Bile Acid-conjugate as a Promising Anticancer Agent: Recent Progress


Cite item

Full Text

Abstract

Bile acids have outstanding chemistry due to their amphiphilic nature and have received a lot of interest in the last few decades in the fields of biomedicine, pharmacology, and supramolecular applications. Bile acids are highly sought after by scientists looking for diverse and effective biological activity due to their chirality, rigidity, and hydroxyl group. The hydroxyl group makes it simple to alter the structure in a way that improves bioactivity and bioavailability. Bile acid-bioactive molecule conjugates are compounds in which a bile acid is linked to a bioactive molecule by a linker in order to increase the bioactivity of the bioactive molecule against the target cancer cells. This method has been used to improve the therapeutic efficacy of cytotoxic drugs while reducing their adverse side effects. These new bile acid conjugates are gaining attention because they overcome bioavailability and stability issues. The design, synthesis, and anticancer effectiveness of various bile acid conjugates are discussed together with recent advances in understanding in this review.

About the authors

Neha Rathod

Department of Biotechnology and Bioengineering,, Indian Institute of Advanced Research

Email: info@benthamscience.net

Satyendra Mishra

Department of Biotechnology and Bioengineering,, Indian Institute of Advanced Research,

Author for correspondence.
Email: info@benthamscience.net

References

  1. Chabner, B.A.; Roberts, T.G., Jr Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72. doi: 10.1038/nrc1529 PMID: 15630416
  2. Bach, P.B.; Jett, J.R.; Pastorino, U.; Tockman, M.S.; Swensen, S.J.; Begg, C.B. Computed tomography screening and lung cancer outcomes. JAMA, 2007, 297(9), 953-961. doi: 10.1001/jama.297.9.953 PMID: 17341709
  3. Gibbs, J.B. Mechanism-based target identification and drug discovery in cancer research Science (80-), 2000, 287, 1969-1973. doi: 10.1126/science.287.5460.1969
  4. Arve, L.; Voigt, T.; Waldmann, H. Charting biological and chemical space: PSSC and SCONP as guiding principles for the development of compound collections based on natural product scaffolds. QSAR Comb. Sci., 2006, 25(5-6), 449-456. doi: 10.1002/qsar.200540213
  5. Gali, R.; Banothu, J.; Porika, M.; Velpula, R.; Hnamte, S.; Bavantula, R.; Abbagani, S.; Busi, S. Indolylmethylene benzohthiazolo2,3-bquinazolinones: Synthesis, characterization and evaluation of anticancer and antimicrobial activities. Bioorg. Med. Chem. Lett., 2014, 24(17), 4239-4242. doi: 10.1016/j.bmcl.2014.07.030 PMID: 25096298
  6. Sørlie, T. Molecular portraits of breast cancer: Tumour subtypes as distinct disease entities. Eur. J. Cancer, 2004, 40(18), 2667-2675. doi: 10.1016/j.ejca.2004.08.021 PMID: 15571950
  7. Siegel, O.J.; Ward, R.; Brawley, E. Detection of occult tumor cells in peripheral blood from patients with small cell lung cancer by reverse transcriptase-polymerase chain reaction, A Cancer J. Cancer Clin., 2011, 61, 212-236. doi: 10.3322/caac.20121 PMID: 21685461
  8. Chen, T.G.M.; Zeng, Q. G, G. Deisign thinking. Med. Res. Rev., 2008, 28, 954-974. doi: 10.1002/med.20131 PMID: 18642351
  9. Martinez, J.D.; Stratagoules, E.D.; LaRue, J.M.; Powell, A.A.; Gause, P.R.; Craven, M.T.; Payne, C.M.; Powell, M.B.; Gerner, E.W.; Earnest, D.L. Different bile acids exhibit distinct biological effects: The tumor promoter deoxycholic acid induces apoptosis and the chemopreventive agent ursodeoxycholic acid inhibits cell proliferation. Nutr. Cancer, 1998, 31(2), 111-118. doi: 10.1080/01635589809514689 PMID: 9770722
  10. Brady, B.H.; Brady, L.M.; W, David, D. Biochemical journal immediate publication. Biochem. J., 1996, 316, 765-769. doi: 10.1042/bj3160765 PMID: 8670150
  11. Hunter, T. Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell, 1995, 80(2), 225-236. doi: 10.1016/0092-8674(95)90405-0 PMID: 7834742
  12. Bayewitch, M.L.; Nevo, I.; Avidor-Reiss, T.; Levy, R.; Simonds, W.F.; Vogel, Z. Alterations in detergent solubility of heterotrimeric G proteins after chronic activation of G(i/o)-coupled receptors: changes in detergent solubility are in correlation with onset of adenylyl cyclase superactivation. Mol. Pharmacol., 2000, 57(4), 820-825. doi: 10.1124/mol.57.4.820 PMID: 10727531
  13. Faubion, W.A.; Guicciardi, M.E.; Miyoshi, H.; Bronk, S.F.; Roberts, P.J.; Svingen, P.A.; Kaufmann, S.H.; Gores, G.J. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J. Clin. Invest., 1999, 103(1), 137-145. doi: 10.1172/JCI4765 PMID: 9884343
  14. Mahmoud, N.N.; Dannenberg, A.J.; Bilinski, R.T.; Mestre, J.R.; Chadburn, A.; Churchill, M.; Martucci, C.; Bertagnolli, M.M. Administration of an unconjugated bile acid increases duodenal tumors in a murine model of familial adenomatous polyposis. Carcinogenesis, 1999, 20(2), 299-303. doi: 10.1093/carcin/20.2.299 PMID: 10069468
  15. Sodeman, T.; Bronk, S.F.; Roberts, P.J.; Miyoshi, H.; Gores, G.J. Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 278(6), G992-G999. doi: 10.1152/ajpgi.2000.278.6.G992 PMID: 10859230
  16. Hirano, F.; Tanaka, H.; Hirano, Y.; Hiramoto, M.; Handa, H.; Makino, I.; Scheidereit, C. Functional interference of sp1 and nf-κb through the same DNA binding site. Carcinogenesis, 1996, 17, 427-433. doi: 10.1093/carcin/17.3.427 PMID: 8631127
  17. Glinghammar, B.; Holmberg, K.; Rafter, J. Effects of colonic lumenal components on AP-1-dependent gene transcription in cultured human colon carcinoma cells. Carcinogenesis, 1999, 20(6), 969-976. doi: 10.1093/carcin/20.6.969 PMID: 10357775
  18. Song, S.; Byrd, J.C.; Koo, J.S.; Bresalier, R.S. Bile acids induce MUC2 overexpression in human colon carcinoma cells. Cancer, 2005, 103(8), 1606-1614. doi: 10.1002/cncr.21015 PMID: 15754327
  19. Makishima, M.; Okamoto, A.Y.; Repa, J.J.; Tu, H.; Learned, R.M.; Luk, A.; Hull, M.V.; Lustig, K.D.; Mangelsdorf, D.J.; Shan, B. Identification of a nuclear receptor for bile acids. Science, 1999, 284(5418), 1362-1365. doi: 10.1126/science.284.5418.1362 PMID: 10334992
  20. Peet, D.J.; Janowski, B.A.; Dawson, A.; Shen, T.; Perlmutter, D.H. 17. C, j. Sippel, 16. j. R. Crowther, ELISA. Theory Pract., 1999, 8284, 1365-1368. doi: 10.1126/science.284.5418.1365
  21. Wang, H.; Chen, J.; Hollister, K.; Sowers, L.C.; Forman, B.M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell, 1999, 3, 543-553. doi: 10.1016/S1097-2765(00)80348-2 PMID: 10360171
  22. Song, C.S.; Echchgadda, I.; Baek, B.S.; Ahn, S.C.; Oh, T.; Roy, A.K.; Chatterjee, B. Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J. Biol. Chem., 2001, 276(45), 42549-42556. doi: 10.1074/jbc.M107557200 PMID: 11533040
  23. Zhang, F.; Subbaramaiah, K.; Altorki, N.; Dannenberg, A.J. Dihydroxy bile acids activate the transcription of cyclooxygenase-2. J. Biol. Chem., 1998, 273(4), 2424-2428. doi: 10.1074/jbc.273.4.2424 PMID: 9442092
  24. Qiao, D.; Stratagouleas, E.D.; Martinez, J.D. Activation and role of mitogen-activated protein kinases in deoxycholic acid-induced apoptosis. Carcinogenesis, 2001, 22(1), 35-41. doi: 10.1093/carcin/22.1.35 PMID: 11159738
  25. Qiao, D.; Chen, W.; Stratagoules, E.D.; Martinez, J.D. Bile acid-induced activation of activator protein-1 requires both extracellular signal-regulated kinase and protein kinase C signaling. J. Biol. Chem., 2000, 275(20), 15090-15098. doi: 10.1074/jbc.M908890199 PMID: 10748108
  26. Powolny, A.; Xu, J.; Loo, G. Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53. Int. J. Biochem. Cell Biol., 2001, 33(2), 193-203. doi: 10.1016/S1357-2725(00)00080-7 PMID: 11240376
  27. Qiao, L.; Studer, E.; Leach, K.; McKinstry, R.; Gupta, S.; Decker, R.; Kukreja, R.; Valerie, K.; Nagarkatti, P.; Deiry, W.E.; Molkentin, J.; Schmidt-Ullrich, R.; Fisher, P.B.; Grant, S.; Hylemon, P.B.; Dent, P. Deoxycholic acid (DCA) causes ligand-independent activation of epidermal growth factor receptor (EGFR) and FAS receptor in primary hepatocytes: inhibition of EGFR/mitogen-activated protein kinase-signaling module enhances DCA-induced apoptosis. Mol. Biol. Cell, 2001, 12(9), 2629-2645. doi: 10.1091/mbc.12.9.2629 PMID: 11553704
  28. Reinehr, R.; Becker, S.; Wettstein, M.; Häussinger, D. Involvement of the Src family kinase yes in bile salt-induced apoptosis. Gastroenterology, 2004, 127(5), 1540-1557. doi: 10.1053/j.gastro.2004.08.056 PMID: 15521021
  29. Di Toro, R.; Campana, G.; Murari, G.; Spampinato, S. Effects of specific bile acids on c-fos messenger RNA levels in human colon carcinoma Caco-2 cells. Eur. J. Pharm. Sci., 2000, 11(4), 291-298. doi: 10.1016/S0928-0987(00)00111-1 PMID: 11033072
  30. Rust, C.; Karnitz, L.M.; Paya, C.V.; Moscat, J.; Simari, R.D.; Gores, G.J. The bile acid taurochenodeoxycholate activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J. Biol. Chem., 2000, 275(26), 20210-20216. doi: 10.1074/jbc.M909992199 PMID: 10770953
  31. Yao, R.; Cooper, G.M. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science (80-), 1995, 267, , 2003-2006. doi: 10.1126/science.7701324
  32. Misra, S.; Ujházy, P.; Gatmaitan, Z.; Varticovski, L.; Arias, I.M. The role of phosphoinositide 3-kinase in taurocholate-induced trafficking of ATP-dependent canalicular transporters in rat liver. J. Biol. Chem., 1998, 273(41), 26638-26644. doi: 10.1074/jbc.273.41.26638 PMID: 9756904
  33. Earnest, D.L.; Holubec, H.; Wali, R.K.; Jolley, C.S.; Bissonette, M.; Bhattacharyya, A.K.; Roy, H.; Khare, S.; Brasitus, T.A. Chemoprevention of azoxymethane-induced colonic carcinogenesis by supplemental dietary ursodeoxycholic acid. Cancer Res., 1994, 54(19), 5071-5074. PMID: 7923119
  34. Silva, R.F.M.; Rodrigues, C.M.P.; Brites, D. Bilirubin-induced apoptosis in cultured rat neural cells is aggravated by chenodeoxycholic acid but prevented by ursodeoxycholic acid. J. Hepatol., 2001, 34(3), 402-408. doi: 10.1016/S0168-8278(01)00015-0 PMID: 11322201
  35. Heuman, D.M.; Mills, A.S.; McCall, J.; Hylemon, P.B.; Pandak, W.M.; Vlahcevic, Z.R. Conjugates of ursodeoxycholate protect against cholestasis and hepatocellular necrosis caused by more hydrophobic bile salts. Gastroenterology, 1991, 100(1), 203-211. doi: 10.1016/0016-5085(91)90602-H PMID: 1983822
  36. Heuman, D.M.; Bajaj, R. Ursodeoxycholate conjugates protect against disruption of cholesterol-rich membranes by bile salts. Gastroenterology, 1994, 106(5), 1333-1341. doi: 10.1016/0016-5085(94)90027-2 PMID: 8174892
  37. Rodrigues, C.M.; Fan, G.; Ma, X.; Kren, B.T.; Steer, C.J. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest., 1998, 101(12), 2790-2799. doi: 10.1172/JCI1325 PMID: 9637713
  38. Ikegami, T.; Matsuzaki, Y.; Al Rashid, M.; Ceryak, S.; Zhang, Y.; Bouscarel, B. Enhancement of DNA topoisomerase I inhibitor–induced apoptosis by ursodeoxycholic acid. Mol. Cancer Ther., 2006, 5(1), 68-79. doi: 10.1158/1535-7163.MCT-05-0107 PMID: 16432164
  39. Kuhajda, K.; Kandrac, J.; Kevresan, S.; Mikov, M.; Fawcett, J.P. Structure and origin of bile acids: An overview. Eur. J. Drug Metab. Pharmacokinet., 2006, 31(3), 135-143. doi: 10.1007/BF03190710 PMID: 17136858
  40. Virtanen, E.; Kolehmainen, E. Use of bile acids in pharmacological and supramolecular applications. Eur. J. Org. Chem., 2004, 2004(16), 3385-3399. doi: 10.1002/ejoc.200300699
  41. de Aguiar Vallim, T.Q.; Tarling, E.J.; Edwards, P.A. Pleiotropic roles of bile acids in metabolism. Cell Metab., 2013, 17(5), 657-669. doi: 10.1016/j.cmet.2013.03.013 PMID: 23602448
  42. Monte, M.J.; Marin, J.J.G.; Antelo, A.; Vazquez-Tato, J. Bile acids: Chemistry, physiology, and pathophysiology. World J. Gastroenterol., 2009, 15(7), 804-816. doi: 10.3748/wjg.15.804 PMID: 19230041
  43. Boyer, J.L. Bile formation and secretion. Compr. Physiol., 2013, 3(3), 1035-1078. doi: 10.1002/cphy.c120027 PMID: 23897680
  44. Hofmann, A.F. The continuing importance of bile acids in liver and intestinal disease. Arch Inter Med, 1999, 159, 2647-2658. Available from: http://archinte.jamanetwork.com/
  45. Nurunnabi, M.; Khatun, Z.; Revuri, V.; Nafiujjaman, M.; Cha, S.; Cho, S.; Moo Huh, K.; Lee, Y. Design and strategies for bile acid mediated therapy and imaging. RSC Advances, 2016, 6(78), 73986-74002. doi: 10.1039/C6RA10978K
  46. Enhsen, A.; Kramer, W.; Wess, G. Bile acids in drug discovery. Int. J. Immunopharmacol., 1998, 3, 409-418. doi: 10.1016/S1359-6446(96)10046-5
  47. Tamminen, J.; Kolehmainen, E. Bile acids as building blocks of supramolecular hosts. Molecules, 2001, 6(12), 21-46. doi: 10.3390/60100021
  48. Zhu, X.X.; Nichifor, M. Polymeric materials containing bile acids. Acc. Chem. Res., 2002, 35(7), 539-546. doi: 10.1021/ar0101180 PMID: 12118993
  49. Fiorucci, S.; Distrutti, E. Chapter_ThePharmacologyOf BileAcids_REV.pdf, 2019, 256, 3-18. Available from: doi: 10.1007/164_2019_238
  50. Hegyi, P.; Maléth, J.; Walters, J.R.; Hofmann, A.F.; Keely, S.J. Guts and gall: Bile acids in regulation of intestinal epithelial function in health and disease. Physiol. Rev., 2018, 98(4), 1983-2023. doi: 10.1152/physrev.00054.2017 PMID: 30067158
  51. Li, T.; Chiang, J.Y.L. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev., 2014, 66(4), 948-983. doi: 10.1124/pr.113.008201 PMID: 25073467
  52. Fiorucci, S.; Baldoni, M.; Ricci, P.; Zampella, A.; Distrutti, E.; Biagioli, M. Bile acid-activated receptors and the regulation of macrophages function in metabolic disorders. Curr. Opin. Pharmacol., 2020, 53, 45-54. doi: 10.1016/j.coph.2020.04.008 PMID: 32480317
  53. Zhou, H.; Hylemon, P.B. Bile acids are nutrient signaling hormones. Steroids, 2014, 86, 62-68. doi: 10.1016/j.steroids.2014.04.016 PMID: 24819989
  54. Chávez-Talavera, O.; Tailleux, A.; Lefebvre, P.; Staels, B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology, 2017, 152(7), 1679-1694.e3. doi: 10.1053/j.gastro.2017.01.055 PMID: 28214524
  55. Vítek, L.; Haluzík, M. The role of bile acids in metabolic regulation. J. Endocrinol., 2016, 228(3), R85-R96. doi: 10.1530/JOE-15-0469 PMID: 26733603
  56. Sánchez-García, A.; Sahebkar, A.; Simental-Mendía, M.; Simental-Mendía, L.E. Effect of ursodeoxycholic acid on glycemic markers: A systematic review and meta-analysis of clinical trials. Pharmacol. Res., 2018, 135, 144-149. doi: 10.1016/j.phrs.2018.08.008 PMID: 30099154
  57. Davis, A.P.; Cholaphanes et al.; steroids as structural components in molecular engineering. Chem. Soc. Rev., 1993, 22(4), 243-253. doi: 10.1039/cs9932200243
  58. Mukhopadhyay, S.; Maitra, U. Chemistry and biology of bile acids. Curr. Sci., 2004, 87, 1666-1683.
  59. Maldonado-Valderrama, J.; Wilde, P.; MacIerzanka, A.; MacKie, A. The role of bile salts in digestion. Adv. Colloid Interface Sci., 2011, 36-46. doi: 10.1016/j.cis.2010.12.002
  60. Ticho, A.L.; Malhotra, P.; Dudeja, P.K.; Gill, R.K.; Alrefai, W.A. Intestinal absorption of bile acids in health and disease. Compr. Physiol., 2019, 10(1), 21-56. doi: 10.1002/cphy.c190007 PMID: 31853951
  61. Sarkar, A.; Ye, A.; Singh, H. On the role of bile salts in the digestion of emulsified lipids ood Hydrocoll, 2016, 60, 77-84. doi: 10.1016/j.foodhyd.2016.03.018
  62. Sharma, R.; Long, A.; Gilmer, J.F. Advances in bile acid medicinal chemistry. Curr. Med. Chem., 2011, 18(26), 4029-4052. doi: 10.2174/092986711796957266 PMID: 21824088
  63. Yamanashi, Y.; Tazuma, H. Takikawa, Bile acids in gastroenterology: Basic and clinical, bile acids gastroenterol; Basic Clin, 2017, pp. 1-209. doi: 10.1007/978-4-431-56062-3
  64. Mishra, R.; Mishra, S. Updates in bile acid-bioactive molecule conjugates and their applications. Steroids, 2020, 159, 108639. doi: 10.1016/j.steroids.2020.108639 PMID: 32222373
  65. Singh, C.; Hassam, M.; Verma, V.P.; Singh, A.S.; Naikade, N.K.; Puri, S.K.; Maulik, P.R.; Kant, R. Bile acid-based 1,2,4-trioxanes: Synthesis and antimalarial assessment. J. Med. Chem., 2012, 55(23), 10662-10673. doi: 10.1021/jm301323k PMID: 23163291
  66. Tolle-Sander, S.; Lentz, K.A.; Maeda, D.Y.; Coop, A.; Polli, J.E. Increased acyclovir oral bioavailability via a bile acid conjugate. Mol. Pharm., 2004, 1(1), 40-48. doi: 10.1021/mp034010t PMID: 15832499
  67. Evangelakos, I.; Heeren, J.; Verkade, E.; Kuipers, F. Role of bile acids in inflammatory liver diseases. Semin. Immunopathol., 2021, 43(4), 577-590. doi: 10.1007/s00281-021-00869-6 PMID: 34236487
  68. Antinarelli, L.M.R.; Carmo, A.M.L.; Pavan, F.R.; Leite, C.Q.F.; Da Silva, A.D.; Coimbra, E.S.; Salunke, D.B. Increase of leishmanicidal and tubercular activities using steroids linked to aminoquinoline. Org. Med. Chem. Lett., 2012, 2(1), 16. doi: 10.1186/2191-2858-2-16 PMID: 22551300
  69. Santos, J.A.; Polonini, H.C.; Suzuki, É.Y.; Raposo, N.R.B.; da Silva, A.D. Synthesis of conjugated bile acids/azastilbenes as potential antioxidant and photoprotective agents. Steroids, 2015, 98, 114-121. doi: 10.1016/j.steroids.2015.03.009 PMID: 25814069
  70. Agarwal, D.S.; Anantaraju, H.S.; Sriram, D.; Yogeeswari, P.; Nanjegowda, S.H.; Mallu, P.; Sakhuja, R. Synthesis, characterization and biological evaluation of bile acid-aromatic/heteroaromatic amides linked via amino acids as anti-cancer agents. Steroids, 2016, 107, 87-97. doi: 10.1016/j.steroids.2015.12.022 PMID: 26748355
  71. Brossard, D.; El Kihel, L.; Clément, M.; Sebbahi, W.; Khalid, M.; Roussakis, C.; Rault, S. Synthesis of bile acid derivatives and in vitro cytotoxic activity with pro-apoptotic process on multiple myeloma (KMS-11), glioblastoma multiforme (GBM), and colonic carcinoma (HCT-116) human cell lines. Eur. J. Med. Chem., 2010, 45(7), 2912-2918. doi: 10.1016/j.ejmech.2010.03.016 PMID: 20381215
  72. Navacchia, M.; Marchesi, E.; Mari, L.; Chinaglia, N.; Gallerani, E.; Gavioli, R.; Capobianco, M.; Perrone, D. Rational design of nucleoside-bile acid conjugates incorporating a triazole moiety for anticancer evaluation and SAR exploration. Molecules, 2017, 22(10), 1710. doi: 10.3390/molecules22101710 PMID: 29023408
  73. Agarwal, D.S.; Siva Krishna, V.; Sriram, D.; Yogeeswari, P.; Sakhuja, R. Clickable conjugates of bile acids and nucleosides: Synthesis, characterization, in vitro anticancer and antituberculosis studies. Steroids, 2018, 139, 35-44. doi: 10.1016/j.steroids.2018.09.006 PMID: 30236620
  74. Yan Li; Zhen Zhang; Yong Ju; Chang-Qi Zhao. Design, synthesis and antitumor activity of dimeric bile acid-amino acid conjugates. Lett. Org. Chem., 2007, 4(6), 414-418. doi: 10.2174/157017807781467542
  75. Patel, S.; Challagundla, N.; Rajput, R.A.; Mishra, S. Design, synthesis, characterization and anticancer activity evaluation of deoxycholic acid-chalcone conjugates. Bioorg. Chem., 2022, 127, 106036. doi: 10.1016/j.bioorg.2022.106036 PMID: 35878450
  76. Sreekanth, V.; Bansal, S.; Motiani, R.K.; Kundu, S.; Muppu, S.K.; Majumdar, T.D.; Panjamurthy, K.; Sengupta, S.; Bajaj, A. Design, synthesis, and mechanistic investigations of bile acid-tamoxifen conjugates for breast cancer therapy. Bioconjug. Chem., 2013, 24(9), 1468-1484. doi: 10.1021/bc300664k PMID: 23909664
  77. Varshosaz, J.; Sadri, F.; Rostami, M.; Mirian, M.; Taymouri, S. Synthesis of pectin-deoxycholic acid conjugate for targeted delivery of anticancer drugs in hepatocellular carcinoma. Int. J. Biol. Macromol., 2019, 139, 665-677. doi: 10.1016/j.ijbiomac.2019.07.225 PMID: 31377298
  78. Agarwal, D.S.; Singh, R.P.; Lohitesh, K.; Jha, P.N.; Chowdhury, R.; Sakhuja, R. Synthesis and evaluation of bile acid amides of α-cyanostilbenes as anticancer agents. Mol. Divers., 2018, 22(2), 305-321. doi: 10.1007/s11030-017-9797-9 PMID: 29238888
  79. Sievänen, E. Exploitation of bile acid transport systems in prodrug design. Molecules, 2007, 12(8), 1859-1889. doi: 10.3390/12081859 PMID: 17960093
  80. von Geldern, T.W.; Tu, N.; Kym, P.R.; Link, J.T.; Jae, H.S.; Lai, C.; Apelqvist, T.; Rhonnstad, P.; Hagberg, L.; Koehler, K.; Grynfarb, M.; Goos-Nilsson, A.; Sandberg, J.; Österlund, M.; Barkhem, T.; Höglund, M.; Wang, J.; Fung, S.; Wilcox, D.; Nguyen, P.; Jakob, C.; Hutchins, C.; Färnegårdh, M.; Kauppi, B.; Öhman, L.; Jacobson, P.B. Liver-selective glucocorticoid antagonists: A novel treatment for type 2 diabetes. J. Med. Chem., 2004, 47(17), 4213-4230. doi: 10.1021/jm0400045 PMID: 15293993
  81. Gabano, E.; Ravera, M.; Osella, D. The drug targeting and delivery approach applied to pt-antitumour complexes. A coordination point of view. Curr. Med. Chem., 2009, 16(34), 4544-4580. doi: 10.2174/092986709789760661 PMID: 19903151
  82. Jurček, O.; Wimmer, Z.; Svobodová, H.; Bennettová, B.; Kolehmainen, E.; Drašar, P. Preparation and preliminary biological screening of cholic acid–juvenoid conjugates. Steroids, 2009, 74(9), 779-785. doi: 10.1016/j.steroids.2009.04.006 PMID: 19394354
  83. Rohacova, J.; Marín, M.L.; Martinez-Romero, A.; Diaz, L.; O’Connor, J.E.; Gomez-Lechon, M.J.; Donato, M.T.; Castell, J.V.; Miranda, M.A. Fluorescent benzofurazan-cholic acid conjugates for in vitro assessment of bile acid uptake and its modulation by drugs. ChemMedChem, 2009, 4(3), 466-472. doi: 10.1002/cmdc.200800383 PMID: 19173214
  84. Chen, D.; Wang, X.; Chen, L.; He, J.; Miao, Z.; Shen, J. Novel liver-specific cholic acid-cytarabine conjugates with potent antitumor activities: Synthesis and biological characterization. Acta Pharmacol. Sin., 2011, 32(5), 664-672. doi: 10.1038/aps.2011.7 PMID: 21516131
  85. Popadyuk, I.I.; Markov, A.V.; Morozova, E.A.; Babich, V.O.; Salomatina, O.V.; Logashenko, E.B.; Zenkova, M.A.; Tolstikova, T.G.; Salakhutdinov, N.F. Synthesis and evaluation of antitumor, anti-inflammatory and analgesic activity of novel deoxycholic acid derivatives bearing aryl- or hetarylsulfanyl moieties at the C-3 position. Steroids, 2017, 127, 1-12. doi: 10.1016/j.steroids.2017.08.016 PMID: 28887170
  86. de Sena Pereira, V.S.; Silva de Oliveira, C.B.; Fumagalli, F.; da Silva Emery, F.; da Silva, N.B.; de Andrade-Neto, V.F. Cytotoxicity, hemolysis and in vivo acute toxicity of 2-hydroxy-3-anilino-1,4-naphthoquinone derivatives. Toxicol. Rep., 2016, 3, 756-762. doi: 10.1016/j.toxrep.2016.09.007 PMID: 28959602
  87. Singh, M.; Bansal, S.; Kundu, S.; Bhargava, P.; Singh, A.; Motiani, R.K.; Shyam, R.; Sreekanth, V.; Sengupta, S.; Bajaj, A. Synthesis, structure–activity relationship, and mechanistic investigation of lithocholic acidamphiphiles for colon cancer therapy. MedChemComm, 2015, 6(1), 192-201. doi: 10.1039/C4MD00223G PMID: 25685308
  88. Kuhajda, K.N.; Cvjetićanin, S.M.; Djurendić, E.A.; Sakač, M.N.; Gaši, K.M.P.; Kojić, V.V.; Bogdanović, G.M. Sinteza i citotoksična aktivnost serije novih derivata žučnih kiselina. Hem. Ind., 2009, 63, 313-318. doi: 10.2298/HEMIND0904313K
  89. Ren, J.; Wang, Y.; Wang, J.; Lin, J.; Wei, K.; Huang, R. Synthesis and antitumor activity of N-sulfonyl-3,7-dioxo-5β-cholan-24-amides, ursodeoxycholic acid derivatives. Steroids, 2013, 78(1), 53-58. doi: 10.1016/j.steroids.2012.09.009 PMID: 23127818
  90. Májer, F.; Sharma, R.; Mullins, C.; Keogh, L.; Phipps, S.; Duggan, S.; Kelleher, D.; Keely, S.; Long, A.; Radics, G.; Wang, J.; Gilmer, J.F. New highly toxic bile acids derived from deoxycholic acid, chenodeoxycholic acid and lithocholic acid. Bioorg. Med. Chem., 2014, 22(1), 256-268. doi: 10.1016/j.bmc.2013.11.029 PMID: 24332653
  91. Huang, Y.; Chen, S.; Cui, J.; Gan, C.; Liu, Z.; Wei, Y.; Song, H. Synthesis and cytotoxicity of A-homo-lactam derivatives of cholic acid and 7-deoxycholic acid. Steroids, 2011, 76(7), 690-694. doi: 10.1016/j.steroids.2011.03.009 PMID: 21440565
  92. Kramer, W. Transporters, Trojan horses and therapeutics: Suitability of bile acid and peptide transporters for drug delivery. Biol. Chem., 2011, 392(1-2), 77-94. doi: 10.1515/bc.2011.017 PMID: 21194371
  93. Stojančević, M.; Pavlović, N.; Goločorbin-Kon, S.; Mikov, M. Application of bile acids in drug formulation and delivery. Front. Life Sci., 2013, 7(3-4), 112-122. doi: 10.1080/21553769.2013.879925
  94. Garidel, P.; Hildebrand, A.; Knauf, K.; Blume, A. Membranolytic activity of bile salts: Influence of biological membrane properties and composition. Molecules, 2007, 12(10), 2292-2326. doi: 10.3390/12102292 PMID: 17978759
  95. Moghimipour, E.; Ameri, A.; Handali, S. Absorption-enhancing effects of bile salts. Molecules, 2015, 20(8), 14451-14473. doi: 10.3390/molecules200814451 PMID: 26266402
  96. Aburahma, M.H. Bile salts-containing vesicles: Promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv., 2014, 23(6), 1-21. doi: 10.3109/10717544.2014.976892 PMID: 25390191
  97. Pinto Reis, C.; Silva, C.; Martinho, N.; Rosado, C. Drug carriers for oral delivery of peptides and proteins: Accomplishments and future perspectives. Ther. Deliv., 2013, 4(2), 251-265. doi: 10.4155/tde.12.143 PMID: 23343163
  98. Elnaggar, Y. Multifaceted applications of bile salts in pharmacy: An emphasis on nanomedicine. Int. J. Nanomedicine, 2015, 10, 3955-3971. doi: 10.2147/IJN.S82558 PMID: 26109855
  99. Wu, D.; Ji, S.; Wu, Y.; Ju, Y.; Zhao, Y. Design, synthesis, and antitumor activity of bile acid–polyamine–nucleoside conjugates. Bioorg. Med. Chem. Lett., 2007, 17(11), 2983-2986. doi: 10.1016/j.bmcl.2007.03.067 PMID: 17416522
  100. Letis, A.S.; Seo, E.J.; Nikolaropoulos, S.S.; Efferth, T.; Giannis, A.; Fousteris, M.A. Synthesis and cytotoxic activity of new artemisinin hybrid molecules against human leukemia cells. Bioorg. Med. Chem., 2017, 25(13), 3357-3367. doi: 10.1016/j.bmc.2017.04.021 PMID: 28456567
  101. Marchesi, E.; Chinaglia, N.; Capobianco, M.L.; Marchetti, P.; Huang, T.E.; Weng, H.C.; Guh, J.H.; Hsu, L.C.; Perrone, D.; Navacchia, M.L. Dihydroartemisinin–bile acid hybridization as an effective approach to enhance dihydroartemisinin anticancer activity. ChemMedChem, 2019, 14(7), 779-787. doi: 10.1002/cmdc.201800756 PMID: 30724466
  102. Huang, T.E.; Deng, Y.N.; Hsu, J.L.; Leu, W.J.; Marchesi, E.; Capobianco, M.L.; Marchetti, P.; Navacchia, M.L.; Guh, J.H.; Perrone, D.; Hsu, L.C. Evaluation of the anticancer activity of a bile acid-dihydroartemisinin hybrid ursodeoxycholic-dihydroartemisinin in hepatocellular carcinoma cells. Front. Pharmacol., 2020, 11, 599067. doi: 10.3389/fphar.2020.599067 PMID: 33343369
  103. Jurášek, M.; Džubák, P.; Sedlák, D.; Dvořáková, H.; Hajdúch, M.; Bartůněk, P.; Drašar, P. Preparation, preliminary screening of new types of steroid conjugates and their activities on steroid receptors. Steroids, 2013, 78(3), 356-361. doi: 10.1016/j.steroids.2012.11.016
  104. Brard, L.; Granai, C.O.; Swamy, N. Iron chelators deferoxamine and diethylenetriamine pentaacetic acid induce apoptosis in ovarian carcinoma. Gynecol. Oncol., 2006, 100(1), 116-127. doi: 10.1016/j.ygyno.2005.07.129 PMID: 16203029
  105. Chong, H.S.; Song, H.A.; Ma, X.; Lim, S.; Sun, X.; Mhaske, S.B. Bile acid-based polyaminocarboxylate conjugates as targeted antitumor agents. Chem. Commun. , 2009, 21(21), 3011-3013. doi: 10.1039/b823000e PMID: 19462070
  106. Incerti, M.; Tognolini, M.; Russo, S.; Pala, D.; Giorgio, C.; Hassan-Mohamed, I.; Noberini, R.; Pasquale, E.B.; Vicini, P.; Piersanti, S.; Rivara, S.; Barocelli, E.; Mor, M.; Lodola, A. Amino acid conjugates of lithocholic acid as antagonists of the EphA2 receptor. J. Med. Chem., 2013, 56(7), 2936-2947. doi: 10.1021/jm301890k PMID: 23489211
  107. Liu, Y.Q.; Li, W.Q.; Morris-Natschke, S.L.; Qian, K.; Yang, L.; Zhu, G.X.; Wu, X.B.; Chen, A.L.; Zhang, S.Y.; Nan, X.; Lee, K.H. Perspectives on biologically active camptothecin derivatives. Med. Res. Rev., 2015, 35(4), 753-789. doi: 10.1002/med.21342 PMID: 25808858
  108. Xiao, L.; Zhou, Y.; Zhang, X.; Ding, Y.; Li, Q. Transporter-targeted bile acid-camptothecin conjugate for improved oral absorptio. Chem. Pharm. Bull. , 2019, 67(10), 1082-1087. doi: 10.1248/cpb.c19-00341
  109. Rais, R.; Fletcher, S.; Polli, J.E. Synthesis and in vitro evaluation of gabapentin prodrugs that target the human apical sodium-dependent bile acid transporter (hASBT). J. Pharm. Sci., 2011, 100(3), 1184-1195. doi: 10.1002/jps.22332 PMID: 20848648
  110. Bennett, M.I.; Simpson, K.H. Gabapentin in the treatment of neuropathic pain. Palliat. Med., 2004, 18(1), 5-11. doi: 10.1191/0269216304pm845ra PMID: 14982201
  111. Publication, A. Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology; Hangzhou 310014. China, , 2019. doi: 10.1248/cpb.c19-00341
  112. Kullak-Ublick, G.A.; Glasa, J.; Böker, C.; Oswald, M.; Grützner, U.; Hagenbuch, B.; Stieger, B.; Meier, P.J.; Beuers, U.; Kramer, W.; Wess, G.; Paumgartner, G. Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology, 1997, 113(4), 1295-1305. doi: 10.1053/gast.1997.v113.pm9322525 PMID: 9322525
  113. Roda, A.; Cerrè, C.; Manetta, A.C.; Cainelli, G.; Umani-Ronchi, A.; Panunzio, M. Synthesis and physicochemical, biological, and pharmacological properties of new bile acids amidated with cyclic amino acids. J. Med. Chem., 1996, 39(11), 2270-2276. doi: 10.1021/jm9508503 PMID: 8667370
  114. Navacchia, M.L.; Fraix, A.; Chinaglia, N.; Gallerani, E.; Perrone, D.; Cardile, V.; Graziano, A.C.E.; Capobianco, M.L.; Sortino, S. NO photoreleaser-deoxyadenosine and - bile acid derivative bioconjugates as novel potential photochemotherapeutics 2016, 2-6. doi: 10.1021/acsmedchemlett.6b00257
  115. Dalpiaz, A.; Paganetto, G.; Pavan, B.; Fogagnolo, M.; Medici, A.; Beggiato, S.; Perrone, D. Zidovudine and ursodeoxycholic acid conjugation: Design of a new prodrug potentially able to bypass the active efflux transport systems of the central nervous system. Mol. Pharm., 2012, 9(4), 957-968. doi: 10.1021/mp200565g PMID: 22356133
  116. Hryniewicka, A.; Łotowski, Z.; Seroka, B.; Witkowski, S.; Morzycki, J.W. Synthesis of a cisplatin derivative from lithocholic acid. Tetrahedron, 2018, 74(38), 5392-5398. doi: 10.1016/j.tet.2018.01.007
  117. Park, K.; Kim, Y.S.; Lee, G.Y.; Nam, J.O.; Lee, S.K.; Park, R.W.; Kim, S.Y.; Kim, I.S.; Byun, Y. Antiangiogenic effect of bile acid acylated heparin derivative. Pharm. Res., 2006, 24(1), 176-185. doi: 10.1007/s11095-006-9139-6 PMID: 17109210

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers