Therapeutic Effect of Resveratrol and its Novel Formulations on Lung Cancer: Focus on Biological Aspects and Underlying Pathways


如何引用文章

全文:

详细

Lung cancer is a leading cause of mortality and morbidity worldwide. Due to significant advances in therapeutic strategies, patients' survival and life quality have been improved, however there is still an urgent requirement for developing more effective therapeutic methods. Resveratrol, a natural polyphenol with numerous biological potentials, has been widely studied. It has shown therapeutic potetial in various diseases including neurodegenerative diseases, cardiovascular disorders, and cancers through the regulation of key cellular signaling such as apoptosis, as well as molecular pathways such as microRNA modulation. It has been reported that resveratrol acts as an anticancer agent against lung cancer in vivo and in vitro. Resveratrol could combat against lung cancer by modulating various molecular targets and signaling pathways involved in oxidative stress, inflammation, apoptosis and autoghagy and also microRNAs expression. Moreover, novel delivery systems and analogs have recently been introduced to promote the anticancer impacts of resveratrol. In this article, we review current evidence on the anticancer effects of resveratrol and its novel formulations in the treatment of lung cancer with a focus on underlying mechanisms.

作者简介

Hamidreza Poortalebi

, Tehran University of Medical Science

Email: info@benthamscience.net

Mahta ZareDini

Student Research Committee, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Sima Foroughi-Nematollahi

, Kerman University of Medical Sciences

Email: info@benthamscience.net

Tahereh Farkhondeh

Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences

Email: info@benthamscience.net

Saeed Samarghandian

Healthy Ageing Research Centre, Neyshabur University of Medical Sciences

编辑信件的主要联系方式.
Email: info@benthamscience.net

Mohammad Pourhanifeh

Student Research Committee, Kashan University of Medical Sciences

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin., 2016, 66(4), 271-289. doi: 10.3322/caac.21349 PMID: 27253694
  2. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30. doi: 10.3322/caac.21387 PMID: 28055103
  3. Wang, T.T.Y.; Hudson, T.S.; Wang, T.C.; Remsberg, C.M.; Davies, N.M.; Takahashi, Y.; Kim, Y.S.; Seifried, H.; Vinyard, B.T.; Perkins, S.N.; Hursting, S.D. Differential effects of resveratrol on androgen-responsive LNCaP human prostate cancer cells in vitro and in vivo. Carcinogenesis, 2008, 29(10), 2001-2010. doi: 10.1093/carcin/bgn131 PMID: 18586690
  4. Shamshoum, H.; Vlavcheski, F.; Tsiani, E. Anticancer effects of oleuropein. Biofactors, 2017, 43(4), 517-528. doi: 10.1002/biof.1366 PMID: 28612982
  5. Yousef, M.; Tsiani, E. Metformin in lung cancer: Review of in vitro and in vivo animal studies. Cancers, 2017, 9(12), 45. doi: 10.3390/cancers9050045 PMID: 28481268
  6. Bae, I.; Yi, Y.W.; Kang, H.J.; Kim, H.J. Boronic acid derivatives of resveratrol for activating deacetylase enzymes. US Patent 10478445B2, 2017.
  7. Lee, YJ; Lee, GJ; Yi, SS; Heo, SH; Park, CR; Nam, HS Cisplatin and resveratrol induce apoptosis and autophagy following oxidative stress in malignant mesothelioma cells. Food Chem Toxicol., 2016, 97, 96-107. doi: 10.1016/j.fct.2016.08.033
  8. Mondal, A; Bennett, LL Resveratrol enhances the efficacy of sorafenib mediated apoptosis in human breast cancer MCF7 cells through ROS, cell cycle inhibition, caspase 3 and PARP cleavage. Biomed. Pharmacother., 2016, 84, 1906-1914. doi: 10.1016/j.biopha.2016.10.096
  9. Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: Focus on in vivo evidence. Endocr. Relat. Cancer, 2014, 21(3), R209-R225. doi: 10.1530/ERC-13-0171 PMID: 24500760
  10. Stagos, D.; Amoutzias, G.D.; Matakos, A.; Spyrou, A.; Tsatsakis, A.M.; Kouretas, D. Chemoprevention of liver cancer by plant polyphenols. Food Chem. Toxicol., 2012, 50(6), 2155-2170. doi: 10.1016/j.fct.2012.04.002
  11. Huminiecki, L.; Horbańczuk, J. The functional genomic studies of resveratrol in respect to its anti-cancer effects. Biotechnol. Adv., 2018, 36(6), 1699-1708. doi: 10.1016/j.biotechadv.2018.02.011 PMID: 29476886
  12. Yousef, M.; Vlachogiannis, I.; Tsiani, E. Effects of resveratrol against lung cancer: In vitro and in vivo studies. Nutrients, 2017, 9(11), 1231. doi: 10.3390/nu9111231 PMID: 29125563
  13. Pannu, N.; Bhatnagar, A. Resveratrol: From enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed. Pharmacother., 2019, 109, 2237-2251. doi: 10.1016/j.biopha.2018.11.075 PMID: 30551481
  14. Shrikanta, A.; Kumar, A.; Govindaswamy, V. Resveratrol content and antioxidant properties of underutilized fruits. J. Food Sci. Technol., 2015, 52(1), 383-390. doi: 10.1007/s13197-013-0993-z PMID: 25593373
  15. Weiskirchen, S.; Weiskirchen, R. Resveratrol: How much wine do you have to drink to stay healthy? Adv. Nutr., 2016, 7(4), 706-718. doi: 10.3945/an.115.011627 PMID: 27422505
  16. Nawaz, W.; Zhou, Z.; Deng, S.; Ma, X.; Ma, X.; Li, C.; Shu, X. Therapeutic versatility of resveratrol derivatives. Nutrients, 2017, 9(11), 1188. doi: 10.3390/nu9111188 PMID: 29109374
  17. Gambini, J.; Inglés, M.; Olaso, G.; Grueso, L.R.; Costa, B.V.; Mallench, G.L.; Bargues, M.C.; Abdelaziz, K.M.; Cabrera, G.M.C.; Vina, J.; Borras, C. Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev., 2015, 2015, 1-13. doi: 10.1155/2015/837042 PMID: 26221416
  18. Asghari, S.; Jafarabadi, A.M.; Somi, M.H.; Ghavami, S.M.; Rafraf, M. Comparison of calorie-restricted diet and resveratrol supplementation on anthropometric indices, metabolic parameters, and serum sirtuin-1 levels in patients with nonalcoholic fatty liver disease: A randomized controlled clinical trial. J. Am. Coll. Nutr., 2018, 37(3), 223-233. doi: 10.1080/07315724.2017.1392264 PMID: 29313746
  19. Maciejewska, D.; Łukomska, A.; Dec, K.; Żydecka, S.K.; Gutowska, I.; Majewicz, S.M.; Styburski, D.; Has, M.K.; Pilutin, A.; Palma, J.; Sieletycka, K.; Marlicz, W.; Stachowska, E. Diet-induced rat model of gradual development of non-alcoholic fatty liver disease (NAFLD) with Lipopolysaccharides (LPS) secretion. Diagnostics, 2019, 9(4), 205. doi: 10.3390/diagnostics9040205 PMID: 31783667
  20. Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol., 2015, 4, 180-183. doi: 10.1016/j.redox.2015.01.002 PMID: 25588755
  21. Samarghandian, S.; Samini, F.; Nezhad, A.M.; Farkhondeh, T. Anti-oxidative effects of safranal on immobilization-induced oxidative damage in rat brain. Neurosci. Lett., 2017, 659, 26-32. doi: 10.1016/j.neulet.2017.08.065 PMID: 28866053
  22. Samarghandian, S.; Nezhad, A.M.; Farkhondeh, T. Catechin treatment ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Dose Response, 2017, 15(1), 1559325817691158. doi: 10.1177/1559325817691158 PMID: 28228702
  23. Zhuang, Y.; Wu, H.; Wang, X.; He, J.; He, S.; Yin, Y. Resveratrol attenuates oxidative stress-induced intestinal barrier injury through PI3K/Akt-mediated Nrf2 signaling pathway. Oxid. Med. Cell. Longev., 2019, 2019, 1-14. doi: 10.1155/2019/7591840 PMID: 31885814
  24. Cong, L; Lei, MY; Liu, ZQ; Liu, ZF; Ma, Z; Liu, K Resveratrol attenuates manganese-induced oxidative stress and neuroinflammation through SIRT1 signaling in mice. Food. Chem. Toxicol., 2021, 153, 112283. doi: 10.1016/j.fct.2021.112283
  25. Yu, D.; Xiong, J.; Gao, Y.; Li, J.; Zhu, D.; Shen, X.; Sun, L.; Wang, X. Resveratrol activates PI3K/AKT to reduce myocardial cell apoptosis and mitochondrial oxidative damage caused by myocardial ischemia/reperfusion injury. Acta Histochem., 2021, 123(5), 151739. doi: 10.1016/j.acthis.2021.151739 PMID: 34107386
  26. Zhou, X; Ruan, Q; Ye, Z; Chu, Z; Xi, M; Li, M Resveratrol accelerates wound healing by attenuating oxidative stress-induced impairment of cell proliferation and migration. Burns, 2021, 47(1), 133-139. doi: 10.1016/j.burns.2020.10.016
  27. Kung, H.C.; Lin, K.J.; Kung, C.T.; Lin, T.K. Oxidative stress, mitochondrial dysfunction, and neuroprotection of polyphenols with respect to resveratrol in Parkinson’s disease. Biomedicines, 2021, 9(8), 918. doi: 10.3390/biomedicines9080918 PMID: 34440122
  28. Jia, B.; Zheng, X.; Wu, M.L.; Tian, X.T.; Song, X.; Liu, Y.N.; Li, P.N.; Liu, J. Increased reactive oxygen species and distinct oxidative damage in resveratrol-suppressed glioblastoma cells. J. Cancer, 2021, 12(1), 141-149. doi: 10.7150/jca.45489 PMID: 33391410
  29. Ashrafizadeh, M.; Ahmadi, Z.; Mohammadinejad, R.; Kaviyani, N.; Tavakol, S. Monoterpenes modulating autophagy: A review study. Basic Clin. Pharmacol. Toxicol., 2020, 126(1), 9-20. PMID: 31237736
  30. Ashrafizadeh, M.; Ahmadi, Z.; Farkhondeh, T.; Samarghandian, S. Modulatory effects of statins on the autophagy: A therapeutic perspective. J. Cell. Physiol., 2020, 235(4), 3157-3168. doi: 10.1002/jcp.29227 PMID: 31578730
  31. Mohammadinejad, R.; Ahmadi, Z.; Tavakol, S.; Ashrafizadeh, M. Berberine as a potential autophagy modulator. J. Cell. Physiol., 2019, 234(9), 14914-14926. doi: 10.1002/jcp.28325 PMID: 30770555
  32. Samarghandian, S.; Borji, A.; Hidar Tabasi, S. Effects of Cichorium intybus linn on blood glucose, lipid constituents and selected oxidative stress parameters in streptozotocin-induced diabetic rats. Cardiovascular & Haematological Disorders-Drug Targets Formerly Current Drug Targets-Cardiovascular & Hematological Disorders, 2013, 13(3), 231-236.
  33. Ashrafizadeh, M.; Rafiei, H.; Mohammadinejad, R.; Farkhondeh, T.; Samarghandian, S. Anti-tumor activity of resveratrol against gastric cancer: A review of recent advances with an emphasis on molecular pathways. Cancer Cell Int., 2021, 21(1), 66. doi: 10.1186/s12935-021-01773-7 PMID: 33478512
  34. Signorelli, P.; Olaya, M.J.M.; Gagliostro, V.; Casas, J.; Ghidoni, R.; Fabriàs, G. Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Lett., 2009, 282(2), 238-243. doi: 10.1016/j.canlet.2009.03.020 PMID: 19394759
  35. Wang, J; Huang, P; Pan, X; Xia, C; Zhang, H; Zhao, H Resveratrol reverses TGF-β1-mediated invasion and metastasis of breast cancer cells via the SIRT3/AMPK/autophagy signal axis. Phytother Res, 2023, 37(1), 211-230.
  36. Yao, Y.; Zhu, J.; Qin, S.; Zhou, Z.; Zeng, Q.; Long, R.; Mao, Z.; Dong, X.; Zhao, R.; Zhang, R.; Zhang, S.; Huang, S.; Chen, L. Resveratrol induces autophagy impeding BAFF-stimulated B-cell proliferation and survival by inhibiting the Akt/mTOR pathway. Biochem. Pharmacol., 2022, 202, 115139. doi: 10.1016/j.bcp.2022.115139 PMID: 35697119
  37. Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst., 1990, 82(1), 4-7. doi: 10.1093/jnci/82.1.4 PMID: 1688381
  38. Baeriswyl, V.; Christofori, G. The angiogenic switch in carcinogenesis. Semin. Cancer Biol., 2009, 19(5), 329-337. doi: 10.1016/j.semcancer.2009.05.003 PMID: 19482086
  39. Wen, D.; Huang, X.; Zhang, M.; Zhang, L.; Chen, J.; Gu, Y.; Hao, C.M. Resveratrol attenuates diabetic nephropathy via modulating angiogenesis. PLoS One, 2013, 8(12), e82336. doi: 10.1371/journal.pone.0082336 PMID: 24312656
  40. Uvez, A.; Aydinlik, S.; Esener, O.B.B.; Erkisa, M.; Karakus, D.; Armutak, E.I. Synergistic interactions between resveratrol and doxorubicin inhibit angiogenesis both in vitro and in vivo. Pol. J. Vet. Sci., 2020, 23(4), 571-580. doi: 10.24425/pjvs.2020.135803 PMID: 33480492
  41. Fan, D.; Liu, C.; Guo, Z.; Huang, K.; Peng, M.; Li, N.; Luo, H.; Wang, T.; Cen, Z.; Cai, W.; Gu, L.; Chen, S.; Li, Z. Resveratrol promotes angiogenesis in a foxo1-dependent manner in hind limb ischemia in mice. Molecules, 2021, 26(24), 7528. doi: 10.3390/molecules26247528 PMID: 34946610
  42. Khazaei, M.R.; Rashidi, Z.; Chobsaz, F.; Niromand, E.; Khazaei, M. Inhibitory effect of resveratrol on the growth and angiogenesis of human endometrial tissue in an in vitro three-dimensional model of endometriosis. Reprod. Biol., 2020, 20(4), 484-490. doi: 10.1016/j.repbio.2020.07.012 PMID: 32896495
  43. Pradhan, R.; Chatterjee, S.; Hembram, K.C.; Sethy, C.; Mandal, M.; Kundu, C.N. Nano formulated resveratrol inhibits metastasis and angiogenesis by reducing inflammatory cytokines in oral cancer cells by targeting tumor associated macrophages. J. Nutr. Biochem., 2021, 92, 108624. doi: 10.1016/j.jnutbio.2021.108624 PMID: 33705943
  44. Lugrin, J.; Rosenblatt-Velin, N.; Parapanov, R.; Liaudet, L. The role of oxidative stress during inflammatory processes. Biol. Chem., 2014, 395(2), 203-230. doi: 10.1515/hsz-2013-0241 PMID: 24127541
  45. Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435. doi: 10.1038/nature07201 PMID: 18650913
  46. Aggarwal, B.B. Nuclear factor-κB. Cancer Cell, 2004, 6(3), 203-208. doi: 10.1016/j.ccr.2004.09.003 PMID: 15380510
  47. Fuggetta, M.P.; Bordignon, V.; Cottarelli, A.; Macchi, B.; Frezza, C.; Fei, C.P.; Ensoli, F.; Ciafrè, S.; Merlo, M.F.; Mastino, A.; Ravagnan, G. Downregulation of proinflammatory cytokines in HTLV-1-infected T cells by Resveratrol. J. Exp. Clin. Cancer Res., 2016, 35(1), 118. doi: 10.1186/s13046-016-0398-8 PMID: 27448598
  48. Xian, Y.; Gao, Y.; Lv, W.; Ma, X.; Hu, J.; Chi, J.; Wang, W.; Wang, Y. Resveratrol prevents diabetic nephropathy by reducing chronic inflammation and improving the blood glucose memory effect in non-obese diabetic mice. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(10), 2009-2017. doi: 10.1007/s00210-019-01777-1 PMID: 31970441
  49. Zou, M.; Yang, W.; Niu, L.; Sun, Y.; Luo, R.; Wang, Y.; Peng, X. Polydatin attenuates Mycoplasma gallisepticum (HS strain)-induced inflammation injury via inhibiting the TLR6/ MyD88/NF-κB pathway. Microb. Pathog., 2020, 149, 104552. doi: 10.1016/j.micpath.2020.104552 PMID: 33010363
  50. Hou, Y.; Zhang, Y.; Mi, Y.; Wang, J.; Zhang, H.; Xu, J.; Yang, Y.; Liu, J.; Ding, L.; Yang, J.; Chen, G.; Wu, C. A novel quinolyl-substituted analogue of resveratrol inhibits LPS-induced inflammatory responses in microglial cells by blocking the NF-κB/MAPK signaling pathways. Mol. Nutr. Food Res., 2019, 63(20), 1801380. doi: 10.1002/mnfr.201801380 PMID: 31378007
  51. Jiang, H.; Duan, J.; Xu, K.; Zhang, W. Resveratrol protects against asthma-induced airway inflammation and remodeling by inhibiting the HMGB1/TLR4/NF-κB pathway. Exp. Ther. Med., 2019, 18(1), 459-466. doi: 10.3892/etm.2019.7594 PMID: 31258683
  52. Alrafas, H.R.; Busbee, P.B.; Chitrala, K.N.; Nagarkatti, M.; Nagarkatti, P. Alterations in the gut microbiome and suppression of histone deacetylases by resveratrol are associated with attenuation of colonic inflammation and protection against colorectal cancer. J. Clin. Med., 2020, 9(6), 1796. doi: 10.3390/jcm9061796 PMID: 32526927
  53. McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol., 2013, 5(4), a008656. doi: 10.1101/cshperspect.a008656 PMID: 23545416
  54. Goldar, S.; Khaniani, M.S.; Derakhshan, S.M.; Baradaran, B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. APJCP, 2015, 16(6), 2129-2144. PMID: 25824729
  55. Chowdhury, D.; Lieberman, J. Death by a thousand cuts: Granzyme pathways of programmed cell death. Annu. Rev. Immunol., 2008, 26(1), 389-420. doi: 10.1146/annurev.immunol.26.021607.090404 PMID: 18304003
  56. Pourhanifeh, M.H.; Shafabakhsh, R.; Reiter, R.J.; Asemi, Z. The effect of resveratrol on neurodegenerative disorders: Possible protective actions against autophagy, apoptosis, inflammation and oxidative stress. Curr. Pharm. Des., 2019, 25(19), 2178-2191. doi: 10.2174/1381612825666190717110932 PMID: 31333112
  57. Li, T.; Chen, Z.; Zhou, Y.; Li, H.; Xie, J.; Li, L. Resveratrol pretreatment inhibits myocardial apoptosis in rats following coronary microembolization via inducing the PI3K/Akt/GSK-3β signaling cascade. Drug Des. Devel. Ther., 2021, 15, 3821-3834. doi: 10.2147/DDDT.S323555 PMID: 34522086
  58. Ashrafizadeh, M.; Taeb, S.; Aminjan, H.H.; Afrashi, S.; Moloudi, K.; Musa, A.E.; Najafi, M.; Farhood, B. Resveratrol as an enhancer of apoptosis in cancer: A mechanistic review. Anticancer. Agents Med. Chem., 2021, 21(17), 2327-2336. doi: 10.2174/1871520620666201020160348 PMID: 33081687
  59. Pourhanifeh, M.H.; Abbaszadeh-Goudarzi, K.; Goodarzi, M.; Piccirillo, S.G.M.; Shafiee, A.; Hajighadimi, S.; Moradizarmehri, S.; Asemi, Z.; Mirzaei, H. Resveratrol: A new potential therapeutic agent for melanoma? Curr. Med. Chem., 2021, 28(4), 687-711. doi: 10.2174/1875533XMTAyAOTQy1 PMID: 31830881
  60. Liu, Z.; Li, Y.; She, G.; Zheng, X.; Shao, L.; Wang, P.; Pang, M.; Xie, S.; Sun, Y. Resveratrol induces cervical cancer HeLa cell apoptosis through the activation and nuclear translocation promotion of FOXO3a. Pharmazie, 2020, 75(6), 250-254. PMID: 32539920
  61. Fu, Y.; Ye, Y.; Zhu, G.; Xu, Y.; Sun, J.; Wu, H.; Feng, F.; Wen, Z.; Jiang, S.; Li, Y.; Zhang, Q. Resveratrol induces human colorectal cancer cell apoptosis by activating the mitochondrial pathway via increasing reactive oxygen species. Mol. Med. Rep., 2020, 23(3), 170. doi: 10.3892/mmr.2020.11809 PMID: 33398363
  62. Komorowska, J.; Wątroba, M.; Szukiewicz, D. Review of beneficial effects of resveratrol in neurodegenerative diseases such as Alzheimer’s disease. Adv. Med. Sci., 2020, 65(2), 415-423. doi: 10.1016/j.advms.2020.08.002 PMID: 32871321
  63. Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement., 2016, 12(4), 459-509. doi: 10.1016/j.jalz.2016.03.001 PMID: 27570871
  64. Masters, C.L.; Bateman, R.; Blennow, K.; Rowe, C.C.; Sperling, R.A.; Cummings, J.L. Alzheimer’s disease. Nat. Rev. Dis. Primers, 2015, 1(1), 15056. doi: 10.1038/nrdp.2015.56 PMID: 27188934
  65. Tomàs, C.M.; Senserrich, J.; Planas, A.M.; Alquézar, C.; Pallàs, M.; Requero, M.Á.; Suñol, C.; Kaliman, P.; Sanfeliu, C. Role of resveratrol and selenium on oxidative stress and expression of antioxidant and anti-aging genes in immortalized lymphocytes from Alzheimer’s disease patients. Nutrients, 2019, 11(8), 1764. doi: 10.3390/nu11081764 PMID: 31370365
  66. Fonseca-Santos, B.; Cazarin, C.A.; da Silva, P.B.; dos Santos, K.P.; da Rocha, M.C.O.; Báo, S.N.; De-Souza, M.M.; Chorilli, M. Intranasal in situ gelling liquid crystal for delivery of resveratrol ameliorates memory and neuroinflammation in Alzheimer’s disease. Nanomedicine, 2023, 51, 102689. doi: 10.1016/j.nano.2023.102689 PMID: 37156330
  67. Choi, J.; Choi, S.Y.; Hong, Y.; Han, Y.E.; Oh, S.J.; Lee, B.; Choi, C.W.; Kim, M.S. The central administration of vitisin a, extracted from Vitis vinifera, improves cognitive function and related signaling pathways in a scopolamine-induced dementia model. Biomed. Pharmacother., 2023, 163, 114812. doi: 10.1016/j.biopha.2023.114812 PMID: 37148861
  68. Dong, Y.T.; Cao, K.; Tan, L.C.; Wang, X.L.; Qi, X.L.; Xiao, Y.; Guan, Z.Z. Stimulation of SIRT1 attenuates the level of oxidative stress in the brains of APP/PS1 double transgenic mice and in primary neurons exposed to oligomers of the amyloid-β peptide. J. Alzheimers Dis., 2018, 63(1), 283-301. doi: 10.3233/JAD-171020 PMID: 29614660
  69. Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers, 2017, 3(1), 17013. doi: 10.1038/nrdp.2017.13 PMID: 28332488
  70. Zheng, C.Q.; Fan, H.X.; Li, X.X.; Li, J.J.; Sheng, S.; Zhang, F. Resveratrol alleviates levodopa-induced dyskinesia in rats. Front. Immunol., 2021, 12, 683577. doi: 10.3389/fimmu.2021.683577 PMID: 34248967
  71. Chen, J.; Liu, Q.; Wang, Y.; Guo, Y.; Xu, X.; Huang, P.; Lian, B.; Zhang, R.; Chen, Y.; Ha, Y. Protective effects of resveratrol liposomes on mitochondria in Substantia nigra cells of parkinsonized rats. Ann. Palliat. Med., 2021, 10(3), 2458-2468. doi: 10.21037/apm-19-426 PMID: 33549012
  72. Zamanian, M.Y.; Parra, R.M.R.; Soltani, A.; Kujawska, M.; Mustafa, Y.F.; Raheem, G.; Al-Awsi, L.; Lafta, H.A.; Taheri, N.; Heidari, M.; Golmohammadi, M.; Bazmandegan, G. Targeting Nrf2 signaling pathway and oxidative stress by resveratrol for Parkinson’s disease: An overview and update on new developments. Mol. Biol. Rep., 2023, 50(6), 5455-5464. doi: 10.1007/s11033-023-08409-1 PMID: 37155008
  73. Tao, J.; An, Y.; Xu, L.; Wang, Y.; Wang, C.; Li, P.; Li, M.; Yan, D.; Wang, M.; Zhong, G.; Wu, M. The protective role of microbiota in the prevention of MPTP/P-induced Parkinson’s disease by resveratrol. Food Funct., 2023, 14(10), 4647-4661. doi: 10.1039/D2FO03379H PMID: 37102320
  74. Gligorijević, N.; Vučinić, S.D.; Radomirović, M.; Stojadinović, M.; Khulal, U.; Nedić, O.; Veličković, C.T. Role of resveratrol in prevention and control of cardiovascular disorders and cardiovascular complications related to COVID-19 disease: Mode of action and approaches explored to increase its bioavailability. Molecules, 2021, 26(10), 2834. doi: 10.3390/molecules26102834 PMID: 34064568
  75. Abe, J.; Yamada, Y.; Takeda, A.; Harashima, H. Cardiac progenitor cells activated by mitochondrial delivery of resveratrol enhance the survival of a doxorubicin-induced cardiomyopathy mouse model via the mitochondrial activation of a damaged myocardium. J. Control. Release, 2018, 269, 177-188. doi: 10.1016/j.jconrel.2017.11.024 PMID: 29146241
  76. Raj, P.; Thandapilly, S.J.; Wigle, J.; Zieroth, S.; Netticadan, T. A comprehensive analysis of the efficacy of resveratrol in atherosclerotic cardiovascular disease, myocardial infarction and heart failure. Molecules, 2021, 26(21), 6600. doi: 10.3390/molecules26216600 PMID: 34771008
  77. Zhou, L.; Long, J.; Sun, Y.; Chen, W.; Qiu, R.; Yuan, D. Resveratrol ameliorates atherosclerosis induced by high-fat diet and LPS in ApoE−/− mice and inhibits the activation of CD4+ T cells. Nutr. Metab., 2020, 17(1), 41. doi: 10.1186/s12986-020-00461-z PMID: 32508962
  78. Penumathsa, S.V.; Thirunavukkarasu, M.; Koneru, S.; Juhasz, B.; Zhan, L.; Pant, R.; Menon, V.P.; Otani, H.; Maulik, N. Statin and resveratrol in combination induces cardioprotection against myocardial infarction in hypercholesterolemic rat. J. Mol. Cell. Cardiol., 2007, 42(3), 508-516. doi: 10.1016/j.yjmcc.2006.10.018 PMID: 17188708
  79. Zhang, W.; Qian, S.; Tang, B.; Kang, P.; Zhang, H.; Shi, C. Resveratrol inhibits ferroptosis and decelerates heart failure progression via Sirt1/p53 pathway activation. J. Cell. Mol. Med., 2023, 27(20), 3075-3089. doi: 10.1111/jcmm.17874 PMID: 37487007
  80. Matsumura, N.; Takahara, S.; Maayah, Z.H.; Parajuli, N.; Byrne, N.J.; Shoieb, S.M.; Soltys, C.L.M.; Beker, D.L.; Masson, G.; El-Kadi, A.O.S.; Dyck, J.R.B. Resveratrol improves cardiac function and exercise performance in MI-induced heart failure through the inhibition of cardiotoxic HETE metabolites. J. Mol. Cell. Cardiol., 2018, 125, 162-173. doi: 10.1016/j.yjmcc.2018.10.023 PMID: 30381233
  81. Ma, E.; Wu, C.; Chen, J.; Wo, D.; Ren, D.; Yan, H.; Peng, L.; Zhu, W. Resveratrol prevents Ang II-induced cardiac hypertrophy by inhibition of NF-κB signaling. Biomed. Pharmacother., 2023, 165, 115275. doi: 10.1016/j.biopha.2023.115275 PMID: 37541173
  82. Kazemirad, H.; Kazerani, H.R. Cardioprotective effects of resveratrol following myocardial ischemia and reperfusion. Mol. Biol. Rep., 2020, 47(8), 5843-5850. doi: 10.1007/s11033-020-05653-7 PMID: 32712855
  83. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  84. Ashrafizadeh, M.; Ahmadi, Z.; Kotla, N.G.; Afshar, E.G.; Samarghandian, S.; Mandegary, A.; Pardakhty, A.; Mohammadinejad, R.; Sethi, G. Nanoparticles targeting STATs in cancer therapy. Cells, 2019, 8(10), 1158. doi: 10.3390/cells8101158 PMID: 31569687
  85. Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385. doi: 10.3322/caac.21565 PMID: 31184787
  86. Berretta, M.; Bignucolo, A.; Di Francia, R.; Comello, F.; Facchini, G.; Ceccarelli, M.; Iaffaioli, R.V.; Quagliariello, V.; Maurea, N. Resveratrol in cancer patients: From bench to bedside. Int. J. Mol. Sci., 2020, 21(8), 2945. doi: 10.3390/ijms21082945 PMID: 32331450
  87. Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2019, 2(2), 141-160. doi: 10.20517/cdr.2019.10 PMID: 34322663
  88. Lin, J.N.; Lin, V.C.H.; Rau, K.M.; Shieh, P.C.; Kuo, D.H.; Shieh, J.C.; Chen, W.J.; Tsai, S.C.; Way, T.D. Resveratrol modulates tumor cell proliferation and protein translation via SIRT1-dependent AMPK activation. J. Agric. Food Chem., 2010, 58(3), 1584-1592. doi: 10.1021/jf9035782 PMID: 19928762
  89. Fasseur, V.D.; Latruffe, N. The potential use of resveratrol for cancer prevention. Molecules, 2019, 24(24), 4506. doi: 10.3390/molecules24244506 PMID: 31835371
  90. Albuquerque, R.V.; Malcher, N.S.; Amado, L.L.; Coleman, M.D.; dos Santos, D.C.; Borges, R.S.; Valente, S.A.S.; Valente, V.C.; Monteiro, M.C. In vitro protective effect and antioxidant mechanism of resveratrol induced by dapsone hydroxylamine in human cells. PLoS One, 2015, 10(8), e0134768. doi: 10.1371/journal.pone.0134768 PMID: 26284371
  91. Zhang, Q.; Tang, X.; Lu, Q.Y.; Zhang, Z.F.; Brown, J.; Le, A.D. Resveratrol inhibits hypoxia-induced accumulation of hypoxia-inducible factor-1α and VEGF expression in human tongue squamous cell carcinoma and hepatoma cells. Mol. Cancer Ther., 2005, 4(10), 1465-1474. doi: 10.1158/1535-7163.MCT-05-0198 PMID: 16227395
  92. Li, W.; Cao, L.; Chen, X.; Lei, J.; Ma, Q. Resveratrol inhibits hypoxia-driven ROS-induced invasive and migratory ability of pancreatic cancer cells via suppression of the Hedgehog signaling pathway. Oncol. Rep., 2016, 35(3), 1718-1726. doi: 10.3892/or.2015.4504 PMID: 26707376
  93. Gołąbek-Grenda, A.; Kaczmarek, M.; Juzwa, W.; Olejnik, A. Natural resveratrol analogs differentially target endometriotic cells into apoptosis pathways. Sci. Rep., 2023, 13(1), 11468. doi: 10.1038/s41598-023-38692-8 PMID: 37454164
  94. Zhang, B.; Wang, X.Q.; Chen, H.Y.; Liu, B.H. Involvement of the Nrf2 pathway in the regulation of pterostilbene-induced apoptosis in HeLa cells via ER stress. J. Pharmacol. Sci., 2014, 126(3), 216-229. doi: 10.1254/jphs.14028FP PMID: 25341683
  95. Chatterjee, K.; AlSharif, D.; Mazza, C.; Syar, P.; Al Sharif, M.; Fata, J. Resveratrol and pterostilbene exhibit anticancer properties involving the downregulation of hpv oncoprotein e6 in cervical cancer cells. Nutrients, 2018, 10(2), 243. doi: 10.3390/nu10020243 PMID: 29485619
  96. Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 401-426. doi: 10.1146/annurev-pharmtox-011112-140320 PMID: 23294312
  97. Ashrafizadeh, M.; Fekri, H.S.; Ahmadi, Z.; Farkhondeh, T.; Samarghandian, S. Therapeutic and biological activities of berberine: The involvement of Nrf2 signaling pathway. J. Cell. Biochem, 2020, 121(2), 1575-1585.
  98. Baek, S.H.; Ko, J.H.; Lee, H.; Jung, J.; Kong, M.; Lee, J.; Lee, J.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Lee, S.G.; Shim, B.S.; Sethi, G.; Kim, S.H.; Yang, W.M.; Um, J.Y.; Ahn, K.S. Resveratrol inhibits STAT3 signaling pathway through the induction of SOCS-1: Role in apoptosis induction and radiosensitization in head and neck tumor cells. Phytomedicine, 2016, 23(5), 566-577. doi: 10.1016/j.phymed.2016.02.011 PMID: 27064016
  99. Li, W.; Ma, J.; Ma, Q.; Li, B.; Han, L.; Liu, J.; Xu, Q.; Duan, W.; Yu, S.; Wang, F.; Wu, E. Resveratrol inhibits the epithelial-mesenchymal transition of pancreatic cancer cells via suppression of the PI-3K/Akt/NF-κB pathway. Curr. Med. Chem., 2013, 20(33), 4185-4194. doi: 10.2174/09298673113209990251 PMID: 23992306
  100. Zhao, X.; Yang, Z.; Zhang, H.; Yao, G.; Liu, J.; Wei, Q.; Ma, B. Resveratrol promotes osteogenic differentiation of canine bone marrow mesenchymal stem cells through Wnt/beta-catenin signaling pathway. Cell. Reprogram., 2018, 20(6), 371-381. doi: 10.1089/cell.2018.0032 PMID: 31251673
  101. Gao, Z.; Xu, M.S.; Barnett, T.L.; Xu, C.W. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells. Biochem. Biophys. Res. Commun., 2011, 407(2), 271-276. doi: 10.1016/j.bbrc.2011.02.008 PMID: 21481687
  102. Roshani, M; Jafari, A; Loghman, A; Sheida, AH; Taghavi, T; Zadeh, TSS Applications of resveratrol in the treatment of gastrointestinal cancer. Biomed. Pharmacother., 2022, 153, 113274. doi: 10.1016/j.biopha.2022.113274
  103. Jiang, B.; Tian, Q.; Shu, C.; Zhao, J.; Xue, M.; Zhu, S. Resveratrol enhances the anti-cancer effects of cis-platinum on human cervical cancer cell lines by activating the SIRT3 relative anti-oxidative pathway. Front. Pharmacol., 2022, 13, 916876. doi: 10.3389/fphar.2022.916876 PMID: 35865961
  104. Li, Y.; Guo, Y.; Feng, Z.; Bergan, R.; Li, B.; Qin, Y.; Zhao, L.; Zhang, Z.; Shi, M. Involvement of the PI3K/Akt/Nrf2 signaling pathway in resveratrol-mediated reversal of drug resistance in HL-60/ADR cells. Nutr. Cancer, 2019, 71(6), 1007-1018. doi: 10.1080/01635581.2019.1578387 PMID: 31032633
  105. Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506. doi: 10.1038/nrd2060 PMID: 16732220
  106. Saiko, P.; Szakmary, A.; Jaeger, W.; Szekeres, T. Resveratrol and its analogs: Defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat. Res. Rev. Mutat. Res., 2008, 658(1-2), 68-94. doi: 10.1016/j.mrrev.2007.08.004 PMID: 17890139
  107. Kundu, J.K.; Surh, Y.J. Cancer chemopreventive and therapeutic potential of resveratrol: Mechanistic perspectives. Cancer Lett., 2008, 269(2), 243-261. doi: 10.1016/j.canlet.2008.03.057 PMID: 18550275
  108. Shankar, S.; Singh, G.; Srivastava, R.K. Chemoprevention by resveratrol: Molecular mechanisms and therapeutic potential. Front. Biosci., 2007, 12(12), 4839-4854. doi: 10.2741/2432 PMID: 17569614
  109. Singh, C.K.; George, J.; Ahmad, N. Resveratrol-based combinatorial strategies for cancer management. Ann. N. Y. Acad. Sci., 2013, 1290(1), 113-121. doi: 10.1111/nyas.12160 PMID: 23855473
  110. Farkhondeh, T.; Samarghandian, S.; Azimin-Nezhad, M.; Samini, F. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats. Int. J. Clin. Exp. Med., 2015, 8(2), 2465.
  111. Xie, C.; Liang, C.; Wang, R.; Yi, K.; Zhou, X.; Li, X.; Chen, Y.; Miao, D.; Zhong, C.; Zhu, J. Resveratrol suppresses lung cancer by targeting cancer stem-like cells and regulating tumor microenvironment. J. Nutr. Biochem., 2023, 112, 109211. doi: 10.1016/j.jnutbio.2022.109211 PMID: 36370924
  112. Zhang, L.; Martin, G.; Mohankumar, K.; Hampton, J.T.; Liu, W.R.; Safe, S. Resveratrol binds nuclear receptor 4A1 (NR4A1) and acts as an NR4A1 antagonist in lung cancer cells. Mol. Pharmacol., 2022, 102(2), 80-91. doi: 10.1124/molpharm.121.000481 PMID: 35680166
  113. Hou, C.; Lu, L.; Liu, Z.; Lian, Y.; Xiao, J. Resveratrol reduces drug resistance of SCLC cells by suppressing the inflammatory microenvironment and the STAT3/VEGF pathway. FEBS Open Bio, 2021, 11(8), 2256-2265. doi: 10.1002/2211-5463.13230 PMID: 34129726
  114. Yang, M.; Li, Z.; Tao, J.; Hu, H.; Li, Z.; Zhang, Z.; Cheng, F.; Sun, Y.; Zhang, Y.; Yang, J.; Wei, H.; Wu, Z. Resveratrol induces PD-L1 expression through snail-driven activation of Wnt pathway in lung cancer cells. J. Cancer Res. Clin. Oncol., 2021, 147(4), 1101-1113. doi: 10.1007/s00432-021-03510-z PMID: 33471184
  115. Zhang, J.; Ma, K.; Qi, T.; Wei, X.; Zhang, Q.; Li, G.; Chiu, J.F. P62 Regulates resveratrol-mediated Fas/Cav-1 complex formation and transition from autophagy to apoptosis. Oncotarget, 2015, 6(2), 789-801. doi: 10.18632/oncotarget.2733 PMID: 25596736
  116. Luo, H.; Yang, A.; Schulte, B.A.; Wargovich, M.J.; Wang, G.Y. Resveratrol induces premature senescence in lung cancer cells via ROS-mediated DNA damage. PLoS One, 2013, 8(3), e60065. doi: 10.1371/journal.pone.0060065 PMID: 23533664
  117. Shan, G.; Minchao, K.; Jizhao, W.; Rui, Z.; Guangjian, Z.; Jin, Z.; Meihe, L. Resveratrol improves the cytotoxic effect of CD8+ T cells in the tumor microenvironment by regulating HMMR/Ferroptosis in lung squamous cell carcinoma. J. Pharm. Biomed. Anal., 2023, 229, 115346. doi: 10.1016/j.jpba.2023.115346 PMID: 37001272
  118. Lakshmanan, I.; Rachagani, S.; Hauke, R.; Krishn, S.R.; Paknikar, S.; Seshacharyulu, P.; Karmakar, S.; Nimmakayala, R.K.; Kaushik, G.; Johansson, S.L.; Carey, G.B.; Ponnusamy, M.P.; Kaur, S.; Batra, S.K.; Ganti, A.K. MUC5AC interactions with integrin β4 enhances the migration of lung cancer cells through FAK signaling. Oncogene, 2016, 35(31), 4112-4121. doi: 10.1038/onc.2015.478 PMID: 26751774
  119. Guo, M.; Tomoshige, K.; Meister, M.; Muley, T.; Fukazawa, T.; Tsuchiya, T.; Karns, R.; Warth, A.; Fink-Baldauf, I.M.; Nagayasu, T.; Naomoto, Y.; Xu, Y.; Mall, M.A.; Maeda, Y. Gene signature driving invasive mucinous adenocarcinoma of the lung. EMBO Mol. Med., 2017, 9(4), 462-481. doi: 10.15252/emmm.201606711 PMID: 28255028
  120. Mahajan, N. Signatures of prostate-derived Ets factor (PDEF) in cancer. Tumour Biol., 2016, 37(11), 14335-14340. doi: 10.1007/s13277-016-5326-1 PMID: 27612480
  121. Lin, Y.; Zhu, L.; Yang, Y.; Zhang, Z.; Chen, Q.; Sun, Y.; Bi, J.; Luo, X.; Ni, Z.; Wang, X. Resveratrol inhibits MUC5AC expression by regulating SPDEF in lung cancer cells. Phytomedicine, 2021, 89, 153601. doi: 10.1016/j.phymed.2021.153601 PMID: 34139546
  122. Chudzińska, M.; Rogowicz, D.; Wołowiec, Ł.; Banach, J.; Sielski, S.; Bujak, R.; Sinkiewicz, A.; Grześk, G. Resveratrol and cardiovascular system-the unfulfilled hopes. Ir. J. Med. Sci., 2021, 190(3), 981-986. doi: 10.1007/s11845-020-02441-x PMID: 33219913
  123. Ogas, T.; Kondratyuk, T.P.; Pezzuto, J.M. Resveratrol analogs: Promising chemopreventive agents. Ann. N. Y. Acad. Sci., 2013, 1290(1), 21-29. doi: 10.1111/nyas.12196 PMID: 23855462
  124. Ndiaye, M.; Kumar, R.; Ahmad, N. Resveratrol in cancer management: Where are we and where we go from here? Ann. N. Y. Acad. Sci., 2011, 1215(1), 144-149. doi: 10.1111/j.1749-6632.2010.05851.x PMID: 21261653
  125. Lee, E.J.; Min, H.Y.; Joo Park, H.; Chung, H.J.; Kim, S.; Nam Han, Y.; Lee, S.K. G2/M cell cycle arrest and induction of apoptosis by a stilbenoid, 3,4,5-trimethoxy-4′-bromo-cis-stilbene, in human lung cancer cells. Life Sci., 2004, 75(23), 2829-2839. doi: 10.1016/j.lfs.2004.07.002 PMID: 15464834
  126. Maccario, C.; Savio, M.; Ferraro, D.; Bianchi, L.; Pizzala, R.; Pretali, L.; Forti, L.; Stivala, L.A. The resveratrol analog 4,4′-dihydroxy-trans-stilbene suppresses transformation in normal mouse fibroblasts and inhibits proliferation and invasion of human breast cancer cells. Carcinogenesis, 2012, 33(11), 2172-2180. doi: 10.1093/carcin/bgs244 PMID: 22828135
  127. Aldawsari, F.S.; Martínez, V.C.A. 3,4′,5-trans-Trimethoxystilbene; a natural analogue of resveratrol with enhanced anticancer potency. Invest. New Drugs, 2015, 33(3), 775-786. doi: 10.1007/s10637-015-0222-x PMID: 25720605
  128. Kosuru, R.; Rai, U.; Prakash, S.; Singh, A.; Singh, S. Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence. Eur. J. Pharmacol., 2016, 789, 229-243. doi: 10.1016/j.ejphar.2016.07.046 PMID: 27475678
  129. Savio, M.; Ferraresi, A.; Corpina, C.; Vandenberghe, S.; Scarlata, C.; Sottile, V.; Morini, L.; Garavaglia, B.; Isidoro, C.; Stivala, L.A. Resveratrol and its analogue 4,4′-Dihydroxy-trans-stilbene inhibit lewis lung carcinoma growth in vivo through apoptosis, autophagy and modulation of the tumour microenvironment in a murine model. Biomedicines, 2022, 10(8), 1784. doi: 10.3390/biomedicines10081784 PMID: 35892684
  130. Yang, Y.T.; Weng, C.J.; Ho, C.T.; Yen, G.C. Resveratrol analog-3,5,4′-trimethoxy- trans -stilbene inhibits invasion of human lung adenocarcinoma cells by suppressing the MAPK pathway and decreasing matrix metalloproteinase-2 expression. Mol. Nutr. Food Res., 2009, 53(3), 407-416. doi: 10.1002/mnfr.200800123 PMID: 19072741
  131. Weng, C.J.; Yang, Y.T.; Ho, C.T.; Yen, G.C. Mechanisms of apoptotic effects induced by resveratrol, dibenzoylmethane, and their analogues on human lung carcinoma cells. J. Agric. Food Chem., 2009, 57(12), 5235-5243. doi: 10.1021/jf900531m PMID: 19441815
  132. Huang, C.; Lin, Z.J.; Chen, J.C.; Zheng, H.J.; Lai, Y.H.; Huang, H.C. α-Viniferin-induced apoptosis through downregulation of SIRT1 in non-small cell lung cancer cells. Pharmaceuticals, 2023, 16(5), 727. doi: 10.3390/ph16050727 PMID: 37242510
  133. Zhao, X.P.; Zheng, X.L.; Huang, M.; Xie, Y.J.; Nie, X.W.; Nasim, A.A.; Yao, X.J.; Fan, X.X. DMU-212 against EGFR-mutant non-small cell lung cancer via AMPK/PI3K/Erk signaling pathway. Heliyon, 2023, 9(5), e15812. doi: 10.1016/j.heliyon.2023.e15812 PMID: 37305501
  134. Zhang, L.; Dai, F.; Sheng, P.; Chen, Z.; Xu, Q.; Guo, Y. Resveratrol analogue 3,4,4′-trihydroxy-trans-stilbene induces apoptosis and autophagy in human non-small-cell lung cancer cells in vitro. Acta Pharmacol. Sin., 2015, 36(10), 1256-1265. doi: 10.1038/aps.2015.46 PMID: 26190500
  135. Lim, C.; Lee, P.; Shim, S.; Jang, S.W. HS-1793 inhibits cell proliferation in lung cancer by interfering with the interaction between p53 and MDM2. Oncol. Lett., 2022, 24(2), 290. doi: 10.3892/ol.2022.13410 PMID: 35928802
  136. Verma, N.; Tiku, A.B. Polydatin-induced direct and bystander effects in a549 lung cancer cell line. Nutr. Cancer, 2022, 74(1), 237-249. doi: 10.1080/01635581.2020.1870705 PMID: 33445975
  137. Chen, R.J.; Wu, P.H.; Ho, C.T.; Way, T.D.; Pan, M.H.; Chen, H.M.; Ho, Y.S.; Wang, Y.J. P53-dependent downregulation of hTERT protein expression and telomerase activity induces senescence in lung cancer cells as a result of pterostilbene treatment. Cell Death Dis., 2017, 8(8), e2985. doi: 10.1038/cddis.2017.333 PMID: 28796247
  138. Thongsom, S; Racha, S; Petsri, K; Ei, ZZ; Visuttijai, K; Moriue, S Structural modification of resveratrol analogue exhibits anticancer activity against lung cancer stem cells via suppression of Akt signaling pathway. BMC Complement. Med. Ther., 2023, 23(1), 183. doi: 10.1186/s12906-023-04016-6
  139. Amri, A.; Chaumeil, J.C.; Sfar, S.; Charrueau, C. Administration of resveratrol: What formulation solutions to bioavailability limitations? J. Control. Release, 2012, 158(2), 182-193. doi: 10.1016/j.jconrel.2011.09.083 PMID: 21978644
  140. Davidov-Pardo, G.; McClements, D.J. Nutraceutical delivery systems: Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem., 2015, 167, 205-212. doi: 10.1016/j.foodchem.2014.06.082 PMID: 25148980
  141. Marianecci, C.; Rinaldi, F.; Mastriota, M.; Pieretti, S.; Trapasso, E.; Paolino, D.; Carafa, M. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: Human and murine models. J. Control. Release, 2012, 164(1), 17-25. doi: 10.1016/j.jconrel.2012.09.018 PMID: 23041542
  142. Paolino, D.; Cosco, D.; Muzzalupo, R.; Trapasso, E.; Picci, N.; Fresta, M. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int. J. Pharm., 2008, 353(1-2), 233-242. doi: 10.1016/j.ijpharm.2007.11.037 PMID: 18191509
  143. Sinico, C.; Fadda, A.M. Vesicular carriers for dermal drug delivery. Expert Opin. Drug Deliv., 2009, 6(8), 813-825. doi: 10.1517/17425240903071029 PMID: 19569979
  144. Wang, X.X.; Li, Y.B.; Yao, H.J.; Ju, R.J.; Zhang, Y.; Li, R.J.; Yu, Y.; Zhang, L.; Lu, W.L. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials, 2011, 32(24), 5673-5687. doi: 10.1016/j.biomaterials.2011.04.029 PMID: 21550109
  145. Bano, S.; Ahmed, F.; Khan, F.; Chaudhary, S.C.; Samim, M. Enhancement of the cancer inhibitory effect of the bioactive food component resveratrol by nanoparticle based delivery. Food Funct., 2020, 11(4), 3213-3226. doi: 10.1039/C9FO02445J PMID: 32215382
  146. Nassir, AM; Shahzad, N; Ibrahim, IAA; Ahmad, I; Md, S; Ain, MR Resveratrol-loaded PLGA nanoparticles mediated programmed cell death in prostate cancer cells. Saudi. Pharm. J., 2018, 26(6), 876-885. doi: 10.1016/j.jsps.2018.03.009
  147. Xiong, L.; Lin, X.M.; Nie, J.H.; Ye, H.S.; Liu, J. Resveratrol and its nanoparticle suppress doxorubicin/docetaxel-resistant anaplastic thyroid cancer cells in vitro and in vivo. Nanotheranostics, 2021, 5(2), 143-154. doi: 10.7150/ntno.53844 PMID: 33457193
  148. Kim, J.H.; Park, E.Y.; Ha, H.K.; Jo, C.M.; Lee, W.J.; Lee, S.S.; Kim, J.W. Resveratrol-loaded nanoparticles induce antioxidant activity against oxidative stress. Asian-Australas. J. Anim. Sci., 2016, 29(2), 288-298. doi: 10.5713/ajas.15.0774 PMID: 26732454
  149. Greenhalgh, J.; Dwan, K.; Boland, A.; Bates, V.; Vecchio, F.; Dundar, Y.; Jain, P.; Green, J.A. First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer. Cochrane Libr., 2016, (5), CD010383. doi: 10.1002/14651858.CD010383.pub2 PMID: 27223332
  150. Qiu, J; Cai, G; Liu, X; Ma, D. α(v)β(3) integrin receptor specific peptide modified, salvianolic acid B and panax notoginsenoside loaded nanomedicine for the combination therapy of acute myocardial ischemia. Biomed Pharmacother., 2017, 96, 1418-1426.
  151. Ma, P; Li, T; Xing, H; Wang, S; Sun, Y; Sheng, X Local anesthetic effects of bupivacaine loaded lipid-polymer hybrid nanoparticles: In vitro and in vivo evaluation. Biomed Pharmacother, 2017, 89, 689-695.
  152. Song, Z.; Shi, Y.; Han, Q.; Dai, G. Endothelial growth factor receptor-targeted and reactive oxygen species-responsive lung cancer therapy by docetaxel and resveratrol encapsulated lipid-polymer hybrid nanoparticles. Biomed. Pharmacother., 2018, 105, 18-26. doi: 10.1016/j.biopha.2018.05.095 PMID: 29843041
  153. Karthikeyan, S; Hoti, SL; Prasad, NR Resveratrol loaded gelatin nanoparticles synergistically inhibits cell cycle progression and constitutive NF-kappaB activation, and induces apoptosis in non-small cell lung cancer cells. Biomed. Pharmacother., 2015, 70, 274-282.
  154. Wang, X.; Parvathaneni, V.; Shukla, S.K.; Kulkarni, N.S.; Muth, A.; Kunda, N.K.; Gupta, V. Inhalable resveratrol-cyclodextrin complex loaded biodegradable nanoparticles for enhanced efficacy against non-small cell lung cancer. Int. J. Biol. Macromol., 2020, 164, 638-650. doi: 10.1016/j.ijbiomac.2020.07.124 PMID: 32693132
  155. Ambros, V.; Lee, R.C. Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol. Biol., 2004, 265, 131-158. doi: 10.1385/1-59259-775-0:131 PMID: 15103073
  156. Iorio, M.V.; Croce, C.M. MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med., 2012, 4(3), 143-159. doi: 10.1002/emmm.201100209 PMID: 22351564
  157. Bertoli, G.; Cava, C.; Castiglioni, I. MicroRNAs: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics, 2015, 5(10), 1122-1143. doi: 10.7150/thno.11543 PMID: 26199650
  158. Iqbal, M.A.; Arora, S.; Prakasam, G.; Calin, G.A.; Syed, M.A. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol. Aspects Med., 2019, 70, 3-20. doi: 10.1016/j.mam.2018.07.003 PMID: 30102929
  159. Pratap, P.; Raza, S.T.; Abbas, S.; Mahdi, F. MicroRNA-associated carcinogenesis in lung carcinoma. J. Cancer Res. Ther., 2018, 14(2), 249-254. doi: 10.4103/0973-1482.187283 PMID: 29516903
  160. Zarredar, H.; Ansarin, K.; Baradaran, B.; Shekari, N.; Eyvazi, S.; Safari, F.; Farajnia, S. Critical microRNAs in lung cancer: Recent advances and potential applications. Anticancer. Agents Med. Chem., 2019, 18(14), 1991-2005. doi: 10.2174/1871520618666180808125459 PMID: 30088452
  161. Bae, S.; Lee, E.M.; Cha, H.J.; Kim, K.; Yoon, Y.; Lee, H.; Kim, J.; Kim, Y.J.; Lee, H.G.; Jeung, H.K.; Min, Y.H.; An, S. Resveratrol alters microRNA expression profiles in A549 human non-small cell lung cancer cells. Mol. Cells, 2011, 32(3), 243-250. doi: 10.1007/s10059-011-1037-z PMID: 21887509
  162. Han, Z.; Yang, Q.; Liu, B.; Wu, J.; Li, Y.; Yang, C.; Jiang, Y. MicroRNA-622 functions as a tumor suppressor by targeting K-Ras and enhancing the anticarcinogenic effect of resveratrol. Carcinogenesis, 2012, 33(1), 131-139. doi: 10.1093/carcin/bgr226 PMID: 22016468
  163. Yu, Y-H.; Chen, H-A.; Chen, P-S.; Cheng, Y-J.; Hsu, W-H.; Chang, Y-W.; Chen, Y-H.; Jan, Y.; Hsiao, M.; Chang, T-Y.; Liu, Y-H.; Jeng, Y-M.; Wu, C-H.; Huang, M-T.; Su, Y-H.; Hung, M-C.; Chien, M-H.; Chen, C-Y.; Kuo, M-L.; Su, J-L. MiR-520h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol. Oncogene, 2013, 32(4), 431-443. doi: 10.1038/onc.2012.74 PMID: 22410781
  164. Bai, T.; Dong, D.S.; Pei, L. Synergistic antitumor activity of resveratrol and miR-200c in human lung cancer. Oncol. Rep., 2014, 31(5), 2293-2297. doi: 10.3892/or.2014.3090 PMID: 24647918
  165. Sadrkhanloo, M.; Entezari, M.; Orouei, S.; Ghollasi, M.; Rezaei, S.; Hejazi, E.S.; Kakavand, A.; Saebfar, H.; Hashemi, M.; Goharrizi, M.A.; Salimimoghadam, S. STAT3-EMT axis in tumors: Modulation of cancer metastasis, stemness and therapy response. Pharm. Res., 2022, 182, 106311.
  166. Kong, F.; Xie, C.; Zhao, X.; Zong, X.; Bu, L.; Zhang, B.; Tian, H.; Ma, S. Resveratrol regulates PINK1/Parkin -mediated mitophagy via the lncRNA ZFAS1-miR-150-5p-PINK1 axis, and enhances the antitumor activity of paclitaxel against non-small cell lung cancer. Toxicol. Res., 2022, 11(6), 962-974. doi: 10.1093/toxres/tfac072 PMID: 36569479

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024