A Novel Phytocolorant, Neoxanthin, as a Potent Chemopreventive: Current Progress and Future Prospects


Cite item

Full Text

Abstract

:Cancer is a general term for a group of similar diseases. It is a combined process that results from an accumulation of abnormalities at different biological levels, which involves changes at both genetic and biochemical levels in the cells. Several modifiable risk factors for each type of cancer include heredity, age, and institutional screening guidelines, including colonoscopy, mammograms, prostate-specific antigen testing, etc., which an individual cannot modify. Although a wide range of resources is available for cancer drugs and developmental studies, the cases are supposed to increase by about 70% in the next two decades due to environmental factors commonly driven by the way of living. The drugs used in cancer prevention are not entirely safe, have potential side effects and are generally unsuitable owing to substantial monetary costs. Interventions during the initiation and progression of cancer can prevent, diminish, or stop the transformation of healthy cells on the way to malignancy. Diet modifications are one of the most promising lifestyle changes that can decrease the threat of cancer development by nearly 40%. Neoxanthin is a xanthophyll pigment found in many microalgae and macroalgae, having significant anti-cancer, antioxidant and chemo-preventive activity. In this review, we have focused on the anti-cancer activity of neoxanthin on different cell lines and its cancer-preventive activity concerning obesity and oxidative stress. In addition to this, the preclinical studies and future perspectives are also discussed in this review.

About the authors

Sudhamayee Parida

Post Graduate Department of Botany, Algal Biotechnology and Molecular Systematics Laboratory, Berhampur University

Email: info@benthamscience.net

Mrutyunjay Jena

Post Graduate Department of Botany, Algal Biotechnology and Molecular Systematics Laboratory, Berhampur University

Author for correspondence.
Email: info@benthamscience.net

Akshaya Behera

Post Graduate Department of Botany, Algal Biotechnology and Molecular Systematics Laboratory, Berhampur University

Email: info@benthamscience.net

Amiya Mandal

Post Graduate Department of Botany, Algal Biotechnology and Molecular Systematics Laboratory, Berhampur University

Email: info@benthamscience.net

Rabindra Nayak

Post Graduate Department of Botan, Algal Biotechnology and Molecular Systematics Laboratory,Berhampur University

Email: info@benthamscience.net

Srimanta Patra

Department of Life Science, NIT Rourkel

Email: info@benthamscience.net

References

  1. Zhong, S.; Fields, C.R.; Su, N.; Pan, Y-X.; Robertson, K.D. Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene, 2007, 26(18), 2621-2634. doi: 10.1038/sj.onc.1210041 PMID: 17043644
  2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  3. Rowles, J.L., III; Erdman, J.W.Jr. Carotenoids and their role in cancer prevention. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2020, 1865(11), 158613. doi: 10.1016/j.bbalip.2020.158613 PMID: 31935448
  4. Bray, F.; McCarron, P.; Parkin, D.M. The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res., 2004, 6(6), 229-239. doi: 10.1186/bcr932 PMID: 15535852
  5. Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans., 2018, 47(19), 6645-6653. doi: 10.1039/C8DT00838H PMID: 29632935
  6. Sen, S.; Chakraborty, R. Oxidative stress: diagnostics, prevention, and therapy. ACS Publications, 2011, 1-37. doi: 10.1021/bk-2011-1083.ch001
  7. Ferdous, U.T.; Yusof, Z.N.B. Medicinal prospects of antioxidants from algal sources in cancer therapy. Front. Pharmacol., 2021, 12, 593116. doi: 10.3389/fphar.2021.593116 PMID: 33746748
  8. Raza, M.H.; Siraj, S.; Arshad, A.; Waheed, U.; Aldakheel, F.; Alduraywish, S.; Arshad, M. ROS-modulated therapeutic approaches in cancer treatment. J. Cancer Res. Clin. Oncol., 2017, 143(9), 1789-1809. doi: 10.1007/s00432-017-2464-9 PMID: 28647857
  9. Morry, J.; Ngamcherdtrakul, W.; Yantasee, W. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol., 2017, 11, 240-253. doi: 10.1016/j.redox.2016.12.011 PMID: 28012439
  10. Mut-Salud, N.; Álvarez, P.J.; Garrido, J.M.; Carrasco, E.; Aránega, A.; Rodríguez-Serrano, F. Antioxidant intake and antitumor therapy: Toward nutritional recommendations for optimal results. Oxid Med Cell Longev, 2016, 2016, 6719534. doi: 10.1155/2016/6719534
  11. Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116. doi: 10.1007/s11095-008-9661-9 PMID: 18626751
  12. Krinsky, N.I.; Johnson, E.J. Carotenoid actions and their relation to health and disease. Mol. Aspects Med., 2005, 26(6), 459-516. doi: 10.1016/j.mam.2005.10.001 PMID: 16309738
  13. Niyogi, K.K.; Björkman, O.; Grossman, A.R. The roles of specific xanthophylls in photoprotection. Proc. Natl. Acad. Sci. USA, 1997, 94(25), 14162-14167. doi: 10.1073/pnas.94.25.14162 PMID: 9391170
  14. Fiedor, L.; Zbyradowski, M.; Pilch, M. Tetrapyrrole pigments of photosynthetic antennae and reaction centers of higher plants: Structures, biophysics, functions, biochemistry, mechanisms of regulation, applications. Adv. Bot. Res., 2019, 90, 1-33. doi: 10.1016/bs.abr.2019.04.001
  15. Grujić, V.J.; Todorović, B.; Kranvogl, R.; Ciringer, T.; Ambrožič-Dolinšek, J. Diversity and content of carotenoids and other pigments in the transition from the green to the red stage of Haematococcus pluvialis microalgae identified by HPLC-DAD and LC-QTOF-MS. Plants, 2022, 11(8), 1026. doi: 10.3390/plants11081026 PMID: 35448754
  16. Khachik, F.; Beecher, G.R.; Whittaker, N.F. Separation, identification, and quantification of the major carotenoid and chlorophyll constituents in extracts of several green vegetables by liquid chromatography. J. Agric. Food Chem., 1986, 34(4), 603-616. doi: 10.1021/jf00070a006
  17. Domonkos, I.; Kis, M.; Gombos, Z.; Ughy, B. Carotenoids, versatile components of oxygenic photosynthesis. Prog. Lipid Res., 2013, 52(4), 539-561. doi: 10.1016/j.plipres.2013.07.001 PMID: 23896007
  18. Wang, K.; Tu, W.; Liu, C.; Rao, Y.; Gao, Z.; Yang, C. 9-cis-Neoxanthin in light harvesting complexes of photosystem II regulates the binding of violaxanthin and xanthophyll cycle. Plant Physiol., 2017, 174(1), 86-96. doi: 10.1104/pp.17.00029 PMID: 28320865
  19. Molnár, J.; Gyémánt, N.; Mucsi, I.; Molnár, A.; Szabó, M.; Körtvélyesi, T.; Varga, A.; Molnár, P.; Tóth, G. Modulation of multidrug resistance and apoptosis of cancer cells by selected carotenoids. In vivo, 2004, 18(2), 237-244. PMID: 15113052
  20. Saini, R.K.; Moon, S.H.; Gansukh, E.; Keum, Y.S. An efficient one-step scheme for the purification of major xanthophyll carotenoids from lettuce, and assessment of their comparative anticancer potential. Food Chem., 2018, 266, 56-65. doi: 10.1016/j.foodchem.2018.05.104 PMID: 30381226
  21. Jungalwala, F.B.; Cama, H.R. Carotenoids in Delonix regia (Gul Mohr) flower. Biochem. J., 1962, 85(1), 1-8. doi: 10.1042/bj0850001 PMID: 14029913
  22. Goodwin, T. The biochemistry of the carotenoids: volume I plants; Springer Science & Business Media, 2012.
  23. Takaichi, S.; Mirauro, M. Distribution and geometric isomerism of neoxanthin in oxygenic phototrophs: 9′-cis, a sole molecular form. Plant Cell Physiol., 1998, 39(9), 968-977. doi: 10.1093/oxfordjournals.pcp.a029461
  24. Märki-Fischer, E.; Eugster, C.H. Neoflor und 6-epineoflor aus blüten von trollius europaeus; Hochfeld- 1 H-NMR-spektren von neoxanthin und (9′ Z )-neoxanthin. Helv. Chim. Acta, 1990, 73(6), 1637-1643. doi: 10.1002/hlca.19900730608
  25. Terasaki, M.; Mutoh, M.; Fujii, G.; Takahashi, M.; Ishigamori, R.; Masuda, S. Potential ability of xanthophylls to prevent obesity-associated cancer. World J. Pharmacol., 2014, 3(4), 140-152. doi: 10.5497/wjp.v3.i4.140
  26. Biehler, E.; Alkerwi, A.; Hoffmann, L.; Krause, E.; Guillaume, M.; Lair, M.L.; Bohn, T. Contribution of violaxanthin, neoxanthin, phytoene and phytofluene to total carotenoid intake: Assessment in Luxembourg. J. Food Compos. Anal., 2012, 25(1), 56-65. doi: 10.1016/j.jfca.2011.07.005
  27. Asai, A.; Yonekura, L.; Nagao, A. Low bioavailability of dietary epoxyxanthophylls in humans. Br. J. Nutr., 2008, 100(2), 273-277. doi: 10.1017/S0007114507895468 PMID: 18186952
  28. Barua, A.B.; Olson, J.A. Xanthophyll epoxides, unlike β-carotene monoepoxides, are not detectibly absorbed by humans. J. Nutr., 2001, 131(12), 3212-3215. doi: 10.1093/jn/131.12.3212 PMID: 11739868
  29. Goss, R.; Böhme, K.; Wilhelm, C. The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin: consequences for the mechanism of enhanced non-photochemical energy dissipation. Planta, 1998, 205(4), 613-621. doi: 10.1007/s004250050364
  30. Grant, O.M.; Tronina, Ł.; García-Plazaola, J.I.; Esteban, R.; Pereira, J.S.; Chaves, M.M. Resilience of a semi-deciduous shrub, Cistus salvifolius, to severe summer drought and heat stress. Funct. Plant Biol., 2015, 42(2), 219-228. doi: 10.1071/FP14081 PMID: 32480667
  31. Goss, R.; Latowski, D. Lipid dependence of xanthophyll cycling in higher plants and algae. Front. Plant Sci., 2020, 11, 455. doi: 10.3389/fpls.2020.00455 PMID: 32425962
  32. Roy, S.; Llewellyn, C.A.; Egeland, E.S.; Johnsen, G. Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography; Cambridge University Press, 2011. doi: 10.1017/CBO9780511732263
  33. Inbaraj, B.S.; Chien, J.T.; Chen, B.H. Improved high performance liquid chromatographic method for determination of carotenoids in the microalga Chlorella pyrenoidosa. J. Chromatogr. A, 2006, 1102(1-2), 193-199. doi: 10.1016/j.chroma.2005.10.055 PMID: 16298378
  34. Chue, K.T.; Ten, L.N.; Oh, Y.K.; Woo, S.G.; Lee, M.; Yoo, S.A. Carotinoid compositions of five microalga species. Chem. Nat. Compd., 2012, 48(1), 141-142. doi: 10.1007/s10600-012-0183-7
  35. Guedes, A.; Amaro, H.M.; Pereira, R.D.; Seabra, R.; Tamagnini, P.; Moradas-Ferreira, P.; Malcata, F.X. Attempts to identify natural antioxidants bearing DNA protection features, produced by scenedesmus Obliquus. 6th European Conference on Marine Natural Products, 2009, p. 118.
  36. Sansone, C.; Galasso, C.; Orefice, I.; Nuzzo, G.; Luongo, E.; Cutignano, A.; Romano, G.; Brunet, C.; Fontana, A.; Esposito, F.; Ianora, A. The green microalga Tetraselmis suecica reduces oxidative stress and induces repairing mechanisms in human cells. Sci. Rep., 2017, 7(1), 41215. doi: 10.1038/srep41215 PMID: 28117410
  37. Sathasivam, R.; Ki, J.S. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Mar. Drugs, 2018, 16(1), 26. doi: 10.3390/md16010026 PMID: 29329235
  38. Grung, M.; Liaaen-Jensen, S. Algal carotenoids 52; secondary carotenoids of algae 3; carotenoids in a natural bloom of Euglena sanguinea. Biochem. Syst. Ecol., 1993, 21(8), 757-763. doi: 10.1016/0305-1978(93)90088-9
  39. Bjørnland, T. Chlorophylls and carotenoids of the marine alga Eutreptiella gymnastica. Phytochemistry, 1982, 21(7), 1715-1719. doi: 10.1016/S0031-9422(82)85046-2
  40. Dautermann, O.; Lyska, D.; Andersen-Ranberg, J.; Becker, M.; Fröhlich-Nowoisky, J.; Gartmann, H.; Krämer, L.C.; Mayr, K.; Pieper, D.; Rij, L.M.; Wipf, H.M.L.; Niyogi, K.K.; Lohr, M. An algal enzyme required for biosynthesis of the most abundant marine carotenoids. Sci. Adv., 2020, 6(10), eaaw9183. doi: 10.1126/sciadv.aaw9183 PMID: 32181334
  41. Hussein, H.A.; Maulidiani, M.; Abdullah, M.A. Microalgal metabolites as anti-cancer/anti-oxidant agents reduce cytotoxicity of elevated silver nanoparticle levels against non-cancerous vero cells. Heliyon, 2020, 6(10), e05263. doi: 10.1016/j.heliyon.2020.e05263 PMID: 33102866
  42. Haugan, J.A.; Liaaen-Jensen, S. Algal carotenoids 54. Carotenoids of brown algae (Phaeophyceae). Biochem. Syst. Ecol., 1994, 22(1), 31-41. doi: 10.1016/0305-1978(94)90112-0
  43. Uragami, C.; Galzerano, D.; Gall, A.; Shigematsu, Y.; Meisterhans, M.; Oka, N.; Iha, M.; Fujii, R.; Robert, B.; Hashimoto, H. Light-dependent conformational change of neoxanthin in a siphonous green alga, Codium intricatum, revealed by Raman spectroscopy. Photosynth. Res., 2014, 121(1), 69-77. doi: 10.1007/s11120-014-0011-y PMID: 24861896
  44. Benson, E.; Cobb, A.H. The separation, identification and quantitative determination of photopigments from the siphonaceous marine alga Codium fragile. New Phytol., 1981, 88(4), 627-632. doi: 10.1111/j.1469-8137.1981.tb01738.x
  45. Qin, X.; Wang, W.; Chang, L.; Chen, J.; Wang, P.; Zhang, J.; He, Y.; Kuang, T.; Shen, J.R. Isolation and characterization of a PSI–LHCI super-complex and its sub-complexes from a siphonaceous marine green alga, Bryopsis Corticulans. Photosynth. Res., 2015, 123(1), 61-76. doi: 10.1007/s11120-014-0039-z PMID: 25214185
  46. Giossi, C.; Cartaxana, P.; Cruz, S. Photoprotective role of neoxanthin in plants and algae. Molecules, 2020, 25(20), 4617. doi: 10.3390/molecules25204617 PMID: 33050573
  47. Parry, A.D.; Horgan, R. Carotenoids and abscisic acid (ABA) biosynthesis in higher plants. Physiol. Plant., 1991, 82(2), 320-326. doi: 10.1111/j.1399-3054.1991.tb00100.x
  48. Yoshii, Y.; Takaichi, S.; Maoka, T.; Inouye, I. Photosynthetic pigment composition in the primitive green alga Mesostigma viride (Prasinophyceae): phylogenetic and evolutionary implications 1. J. Phycol., 2003, 39(3), 570-576. doi: 10.1046/j.1529-8817.2003.02098.x
  49. Hall, J.; Delwiche, C. In the shadow of giants. Syst. Assoc. Spec. Vol., 2007, 20072976, 155-169. doi: 10.1201/9780849379901.ch8
  50. Christa, G.; Cruz, S.; Jahns, P.; de Vries, J.; Cartaxana, P.; Esteves, A.C.; Serôdio, J.; Gould, S.B. Photoprotection in a monophyletic branch of chlorophyte algae is independent of energy-dependent quenching (qE). New Phytol., 2017, 214(3), 1132-1144. doi: 10.1111/nph.14435 PMID: 28152190
  51. Singh, R.N.; Sharma, S. Development of suitable photobioreactor for algae production – A review. Renew. Sustain. Energy Rev., 2012, 16(4), 2347-2353. doi: 10.1016/j.rser.2012.01.026
  52. Bajguz, A.; Piotrowska-Niczyporuk, A. Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol. Biochem., 2013, 71, 290-297. doi: 10.1016/j.plaphy.2013.08.003 PMID: 23994360
  53. Schoepp, N.G.; Stewart, R.L.; Sun, V.; Quigley, A.J.; Mendola, D.; Mayfield, S.P.; Burkart, M.D. System and method for research-scale outdoor production of microalgae and cyanobacteria. Bioresour. Technol., 2014, 166, 273-281. doi: 10.1016/j.biortech.2014.05.046 PMID: 24926599
  54. Sathasivam, R.; Radhakrishnan, R.; Kim, J.K.; Park, S.U. An update on biosynthesis and regulation of carotenoids in plants. S. Afr. J. Bot., 2021, 140, 290-302. doi: 10.1016/j.sajb.2020.05.015
  55. Sun, T.; Li, L. Toward the ‘golden’ era: The status in uncovering the regulatory control of carotenoid accumulation in plants. Plant Sci., 2020, 290, 110331. doi: 10.1016/j.plantsci.2019.110331 PMID: 31779888
  56. Miras-Moreno, B.; Pedreño, M.Á.; Romero, L.A. Bioactivity and bioavailability of phytoene and strategies to improve its production. Phytochem. Rev., 2019, 18(2), 359-376. doi: 10.1007/s11101-018-9597-6
  57. Gómez-García, M.; Ochoa-Alejo, N. Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.). Int. J. Mol. Sci., 2013, 14(9), 19025-19053. doi: 10.3390/ijms140919025 PMID: 24065101
  58. Dautermann, O.; Lohr, M. A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosynthetic eukaryotes. Plant J., 2017, 92(5), 879-891. doi: 10.1111/tpj.13725 PMID: 28949044
  59. Hejazi, M.A.; de Lamarliere, C.; Rocha, J.M.S.; Vermuë, M.; Tramper, J.; Wijffels, R.H. Selective extraction of carotenoids from the microalga Dunaliella salina with retention of viability. Biotechnol. Bioeng., 2002, 79(1), 29-36. doi: 10.1002/bit.10270 PMID: 17590929
  60. Mojaat, M.; Foucault, A.; Pruvost, J.; Legrand, J. Optimal selection of organic solvents for biocompatible extraction of β-carotene from Dunaliella salina. J. Biotechnol., 2008, 133(4), 433-441. doi: 10.1016/j.jbiotec.2007.11.003 PMID: 18155312
  61. Anaëlle, T.; Serrano Leon, E.; Laurent, V.; Elena, I.; Mendiola, J.A.; Stéphane, C.; Nelly, K.; Stéphane, L.B.; Luc, M.; Valérie, S.P. Green improved processes to extract bioactive phenolic compounds from brown macroalgae using Sargassum muticum as model. Talanta, 2013, 104, 44-52. doi: 10.1016/j.talanta.2012.10.088 PMID: 23597887
  62. Semelsberger, T.A.; Borup, R.L.; Greene, H.L. Dimethyl ether (DME) as an alternative fuel. J. Power Sources, 2006, 156(2), 497-511. doi: 10.1016/j.jpowsour.2005.05.082
  63. Eghbali Babadi, F.; Boonnoun, P.; Nootong, K.; Powtongsook, S.; Goto, M.; Shotipruk, A. Identification of carotenoids and chlorophylls from green algae Chlorococcum humicola and extraction by liquefied dimethyl ether. Food Bioprod. Process., 2020, 123, 296-303. doi: 10.1016/j.fbp.2020.07.008
  64. Kotake-Nara, E.; Sugawara, T.; Nagao, A. Antiproliferative effect of neoxanthin and fucoxanthin on cultured cells. Fish. Sci., 2005, 71(2), 459-461. doi: 10.1111/j.1444-2906.2005.00986.x
  65. Terasaki, M.; Asai, A.; Zhang, H.; Nagao, A. A highly polar xanthophyll of 9′-cis-neoxanthin induces apoptosis in HCT116 human colon cancer cells through mitochondrial dysfunction. Mol. Cell. Biochem., 2007, 300(1-2), 227-237. doi: 10.1007/s11010-006-9387-0 PMID: 17186379
  66. Ugocsai, K.; Varga, A.; Molnár, P.; Antus, S.; Molnár, J. Effects of selected flavonoids and carotenoids on drug accumulation and apoptosis induction in multidrug-resistant colon cancer cells expressing MDR1/LRP. In vivo, 2005, 19(2), 433-438. PMID: 15796208
  67. Kotake-Nara, E.; Asai, A.; Nagao, A. Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells. Cancer Lett., 2005, 220(1), 75-84. doi: 10.1016/j.canlet.2004.07.048 PMID: 15737690
  68. Eugster, C.H. Chemical derivatization: microscale tests for the presence of common functional groups in carotenoid. In: Carotenoids, Vol. 1A, Isolation and Analysis; 1995; pp. 71-80.
  69. Asai, A.; Terasaki, M.; Nagao, A. An epoxide-furanoid rearrangement of spinach neoxanthin occurs in the gastrointestinal tract of mice and in vitro: formation and cytostatic activity of neochrome stereoisomers. J. Nutr., 2004, 134(9), 2237-2243. doi: 10.1093/jn/134.9.2237 PMID: 15333710
  70. Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47. doi: 10.1016/j.cmet.2015.12.006 PMID: 26771115
  71. Sharif, F.; Rasul, A.; Ashraf, A.; Hussain, G.; Younis, T.; Sarfraz, I.; Chaudhry, M.A.; Bukhari, S.A.; Ji, X.Y.; Selamoglu, Z.; Ali, M. Phosphoglycerate mutase 1 in cancer: A promising target for diagnosis and therapy. IUBMB Life, 2019, 71(10), 1418-1427. doi: 10.1002/iub.2100 PMID: 31169978
  72. Shankar Babu, M.; Mahanta, S.; Lakhter, A.J.; Hato, T.; Paul, S.; Naidu, S.R. Lapachol inhibits glycolysis in cancer cells by targeting pyruvate kinase M2. PLoS One, 2018, 13(2), e0191419. doi: 10.1371/journal.pone.0191419 PMID: 29394289
  73. Dayton, T.L.; Jacks, T.; Vander Heiden, M.G. PKM 2, cancer metabolism, and the road ahead. EMBO Rep., 2016, 17(12), 1721-1730. doi: 10.15252/embr.201643300 PMID: 27856534
  74. Zahra, K.; Dey, T.; Ashish; Mishra, S.P.; Pandey, U. Pyruvate kinase M2 and cancer: The role of PKM2 in promoting tumorigenesis. Front. Oncol., 2020, 10, 159. doi: 10.3389/fonc.2020.00159 PMID: 32195169
  75. Mediratta, K.; El-Sahli, S.; D’Costa, V.; Wang, L. Current progresses and challenges of immunotherapy in triple-negative breast cancer. Cancers, 2020, 12(12), 3529. doi: 10.3390/cancers12123529 PMID: 33256070
  76. Rasul, A.; Riaz, A.; Wei, W.; Sarfraz, I.; Hassan, M.; Li, J.; Asif, F.; Adem, Ş.; Bukhari, S.A.; Asrar, M.; Li, X. Mangifera indica extracts as novel PKM2 inhibitors for treatment of triple negative breast cancer. BioMed Res. Int., 2021, 2021, 1-11. doi: 10.1155/2021/5514669 PMID: 34136566
  77. Kusters, J.G.; van Vliet, A.H.M.; Kuipers, E.J. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev., 2006, 19(3), 449-490. doi: 10.1128/CMR.00054-05 PMID: 16847081
  78. Sachs, G.; Weeks, D.L.; Melchers, K.; Scott, D.R. The gastric biology of Helicobacter pylori. Annu. Rev. Physiol., 2003, 65(1), 349-369. doi: 10.1146/annurev.physiol.65.092101.142156 PMID: 12471160
  79. Hatakeyama, M. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(4), 196-219. doi: 10.2183/pjab.93.013 PMID: 28413197
  80. Senda, Y. CagA. In: Helicobacter pylori; Springer, 2016; pp. 33-47. doi: 10.1007/978-4-431-55705-0_3
  81. Racha, S.; Wongrattanakamon, P.; Raiwa, A.; Jiranusornkul, S. Discovery of novel potent small natural molecules able to enhance attenuation of the pathobiology of gastric cancer-associated Helicobacter pylori by molecular modeling. Int. J. Pept. Res. Ther., 2019, 25(3), 881-896. doi: 10.1007/s10989-018-9737-2
  82. Okada, T.; Nakai, M.; Maeda, H.; Hosokawa, M.; Sashima, T.; Miyashita, K. Suppressive effect of neoxanthin on the differentiation of 3T3-L1 adipose cells. J. Oleo Sci., 2008, 57(6), 345-351. doi: 10.5650/jos.57.345 PMID: 18469497
  83. Rothwell, N.J.; Stock, M.J. A role for brown adipose tissue in diet-induced thermogenesis. Obes. Res., 1997, 5(6), 650-656. doi: 10.1002/j.1550-8528.1997.tb00591.x PMID: 9449154
  84. Smith, R.E.; Horwitz, B.A. Brown fat and thermogenesis. Physiol. Rev., 1969, 49(2), 330-425. doi: 10.1152/physrev.1969.49.2.330 PMID: 4888392
  85. Miyashita, K.; Maeda, H.; Tsukui, T.; Okada, T.; Hosokawa, M. Anti-obesity of allene carotenoids, fucoxanthin and neoxanthin from seaweeds and vegetables. In II International Symposium on Human Health Effects of Fruits and Vegetables: FAVHEALTH 2007 841, 2007, pp. 167-172.
  86. Saed, G.M.; Diamond, M.P.; Fletcher, N.M. Updates of the role of oxidative stress in the pathogenesis of ovarian cancer. Gynecol. Oncol., 2017, 145(3), 595-602. doi: 10.1016/j.ygyno.2017.02.033 PMID: 28237618
  87. Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med., 2017, 104, 144-164. doi: 10.1016/j.freeradbiomed.2017.01.004 PMID: 28088622
  88. Kashyap, D.; Tuli, H.S.; Sak, K.; Garg, V.K.; Goel, N.; Punia, S.; Chaudhary, A. Role of reactive oxygen species in cancer progression. Curr. Pharmacol. Rep., 2019, 5(2), 79-86. doi: 10.1007/s40495-019-00171-y
  89. Griffith, O.W.; Meister, A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J. Biol. Chem., 1979, 254(16), 7558-7560. doi: 10.1016/S0021-9258(18)35980-5 PMID: 38242
  90. Ilghami, R.; Barzegari, A.; Mashayekhi, M.R.; Letourneur, D.; Crepin, M.; Pavon-Djavid, G. The conundrum of dietary antioxidants in cancer chemotherapy. Nutr. Rev., 2020, 78(1), 65-76. doi: 10.1093/nutrit/nuz027 PMID: 31407778
  91. Şahin, S.; Aybastıer, Ö.; Dawbaa, S.; Karkar, B.; Çakmak, T. Study of the ability of lutein and neoxanthin as standards and in the extract of Chlamydomonas reinhardtii to prevent oxidatively induced DNA base damage using ultrasensitive GC–MS/MS analysis. Chromatographia, 2020, 83(8), 919-926. doi: 10.1007/s10337-020-03918-8
  92. Chang, J.M.; Lin, J.K. Isolation of neoxanthin from spinach and its prevention on lipid peroxidation. J. Chin. Med., 1993, 4(3), 235-245.
  93. Abel, E.L.; Angel, J.M.; Kiguchi, K.; DiGiovanni, J. Multi-stage chemical carcinogenesis in mouse skin: Fundamentals and applications. Nat. Protoc., 2009, 4(9), 1350-1362. doi: 10.1038/nprot.2009.120 PMID: 19713956
  94. Hwa Yun, B.; Guo, J.; Bellamri, M.; Turesky, R.J. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. Mass Spectrom. Rev., 2020, 39(1-2), 55-82. doi: 10.1002/mas.21570 PMID: 29889312
  95. Garg, R.; Ramchandani, A.G.; Maru, G.B. Curcumin decreases 12- O -tetradecanoylphorbol-13-acetate-induced protein kinase C translocation to modulate downstream targets in mouse skin. Carcinogenesis, 2008, 29(6), 1249-1257. doi: 10.1093/carcin/bgn114 PMID: 18477648
  96. Bomser, J.; Singletary, K.; Meline, B. Inhibition of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin ornithine decarboxylase and protein kinase C by polyphenolics from grapes. Chem. Biol. Interact., 2000, 127(1), 45-59. doi: 10.1016/S0009-2797(00)00170-8 PMID: 10903418
  97. Hobbs, C.A.; Paul, B.A.; Gilmour, S.K. Deregulation of polyamine biosynthesis alters intrinsic histone acetyltransferase and deacetylase activities in murine skin and tumors. Cancer Res., 2002, 62(1), 67-74. PMID: 11782361
  98. Syed, N Pomegranate extracts and cancer prevention: Molecular and cellular activities. Anticancer Agents Med Chem, 2013, 13(8), 1149-1161.
  99. Hajleh, M.A.; Al-Dujaili, A. Anti-cancer activity of pomegranate and its biophenols; general review. EC Nutrition, 2016, 6, 28-52.
  100. Kelloff, G.J.; Boone, C.W.; Steele, V.E.; Fay, J.R.; Lubet, R.A.; Crowell, J.A.; Sigman, C.C. Mechanistic considerations in chemopreventive drug development. J. Cell. Biochem., 1994, 56(S20), 1-24. doi: 10.1002/jcb.240560903 PMID: 7616736
  101. Chang, J.M.; Chen, W.C.; Hong, D.; Lin, J.K. The inhibition of DMBA-induced carcinogenesis by neoxanthin in hamster buccal pouch. Nutr. Cancer, 1995, 24(3), 325-333. doi: 10.1080/01635589509514421 PMID: 8610051
  102. Hong, R.C. The cancer-promoting effects of 12-O-tetradecanoyI-phorbol-13-acetate and collagenase in hamster buccal pouch carcinogenesis. Chinese Dental J., 1997, 16(3), 148-155.
  103. Evan, G.I.; Vousden, K.H. Proliferation, cell cycle and apoptosis in cancer. Nature, 2001, 411(6835), 342-348. doi: 10.1038/35077213 PMID: 11357141
  104. Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166. doi: 10.1038/nrc2602 PMID: 19238148
  105. Dembitsky, V.M.; Maoka, T. Allenic and cumulenic lipids. Prog. Lipid Res., 2007, 46(6), 328-375. doi: 10.1016/j.plipres.2007.07.001 PMID: 17765976

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers