Effectiveness In Vivo and In Vitro of Polymeric Nanoparticles as a Drug Release System in the Treatment of Leishmaniasis


Цитировать

Полный текст

Аннотация

Leishmaniasis is a neglected disease caused by the parasite of the genus Leishmania. Current treatment regimens are obsolete and cause several side effects, promoting poor patient compliance, in addition to the vast majority already having the potential for resistance. Therefore, polymeric nanoparticles emerge as one of the viable alternatives to overcome existing limitations, through passive or active vectorization. This review aims to summarize the latest studies of polymeric nanoparticles as an alternative treatment for leishmaniasis. In the first section, the main pharmacokinetic and pharmacodynamic challenges of current drugs are reported. The second section details how nanoparticles with and without functionalization are efficient in the treatment of leishmaniasis, discussing the characteristics of the polymer in the formulation. In this way, polymeric nanoparticles can improve the physicochemical properties of leishmanicidal drugs, improving solubility and stability, as well as improve the release of these drugs, directly or indirectly reaching monocytes/macrophages. 64.28% drugs were focused on the treatment of visceral leishmaniasis, and 28.57% on cutaneous leishmaniasis. The most chosen polymers in the literature are chitosan (35.71%) and PLGA (35.71%), the others represented 14.30% drugs, with all able to manage the drug release and increase the in vitro and/or in vivo efficacy of the original molecule. However, there are several barriers for these nanoformulations to cross laboratory research and is necessary more in-depth studies about the metabolites and degradation pathways of the polymers used in the formulations and plasma proteomics studies.

Об авторах

Lívia de Carvalho Moreira

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba

Email: info@benthamscience.net

Ana de Sousa Silva

Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba

Email: info@benthamscience.net

Kaline de Araújo Medeiros

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba

Email: info@benthamscience.net

João Oshiro Júnior

Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba

Email: info@benthamscience.net

Dayanne da Silva

Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba

Email: info@benthamscience.net

Bolívar de Lima Damasceno

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. de Souza, A.; Marins, D.S.S.; Mathias, S.L.; Monteiro, L.M.; Yukuyama, M.N.; Scarim, C.B.; Löbenberg, R.; Bou-Chacra, N.A. Promising nanotherapy in treating leishmaniasis. Int. J. Pharm., 2018, 547(1-2), 421-431. doi: 10.1016/j.ijpharm.2018.06.018 PMID: 29886097
  2. J, B.; M, B.M.; Chanda, K. An overview on the therapeutics of neglected infectious diseases — Leishmaniasis and chagas diseases. Front Chem., 2021, 9, 622286. doi: 10.3389/fchem.2021.622286
  3. Sasidharan, S.; Saudagar, P. Leishmaniasis: where are we and where are we heading? Parasitol. Res., 2021, 120(5), 1541-1554. doi: 10.1007/s00436-021-07139-2 PMID: 33825036
  4. Ghorbani, M.; Farhoudi, R. Leishmaniasis in humans: drug or vaccine therapy? Drug Des. Devel. Ther., 2017, 12, 25-40. doi: 10.2147/DDDT.S146521 PMID: 29317800
  5. Chakravarty, J.; Sundar, S. Current and emerging medications for the treatment of leishmaniasis. Expert Opin. Pharmacother., 2019, 20(10), 1251-1265. doi: 10.1080/14656566.2019.1609940 PMID: 31063412
  6. Magalhães, L.S.; Bomfim, L.G.S.; Santos, C.N.O.; dos Santos, P.L.; Tanajura, D.M.; Lipscomb, M.W.; de Jesus, A.R.; de Almeida, R.P.; de Moura, T.R.; Ribeiro, A. Antimony resistance associated with persistence of Leishmania (Leishmania) infantum infection in macrophages. Parasitol. Res., 2021, 120(8), 2959-2964. doi: 10.1007/s00436-021-07231-7 PMID: 34272999
  7. Saleem, K.; Khursheed, Z.; Hano, C.; Anjum, I.; Anjum, S. Applications of nanomaterials in leishmaniasis: A focus on recent advances and challenges. Nanomaterials (Basel), 2019, 9(12), 1749. doi: 10.3390/nano9121749 PMID: 31818029
  8. Durak, S.; Arasoglu, T.; Ates, S.C.; Derman, S. Enhanced antibacterial and antiparasitic activity of multifunctional polymeric nanoparticles. Nanotechnology, 2020, 31(17), 175705. doi: 10.1088/1361-6528/ab6ab9 PMID: 31931488
  9. Kumar Singh, P.; Gorain, B.; Choudhury, H.; Kumar Singh, S.; Whadwa, P.; Shilpa; Sahu, S.; Gulati, M.; Kesharwani, P. Macrophage targeted amphotericin B nanodelivery systems against visceral leishmaniasis. Mater. Sci. Eng. B, 2020, 258, 114571. doi: 10.1016/j.mseb.2020.114571
  10. Ali-Boucetta, H.; Al-Jamal, K.T.; Kostarelos, K. Cytotoxic assessment of carbon nanotube interaction with cell cultures. Methods Mol. Biol., 2011, 726, 299-312. doi: 10.1007/978-1-61779-052-2_19 PMID: 21424457
  11. Mishra, V.; Bansal, K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics, 2018, 10(4), 191. doi: 10.3390/pharmaceutics10040191 PMID: 30340327
  12. Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm., 2018, 548(1), 707-720. doi: 10.1016/j.ijpharm.2018.07.030 PMID: 30012508
  13. Luther, D.C.; Huang, R.; Jeon, T.; Zhang, X.; Lee, Y.W.; Nagaraj, H.; Rotello, V.M. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv. Drug Deliv. Rev., 2020, 156, 188-213. doi: 10.1016/j.addr.2020.06.020 PMID: 32610061
  14. Chen, Z.; Wu, C.; Zhang, Z.; Wu, W.; Wang, X.; Yu, Z. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chin. Chem. Lett., 2018, 29(11), 1601-1608. doi: 10.1016/j.cclet.2018.08.007
  15. Patil, S.M.; Sawant, S.S.; Kunda, N.K. Exosomes as drug delivery systems: A brief overview and progress update. Eur. J. Pharm. Biopharm., 2020, 154(April), 259-269. doi: 10.1016/j.ejpb.2020.07.026 PMID: 32717385
  16. Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials (Basel), 2020, 10(7), 1403. doi: 10.3390/nano10071403 PMID: 32707641
  17. Prasanna, P.; Kumar, P.; Kumar, S.; Rajana, V.K.; Kant, V.; Prasad, S.R.; Mohan, U.; Ravichandiran, V.; Mandal, D. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis – A review. Biomed. Pharmacother., 2021, 141, 111920. doi: 10.1016/j.biopha.2021.111920 PMID: 34328115
  18. Téllez, J.; Echeverry, M.C.; Romero, I.; Guatibonza, A.; Santos Ramos, G.; Borges De Oliveira, A.C.; Frézard, F.; Demicheli, C. Use of liposomal nanoformulations in antileishmania therapy: challenges and perspectives. J. Liposome Res., 2021, 31(2), 169-176. doi: 10.1080/08982104.2020.1749067 PMID: 32228210
  19. Aragão Horoiwa, T.; Cortez, M.; Sauter, I.P.; Migotto, A.; Bandeira, C.L.; Cerize, N.N.P.; de Oliveira, A.M. Sugar-based colloidal nanocarriers for topical meglumine antimoniate application to cutaneous leishmaniasis treatment: Ex vivo cutaneous retention and in vivo evaluation. Eur. J. Pharm. Sci., 2020, 147, 105295. doi: 10.1016/j.ejps.2020.105295 PMID: 32145429
  20. Berbert, T.R.N.; Mello, T.F.P.; Wolf Nassif, P.; Mota, C.A.; Silveira, A.V.; Duarte, G.C.; Demarchi, I.G.; Aristides, S.M.A.; Lonardoni, M.V.C.; Vieira Teixeira, J.J.; Silveira, T.G.V. Pentavalent antimonials combined with other therapeutic alternatives for the treatment of cutaneous and mucocutaneous leishmaniasis : A systematic review. Dermatol. Res. Pract., 2018, 2018, 9014726. doi: 10.1155/2018/9014726 PMID: 30675152
  21. Sundar, S.; Singh, B. Emerging therapeutic targets for treatment of leishmaniasis. Expert Opin. Ther. Targets, 2018, 22(6), 467-486. doi: 10.1080/14728222.2018.1472241
  22. Carvalho, S.H.; Frézard, F.; Pereira, N.P.; Moura, A.S.; Ramos, L.M.Q.C.; Carvalho, G.B.; Rocha, M.O.C. American tegumentary leishmaniasis in Brazil: a critical review of the current therapeutic approach with systemic meglumine antimoniate and short-term possibilities for an alternative treatment. Trop. Med. Int. Health, 2019, 24(4), 380-391. doi: 10.1111/tmi.13210 PMID: 30681239
  23. Santos Braga, S. Treating an old disease with new tricks: strategies based on host–guest chemistry for leishmaniasis therapy. J. Incl. Phenom. Macrocycl. Chem., 2019, 93(3-4), 145-155. doi: 10.1007/s10847-019-00885-y
  24. Matos, A.P.S.; Viçosa, A.L.; Ré, M.I.; Ricci-Júnior, E.; Holandino, C. A review of current treatments strategies based on paromomycin for leishmaniasis. J. Drug Deliv. Sci. Technol., 2020, 57, 101664. doi: 10.1016/j.jddst.2020.101664
  25. Verrest, L.; Wasunna, M.; Kokwaro, G.; Aman, R.; Musa, A.M.; Khalil, E.A.G.; Mudawi, M.; Younis, B.M.; Hailu, A.; Hurissa, Z.; Hailu, W.; Tesfaye, S.; Makonnen, E.; Mekonnen, Y.; Huitema, A.D.R.; Beijnen, J.H.; Kshirsagar, S.A.; Chakravarty, J.; Rai, M.; Sundar, S.; Alves, F.; Dorlo, T.P.C. Geographical variability in paromomycin pharmacokinetics does not explain efficacy differences between eastern african and indian visceral leishmaniasis patients. Clin. Pharmacokinet., 2021, 60(11), 1463-1473. doi: 10.1007/s40262-021-01036-8 PMID: 34105063
  26. Davidson, R.N.; den Boer, M.; Ritmeijer, K. Paromomycin. Trans. R. Soc. Trop. Med. Hyg., 2009, 103(7), 653-660. doi: 10.1016/j.trstmh.2008.09.008 PMID: 18947845
  27. Wiwanitkit, V. Interest in paromomycin for the treatment of visceral leishmaniasis (kala-azar). Ther. Clin. Risk Manag., 2012, 8, 323-328. doi: 10.2147/TCRM.S30139 PMID: 22802694
  28. Vechi, H.T.; Sousa, A.S.V.; Cunha, M.A.; Shaw, J.J.; Luz, K.G. Case Report : Combination therapy with liposomal amphotericin B, N-Methyl meglumine antimoniate, and pentamidine isethionate for disseminated visceral leishmaniasis in a splenectomized adult patient. Am. J. Trop. Med. Hyg., 2020, 102(2), 268-273. doi: 10.4269/ajtmh.18-0999 PMID: 31872796
  29. Andreana, I.; Bincoletto, V.; Milla, P.; Dosio, F.; Stella, B.; Arpicco, S. Nanotechnological approaches for pentamidine delivery. Drug Deliv. Transl. Res., 2022, 12(8), 1911-1927. doi: 10.1007/s13346-022-01127-4 PMID: 35217992
  30. Pham, T.T.H.; Loiseau, P.M.; Barratt, G. Strategies for the design of orally bioavailable antileishmanial treatments. Int. J. Pharm., 2013, 454(1), 539-552. doi: 10.1016/j.ijpharm.2013.07.035 PMID: 23871737
  31. Mérian, J.; De Souza, R.; Dou, Y.; Ekdawi, S.N.; Ravenelle, F.; Allen, C. Development of a liposome formulation for improved biodistribution and tumor accumulation of pentamidine for oncology applications. Int. J. Pharm., 2015, 488(1-2), 154-164. doi: 10.1016/j.ijpharm.2015.04.060 PMID: 25910415
  32. Eissa, M.M.; El-Moslemany, R.M.; Ramadan, A.A.; Amer, E.I.; El-Azzouni, M.Z.; El-Khordagui, L.K. Miltefosine lipid nanocapsules for single dose oral treatment of Schistosomiasis Mansoni: A preclinical study. PLoS One, 2015, 10(11), e0141788. doi: 10.1371/journal.pone.0141788 PMID: 26574746
  33. Malheiros, B.; de Castro, R.D.; Lotierzo, M.C.; Casadei, B.R.; Mariani, P.; Barbosa, L.R.S.; Barbosa, L.R.S. Influence of hexadecylphosphocholine (Miltefosine) in phytantriol-based cubosomes: A structural investigation. Colloids Surf. A Physicochem. Eng. Asp., 2022, 632, 127720. doi: 10.1016/j.colsurfa.2021.127720
  34. Kumar, R.; Sahoo, G.C.; Pandey, K.; Das, V.N.R.; Topno, R.K.; Ansari, M.Y.; Rana, S.; Das, P. Development of PLGA–PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis. Mater. Sci. Eng. C, 2016, 59, 748-753. doi: 10.1016/j.msec.2015.10.083 PMID: 26652429
  35. Dorlo, T.P.C.; Balasegaram, M.; Beijnen, J.H.; de Vries, P.J. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother., 2012, 67(11), 2576-2597. doi: 10.1093/jac/dks275 PMID: 22833634
  36. Ware, J.M.; O’Connell, E.M.; Brown, T.; Wetzler, L.; Talaat, K.R.; Nutman, T.B.; Nash, T.E. Efficacy and tolerability of miltefosine in the treatment of cutaneous leishmaniasis. Clin. Infect. Dis., 2021, 73(7), e2457-e2562. doi: 10.1093/cid/ciaa1238 PMID: 33124666
  37. Nimtrakul, P.; Williams, D.B.; Tiyaboonchai, W.; Prestidge, C.A. Copolymeric micelles overcome the oral delivery challenges of amphotericin B. Pharmaceuticals (Basel), 2020, 13(6), 121. doi: 10.3390/ph13060121 PMID: 32545189
  38. Lanza, J.S.; Pomel, S.; Loiseau, P.M.; Frézard, F. Recent advances in amphotericin B delivery strategies for the treatment of leishmaniases. Expert Opin. Drug Deliv., 2019, 16(10), 1063-1079. doi: 10.1080/17425247.2019.1659243 PMID: 31433678
  39. Silva-Carvalho, R.; Fidalgo, J.; Melo, K.R.; Queiroz, M.F.; Leal, S.; Rocha, H.A.; Cruz, T.; Parpot, P.; Tomás, A.M.; Gama, M. Development of dextrin-amphotericin B formulations for the treatment of Leishmaniasis. Int. J. Biol. Macromol., 2020, 153, 276-288. doi: 10.1016/j.ijbiomac.2020.03.019 PMID: 32145228
  40. Kapil, S.; Singh, P.K.; Silakari, O. An update on small molecule strategies targeting leishmaniasis. Eur. J. Med. Chem., 2018, 157, 339-367. doi: 10.1016/j.ejmech.2018.08.012 PMID: 30099256
  41. Souza, M.L.; Gonzaga da Costa, L.A.; Silva, E.O.; Sousa, A.L.M.D.; Santos, W.M.; Rolim Neto, P.J. Recent strategies for the development of oral medicines for the treatment of visceral leishmaniasis. Drug Dev. Res., 2020, 81(7), 803-814. doi: 10.1002/ddr.21684 PMID: 32394440
  42. Bocxlaer, K.V.; Croft, S.L. Pharmacokinetics and pharmacodynamics in the treatment of cutaneous leishmaniasis - challenges and opportunities. RSC Med. Chem., 2021, 12, 472-482. doi: 10.1039/D0MD00343C PMID: 34041488
  43. Patino, L.H.; Muskus, C.; Ramírez, J.D. Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasit. Vectors, 2019, 12(1), 348. doi: 10.1186/s13071-019-3603-8 PMID: 31300064
  44. Dar, M.J.; Din, F.U.; Khan, G.M. Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: macrophage as a target cell. Drug Deliv., 2018, 25(1), 1595-1606. doi: 10.1080/10717544.2018.1494222 PMID: 30105918
  45. El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm., 2017, 528(1-2), 675-691. doi: 10.1016/j.ijpharm.2017.06.052 PMID: 28629982
  46. Calzoni, E.; Cesaretti, A.; Polchi, A.; Di Michele, A.; Tancini, B.; Emiliani, C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J. Funct. Biomater., 2019, 10(1), 4. doi: 10.3390/jfb10010004 PMID: 30626094
  47. Kim, B.H.; Hackett, M.J.; Park, J.; Hyeon, T. Synthesis, characterization, and application of ultrasmall nanoparticles. Chem. Mater., 2014, 26(1), 59-71. doi: 10.1021/cm402225z
  48. Nafari, A.; Cheraghipour, K.; Sepahvand, M.; Shahrokhi, G.; Gabal, E.; Mahmoudvand, H. Nanoparticles: New agents toward treatment of leishmaniasis. Parasite Epidemiol. Control, 2020, 10, e00156. doi: 10.1016/j.parepi.2020.e00156 PMID: 32566773
  49. Marques, C.S.F.; Machado Júnior, J.B.; Andrade, L.R.M.; Andrade, L.N.; Santos, A.L.S.; Cruz, M.S.P.; Chaud, M.; Fricks, A.T.; Severino, P. Use of pharmaceutical nanotechnology for the treatment of leishmaniasis. Rev. Soc. Bras. Med. Trop., 2019, 52, e20180246. doi: 10.1590/0037-8682-0246-2018 PMID: 30994800
  50. Anderson, S.D.; Gwenin, V.V.; Gwenin, C.D. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res. Lett., 2019, 14(1), 188. doi: 10.1186/s11671-019-3019-6 PMID: 31147786
  51. Cosco, D.; Bruno, F.; Castelli, G.; Puleio, R.; Bonacci, S.; Procopio, A.; Britti, D.; Fresta, M.; Vitale, F.; Paolino, D. Meglumine antimoniate-loaded aqueous-core PLA nanocapsules: Old drug, new formulation against leishmania-related diseases. Macromol. Biosci., 2021, 21(7), 2100046. doi: 10.1002/mabi.202100046 PMID: 34117834
  52. Bertrand, N.; Grenier, P.; Mahmoudi, M.; Lima, E.M.; Appel, E.A.; Dormont, F.; Lim, J.M.; Karnik, R.; Langer, R.; Farokhzad, O.C. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun., 2017, 8(1), 777. doi: 10.1038/s41467-017-00600-w PMID: 28974673
  53. Loría-Cervera, E.N.; Andrade-Narvaez, F. The role of monocytes/macrophages in Leishmania infection: A glance at the human response. Acta Trop., 2020, 207, 105456. doi: 10.1016/j.actatropica.2020.105456 PMID: 32222362
  54. Saqib, M.; Ali Bhatti, A.S.; Ahmad, N.M.; Ahmed, N.; Shahnaz, G.; Lebaz, N.; Elaissari, A. Amphotericin B loaded polymeric nanoparticles for treatment of leishmania infections. Nanomaterials (Basel), 2020, 10(6), 1152. doi: 10.3390/nano10061152 PMID: 32545473
  55. Messeder, M.M.S.; Miranda, D.; Lamas de Souza, S.O.; Dorneles, M.; Giunchetti, R.; Oréfice, R.L. Positively-charged electrosprayed nanoparticles based on biodegradable polymers containing amphotericin B for the treatment of leishmaniasis. Int. J. Polym. Mater., 2021, 70(16), 1189-1202. doi: 10.1080/00914037.2020.1785457
  56. Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D.S.; Mehrotra, D. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J. Oral Biol. Craniofac. Res., 2020, 10(1), 381-388. doi: 10.1016/j.jobcr.2019.10.003 PMID: 31754598
  57. Ghosh, S.; Kar, N.; Bera, T. Oleanolic acid loaded poly lactic co- glycolic acid- vitamin E TPGS nanoparticles for the treatment of Leishmania donovani infected visceral leishmaniasis. Int. J. Biol. Macromol., 2016, 93(Pt A), 961-970. doi: 10.1016/j.ijbiomac.2016.09.014 PMID: 27645930
  58. Abu Ammar, A.; Nasereddin, A.; Ereqat, S.; Dan-Goor, M.; Jaffe, C.L.; Zussman, E.; Abdeen, Z. Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Deliv. Transl. Res., 2019, 9(1), 76-84. doi: 10.1007/s13346-018-00603-0 PMID: 30484256
  59. Valle, I.V.; Machado, M.E.; Araújo, C.C.B.; da Cunha-Junior, E.F.; da Silva Pacheco, J.; Torres-Santos, E.C.; da Silva, L.C.R.P.; Cabral, L.M.; do Carmo, F.A.; Sathler, P.C. Oral pentamidine-loaded poly(d,l-lactic-co-glycolic) acid nanoparticles: an alternative approach for leishmaniasis treatment. Nanotechnology, 2019, 30(45), 455102. doi: 10.1088/1361-6528/ab373e PMID: 31365912
  60. Machatschek, R.; Schulz, B.; Lendlein, A. The influence of pH on the molecular degradation mechanism of PLGA. MRS Adv., 2018, 3(63), 3883-3889. doi: 10.1557/adv.2018.602
  61. Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3), 1377-1397. doi: 10.3390/polym3031377 PMID: 22577513
  62. Boltnarova, B.; Kubackova, J.; Skoda, J.; Stefela, A.; Smekalova, M.; Svacinova, P.; Pavkova, I.; Dittrich, M.; Scherman, D.; Zbytovska, J.; Pavek, P.; Holas, O. PLGA based nanospheres as a potent macrophage-specific drug delivery system. Nanomaterials (Basel), 2021, 11(3), 749. doi: 10.3390/nano11030749 PMID: 33809764
  63. Riezk, A.; Van Bocxlaer, K.; Yardley, V.; Murdan, S.; Croft, S.L. Activity of amphotericin B-loaded chitosan nanoparticles against experimental cutaneous leishmaniasis. Molecules, 2020, 25(17), 4002. doi: 10.3390/molecules25174002 PMID: 32887341
  64. Yang, X.; Yu, T.; Zeng, Y.; Lian, K.; Zhou, X.; Li, S.; Qiu, G.; Jin, X.; Yuan, H.; Hu, F. Tumor-draining lymph node targeting chitosan micelles as antigen-capturing adjuvants for personalized immunotherapy. Carbohydr. Polym., 2020, 240, 116270. doi: 10.1016/j.carbpol.2020.116270 PMID: 32475559
  65. Sohail, A.; Khan, R.U.; Khan, M.; Khokhar, M.; Ullah, S.; Ali, A.; Bilal, H.; Khattak, S.; Khan, M.; Ahmad, B. Comparative efficacy of amphotericin B-loaded chitosan nanoparticles and free amphotericin B drug against Leishmania tropica. Bull. Natl. Res. Cent., 2021, 45(1), 187. doi: 10.1186/s42269-021-00644-5
  66. Coelho, E.; Ribeiro, T.; Fuscaldi, L.; Santos, M.; Duarte, M.; Lage, P.; Martins, V.; Costa, L.; Diniz, S.; Cardoso, V.; Castilho, R.; Soto, M.; Tavares, C.A.; Fumagalli, M.; Ribeiro, J.; Faraco, A. An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis. Int. J. Nanomedicine, 2014, 9, 5341-5353. doi: 10.2147/IJN.S68966 PMID: 25429219
  67. Boroumand, H.; Badie, F.; Mazaheri, S.; Seyedi, Z.S.; Nahand, J.S.; Nejati, M.; Baghi, H.B.; Abbasi-Kolli, M.; Badehnoosh, B.; Ghandali, M.; Hamblin, M.R.; Mirzaei, H. Chitosan-based nanoparticles against viral infections. Front. Cell. Infect. Microbiol., 2021, 11, 643953. doi: 10.3389/fcimb.2021.643953 PMID: 33816349
  68. Piras, A.M.; Sandreschi, S.; Maisetta, G.; Esin, S.; Batoni, G.; Chiellini, F. Chitosan nanoparticles for the linear release of model cationic Peptide. Pharm. Res., 2015, 32(7), 2259-2265. doi: 10.1007/s11095-014-1615-9 PMID: 25559891
  69. Mulla, M.Z.; Rahman, M.R.T.; Marcos, B.; Tiwari, B.; Pathania, S. Poly Lactic Acid (PLA) Nanocomposites: Effect of inorganic nanoparticles reinforcement on its performance and food packaging applications. Molecules, 2021, 26(7), 1967. doi: 10.3390/molecules26071967 PMID: 33807351
  70. da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J., 2018, 340, 9-14. doi: 10.1016/j.cej.2018.01.010 PMID: 31384170
  71. Casalini, T.; Rossi, F.; Castrovinci, A.; Perale, G. A Perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol., 2019, 7, 259. doi: 10.3389/fbioe.2019.00259 PMID: 31681741
  72. Matha, K.; Calvignac, B.; Gangneux, J.P.; Benoit, J.P. The advantages of nanomedicine in the treatment of visceral leishmaniasis: between sound arguments and wishful thinking. Expert Opin. Drug Deliv., 2021, 18(4), 471-487. doi: 10.1080/17425247.2021.1853701 PMID: 33217254
  73. Khalid, S.; Salman, S.; Iqbal, K.; Rehman, F.; Ullah, I.; Satoskar, A.R.; Khan, G.M.; Dar, M.J. Surfactant free synthesis of cationic nano-vesicles: A safe triple drug loaded vehicle for the topical treatment of cutaneous leishmaniasis. Nanomedicine, 2022, 40, 102490. doi: 10.1016/j.nano.2021.102490 PMID: 34748957
  74. Kohli, N.; Ho, S.; Brown, S.J.; Sawadkar, P.; Sharma, V.; Snow, M.; García-Gareta, E. Bone remodelling in vitro: Where are we headed? Bone, 2018, 110, 38-46. doi: 10.1016/j.bone.2018.01.015 PMID: 29355746
  75. Pinto, S.; Pintado, M.E.; Sarmento, B. In vivo, ex vivo and in vitro assessment of buccal permeation of drugs from delivery systems. Expert Opin. Drug Deliv., 2020, 17(1), 33-48. doi: 10.1080/17425247.2020.1699913 PMID: 31786958
  76. Bogdan, C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine X, 2020, 2(4), 100041. doi: 10.1016/j.cytox.2020.100041 PMID: 33604563
  77. Espinoza, S.M.; Patil, H.I.; San Martin Martinez, E.; Casañas Pimentel, R.; Ige, P.P. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. Int. J. Polym. Mater., 2020, 69(2), 85-126. doi: 10.1080/00914037.2018.1539990
  78. Afzal, I.; Sarwar, H.S.; Sohail, M.F.; Varikuti, S.; Jahan, S.; Akhtar, S.; Yasinzai, M.; Satoskar, A.R.; Shahnaz, G. Mannosylated thiolated paromomycin-loaded PLGA nanoparticles for the oral therapy of visceral leishmaniasis. Nanomedicine (Lond.), 2019, 14(4), 387-406. doi: 10.2217/nnm-2018-0038 PMID: 30688557
  79. Pinelli, F.; Perale, G.; Rossi, F. Coating and functionalization strategies for nanogels and nanoparticles for selective drug delivery. Gels, 2020, 6(1), 6. doi: 10.3390/gels6010006 PMID: 32033057
  80. Angioletti-Uberti, S. Theory, simulations and the design of functionalized nanoparticles for biomedical applications: A Soft Matter Perspective. NPJ Comput. Mater, 2017, 3(1), 48. doi: 10.1038/s41524-017-0050-y
  81. Chaubey, P.; Mishra, B.; Mudavath, S.L.; Patel, R.R.; Chaurasia, S.; Sundar, S.; Suvarna, V.; Monteiro, M. Mannose-conjugated curcumin-chitosan nanoparticles: Efficacy and toxicity assessments against Leishmania donovani. Int. J. Biol. Macromol., 2018, 111, 109-120. doi: 10.1016/j.ijbiomac.2017.12.143 PMID: 29307805
  82. Jhaveri, J.; Raichura, Z.; Khan, T.; Momin, M.; Omri, A. Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. Molecules, 2021, 26(2), 272. doi: 10.3390/molecules26020272 PMID: 33430478
  83. Federer, C.; Kurpiers, M.; Bernkop-Schnürch, A. Thiolated chitosans: A multi-talented class of polymers for various applications. Biomacromolecules, 2021, 22(1), 24-56. doi: 10.1021/acs.biomac.0c00663 PMID: 32567846
  84. Machatschek, R.; Lendlein, A. Fundamental insights in PLGA degradation from thin film studies. J. Control. Release, 2020, 319, 276-284. doi: 10.1016/j.jconrel.2019.12.044 PMID: 31884098
  85. Sarwar, H.S.; Ashraf, S.; Akhtar, S.; Sohail, M.F.; Hussain, S.Z.; Rafay, M.; Yasinzai, M.; Hussain, I.; Shahnaz, G. Mannosylated thiolated polyethylenimine nanoparticles for the enhanced efficacy of antimonial drug against Leishmaniasis. Nanomedicine (Lond.), 2018, 13(1), 25-41. doi: 10.2217/nnm-2017-0255 PMID: 29173059
  86. Chen, Z.; Lv, Z.; Sun, Y.; Chi, Z.; Qing, G. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(15), 2951-2973. doi: 10.1039/C9TB02271F PMID: 32159205
  87. Ghosh, S.; Das, S.; De, A.K.; Kar, N.; Bera, T. Amphotericin B-loaded mannose modified poly( D, L -lactide-co-glycolide) polymeric nanoparticles for the treatment of visceral leishmaniasis: In vitro and in vivo approaches. RSC Advances, 2017, 7(47), 29575-29590. doi: 10.1039/C7RA04951J
  88. Marques, A.C.; Costa, P.J.; Velho, S.; Amaral, M.H. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J. Control. Release, 2020, 320, 180-200. doi: 10.1016/j.jconrel.2020.01.035 PMID: 31978444
  89. Costa, A.; Sarmento, B.; Seabra, V. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur. J. Pharm. Sci., 2018, 114, 103-113. doi: 10.1016/j.ejps.2017.12.006 PMID: 29229273
  90. Choi, B.; Park, W.; Park, S.B.; Rhim, W.K.; Han, D.K. Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications. Methods, 2020, 177, 2-14. doi: 10.1016/j.ymeth.2019.12.004 PMID: 31874237
  91. Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol., 2018, 9, 790. doi: 10.3389/fphar.2018.00790 PMID: 30065653
  92. Patel, J.; Patel, S. Major obstacles in technology transfer of nanomedicine from conception to major obstacles in technology transfer of nanomedicine from conception to commercialisation. 2021, 5(2), 333-342.
  93. Valencia, P.M.; Farokhzad, O.C.; Karnik, R.; Langer, R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol., 2012, 7(10), 623-629. doi: 10.1038/nnano.2012.168 PMID: 23042546
  94. Weber, C.; Voigt, M.; Simon, J.; Danner, A.K.; Frey, H.; Mailänder, V.; Helm, M.; Morsbach, S.; Landfester, K. Functionalization of liposomes with hydrophilic polymers results in macrophage uptake independent of the protein corona. Biomacromolecules, 2019, 20(8), 2989-2999. doi: 10.1021/acs.biomac.9b00539 PMID: 31268685
  95. Kad, A.; Pundir, A.; Arya, S.K.; Bhardwaj, N.; Khatri, M. An elucidative review to analytically sieve the viability of nanomedicine market. J. Pharm. Innov., 2022, 17(1), 249-265. doi: 10.1007/s12247-020-09495-5 PMID: 32983280
  96. Rai, R.; Alwani, S.; Badea, I. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications. Polymers (Basel), 2019, 11(4), 745. doi: 10.3390/polym11040745 PMID: 31027272

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024