Therapeutic Potential of Decoys for Prostate Cancers: A Review of Recent Updates
- Authors: Rezaei S.1, Mahjoubin-Tehran M.2, Iratni R.3, Sahebkar A.4
-
Affiliations:
- Student Research Committee, Mashhad University of Medical Sciences
- Applied Biomedical Research Center, Mashhad University of Medical Sciences
- Department of Biology, College of Science, UAE University, United Arab Emirates University
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences
- Issue: Vol 31, No 25 (2024)
- Pages: 3954-3965
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/644892
- DOI: https://doi.org/10.2174/0929867330666230505154319
- ID: 644892
Cite item
Full Text
Abstract
Prostate cancer is ranked second among the most common male cancers. Androgen deprivation therapy (ADT) has long been the first-line treatment and the basis for all other therapies, reducing circulating androgens to castration levels and preventing disease development. Nevertheless, ADT monotherapy may not always limit disease development, and even at low testosterone levels, hormone-sensitive prostate cancer will become castration-resistant. Recent research demonstrates that prostate cancer can have a range of potentially actionable genetic abnormalities; no medications that target these variations have yet been shown to elicit therapeutic advantages. Despite their established efficacy in the management of other cancers, advanced genetic or immunological approaches are not regularly used to treat prostate cancer patients. As a result, there is an unmet demand for medicines that offer a better chance of survival than the existing castration- resistance prostate cancer (CRPC) therapy regimens. The use of oligodeoxynucleotides (ODN) and peptides in decoy technology have been developed as novel therapeutic approaches. Decoy ODNs bind to a particular transcription factor with high affinity and may suppress gene transcription. Peptide decoys bind to specific ligands with high specificity and inhibit signaling pathways. Recent evidence supports the notion that these techniques are promising and attractive in the fight against cancer. In the present review, we discuss the use of decoy technology as a novel therapeutic approach against prostate cancer.
About the authors
Samaneh Rezaei
Student Research Committee, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Maryam Mahjoubin-Tehran
Applied Biomedical Research Center, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Rabah Iratni
Department of Biology, College of Science, UAE University, United Arab Emirates University
Email: info@benthamscience.net
Amirhossein Sahebkar
Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Barsouk, A.; Padala, S.A.; Vakiti, A.; Mohammed, A.; Saginala, K.; Thandra, K.C.; Rawla, P.; Barsouk, A. Epidemiology, staging and management of prostate cancer. Med. Sci. (Basel), 2020, 8(3), 28. doi: 10.3390/medsci8030028 PMID: 32698438
- Siegel, D.A.; ONeil, M.E.; Richards, T.B.; Dowling, N.F.; Weir, H.K. Prostate cancer incidence and survival, by stage and race/ethnicity United States, 20012017. MMWR Morb. Mortal. Wkly. Rep., 2020, 69(41), 1473-1480. doi: 10.15585/mmwr.mm6941a1 PMID: 33056955
- Harris, W.P.; Mostaghel, E.A.; Nelson, P.S.; Montgomery, B. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat. Clin. Pract. Urol., 2009, 6(2), 76-85. doi: 10.1038/ncpuro1296 PMID: 19198621
- Trewartha, D.; Carter, K. Advances in prostate cancer treatment. Nat. Rev. Drug Discov., 2013, 12(11), 823-824. doi: 10.1038/nrd4068 PMID: 24172327
- Sartor, O.; de Bono, J.S. Metastatic prostate cancer. N. Engl. J. Med., 2018, 378(7), 645-657. doi: 10.1056/NEJMra1701695 PMID: 29412780
- Amaral, TMS; Macedo, D; Fernandes, I; Costa, L Castration-resistant prostate cancer: mechanisms, targets, and treatment. Prostate Cancer, 2012, 1-11. doi: 10.1155/2012/327253
- Powers, E.; Karachaliou, G.S.; Kao, C.; Harrison, M.R.; Hoimes, C.J.; George, D.J.; Armstrong, A.J.; Zhang, T. Novel therapies are changing treatment paradigms in metastatic prostate cancer. J. Hematol. Oncol., 2020, 13(1), 144. doi: 10.1186/s13045-020-00978-z PMID: 33115529
- Li, N.; Truong, S.; Nouri, M.; Moore, J.; Al Nakouzi, N.; Lubik, A.A.; Buttyan, R. Non-canonical activation of hedgehog in prostate cancer cells mediated by the interaction of transcriptionally active androgen receptor proteins with Gli3. Oncogene, 2018, 37(17), 2313-2325. doi: 10.1038/s41388-017-0098-7 PMID: 29429990
- Li, X.; Liu, Y.; Wu, B.; Dong, Z.; Wang, Y.; Lu, J.; Shi, P.; Bai, W.; Wang, Z. Potential role of the OPG/RANK/RANKL axis in prostate cancer invasion and bone metastasis. Oncol. Rep., 2014, 32(6), 2605-2611. doi: 10.3892/or.2014.3511 PMID: 25333856
- Mahjoubin-Tehran, M.; Rezaei, S.; Atkin, S.L.; Montecucco, F.; Sahebkar, A. Decoys as potential therapeutic tools for diabetes. Drug Discov. Today, 2021, 26(7), 1669-1679. doi: 10.1016/j.drudis.2021.04.004 PMID: 33862194
- Mahjoubin-Tehran, M.; Rezaei, S.; Jalili, A.; Aghaee-Bakhtiari, S.H.; Orafai, H.M.; Jamialahmadi, T.; Sahebkar, A. Peptide decoys: A new technology offering therapeutic opportunities for breast cancer. Drug Discov. Today, 2020, 25(3), 593-598. doi: 10.1016/j.drudis.2020.01.010 PMID: 31978387
- Mahjoubin-Tehran, M.; Teng, Y.; Jalili, A.; Aghaee-Bakhtiari, S.H.; Markin, A.M.; Sahebkar, A. Decoy technology as a promising therapeutic tool for atherosclerosis. Int. J. Mol. Sci., 2021, 22(9), 4420. doi: 10.3390/ijms22094420 PMID: 33922585
- Tehran, M.M.; Rezaei, S.; Jalili, A.; Aghaee-Bakhtiari, S.H.; Sahebkar, A. Decoy oligodeoxynucleotide technology: An emerging paradigm for breast cancer treatment. Drug Discov. Today, 2020, 25(1), 195-200. doi: 10.1016/j.drudis.2019.10.008 PMID: 31669652
- Vahdat Lasemi, F.; Mahjoubin Tehran, M.; Aghaee-Bakhtiari, S.H.; Jalili, A.; Jaafari, M.R.; Sahebkar, A. Harnessing nucleic acid-based therapeutics for atherosclerotic cardiovascular disease: State of the art. Drug Discov. Today, 2019, 24(5), 1116-1131. doi: 10.1016/j.drudis.2019.04.007 PMID: 30980904
- Hecker, M.; Wagner, A.H. Transcription factor decoy technology: A therapeutic update. Biochem. Pharmacol., 2017, 144, 29-34. doi: 10.1016/j.bcp.2017.06.122 PMID: 28642036
- Rad, S.M.A.H.; Langroudi, L.; Kouhkan, F.; Yazdani, L.; Koupaee, A.N.; Asgharpour, S.; Shojaei, Z.; Bamdad, T.; Arefian, E. Transcription factor decoy: A pre-transcriptional approach for gene downregulation purpose in cancer. Tumour Biol., 2015, 36(7), 4871-4881. doi: 10.1007/s13277-015-3344-z PMID: 25835969
- Toshchakov, V.Y.; Vogel, S.N. Cell-penetrating TIR BB loop decoy peptides. Expert Opin. Biol. Ther., 2007, 7(7), 1035-1050. doi: 10.1517/14712598.7.7.1035 PMID: 17665992
- Wang, T.; Jiang, A.; Zhang, J.; Jing, F. Apoptosis induction by E2F decoy DNA of the prostate cancer cell line. Braz. Arch. Biol. Technol., 2010, 53(2), 327-334. doi: 10.1590/S1516-89132010000200011
- Law, J.H.; Li, Y.; To, K.; Wang, M.; Astanehe, A.; Lambie, K.; Dhillon, J.; Jones, S.J.M.; Gleave, M.E.; Eaves, C.J.; Dunn, S.E. Molecular decoy to the Y-box binding protein-1 suppresses the growth of breast and prostate cancer cells whilst sparing normal cell viability. PLoS One, 2010, 5(9), e12661. doi: 10.1371/journal.pone.0012661 PMID: 20844753
- Bonfil, R.D.; Dong, Z.; Trindade Filho, J.C.; Sabbota, A.; Osenkowski, P.; Nabha, S.; Yamamoto, H.; Chinni, S.R.; Zhao, H.; Mobashery, S.; Vessella, R.L.; Fridman, R.; Cher, M.L. Prostate cancer-associated membrane type 1-matrix metalloproteinase: A pivotal role in bone response and intraosseous tumor growth. Am. J. Pathol., 2007, 170(6), 2100-2111. doi: 10.2353/ajpath.2007.060720 PMID: 17525276
- Quayle, S.N.; Mawji, N.R.; Wang, J.; Sadar, M.D. Androgen receptor decoy molecules block the growth of prostate cancer. Proc. Natl. Acad. Sci. USA, 2007, 104(4), 1331-1336. doi: 10.1073/pnas.0606718104 PMID: 17227854
- Sen, M.; Thomas, S.M.; Kim, S.; Yeh, J.I.; Ferris, R.L.; Johnson, J.T.; Duvvuri, U.; Lee, J.; Sahu, N.; Joyce, S.; Freilino, M.L.; Shi, H.; Li, C.; Ly, D.; Rapireddy, S.; Etter, J.P.; Li, P.K.; Wang, L.; Chiosea, S.; Seethala, R.R.; Gooding, W.E.; Chen, X.; Kaminski, N.; Pandit, K.; Johnson, D.E.; Grandis, J.R. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: Implications for cancer therapy. Cancer Discov., 2012, 2(8), 694-705. doi: 10.1158/2159-8290.CD-12-0191 PMID: 22719020
- Farahmand, L.; Darvishi, B.; Majidzadeh-A, K. Suppression of chronic inflammation with engineered nanomaterials delivering nuclear factor κB transcription factor decoy oligodeoxynucleotides. Drug Deliv., 2017, 24(1), 1249-1261. doi: 10.1080/10717544.2017.1370511 PMID: 28870118
- Kiomy Osako, M.; Nakagami, H.; Morishita, R. Modification of decoy oligodeoxynucleotides to achieve the stability and therapeutic efficacy. Curr. Top. Med. Chem., 2012, 12(15), 1603-1607. doi: 10.2174/156802612803531397 PMID: 22762556
- Kuratsukuri, K.; Sugimura, K.; Harimoto, K.; Kawashima, H.; Kishimoto, T. Decoy of androgen-responsive element induces apoptosis in LNCaP cells. Prostate, 1999, 41(2), 121-126. doi: 10.1002/(SICI)1097-0045(19991001)41:23.0.CO;2-Q PMID: 10477908
- Lin, D.L.; Tarnowski, C.P.; Zhang, J.; Dai, J.; Rohn, E.; Patel, A.H.; Morris, M.D.; Keller, E.T. Bone metastatic LNCaP-derivative C4-2B prostate cancer cell line mineralizes in vitro. Prostate, 2001, 47(3), 212-221. doi: 10.1002/pros.1065 PMID: 11351351
- Zhang, J.; Dai, J.; Qi, Y.; Lin, D.L.; Smith, P.; Strayhorn, C.; Mizokami, A.; Fu, Z.; Westman, J.; Keller, E.T. Osteoprotegerin inhibits prostate cancerinduced osteoclastogenesis and prevents prostate tumor growth in the bone. J. Clin. Invest., 2001, 107(10), 1235-1244. doi: 10.1172/JCI11685 PMID: 11375413
- Zhang, P.; Zhang, J.; Young, C.Y.; Kao, P.C.; Chen, W.; Jiang, A.; Zhang, L.; Guo, Q. Decoy androgen-responsive element DNA can inhibit androgen receptor transactivation of the PSA promoter gene. Ann. Clin. Lab. Sci., 2005, 35(3), 278-284. PMID: 16081584
- Polytarchou, C.; Hatziapostolou, M.; Papadimitriou, E. Hydrogen peroxide stimulates proliferation and migration of human prostate cancer cells through activation of activator protein-1 and up-regulation of the heparin affin regulatory peptide gene. J. Biol. Chem., 2005, 280(49), 40428-40435. doi: 10.1074/jbc.M505120200 PMID: 16199533
- Lin, J.; Lalani, A.S.; Harding, T.C.; Gonzalez, M.; Wu, W.W.; Luan, B.; Tu, G.H.; Koprivnikar, K.; VanRoey, M.J.; He, Y.; Alitalo, K.; Jooss, K. Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res., 2005, 65(15), 6901-6909. doi: 10.1158/0008-5472.CAN-05-0408 PMID: 16061674
- Jiang, A.L.; Hu, X.Y.; Zhang, P.J.; He, M.L.; Kong, F.; Liu, Z.F.; Yuan, H.Q.; Zhang, J.Y. Up-regulation of NKX3.1 expression and inhibition of LNCaP cell proliferation induced by an inhibitory element decoy. Acta Biochim. Biophys. Sin. (Shanghai), 2005, 37(5), 335-340. doi: 10.1111/j.1745-7270.2005.00047.x PMID: 15880262
- Chanda, D.; Isayeva, T.; Kumar, S.; Hensel, J.A.; Sawant, A.; Ramaswamy, G.; Siegal, G.P.; Beatty, M.S.; Ponnazhagan, S. Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in prostate cancer bone metastasis. Clin. Cancer Res., 2009, 15(23), 7175-7185. doi: 10.1158/1078-0432.CCR-09-1938 PMID: 19920103
- Fang, Y.; Sun, H.; Zhai, J.; Zhang, Y.; Yi, S.; Hao, G.; Wang, T. Antitumor activity of NF-kB decoy oligodeoxynucleotides in a prostate cancer cell line. Asian Pac. J. Cancer Prev., 2011, 12(10), 2721-2726. PMID: 22320981
- Hatano, K.; Miyamoto, Y.; Nonomura, N.; Kaneda, Y. Expression of gangliosides, GD1a, and sialyl paragloboside is regulated by NF-κB-dependent transcriptional control of α2,3-sialyltransferase I, II, and VI in human castration-resistant prostate cancer cells. Int. J. Cancer, 2011, 129(8), 1838-1847. doi: 10.1002/ijc.25860 PMID: 21165949
- Myung, J.K.; Wang, G.; Chiu, H.H.L.; Wang, J.; Mawji, N.R.; Sadar, M.D. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer. PLoS One, 2017, 12(3), e0174134. doi: 10.1371/journal.pone.0174134 PMID: 28306720
- Hebbar, N.; Burikhanov, R.; Shukla, N.; Qiu, S.; Zhao, Y.; Elenitoba-Johnson, K.S.J.; Rangnekar, V.M. A naturally generated decoy of the prostate apoptosis response-4 protein overcomes therapy resistance in tumors. Cancer Res., 2017, 77(15), 4039-4050. doi: 10.1158/0008-5472.CAN-16-1970 PMID: 28625975
- Younis, N.K.; Ghoubaira, J.A.; Bassil, E.P.; Tantawi, H.N.; Eid, A.H. Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. Nanomedicine, 2021, 36, 102433. doi: 10.1016/j.nano.2021.102433 PMID: 34171467
- Younis, N.K.; Roumieh, R.; Bassil, E.P.; Ghoubaira, J.A.; Kobeissy, F.; Eid, A.H. Nanoparticles: Attractive tools to treat colorectal cancer. Semin. Cancer Biol., 2022, 86(Pt 2), 1-13. doi: 10.1016/j.semcancer.2022.08.006 PMID: 36028154
- Younis, N.K.; Yassine, H.M.; Eid, A.H. Nanomedicine for Cancer. Curr. Med. Chem., 2022. PMID: 36579388
Supplementary files
