Recent Update on the Protective Potentials of Resveratrol against Cisplatin-induced Ototoxicity: A Systematic Review

  • Authors: Alsaikhan F.1, Jasim S.2, Margiana R.3, Opulencia M.J.4, Yasin G.5, Hammid A.6, Nasretdinova M.7, Mahdi A.8, Farhood B.9, Abedi-Firouzjah R.10, Jamialahmadi T.11, Sahebkar A.12
  • Affiliations:
    1. Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University
    2. Medical Laboratory Techniques Department, Al-Maarif University College
    3. Department of Anatomy, Faculty of Medicine, Universitas Indonesia
    4. College of Business Administration, Ajman University
    5. Department of Botany, Bahauddin Zakariya University
    6. Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University
    7. Department of Otorhinolaryngology No.2, Samarkand State Medical Institute
    8. Anesthesia Techniques Department, Al-Mustaqbal University College
    9. Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences
    10. Cellular and Molecular Research Center, Yasuj University of Medical Sciences
    11. International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences
    12. Applied Biomedical Research Center, Mashhad University of Medical Sciences
  • Issue: Vol 31, No 30 (2024)
  • Pages: 4850-4866
  • Section: Anti-Infectives and Infectious Diseases
  • URL: https://hum-ecol.ru/0929-8673/article/view/645027
  • DOI: https://doi.org/10.2174/0929867331666230724124013
  • ID: 645027

Cite item

Full Text

Abstract

Introduction:Although cancer treatment with cisplatin is effective, dose-dependent adverse effects such as ototoxicity occurs often, which limits its clinical use. The use of resveratrol may alleviate the cisplatin-induced ototoxic effects. This study is aimed to review the potential otoprotective effects of resveratrol against cisplatin-induced ototoxicity.

Method:According to the PRISMA guideline, a systematic search was accomplished to identify all relevant scientific papers on "the role of resveratrol against cisplatin-induced ototoxicity" in different electronic databases up to May 2021. Fifty-five articles were screened based on a predefined set of inclusion and exclusion criteria. Eight eligible studies were finally included in the current systematic review. The in-vitro findings revealed that cisplatin administration significantly decreased the HEI-OC1 cell viability compared to the untreated cells; however, resveratrol co-treatment (in a dose-dependent manner) could protect HEI-OC1 cells against cisplatin-induced decrease in cell viability.

Results:Furthermore, the in-vivo finding showed a decreased value of DPOAE, and increased values of ABR threshold, ABR-I, ABR-IV, and ABR I-IV interval in cisplatin-treated animals; in contrast, resveratrol co-administration demonstrated an opposite pattern on these parameters.

Conclusion:Thus, it can be mentioned that resveratrol co-treatment alleviates cisplatin-induced ototoxicity. Mechanically, resveratrol exerts its otoprotective effects through various mechanisms such as anti-oxidant, anti-apoptosis, and anti-inflammatory.

About the authors

Fahad Alsaikhan

Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University

Email: info@benthamscience.net

Saade Jasim

Medical Laboratory Techniques Department, Al-Maarif University College

Email: info@benthamscience.net

Ria Margiana

Department of Anatomy, Faculty of Medicine, Universitas Indonesia

Email: info@benthamscience.net

Maria Jade Opulencia

College of Business Administration, Ajman University

Email: info@benthamscience.net

Ghulam Yasin

Department of Botany, Bahauddin Zakariya University

Email: info@benthamscience.net

Ali Hammid

Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University

Email: info@benthamscience.net

Makhzuna Nasretdinova

Department of Otorhinolaryngology No.2, Samarkand State Medical Institute

Email: info@benthamscience.net

Ahmed Mahdi

Anesthesia Techniques Department, Al-Mustaqbal University College

Email: info@benthamscience.net

Bagher Farhood

Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Razzagh Abedi-Firouzjah

Cellular and Molecular Research Center, Yasuj University of Medical Sciences

Email: info@benthamscience.net

Tannaz Jamialahmadi

International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Amirhosein Sahebkar

Applied Biomedical Research Center, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Mortezaee, K.; Narmani, A.; Salehi, M.; Bagheri, H.; Farhood, B.; Haghi-Aminjan, H.; Najafi, M. Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci., 2021, 269, 119020. doi: 10.1016/j.lfs.2021.119020 PMID: 33450258
  2. Sheikholeslami, S.; Khodaverdian, S.; Dorri-Giv, M.; Mohammad Hosseini, S.; Souri, S.; Abedi-Firouzjah, R.; Zamani, H.; Dastranj, L.; Farhood, B. The radioprotective effects of alpha-lipoic acid on radiotherapy-induced toxicities: A systematic review. Int. Immunopharmacol., 2021, 96, 107741. doi: 10.1016/j.intimp.2021.107741 PMID: 33989970
  3. Sheikholeslami, S.; Aryafar, T.; Abedi-Firouzjah, R.; Banaei, A.; Dorri-Giv, M.; Zamani, H.; Ataei, G.; Majdaeen, M.; Farhood, B. The role of melatonin on radiation-induced pneumonitis and lung fibrosis: A systematic review. Life Sci., 2021, 281, 119721. doi: 10.1016/j.lfs.2021.119721 PMID: 34146555
  4. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  5. Toossi, M.T.B.; Soleymanifard, S.; Farhood, B.; Mohebbi, S.; Davenport, D. Assessment of accuracy of out-of-field dose calculations by TiGRT treatment planning system in radiotherapy. J. Cancer Res. Ther., 2018, 14(3), 634-639. doi: 10.4103/0973-1482.176423 PMID: 29893331
  6. Abdi, G.N.; Abedi, F.R.; Ebrahimnejad, G.K.; Khosravanipour, M.; Moradi, S.; Banaei, A. Estimation of radiation dose-reduction factor for cerium oxide nanoparticles in MRC-5 human lung fibroblastic cells and MCF-7 breast-cancer cells. Artif. Cells. Nanomed. Biotechnol., 2018, 46(S3), S1215-S1225.
  7. Abdi Goushbolagh, N.; Keshavarz, M.; Zare, M.H.; Bahreyni-Toosi, M.H.; Kargar, M.; Farhood, B. Photosensitizer effects of MWCNTs-COOH particles on CT26 fibroblastic cells exposed to laser irradiation. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1326-1334. doi: 10.1080/21691401.2019.1593997 PMID: 30964347
  8. Najafi, M.; Hooshangi Shayesteh, M.R.; Mortezaee, K.; Farhood, B.; Haghi-Aminjan, H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci., 2020, 241, 117173. doi: 10.1016/j.lfs.2019.117173 PMID: 31843530
  9. Haghi-Aminjan, H.; Farhood, B.; Rahimifard, M.; Didari, T.; Baeeri, M.; Hassani, S.; Hosseini, R.; Abdollahi, M. The protective role of melatonin in chemotherapy-induced nephrotoxicity: A systematic review of non-clinical studies. Expert. Opin. Drug Metab. Toxicol., 2018, 14(9), 937-950. doi: 10.1080/17425255.2018.1513492 PMID: 30118646
  10. Haghi-Aminjan, H.; Asghari, M.H.; Farhood, B.; Rahimifard, M.; Hashemi Goradel, N.; Abdollahi, M. The role of melatonin on chemotherapy-induced reproductive toxicity. J. Pharm. Pharmacol., 2018, 70(3), 291-306. doi: 10.1111/jphp.12855 PMID: 29168173
  11. Hu, L.F.; Lan, H.R.; Li, X.M.; Jin, K.T. A systematic review of the potential chemoprotective effects of resveratrol on doxorubicin-induced cardiotoxicity: Focus on the antioxidant, antiapoptotic, and anti-inflammatory activities. Oxid. Med. Cell. Longev., 2021, 2021, 1-19. doi: 10.1155/2021/2951697 PMID: 34471463
  12. Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov., 2005, 4(4), 307-320. doi: 10.1038/nrd1691 PMID: 15789122
  13. Cvitkovic, E. Cumulative toxicities from cisplatin therapy and current cytoprotective measures. Cancer Treat. Rev., 1998, 24(4), 265-281. doi: 10.1016/S0305-7372(98)90061-5 PMID: 9805507
  14. Hanigan, M.H.; Devarajan, P. Cisplatin nephrotoxicity: Molecular mechanisms. Cancer Ther., 2003, 1, 47-61. PMID: 18185852
  15. Santos, N; Ferreira, RS; Santos, ACD Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food. Chem. Toxicol., 2020, 136, 111079. doi: 10.1016/j.fct.2019.111079
  16. van den Berg, J.H.; Beijnen, J.H.; Balm, A.J.M.; Schellens, J.H.M. Future opportunities in preventing cisplatin induced ototoxicity. Cancer Treat. Rev., 2006, 32(5), 390-397. doi: 10.1016/j.ctrv.2006.04.011 PMID: 16781082
  17. Reddel, R.R.; Kefford, R.F.; Grant, J.M.; Coates, A.S.; Fox, R.M.; Tattersall, M.H. Ototoxicity in patients receiving cisplatin: Importance of dose and method of drug administration. Cancer Treat. Rep., 1982, 66(1), 19-23. PMID: 7198012
  18. Kaltenbach, J.A.; Rachel, J.D.; Mathog, T.A.; Zhang, J.; Falzarano, P.R.; Lewandowski, M. Cisplatin-induced hyperactivity in the dorsal cochlear nucleus and its relation to outer hair cell loss: Relevance to tinnitus. J. Neurophysiol., 2002, 88(2), 699-714. doi: 10.1152/jn.2002.88.2.699 PMID: 12163523
  19. Waissbluth, S.; Peleva, E.; Daniel, S.J. Platinum-induced ototoxicity: A review of prevailing ototoxicity criteria. Eur. Arch. Otorhinolaryngol., 2017, 274(3), 1187-1196.
  20. Schaefer, S.D.; Post, J.D.; Close, L.G.; Wright, C.G. Ototoxicity of low- and moderate-dose cisplatin. Cancer., 1985, 56(8), 1934-1939. doi: 10.1002/1097-0142(19851015)56:83.0.CO;2-F PMID: 4040801
  21. Sheth, S.; Mukherjea, D.; Rybak, L.P.; Ramkumar, V. Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front. Cell. Neurosci., 2017, 11, 338. doi: 10.3389/fncel.2017.00338 PMID: 29163050
  22. Breglio, A.M.; Rusheen, A.E.; Shide, E.D.; Fernandez, K.A.; Spielbauer, K.K.; McLachlin, K.M.; Hall, M.D.; Amable, L.; Cunningham, L.L. Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat. Commun., 2017, 8(1), 1654. doi: 10.1038/s41467-017-01837-1 PMID: 29162831
  23. Gentilin, E.; Simoni, E.; Candito, M.; Cazzador, D.; Astolfi, L. Cisplatin-induced ototoxicity: Updates on molecular targets. Trends. Mol. Med., 2019, 25(12), 1123-1132. doi: 10.1016/j.molmed.2019.08.002 PMID: 31473143
  24. Arabzadeh, A.; Mortezazadeh, T.; Aryafar, T.; Gharepapagh, E.; Majdaeen, M.; Farhood, B. Therapeutic potentials of resveratrol in combination with radiotherapy and chemotherapy during glioblastoma treatment: A mechanistic review. Cancer. Cell. Int., 2021, 21(1), 391. doi: 10.1186/s12935-021-02099-0 PMID: 34289841
  25. de la Lastra, C.A.; Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem. Soc. Trans., 2007, 35(5), 1156-1160. doi: 10.1042/BST0351156 PMID: 17956300
  26. Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Shabeeb, D.; Musa, A.E. Resveratrol as an adjuvant for normal tissues protection and tumor sensitization. Curr. Cancer Drug Targets, 2020, 20(2), 130-145. doi: 10.2174/1568009619666191019143539 PMID: 31738153
  27. Kisková, T.; Kassayová, M. Resveratrol action on lipid metabolism in cancer. Int. J. Mol. Sci., 2019, 20(11), 2704. doi: 10.3390/ijms20112704 PMID: 31159437
  28. Honari, M.; Shafabakhsh, R.; Reiter, R.J.; Mirzaei, H.; Asemi, Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: Focus on molecular mechanisms. Cancer. Cell. Int., 2019, 19(1), 180. doi: 10.1186/s12935-019-0906-y PMID: 31341423
  29. Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 2589. doi: 10.3390/ijms18122589 PMID: 29194365
  30. Xiao, Q.; Zhu, W.; Feng, W.; Lee, S.S.; Leung, A.W.; Shen, J.; Gao, L.; Xu, C. A review of resveratrol as a potent chemoprotective and synergistic agent in cancer chemotherapy. Front. Pharmacol., 2019, 9, 1534. doi: 10.3389/fphar.2018.01534 PMID: 30687096
  31. Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer molecular mechanisms of resveratrol. Front. Nutr., 2016, 3, 8. doi: 10.3389/fnut.2016.00008 PMID: 27148534
  32. van Ginkel, P.R.; Sareen, D.; Subramanian, L.; Walker, Q.; Darjatmoko, S.R.; Lindstrom, M.J.; Kulkarni, A.; Albert, D.M.; Polans, A.S. Resveratrol inhibits tumor growth of human neuroblastoma and mediates apoptosis by directly targeting mitochondria. Clin. Cancer Res., 2007, 13(17), 5162-5169. doi: 10.1158/1078-0432.CCR-07-0347 PMID: 17785572
  33. Gorabi, A.M.; Aslani, S.; Imani, D.; Razi, B.; Sathyapalan, T.; Sahebkar, A. Effect of resveratrol on C-reactive protein: An updated meta-analysis of randomized controlled trials. Phytother. Res., 2021, 35(12), 6754-6767. doi: 10.1002/ptr.7262 PMID: 34472150
  34. Omraninava, M.; Razi, B.; Aslani, S.; Imani, D.; Jamialahmadi, T.; Sahebkar, A. Effect of resveratrol on inflammatory cytokines: A meta-analysis of randomized controlled trials. Eur. J. Pharmacol., 2021, 908, 174380. doi: 10.1016/j.ejphar.2021.174380 PMID: 34303665
  35. Gowd, V; Kang, Q; Wang, Q; Wang, Q; Chen, F; Cheng, KW Resveratrol: Evidence for its nephroprotective effect in diabetic nephropathy. Adv. Nutr., 2020, 11(6), 1555-1568.
  36. Pervaiz, S.; Holme, A.L. Resveratrol: its biologic targets and functional activity. Antioxid. Redox Signal., 2009, 11(11), 2851-2897. doi: 10.1089/ars.2008.2412 PMID: 19432534
  37. Xu N.; Wang L.; Fu S.; Jiang B.; Resveratrol is cytotoxic and acts synergistically with NF-κB inhibition in osteosarcoma MG-63 cells. Arch. Med. Sci.2020 Nov 13; 17(1):166-176. doi: 10.5114/aoms.2020.100777 PMID: 33488869 PMCID: PMC7811305
  38. Mirhadi, E.; Roufogalis, B.D.; Banach, M.; Barati, M.; Sahebkar, A. Resveratrol: Mechanistic and therapeutic perspectives in pulmonary arterial hypertension. Pharmacol. Res., 2021, 163, 105287. doi: 10.1016/j.phrs.2020.105287 PMID: 33157235
  39. Parsamanesh, N.; Asghari, A.; Sardari, S.; Tasbandi, A.; Jamialahmadi, T.; Xu, S.; Sahebkar, A. Resveratrol and endothelial function: A literature review. Pharmacol. Res., 2021, 170, 105725. doi: 10.1016/j.phrs.2021.105725 PMID: 34119624
  40. Sahebkar, A. Effects of resveratrol supplementation on plasma lipids: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev., 2013, 71(12), 822-835. doi: 10.1111/nure.12081 PMID: 24111838
  41. Sahebkar, A.; Serban, C.; Ursoniu, S.; Wong, N.D.; Muntner, P.; Graham, I.M.; Mikhailidis, D.P.; Rizzo, M.; Rysz, J.; Sperling, L.S.; Lip, G.Y.H.; Banach, M. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors - Results from a systematic review and meta-analysis of randomized controlled trials. Int. J. Cardiol., 2015, 189(1), 47-55. doi: 10.1016/j.ijcard.2015.04.008 PMID: 25885871
  42. Moher, D; Liberati, A; Tetzlaff, J; Altman, DG Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ., 2009, 339, b2535.
  43. Olgun, Y.; Altun, Z.; Aktas, S.; Ercetin, P.; Kirkim, G.; Kiray, M. Molecular mechanisms of protective effect of resveratrol against cisplatinium induced ototoxicity. J. Int. Adv. Otol., 2013, 9(2), 145.
  44. Lee, S.H.; Kim, H.S.; An, Y.S.; Chang, J.; Choi, J.; Im, G.J. Protective effect of resveratrol against cisplatin-induced ototoxicity in HEI-OC1 auditory cells. Int. J. Pediatr. Otorhinolaryngol., 2015, 79(1), 58-62. doi: 10.1016/j.ijporl.2014.11.008 PMID: 25434479
  45. Erdem, T.; Bayindir, T.; Filiz, A.; Iraz, M.; Selimoglu, E. The effect of resveratrol on the prevention of cisplatin ototoxicity. Eur. Arch. Otorhinolaryngol., 2012, 269(10), 2185-2188.
  46. Yumusakhuylu, A.C.; Yazici, M.; Sari, M.; Binnetoglu, A.; Kosemihal, E.; Akdas, F.; Sirvanci, S.; Yuksel, M.; Uneri, C.; Tutkun, A. Protective role of resveratrol against cisplatin induced ototoxicity in guinea pigs. Int. J. Pediatr. Otorhinolaryngol., 2012, 76(3), 404-408. doi: 10.1016/j.ijporl.2011.12.021 PMID: 22261612
  47. Simşek, G.; Tokgoz, S.A.; Vuralkan, E.; Caliskan, M.; Besalti, O.; Akin, I. Protective effects of resveratrol on cisplatin-dependent inner-ear damage in rats. Eur. Arch. Otorhinolaryngol., 2013, 270(6), 1789-1793.
  48. Olgun, Y.; Kırkım, G.; Kolatan, E.; Kıray, M.; Bagrıyanık, A.; Olgun, A.; Kızmazoglu, D.C.; Ellıdokuz, H.; Serbetcıoglu, B.; Altun, Z.; Aktas, S.; Yılmaz, O.; Günerı, E.A. Friend or foe? Effect of oral resveratrol on cisplatin ototoxicity. Laryngoscope, 2014, 124(3), 760-766. doi: 10.1002/lary.24323 PMID: 23900991
  49. Simsek, G.; Taş, B.M.; Muluk, N.B.; Azman, M.; Kılıç, R. Comparison of the protective efficacy between intratympanic dexamethasone and resveratrol treatments against cisplatin-induced ototoxicity: an experimental study. Eur. Arch. Otorhinolaryngol., 2019, 276(12), 3287-3293.
  50. Lee, C.H.; Kim, K.W.; Lee, S.M.; Kim, S.Y. Dose-dependent effects of resveratrol on cisplatin-induced hearing loss. Int. J. Mol. Sci., 2020, 22(1), 113. doi: 10.3390/ijms22010113 PMID: 33374326
  51. Florea, A.M.; Büsselberg, D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers, 2011, 3(1), 1351-1371. doi: 10.3390/cancers3011351 PMID: 24212665
  52. Rezvanfar, M.A.; Rezvanfar, M.A.; Shahverdi, A.R.; Ahmadi, A.; Baeeri, M.; Mohammadirad, A.; Abdollahi, M. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles. Toxicol. Appl. Pharmacol., 2013, 266(3), 356-365. doi: 10.1016/j.taap.2012.11.025 PMID: 23260366
  53. Galluzzi, L.; Senovilla, L.; Vitale, I.; Michels, J.; Martins, I.; Kepp, O.; Castedo, M.; Kroemer, G. Molecular mechanisms of cisplatin resistance. Oncogene, 2012, 31(15), 1869-1883. doi: 10.1038/onc.2011.384 PMID: 21892204
  54. McKeage, M.J. Comparative adverse effect profiles of platinum drugs. Drug Saf., 1995, 13(4), 228-244. doi: 10.2165/00002018-199513040-00003 PMID: 8573296
  55. Xiong, H.; Chen, S.; Lai, L.; Yang, H.; Xu, Y.; Pang, J.; Su, Z.; Lin, H.; Zheng, Y. Modulation of miR-34a/SIRT1 signaling protects cochlear hair cells against oxidative stress and delays age-related hearing loss through coordinated regulation of mitophagy and mitochondrial biogenesis. Neurobiol. Aging, 2019, 79, 30-42. doi: 10.1016/j.neurobiolaging.2019.03.013 PMID: 31026620
  56. Xiong, H.; Pang, J.; Yang, H.; Dai, M.; Liu, Y.; Ou, Y.; Huang, Q.; Chen, S.; Zhang, Z.; Xu, Y.; Lai, L.; Zheng, Y. Activation of miR-34a/SIRT1/p53 signaling contributes to cochlear hair cell apoptosis: implications for age-related hearing loss. Neurobiol. Aging, 2015, 36(4), 1692-1701. doi: 10.1016/j.neurobiolaging.2014.12.034 PMID: 25638533
  57. Xiong, H.; Ou, Y.; Xu, Y.; Huang, Q.; Pang, J.; Lai, L.; Zheng, Y. Resveratrol promotes recovery of hearing following intense noise exposure by enhancing cochlear SIRT1 activity. Audiol. Neurotol., 2017, 22(4-5), 303-310. doi: 10.1159/000485312 PMID: 29393101
  58. Seidman, M.D.; Tang, W.; Bai, V.U.; Ahmad, N.; Jiang, H.; Media, J.; Patel, N.; Rubin, C.J.; Standring, R.T. Resveratrol decreases noise-induced cyclooxygenase-2 expression in the rat cochlea. Otolaryngol. Head Neck Surg., 2013, 148(5), 827-833. doi: 10.1177/0194599813475777 PMID: 23380763
  59. Avci, D.; Erkan, M.; Sönmez, M.F.; Kökoğlu, K.; Güneş, M.S.; Gündoğdu, R.; Güleç, S.; Karabulut, D. A prospective experimental study on the protective effect of resveratrol against amikacin-induced ototoxicity in rats. J. Int. Adv. Otol., 2016, 12(3), 290-297. doi: 10.5152/iao.2016.2617 PMID: 27810846
  60. García-Alcántara, F.; Murillo-Cuesta, S.; Pulido, S.; Bermúdez-Muñoz, J.M.; Martínez-Vega, R.; Milo, M.; Varela-Nieto, I.; Rivera, T. The expression of oxidative stress response genes is modulated by a combination of resveratrol and N-acetylcysteine to ameliorate ototoxicity in the rat cochlea. Hear. Res., 2018, 358, 10-21. doi: 10.1016/j.heares.2017.12.004 PMID: 29304389
  61. Dasari, S.; Bernard, T.P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378. doi: 10.1016/j.ejphar.2014.07.025 PMID: 25058905
  62. Astolfi, L.; Ghiselli, S.; Guaran, V.; Chicca, M.; Simoni, E.; Olivetto, E.; Lelli, G.; Martini, A. Correlation of adverse effects of cisplatin administration in patients affected by solid tumours: A retrospective evaluation. Oncol. Rep., 2013, 29(4), 1285-1292. doi: 10.3892/or.2013.2279 PMID: 23404427
  63. Clerici, W.J.; DiMartino, D.L.; Prasad, M.R. Direct effects of reactive oxygen species on cochlear outer hair cell shape in vitro. Hear. Res., 1995, 84(1-2), 30-40. doi: 10.1016/0378-5955(95)00010-2 PMID: 7642453
  64. Clerici, W.J.; Hensley, K.; DiMartino, D.L.; Butterfield, D.A. Direct detection of ototoxicant-induced reactive oxygen species generation in cochlear explants. Hear. Res., 1996, 98(1-2), 116-124. doi: 10.1016/0378-5955(96)00075-5 PMID: 8880186
  65. Kopke, R.D.; Liu, W.; Gabaizadeh, R.; Jacono, A.; Feghali, J.; Spray, D.; Garcia, P.; Steinman, H.; Malgrange, B.; Ruben, R.J.; Rybak, L.; Van de Water, T.R. Use of organotypic cultures of Corti’s organ to study the protective effects of antioxidant molecules on cisplatin-induced damage of auditory hair cells. Am. J. Otol., 1997, 18(5), 559-571. PMID: 9303151
  66. Borse, V.; Al Aameri, R.F.H.; Sheehan, K.; Sheth, S.; Kaur, T.; Mukherjea, D.; Tupal, S.; Lowy, M.; Ghosh, S.; Dhukhwa, A.; Bhatta, P.; Rybak, L.P.; Ramkumar, V. Epigallocatechin-3-gallate, a prototypic chemopreventative agent for protection against cisplatin-based ototoxicity. Cell Death Dis., 2017, 8(7), e2921. doi: 10.1038/cddis.2017.314 PMID: 28703809
  67. Mukherjea, D.; Jajoo, S.; Kaur, T.; Sheehan, K.E.; Ramkumar, V.; Rybak, L.P. Transtympanic administration of short interfering (si)RNA for the NOX3 isoform of NADPH oxidase protects against cisplatin-induced hearing loss in the rat. Antioxid. Redox Signal., 2010, 13(5), 589-598. doi: 10.1089/ars.2010.3110 PMID: 20214492
  68. Kim, H.J.; Lee, J.H.; Kim, S.J.; Oh, G.S.; Moon, H.D.; Kwon, K.B.; Park, C.; Park, B.H.; Lee, H.K.; Chung, S.Y.; Park, R.; So, H.S. Roles of NADPH oxidases in cisplatin-induced reactive oxygen species generation and ototoxicity. J. Neurosci., 2010, 30(11), 3933-3946. doi: 10.1523/JNEUROSCI.6054-09.2010 PMID: 20237264
  69. Mukherjea, D.; Jajoo, S.; Whitworth, C.; Bunch, J.R.; Turner, J.G.; Rybak, L.P.; Ramkumar, V. Short interfering RNA against transient receptor potential vanilloid 1 attenuates cisplatin-induced hearing loss in the rat. J. Neurosci., 2008, 28(49), 13056-13065. doi: 10.1523/JNEUROSCI.1307-08.2008 PMID: 19052196
  70. Rybak, L.P.; Husain, K.; Morris, C.; Whitworth, C.; Somani, S. Effect of protective agents against cisplatin ototoxicity. Am. J. Otol., 2000, 21(4), 513-520. PMID: 10912697
  71. Ma, W.; Hu, J.; Cheng, Y.; Wang, J.; Zhang, X.; Xu, M. Ginkgolide B protects against cisplatin-induced ototoxicity: Enhancement of Akt–Nrf2–HO-1 signaling and reduction of NADPH oxidase. Cancer. Chemother. Pharmacol., 2015, 75(5), 949-959. doi: 10.1007/s00280-015-2716-9 PMID: 25749575
  72. Lee, C.H.; Park, S.; Lee, D.; Lee, S.M.; Kim, M.Y.; Choi, B.Y.; Kim, S.Y. Tauroursodeoxycholic acid attenuates cisplatin-induced hearing loss in rats. Neurosci. Lett., 2020, 722, 134838. doi: 10.1016/j.neulet.2020.134838 PMID: 32061715
  73. Safe, T.M.; Luebke, A.E. Prenatal low dosage dioxin (TCDD) exposure impairs cochlear function resulting in auditory neuropathy. Hear. Res., 2016, 331, 7-12. doi: 10.1016/j.heares.2015.09.015 PMID: 26464051
  74. Fuyuno, Y.; Uchi, H.; Yasumatsu, M.; Morino-Koga, S.; Tanaka, Y.; Mitoma, C.; Furue, M. Perillaldehyde inhibits AHR signaling and activates NRF2 antioxidant pathway in human keratinocytes. Oxid. Med. Cell. Longev., 2018, 2018, 1-9. doi: 10.1155/2018/9524657 PMID: 29643980
  75. Costa, C.; Catania, S.; De Pasquale, R.; Stancanelli, R.; Scribano, G.M.; Melchini, A. Exposure of human skin to benzoapyrene: Role of CYP1A1 and aryl hydrocarbon receptor in oxidative stress generation. Toxicology, 2010, 271(3), 83-86. doi: 10.1016/j.tox.2010.02.014 PMID: 20307623
  76. Zhou, B.; Wang, X.; Li, F.; Wang, Y.; Yang, L.; Zhen, X.; Tan, W. Mitochondrial activity and oxidative stress functions are influenced by the activation of AhR-induced CYP1A1 overexpression in cardiomyocytes. Mol. Med. Rep., 2017, 16(1), 174-180. doi: 10.3892/mmr.2017.6580 PMID: 28498411
  77. Moysa, A.; Steczkiewicz, K.; Niedzialek, D.; Hammerschmid, D.; Zhukova, L.; Sobott, F. A model of full-length RAGE in complex with S100B. Structure., 2021, 29(9), 989-1002.e6.
  78. Derk, J.; MacLean, M.; Juranek, J.; Schmidt, A.M. The receptor for advanced glycation endproducts (RAGE) and mediation of inflammatory neurodegeneration. J. Alzheimers Dis. Parkinsonism., 2018, 8(1), 421. doi: 10.4172/2161-0460.1000421 PMID: 30560011
  79. De Angelis, A.; Piegari, E.; Cappetta, D.; Russo, R.; Esposito, G.; Ciuffreda, L.P.; Ferraiolo, F.A.V.; Frati, C.; Fagnoni, F.; Berrino, L.; Quaini, F.; Rossi, F.; Urbanek, K. SIRT1 activation rescues doxorubicin-induced loss of functional competence of human cardiac progenitor cells. Int. J. Cardiol., 2015, 189, 30-44. doi: 10.1016/j.ijcard.2015.03.438 PMID: 25889431
  80. Liu, M.H.; Shan, J.; Li, J.; Zhang, Y.; Lin, X.L. Resveratrol inhibits doxorubicin-induced cardiotoxicity via sirtuin 1 activation in H9c2 cardiomyocytes. Exp. Ther. Med., 2016, 12(2), 1113-1118. doi: 10.3892/etm.2016.3437 PMID: 27446329
  81. Cappetta, D.; Esposito, G.; Piegari, E.; Russo, R.; Ciuffreda, L.P.; Rivellino, A.; Berrino, L.; Rossi, F.; De Angelis, A.; Urbanek, K. SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. Int. J. Cardiol., 2016, 205, 99-110. doi: 10.1016/j.ijcard.2015.12.008 PMID: 26730840
  82. Tatlidede, E.; Şehirli, Ö.; Velioğlu-Öğünç, A.; Çetinel, Ş.; Yeğen, B.Ç.; Yarat, A.; Süleymanoğlu, S.; Şener, G. Resveratrol treatment protects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage. Free Radic. Res., 2009, 43(3), 195-205. doi: 10.1080/10715760802673008 PMID: 19169920
  83. Arafa, M.H.; Mohammad, N.S.; Atteia, H.H.; Abd-Elaziz, H.R. Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats. J. Physiol. Biochem., 2014, 70(3), 701-711. doi: 10.1007/s13105-014-0339-y PMID: 24939721
  84. Alanazi, A.M.; Fadda, L.; Alhusaini, A.; Ahmad, R.; Hasan, I.H.; Mahmoud, A.M. Liposomal resveratrol and/or carvedilol attenuate doxorubicin-induced cardiotoxicity by modulating inflammation, oxidative stress and S100A1 in rats. Antioxidants., 2020, 9(2), 159.
  85. Al-Harthi, S.; Alarabi, O.M.; Ramadan, W.S.; Alaama, M.N.; Al-Kreathy, H.M.; Damanhouri, Z.A.; Khan, L.M.; Osman, A.M.M. Amelioration of doxorubicin-induced cardiotoxicity by resveratrol. Mol. Med. Rep., 2014, 10(3), 1455-1460. doi: 10.3892/mmr.2014.2384 PMID: 25059399
  86. Wang, H.L.; Gao, J.P.; Han, Y.L.; Xu, X.; Wu, R.; Gao, Y.; Cui, X.H. Comparative studies of polydatin and resveratrol on mutual transformation and antioxidative effect in vivo. Phytomedicine., 2015, 22(5), 553-559. doi: 10.1016/j.phymed.2015.03.014 PMID: 25981921
  87. Mukherjee, K.; Venkatesh, M.; Venkatesh, P.; Saha, B.P.; Mukherjee, P.K. Effect of soy phosphatidyl choline on the bioavailability and nutritional health benefits of resveratrol. Food Res. Int., 2011, 44(4), 1088-1093. doi: 10.1016/j.foodres.2011.03.034
  88. Rubiolo, J.A.; Mithieux, G.; Vega, F.V. Resveratrol protects primary rat hepatocytes against oxidative stress damage. Eur. J. Pharmacol., 2008, 591(1-3), 66-72. doi: 10.1016/j.ejphar.2008.06.067 PMID: 18616940
  89. Zheng, Y.; Liu, Y.; Ge, J.; Wang, X.; Liu, L.; Bu, Z.; Liu, P. Resveratrol protects human lens epithelial cells against H2O2-induced oxidative stress by increasing catalase, SOD-1, and HO-1 expression. Mol. Vis., 2010, 16, 1467-1474. PMID: 20806083
  90. Gu, J.; Song, Z.; Gui, D.; Hu, W.; Chen, Y.; Zhang, D. Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in lymphoma nude mice by heme oxygenase-1 induction. Cardiovasc. Toxicol., 2012, 12(4), 341-349. doi: 10.1007/s12012-012-9178-7 PMID: 22763982
  91. Tian, W.; Yang, L.; Liu, Y.; He, J.; Yang, L.; Zhang, Q.; Liu, F.; Li, J.; Liu, J.; Sumi, S.; Shen, Y.; Qi, Z. Resveratrol attenuates doxorubicin-induced cardiotoxicity in rats by up-regulation of vascular endothelial growth factor B. J. Nutr. Biochem., 2020, 79, 108132. doi: 10.1016/j.jnutbio.2019.01.018 PMID: 30857673
  92. Kim, E.N.; Lim, J.H.; Kim, M.Y.; Ban, T.H.; Jang, I.A.; Yoon, H.E.; Park, C.W.; Chang, Y.S.; Choi, B.S. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging., 2018, 10(1), 83-99. doi: 10.18632/aging.101361 PMID: 29326403
  93. He, J.; Yu, J.J.; Xu, Q.; Wang, L.; Zheng, J.Z.; Liu, L.Z.; Jiang, B.H. Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy. Autophagy., 2015, 11(2), 373-384. doi: 10.1080/15548627.2015.1009781 PMID: 25650716
  94. Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Potes, Y.; Shabeeb, D.; Musa, A.E. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life. Sci., 2019, 228, 228-241. doi: 10.1016/j.lfs.2019.05.009 PMID: 31077716
  95. Sogwagwa, N.; Davison, G.; Khan, S.; Solomon, W. P9. Correlation of radiation induced apoptosis with Bax and Bcl-2 protein expression. Physica Medica. Eur. J. Med. Phys., 2016, 32, 163.
  96. Huerta, S.; Gao, X.; Dineen, S.; Kapur, P.; Saha, D.; Meyer, J. Role of p53, Bax, p21, and DNA-PKcs in radiation sensitivity of HCT-116 cells and xenografts. Surgery., 2013, 154(2), 143-151. doi: 10.1016/j.surg.2013.03.012 PMID: 23889944
  97. Werner, L.R.; Huang, S.; Francis, D.M.; Armstrong, E.A.; Ma, F.; Li, C.; Iyer, G.; Canon, J.; Harari, P.M. Small molecule inhibition of mdm2–p53 interaction augments radiation response in human tumors. Mol. Cancer Ther., 2015, 14(9), 1994-2003. doi: 10.1158/1535-7163.MCT-14-1056-T PMID: 26162687
  98. Csuka, O.; RemenÁr, É.; Koronczay, K.; Doleschall, Z.; NÉmeth, G. Predictive value of p53, Bcl2 and bax in the radiotherapy of head and neck cancer. Pathol. Oncol. Res., 1997, 3(3), 204-210. doi: 10.1007/BF02899922 PMID: 18470731
  99. Maebayashi, K.; Mitsuhashi, N.; Takahashi, T.; Sakurai, H.; Niibe, H. P53 mutation decreased radiosensitivity in rat yolk sac tumor cell lines. Int. J. Radiat. Oncol. Biol. Phys., 1999, 44(3), 677-682. doi: 10.1016/S0360-3016(99)00025-5 PMID: 10348299
  100. Sugihara, T.; Murano, H.; Nakamura, M.; Ichinohe, K.; Tanaka, K. p53-Mediated gene activation in mice at high doses of chronic low-dose-rate γ radiation. Radiat. Res., 2010, 175(3), 328-335. doi: 10.1667/RR2446.1 PMID: 21388276
  101. Punnoose, E.A.; Leverson, J.D.; Peale, F.; Boghaert, E.R.; Belmont, L.D.; Tan, N.; Young, A.; Mitten, M.; Ingalla, E.; Darbonne, W.C.; Oleksijew, A.; Tapang, P.; Yue, P.; Oeh, J.; Lee, L.; Maiga, S.; Fairbrother, W.J.; Amiot, M.; Souers, A.J.; Sampath, D. Expression profile of BCL-2, BCL-XL, and MCL-1 predicts pharmacological response to the BCL-2 selective antagonist venetoclax in multiple myeloma models. Mol. Cancer. Ther., 2016, 15(5), 1132-1144. doi: 10.1158/1535-7163.MCT-15-0730 PMID: 26939706
  102. Haimovitz-Friedman, A.; Kolesnick, R.N.; Fuks, Z. Ceramide signaling in apoptosis. Br. Med. Bull., 1997, 53(3), 539-553. doi: 10.1093/oxfordjournals.bmb.a011629 PMID: 9374036
  103. Kim, H.; Yoo, W.S.; Jung, J.H.; Jeong, B.K.; Woo, S.H.; Kim, J.H.; Kim, S.J. Alpha-lipoic acid ameliorates radiation-induced lacrimal gland injury through NFAT5-dependent signaling. Int. J. Mol. Sci., 2019, 20(22), 5691. doi: 10.3390/ijms20225691 PMID: 31766286
  104. Oben, K.Z.; Gachuki, B.W.; Alhakeem, S.S.; McKenna, M.K.; Liang, Y.; St Clair, D.K.; Rangnekar, V.M.; Bondada, S. Radiation induced apoptosis of murine bone marrow cells is independent of early growth response 1 (EGR1). PLoS. One., 2017, 12(1), e0169767. doi: 10.1371/journal.pone.0169767 PMID: 28081176
  105. Komarova, E.A.; Kondratov, R.V.; Wang, K.; Christov, K.; Golovkina, T.V.; Goldblum, J.R.; Gudkov, A.V. Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene, 2004, 23(19), 3265-3271. doi: 10.1038/sj.onc.1207494 PMID: 15064735
  106. Freitas, M.R.D.; Figueiredo, A.A.; Brito, G.A.C.; Leitao, R.F.C.; Carvalho Junior, J.V.; Gomes Junior, R.M.; Ribeiro, R.A. The role of apoptosis in cisplatin-induced ototoxicity in rats. Rev. Bras. Otorrinolaringol., 2009, 75(5), 745-752. doi: 10.1590/S1808-86942009000500022 PMID: 19893946
  107. Xie, W.; Guo, Z.; Gao, F.; Gao, Q.; Wang, D.; Liaw, B.; Cai, Q.; Sun, X.; Wang, X.; Zhao, L. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics, 2018, 8(12), 3284-3307. doi: 10.7150/thno.25220 PMID: 29930730
  108. Rybak, L.P.; Whitworth, C.A.; Mukherjea, D.; Ramkumar, V. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear. Res., 2007, 226(1-2), 157-167. doi: 10.1016/j.heares.2006.09.015 PMID: 17113254
  109. Casares, C.; Ramírez-Camacho, R.; Trinidad, A.; Roldán, A.; Jorge, E.; García-Berrocal, J.R. Reactive oxygen species in apoptosis induced by cisplatin: Review of physiopathological mechanisms in animal models. Eur. Arch. Otorhinolaryngol., 2012, 269(12), 2455-2459.
  110. Callejo, A.; Sedó-Cabezón, L.; Juan, I.; Llorens, J. Cisplatin-induced ototoxicity: Effects, mechanisms and protection strategies. Toxics., 2015, 3(3), 268-293. doi: 10.3390/toxics3030268 PMID: 29051464
  111. Lin, H.Y.; Tang, H.Y.; Keating, T.; Wu, Y.H.; Shih, A.; Hammond, D.; Sun, M.; Hercbergs, A.; Davis, F.B.; Davis, P.J. Resveratrol is pro-apoptotic and thyroid hormone is anti-apoptotic in glioma cells: Both actions are integrin and ERK mediated. Carcinogenesis., 2007, 29(1), 62-69. doi: 10.1093/carcin/bgm239 PMID: 17984113
  112. Lin, H.Y.; Shih, A.I.; Davis, F.B.; Tang, H.Y.; Martino, L.J.; Bennett, J.A.; Davis, P.J. Resveratrol induced serine phosphorylation of p53 causes apoptosis in a mutant p53 prostate cancer cell line. J. Urol., 2002, 168(2), 748-755. doi: 10.1016/S0022-5347(05)64739-8 PMID: 12131363
  113. Wu, X.; Xu, Y.; Zhu, B.; Liu, Q.; Yao, Q.; Zhao, G. Resveratrol induces apoptosis in SGC-7901 gastric cancer cells. Oncol. Lett., 2018, 16(3), 2949-2956. doi: 10.3892/ol.2018.9045 PMID: 30127883
  114. Zhang, S.; Cao, H.J.; Davis, F.B.; Tang, H-Y.; Davis, P.J.; Lin, H-Y. Oestrogen inhibits resveratrol-induced post- translational modification of p53 and apoptosis in breast cancer cells. Br. J. Cancer, 2004, 91(1), 178-185. doi: 10.1038/sj.bjc.6601902 PMID: 15188005
  115. Lin, H.Y.; Sun, M.; Tang, H.Y.; Simone, T.M.; Wu, Y.H.; Grandis, J.R.; Cao, H.J.; Davis, P.J.; Davis, F.B. Resveratrol causes COX-2- and p53-dependent apoptosis in head and neck squamous cell cancer cells. J. Cell. Biochem., 2008, 104(6), 2131-2142. doi: 10.1002/jcb.21772 PMID: 18446786
  116. Liu, Y.; Tong, L.; Luo, Y.; Li, X.; Chen, G.; Wang, Y. Resveratrol inhibits the proliferation and induces the apoptosis in ovarian cancer cells via inhibiting glycolysis and targeting AMPK/mTOR signaling pathway. J. Cell. Biochem., 2018, 119(7), 6162-6172. doi: 10.1002/jcb.26822 PMID: 29663499
  117. Liu, M.H.; Lin, X.L.; Guo, D.M.; Zhang, Y.; Yuan, C.; Tan, T.P.; Chen, Y.D.; Wu, S.J.; Ye, Z.F.; He, J. Resveratrol protects cardiomyocytes from doxorubicin-induced apoptosis through the AMPK/P53 pathway. Mol. Med. Rep., 2016, 13(2), 1281-1286. doi: 10.3892/mmr.2015.4665 PMID: 26675978
  118. Zhang, C.; Feng, Y.; Qu, S.; Wei, X.; Zhu, H.; Luo, Q.; Liu, M.; Chen, G.; Xiao, X. Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc. Res., 2011, 90(3), 538-545. doi: 10.1093/cvr/cvr022 PMID: 21278141
  119. Zhou, X.M.; Zhou, M.L.; Zhang, X.S.; Zhuang, Z.; Li, T.; Shi, J.X.; Zhang, X. Resveratrol prevents neuronal apoptosis in an early brain injury model. J. Surg. Res., 2014, 189(1), 159-165. doi: 10.1016/j.jss.2014.01.062 PMID: 24602480
  120. Zhang, L.; Guo, X.; Xie, W.; Li, Y.; Ma, M.; Yuan, T.; Luo, B. Resveratrol exerts an anti-apoptotic effect on human bronchial epithelial cells undergoing cigarette smoke exposure. Mol. Med. Rep., 2015, 11(3), 1752-1758. doi: 10.3892/mmr.2014.2925 PMID: 25385506
  121. Shoukry, H.S.; Ammar, H.I.; Rashed, L.A.; Zikri, M.B.; Shamaa, A.A.; Abou elfadl, S.G.; Rub, E.A.A.; Saravanan, S.; Dhingra, S. Prophylactic supplementation of resveratrol is more effective than its therapeutic use against doxorubicin induced cardiotoxicity. PLoS One, 2017, 12(7), e0181535. doi: 10.1371/journal.pone.0181535 PMID: 28727797
  122. Muderris, T.; Sağlam, A.; Unsal, D.; Mülazimoğlu, S.; Sevil, E.; Kayhan, H. Efficiency of resveratrol in the prevention and treatment of age-related hearing loss. Exp. Ther. Med., 2021, 23(1), 40. doi: 10.3892/etm.2021.10962 PMID: 34849155
  123. Sin, T.K.; Tam, B.T.; Yung, B.Y.; Yip, S.P.; Chan, L.W.; Wong, C.S.; Ying, M.; Rudd, J.A.; Siu, P.M. Resveratrol protects against doxorubicin-induced cardiotoxicity in aged hearts through the SIRT1-USP7 axis. J. Physiol., 2015, 593(8), 1887-1899. doi: 10.1113/jphysiol.2014.270101 PMID: 25665036
  124. Yang, W.; Park, I.J.; Yun, H.; Im, D.U.; Ock, S.; Kim, J.; Seo, S.M.; Shin, H.Y.; Viollet, B.; Kang, I.; Choe, W.; Kim, S.S.; Ha, J. AMP-activated protein kinase α2 and E2F1 transcription factor mediate doxorubicin-induced cytotoxicity by forming a positive signal loop in mouse embryonic fibroblasts and non-carcinoma cells. J. Biol. Chem., 2014, 289(8), 4839-4852. doi: 10.1074/jbc.M113.496315 PMID: 24398673
  125. Gu, J.; Hu, W.; Song, Z.; Chen, Y.; Zhang, D.; Wang, C. Resveratrol-induced autophagy promotes survival and attenuates doxorubicin-induced cardiotoxicity. Int. Immunopharmacol., 2016, 32, 1-7. doi: 10.1016/j.intimp.2016.01.002 PMID: 26774212
  126. Shati, A.A. Resveratrol improves sperm parameter and testicular apoptosis in cisplatin-treated rats: Effects on ERK1/2, JNK, and Akt pathways. Syst. Biol. Reprod. Med., 2019, 65(3), 236-249. doi: 10.1080/19396368.2018.1541114 PMID: 30507263
  127. Vyas, D.; Laput, G.; Vyas, A. Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. OncoTargets Ther., 2014, 7, 1015-1023. doi: 10.2147/OTT.S60114 PMID: 24959088
  128. Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell. Physiol., 2019, 234(5), 5728-5740. doi: 10.1002/jcp.27442 PMID: 30317564
  129. So, H.; Kim, H.; Lee, J.H.; Park, C.; Kim, Y.; Kim, E.; Kim, J.K.; Yun, K.J.; Lee, K.M.; Lee, H.Y.; Moon, S.K.; Lim, D.J.; Park, R. Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J. Assoc. Res. Otolaryngol., 2007, 8(3), 338-355. doi: 10.1007/s10162-007-0084-9 PMID: 17516123
  130. Kim, S.J.; Kwak, H.J.; Kim, D.S.; Choi, H.M.; Sim, J.E.; Kim, S.H.; Um, J.Y.; Hong, S.H. Protective mechanism of Korean Red Ginseng in cisplatin-induced ototoxicity through attenuation of nuclear factor-κB and caspase-1 activation. Mol. Med. Rep., 2015, 12(1), 315-322. doi: 10.3892/mmr.2015.3396 PMID: 25738645
  131. Levano, S.; Bodmer, D. Loss of STAT1 protects hair cells from ototoxicity through modulation of STAT3, c-Jun, Akt, and autophagy factors. Cell Death Dis., 2015, 6(12), e2019. doi: 10.1038/cddis.2015.362 PMID: 26673664
  132. Sethi, G.; Tergaonkar, V. Potential pharmacological control of the NF-κB pathway. Trends Pharmacol. Sci., 2009, 30(6), 313-321. doi: 10.1016/j.tips.2009.03.004 PMID: 19446347
  133. Nafees, S.; Rashid, S.; Ali, N.; Hasan, S.K.; Sultana, S. Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: Role of NFκB/MAPK pathway. Chem. Biol. Interact., 2015, 231, 98-107. doi: 10.1016/j.cbi.2015.02.021 PMID: 25753322
  134. Kandemir, F.M.; Kucukler, S.; Caglayan, C.; Gur, C.; Batil, A.A.; Gülçin, İ. Therapeutic effects of silymarin and naringin on methotrexate-induced nephrotoxicity in rats: Biochemical evaluation of anti-inflammatory, antiapoptotic, and antiautophagic properties. J. Food Biochem., 2017, 41(5), e12398. doi: 10.1111/jfbc.12398
  135. Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(11), 2563-2582. doi: 10.1016/j.bbamcr.2014.05.014 PMID: 24892271
  136. Kaur, T.; Mukherjea, D.; Sheehan, K.; Jajoo, S.; Rybak, L.P.; Ramkumar, V. Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation. Cell Death Dis., 2011, 2(7), e180. doi: 10.1038/cddis.2011.63 PMID: 21776018
  137. Previati, M.; Lanzoni, I.; Astolfi, L.; Fagioli, F.; Vecchiati, G.; Pagnoni, A.; Martini, A.; Capitani, S. Cisplatin cytotoxicity in organ of corti-derived immortalized cells. J. Cell. Biochem., 2007, 101(5), 1185-1197. doi: 10.1002/jcb.21239 PMID: 17243113
  138. Donnelly, L.E.; Newton, R.; Kennedy, G.E.; Fenwick, P.S.; Leung, R.H.F.; Ito, K.; Russell, R.E.K.; Barnes, P.J. Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am. J. Physiol. Lung Cell. Mol. Physiol., 2004, 287(4), L774-L783. doi: 10.1152/ajplung.00110.2004 PMID: 15180920
  139. Bereswill, S.; Muñoz, M.; Fischer, A.; Plickert, R.; Haag, L.M.; Otto, B.; Kühl, A.A.; Loddenkemper, C.; Göbel, U.B.; Heimesaat, M.M. Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation. PLoS. One., 2010, 5(12), e15099. doi: 10.1371/journal.pone.0015099 PMID: 21151942
  140. Azmoonfar, R.; Amini, P.; Yahyapour, R.; Rezaeyan, A.; Tavassoli, A.; Motevaseli, E.; Khodamoradi, E.; Shabeeb, D.; Musa, A.E.; Najafi, M. Mitigation of radiation-induced pneumonitis and lung fibrosis using alpha-lipoic acid and resveratrol. Antiinflamm. Antiallergy Agents Med. Chem., 2020, 19(2), 149-157. doi: 10.2174/1871523018666190319144020 PMID: 30892165
  141. Buhrmann, C.; Yazdi, M.; Popper, B.; Shayan, P.; Goel, A.; Aggarwal, B.; Shakibaei, M. Resveratrol chemosensitizes TNF-β-induced survival of 5-FU-treated colorectal cancer cells. Nutrients, 2018, 10(7), 888. doi: 10.3390/nu10070888 PMID: 30002278
  142. Said, R.S.; Mantawy, E.M.; El-Demerdash, E. Mechanistic perspective of protective effects of resveratrol against cisplatin-induced ovarian injury in rats: Emphasis on anti-inflammatory and anti-apoptotic effects. Naunyn. Schmiedebergs. Arch. Pharmacol., 2019, 392(10), 1225-1238. doi: 10.1007/s00210-019-01662-x PMID: 31129703
  143. Alarcón de la Lastra, C.; Villegas, I. Resveratrol as an anti-inflammatory and anti-aging agent: Mechanisms and clinical implications. Mol. Nutr. Food Res., 2005, 49(5), 405-430. doi: 10.1002/mnfr.200500022 PMID: 15832402
  144. Udenigwe, C.C.; Ramprasath, V.R.; Aluko, R.E.; Jones, P.J.H. Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr. Rev., 2008, 66(8), 445-454. doi: 10.1111/j.1753-4887.2008.00076.x PMID: 18667005
  145. de Sá Coutinho, D.; Pacheco, M.; Frozza, R.; Bernardi, A. Anti-inflammatory effects of resveratrol: Mechanistic insights. Int. J. Mol. Sci., 2018, 19(6), 1812. doi: 10.3390/ijms19061812 PMID: 29925765
  146. Das, S.; Das, D. Anti-inflammatory responses of resveratrol. Inflamm. Allergy. Drug. Targets., 2007, 6(3), 168-173. doi: 10.2174/187152807781696464 PMID: 17897053

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers