. Nanomedicine, 2016, 11(21), nnm-2016-0235. doi: 10.2217/nnm-2016-0235 PMID: 27759489
  142. Bannister, L.H.; Hopkins, J.M.; Fowler, R.E.; Krishna, S.; Mitchell, G.H. A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages. Parasitol. Today, 2000, 16(10), 427-433. doi: 10.1016/S0169-4758(00)01755-5 PMID: 11006474
  143. Krishna, S.; Uhlemann, A.; Haynes, R. Artemisinins: Mechanisms of action and potential for resistance. Drug Resist. Updat., 2004, 7(4-5), 233-244. doi: 10.1016/j.drup.2004.07.001 PMID: 15533761
  144. Boateng-Marfo, Y.; Dong, Y.; Loh, Z.H.; Lin, H.; Ng, W.K. Intravenous human serum albumin (HSA)-bound artemether nanoparticles for treatment of severe malaria. Colloids Surf. A Physicochem. Eng. Asp., 2018, 536, 20-29. doi: 10.1016/j.colsurfa.2017.08.016
  145. Memvanga, P.B.; Nkanga, C.I. Liposomes for malaria management: The evolution from 1980 to 2020. Malar. J., 2021, 20(1), 327. doi: 10.1186/s12936-021-03858-0 PMID: 34315484
  146. Taguchi, K.; Okamoto, Y.; Matsumoto, K.; Otagiri, M.; Chuang, V. When albumin meets liposomes: A feasible drug carrier for biomedical applications. Pharmaceuticals, 2021, 14(4), 296. doi: 10.3390/ph14040296 PMID: 33810483
  147. Wei, X.Q.; Ba, K. Construction a long-circulating delivery system of liposomal curcumin by coating albumin. ACS Omega, 2020, 5(27), 16502-16509. doi: 10.1021/acsomega.0c00930 PMID: 32685814
  148. Peng, Q.; Zhang, S.; Yang, Q.; Zhang, T.; Wei, X.Q.; Jiang, L.; Zhang, C.L.; Chen, Q.M.; Zhang, Z.R.; Lin, Y.F. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials, 2013, 34(33), 8521-8530. doi: 10.1016/j.biomaterials.2013.07.102 PMID: 23932500
  149. Mohapatra, P.; Chandrasekaran, N. Effects of black cumin-based antimalarial drug loaded with nano-emulsion of bovine and human serum albumins by spectroscopic and molecular docking studies. Heliyon, 2023, 9(1), e12677. doi: 10.1016/j.heliyon.2022.e12677 PMID: 36632107

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024