Modulatory Role of Phytochemicals/Natural Products in Cancer Immunotherapy


Cite item

Full Text

Abstract

:Immunotherapy is a newly emerging and effective approach to treating cancer. However, there are many challenges associated with using checkpoint inhibitors in this treatment strategy. The component of the tumor microenvironment plays a crucial role in antitumor immune response, regulating tumor immune surveillance and immunological evasion. Natural products/phytochemicals can modulate the tumor microenvironment and function as immunomodulatory agents. In clinical settings, there is a strong need to develop synergistic combination regimens using natural products that can effectively enhance the therapeutic benefits of immune checkpoint inhibitors relative to their effectiveness as single therapies. The review discusses immunotherapy, its side effects, and a summary of evidence suggesting the use of natural products to modulate immune checkpoint pathways.

About the authors

Yadu Vijayan

Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB)

Email: info@benthamscience.net

Jaskirat Sandhu

Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB)

Email: info@benthamscience.net

Kuzhuvelil Harikumar

Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Debela, D.T.; Muzazu, S.G.Y.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med., 2021, 9, 20503121211034366. doi: 10.1177/20503121211034366 PMID: 34408877
  2. Falzone, L.; Salomone, S.; Libra, M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol., 2018, 9, 1300. doi: 10.3389/fphar.2018.01300 PMID: 30483135
  3. Dobosz, P.; Dzieciątkowski, T. The intriguing history of cancer immunotherapy. Front. Immunol., 2019, 10, 2965. doi: 10.3389/fimmu.2019.02965 PMID: 31921205
  4. Thomas, L. On immunosurveillance in human cancer. Yale J. Biol. Med., 1982, 55(3-4), 329-333. PMID: 6758376
  5. Debien, V.; De Caluwé, A.; Wang, X.; Piccart-Gebhart, M.; Tuohy, V.K.; Romano, E.; Buisseret, L. Immunotherapy in breast cancer: An overview of current strategies and perspectives. NPJ Breast Cancer, 2023, 9(1), 7. doi: 10.1038/s41523-023-00508-3 PMID: 36781869
  6. Mishra, A.K.; Ali, A.; Dutta, S.; Banday, S.; Malonia, S.K. Emerging trends in immunotherapy for cancer. Diseases, 2022, 10(3), 60. doi: 10.3390/diseases10030060 PMID: 36135216
  7. Zhao, W.; Jin, L.; Chen, P.; Li, D.; Gao, W.; Dong, G. Colorectal cancer immunotherapy-Recent progress and future directions. Cancer Lett., 2022, 545, 215816. doi: 10.1016/j.canlet.2022.215816 PMID: 35810989
  8. Gumber, D.; Wang, L.D. Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion. E.Bio.Medicine, 2022, 77, 103941. doi: 10.1016/j.ebiom.2022.103941 PMID: 35301179
  9. Kamrani, A.; Hosseinzadeh, R.; Shomali, N.; Heris, J.A.; Shahabi, P.; Mohammadinasab, R.; Sadeghvand, S.; Ghahremanzadeh, K.; Sadeghi, M.; Akbari, M. New immunotherapeutic approaches for cancer treatment. Pathol. Res. Pract., 2023, 248, 154632. doi: 10.1016/j.prp.2023.154632 PMID: 37480597
  10. Zhang, Y.; Xue, W.; Xu, C.; Nan, Y.; Mei, S.; Ju, D.; Wang, S.; Zhang, X. Innate immunity in cancer biology and therapy. Int. J. Mol. Sci., 2023, 24(14), 11233. doi: 10.3390/ijms241411233 PMID: 37510993
  11. Bretscher, P.A. A two-step, two-signal model for the primary activation of precursor helper T cells. Proc. Natl. Acad. Sci., 1999, 96(1), 185-190. doi: 10.1073/pnas.96.1.185 PMID: 9874793
  12. Tivol, E.A.; Borriello, F.; Schweitzer, A.N.; Lynch, W.P.; Bluestone, J.A.; Sharpe, A.H. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 1995, 3(5), 541-547. doi: 10.1016/1074-7613(95)90125-6 PMID: 7584144
  13. Waterhouse, P.; Penninger, J.M.; Timms, E.; Wakeham, A.; Shahinian, A.; Lee, K.P.; Thompson, C.B.; Griesser, H.; Mak, T.W. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 1995, 270(5238), 985-988. doi: 10.1126/science.270.5238.985 PMID: 7481803
  14. Nishimura, H.; Nose, M.; Hiai, H.; Minato, N.; Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity, 1999, 11(2), 141-151. doi: 10.1016/S1074-7613(00)80089-8 PMID: 10485649
  15. Nishimura, H.; Okazaki, T.; Tanaka, Y.; Nakatani, K.; Hara, M.; Matsumori, A.; Sasayama, S.; Mizoguchi, A.; Hiai, H.; Minato, N.; Honjo, T. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science, 2001, 291(5502), 319-322. doi: 10.1126/science.291.5502.319 PMID: 11209085
  16. Walunas, T.L.; Lenschow, D.J.; Bakker, C.Y.; Linsley, P.S.; Freeman, G.J.; Green, J.M.; Thompson, C.B.; Bluestone, J.A. CTLA-4 can function as a negative regulator of T cell activation. Immunity, 1994, 1(5), 405-413. doi: 10.1016/1074-7613(94)90071-X PMID: 7882171
  17. Brunner, M.C.; Chambers, C.A.; Chan, F.K.M.; Hanke, J.; Winoto, A.; Allison, J.P. CTLA-4-Mediated inhibition of early events of T cell proliferation. J. Immunol., 1999, 162(10), 5813-5820. doi: 10.4049/jimmunol.162.10.5813 PMID: 10229815
  18. Egen, J.G.; Allison, J.P. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity, 2002, 16(1), 23-35. doi: 10.1016/S1074-7613(01)00259-X PMID: 11825563
  19. Chambers, C.A.; Kuhns, M.S.; Egen, J.G.; Allison, J.P. CTLA-4-mediated inhibition in regulation of T cell responses: Mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol., 2001, 19(1), 565-594. doi: 10.1146/annurev.immunol.19.1.565 PMID: 11244047
  20. Krummel, M.F.; Allison, J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med., 1995, 182(2), 459-465. doi: 10.1084/jem.182.2.459 PMID: 7543139
  21. Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 pathways. Am. J. Clin. Oncol., 2016, 39(1), 98-106. doi: 10.1097/COC.0000000000000239 PMID: 26558876
  22. Friedline, R.H.; Brown, D.S.; Nguyen, H.; Kornfeld, H.; Lee, J.; Zhang, Y.; Appleby, M.; Der, S.D.; Kang, J.; Chambers, C.A. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J. Exp. Med., 2009, 206(2), 421-434. doi: 10.1084/jem.20081811 PMID: 19188497
  23. Read, S.; Greenwald, R.; Izcue, A.; Robinson, N.; Mandelbrot, D.; Francisco, L.; Sharpe, A.H.; Powrie, F. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J. Immunol., 2006, 177(7), 4376-4383. doi: 10.4049/jimmunol.177.7.4376 PMID: 16982872
  24. Calabrò, L.; Morra, A.; Fonsatti, E.; Cutaia, O.; Amato, G.; Giannarelli, D.; Di Giacomo, A.M.; Danielli, R.; Altomonte, M.; Mutti, L.; Maio, M. Tremelimumab for patients with chemotherapy-resistant advanced malignant mesothelioma: An open-label, single-arm, phase 2 trial. Lancet Oncol., 2013, 14(11), 1104-1111. doi: 10.1016/S1470-2045(13)70381-4 PMID: 24035405
  25. Kavanagh, B.; O’Brien, S.; Lee, D.; Hou, Y.; Weinberg, V.; Rini, B.; Allison, J.P.; Small, E.J.; Fong, L. CTLA4 blockade expands FOXP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion. Blood, 2008, 112(4), 1175-1183. doi: 10.1182/blood-2007-11-125435 PMID: 18523152
  26. Nayak, L.; Iwamoto, F.M.; LaCasce, A.; Mukundan, S.; Roemer, M.G.M.; Chapuy, B.; Armand, P.; Rodig, S.J.; Shipp, M.A. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood, 2017, 129(23), 3071-3073. doi: 10.1182/blood-2017-01-764209 PMID: 28356247
  27. Sage, P.T.; Paterson, A.M.; Lovitch, S.B.; Sharpe, A.H. The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity, 2014, 41(6), 1026-1039. doi: 10.1016/j.immuni.2014.12.005 PMID: 25526313
  28. Okazaki, T.; Honjo, T. PD-1 and PD-1 ligands: From discovery to clinical application. Int. Immunol., 2007, 19(7), 813-824. doi: 10.1093/intimm/dxm057 PMID: 17606980
  29. Bengsch, B.; Johnson, A.L.; Kurachi, M.; Odorizzi, P.M.; Pauken, K.E.; Attanasio, J.; Stelekati, E.; McLane, L.M.; Paley, M.A.; Delgoffe, G.M.; Wherry, E.J. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8+ T cell exhaustion. Immunity, 2016, 45(2), 358-373. doi: 10.1016/j.immuni.2016.07.008 PMID: 27496729
  30. Patsoukis, N.; Bardhan, K.; Chatterjee, P.; Sari, D.; Liu, B.; Bell, L.N.; Karoly, E.D.; Freeman, G.J.; Petkova, V.; Seth, P.; Li, L.; Boussiotis, V.A. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun., 2015, 6(1), 6692. doi: 10.1038/ncomms7692 PMID: 25809635
  31. Buck, M.D.; O’Sullivan, D.; Klein Geltink, R.I.; Curtis, J.D.; Chang, C.H.; Sanin, D.E.; Qiu, J.; Kretz, O.; Braas, D.; van der Windt, G.J.W.; Chen, Q.; Huang, S.C.C.; O’Neill, C.M.; Edelson, B.T.; Pearce, E.J.; Sesaki, H.; Huber, T.B.; Rambold, A.S.; Pearce, E.L. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell, 2016, 166(1), 63-76. doi: 10.1016/j.cell.2016.05.035 PMID: 27293185
  32. Akbay, E.A.; Koyama, S.; Carretero, J.; Altabef, A.; Tchaicha, J.H.; Christensen, C.L.; Mikse, O.R.; Cherniack, A.D.; Beauchamp, E.M.; Pugh, T.J.; Wilkerson, M.D.; Fecci, P.E.; Butaney, M.; Reibel, J.B.; Soucheray, M.; Cohoon, T.J.; Janne, P.A.; Meyerson, M.; Hayes, D.N.; Shapiro, G.I.; Shimamura, T.; Sholl, L.M.; Rodig, S.J.; Freeman, G.J.; Hammerman, P.S.; Dranoff, G.; Wong, K.K. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov., 2013, 3(12), 1355-1363. doi: 10.1158/2159-8290.CD-13-0310 PMID: 24078774
  33. Patnaik, A.; Kang, S.P.; Rasco, D.; Papadopoulos, K.P.; Elassaiss-Schaap, J.; Beeram, M.; Drengler, R.; Chen, C.; Smith, L.; Espino, G.; Gergich, K.; Delgado, L.; Daud, A.; Lindia, J.A.; Li, X.N.; Pierce, R.H.; Yearley, J.H.; Wu, D.; Laterza, O.; Lehnert, M.; Iannone, R.; Tolcher, A.W.; Phase, I. Phase I study of pembrolizumab (MK-3475; Anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin. Cancer Res., 2015, 21(19), 4286-4293. doi: 10.1158/1078-0432.CCR-14-2607 PMID: 25977344
  34. Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; Pitot, H.C.; Hamid, O.; Bhatia, S.; Martins, R.; Eaton, K.; Chen, S.; Salay, T.M.; Alaparthy, S.; Grosso, J.F.; Korman, A.J.; Parker, S.M.; Agrawal, S.; Goldberg, S.M.; Pardoll, D.M.; Gupta, A.; Wigginton, J.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med., 2012, 366(26), 2455-2465. doi: 10.1056/NEJMoa1200694 PMID: 22658128
  35. Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454. doi: 10.1056/NEJMoa1200690 PMID: 22658127
  36. Teng, M.W.L.; Ngiow, S.F.; Ribas, A.; Smyth, M.J. Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res., 2015, 75(11), 2139-2145. doi: 10.1158/0008-5472.CAN-15-0255 PMID: 25977340
  37. Weber, J.S.; Hodi, F.S.; Wolchok, J.D.; Topalian, S.L.; Schadendorf, D.; Larkin, J.; Sznol, M.; Long, G.V.; Li, H.; Waxman, I.M.; Jiang, J.; Robert, C. Safety profile of nivolumab monotherapy: A pooled analysis of patients with advanced melanoma. J. Clin. Oncol., 2017, 35(7), 785-792. doi: 10.1200/JCO.2015.66.1389 PMID: 28068177
  38. Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med., 2018, 378(2), 158-168. doi: 10.1056/NEJMra1703481 PMID: 29320654
  39. Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; Hallmeyer, S.; Holter Chakrabarty, J.; Leighl, N.B.; Mammen, J.S.; McDermott, D.F.; Naing, A.; Nastoupil, L.J.; Phillips, T.; Porter, L.D.; Puzanov, I.; Reichner, C.A.; Santomasso, B.D.; Seigel, C.; Spira, A.; Suarez-Almazor, M.E.; Wang, Y.; Weber, J.S.; Wolchok, J.D.; Thompson, J.A. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American society of clinical oncology clinical practice guideline. J. Clin. Oncol., 2018, 36(17), 1714-1768. doi: 10.1200/JCO.2017.77.6385 PMID: 29442540
  40. Johnson, D.B.; Chandra, S.; Sosman, J.A. Immune checkpoint inhibitor toxicity in 2018. JAMA, 2018, 320(16), 1702-1703. doi: 10.1001/jama.2018.13995 PMID: 30286224
  41. Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; Larkin, J.; Lorigan, P.; Neyns, B.; Blank, C.U.; Hamid, O.; Mateus, C.; Shapira-Frommer, R.; Kosh, M.; Zhou, H.; Ibrahim, N.; Ebbinghaus, S.; Ribas, A. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med., 2015, 372(26), 2521-2532. doi: 10.1056/NEJMoa1503093 PMID: 25891173
  42. Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; Smylie, M.; Dummer, R.; Hill, A.; Hogg, D.; Haanen, J.; Carlino, M.S.; Bechter, O.; Maio, M.; Marquez-Rodas, I.; Guidoboni, M.; McArthur, G.; Lebbé, C.; Ascierto, P.A.; Long, G.V.; Cebon, J.; Sosman, J.; Postow, M.A.; Callahan, M.K.; Walker, D.; Rollin, L.; Bhore, R.; Hodi, F.S.; Larkin, J. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med., 2017, 377(14), 1345-1356. doi: 10.1056/NEJMoa1709684 PMID: 28889792
  43. Ahmed, S.A.; Parama, D.; Daimari, E.; Girisa, S.; Banik, K.; Harsha, C.; Dutta, U.; Kunnumakkara, A.B. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci., 2021, 267, 118814. doi: 10.1016/j.lfs.2020.118814 PMID: 33333052
  44. Yan, X.; Qi, M.; Li, P.; Zhan, Y.; Shao, H. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell Biosci., 2017, 7(1), 50. doi: 10.1186/s13578-017-0179-x PMID: 29034071
  45. Ghanbari-Movahed, M.; Shafiee, S.; Burcher, J.T.; Lagoa, R.; Farzaei, M.H.; Bishayee, A. Anticancer potential of apigenin and isovitexin with focus on oncogenic metabolism in cancer stem cells. Metabolites, 2023, 13(3), 404. doi: 10.3390/metabo13030404 PMID: 36984844
  46. Waheed, A.; Zameer, S.; Ashrafi, K.; Ali, A.; Sultana, N.; Aqil, M.; Sultana, Y.; Iqbal, Z. Insights into pharmacological potential of apigenin through various pathways on a nanoplatform in multitude of diseases. Curr. Pharm. Des., 2023, 29(17), 1326-1340. doi: 10.2174/1381612829666230529164321 PMID: 37254541
  47. Feng, Y.B.; Chen, L.; Chen, F.X.; Yang, Y.; Chen, G.H.; Zhou, Z.H.; Xu, C.F. Immunopotentiation effects of apigenin on NK cell proliferation and killing pancreatic cancer cells. Int. J. Immunopathol. Pharmacol., 2023, 37, 03946320231161174. doi: 10.1177/03946320231161174 PMID: 36848930
  48. Jiang, Z.B.; Wang, W.J.; Xu, C.; Xie, Y.J.; Wang, X.R.; Zhang, Y.Z.; Huang, J.M.; Huang, M.; Xie, C.; Liu, P.; Fan, X.X.; Ma, Y.P.; Yan, P.Y.; Liu, L.; Yao, X.J.; Wu, Q.B.; Lai-Han Leung, E. Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer. Cancer Lett., 2021, 515, 36-48. doi: 10.1016/j.canlet.2021.05.019 PMID: 34052328
  49. Xu, L.; Zhang, Y.; Tian, K.; Chen, X.; Zhang, R.; Mu, X.; Wu, Y.; Wang, D.; Wang, S.; Liu, F.; Wang, T.; Zhang, J.; Liu, S.; Zhang, Y.; Tu, C.; Liu, H. Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects. J. Exp. Clin. Cancer Res., 2018, 37(1), 261. doi: 10.1186/s13046-018-0929-6 PMID: 30373602
  50. Coombs, M.R.P.; Harrison, M.E.; Hoskin, D.W. Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells. Cancer Lett., 2016, 380(2), 424-433. doi: 10.1016/j.canlet.2016.06.023 PMID: 27378243
  51. Trujillo-Ochoa, J.L.; Kazemian, M.; Afzali, B. The role of transcription factors in shaping regulatory T cell identity. Nat. Rev. Immunol., 2023, 23(12), 842-856. doi: 10.1038/s41577-023-00893-7 PMID: 37336954
  52. Nelson, N.; Szekeres, K.; Iclozan, C.; Rivera, I.O.; McGill, A.; Johnson, G.; Nwogu, O.; Ghansah, T. Apigenin: Selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer. PLoS One, 2017, 12(2), e0170197. doi: 10.1371/journal.pone.0170197 PMID: 28152014
  53. Anis, K.V.; Rajeshkumar, N.V.; Kuttan, R. Inhibition of chemical carcinogenesis by berberine in rats and mice. J. Pharm. Pharmacol., 2010, 53(5), 763-768. doi: 10.1211/0022357011775901 PMID: 11370717
  54. Sun, Y.; Zhou, Q.; Chen, F.; Gao, X.; Yang, L.; Jin, X.; Wink, M.; Sharopov, F.S.; Sethi, G. Berberine inhibits breast carcinoma proliferation and metastasis under hypoxic microenvironment involving gut microbiota and endogenous metabolites. Pharmacol. Res., 2023, 193, 106817. doi: 10.1016/j.phrs.2023.106817 PMID: 37315824
  55. Harikumar, K.B.; Kuttan, G.; Kuttan, R. Inhibition of progression of erythroleukemia induced by Friend virus in BALB/c mice by natural products-berberine, curcumin and picroliv. J. Exp. Ther. Oncol., 2008, 7(4), 275-284. PMID: 19227007
  56. Shou, J.W.; Shaw, P.C. Berberine activates PPARδ and promotes gut microbiota-derived butyric acid to suppress hepatocellular carcinoma. Phytomedicine, 2023, 115, 154842. doi: 10.1016/j.phymed.2023.154842 PMID: 37148713
  57. Yang, L.; Cheng, C.F.; Li, Z.F.; Huang, X.J.; Cai, S.Q.; Ye, S.Y.; Zhao, L.J.; Xiong, Y.; Chen, D.F.; Liu, H.L.; Ren, Z.X.; Fang, H.C. Berberine blocks inflammasome activation and alleviates diabetic cardiomyopathy via the miR-18a-3p/Gsdmd pathway. Int. J. Mol. Med., 2023, 51(6), 49. doi: 10.3892/ijmm.2023.5252 PMID: 37114562
  58. Shah, D.; Challagundla, N.; Dave, V.; Patidar, A.; Saha, B.; Nivsarkar, M.; Trivedi, V.B.; Agrawal-Rajput, R. Berberine mediates tumor cell death by skewing tumor-associated immunosuppressive macrophages to inflammatory macrophages. Phytomedicine, 2022, 99, 153904. doi: 10.1016/j.phymed.2021.153904 PMID: 35231825
  59. Xiong, K.; Deng, J.; Yue, T.; Hu, W.; Zeng, X.; Yang, T.; Xiao, T. Berberine promotes M2 macrophage polarisation through the IL-4-STAT6 signalling pathway in ulcerative colitis treatment. Heliyon, 2023, 9(3), e14176. doi: 10.1016/j.heliyon.2023.e14176 PMID: 36923882
  60. Liu, Y.; Liu, X.; Hua, W.; Wei, Q.; Fang, X.; Zhao, Z.; Ge, C.; Liu, C.; Chen, C.; Tao, Y.; Zhu, Y. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis. Int. Immunopharmacol., 2018, 57, 121-131. doi: 10.1016/j.intimp.2018.01.049 PMID: 29482156
  61. Qiu, D.; Zhang, W.; Song, Z.; Xue, M.; Zhang, Y.; Yang, Y.; Tong, C.; Cai, D. Berberine suppresses cecal ligation and puncture induced intestinal injury by enhancing Treg cell function. Int. Immunopharmacol., 2022, 106, 108564. doi: 10.1016/j.intimp.2022.108564 PMID: 35158228
  62. Li, Y.; Xiao, H.; Hu, D.; Fatima, S.; Lin, C.; Mu, H.; Lee, N.P.; Bian, Z. Berberine ameliorates chronic relapsing dextran sulfate sodium-induced colitis in C57BL/6 mice by suppressing Th17 responses. Pharmacol. Res., 2016, 110, 227-239. doi: 10.1016/j.phrs.2016.02.010 PMID: 26969793
  63. Chen, L.; Liu, X.; Wang, X.; Lu, Z.; Ye, Y. Berberine alleviates acute lung injury in septic mice by modulating Treg/Th17 homeostasis and downregulating NF-κB signaling. Drug Des. Devel. Ther., 2023, 17, 1139-1151. doi: 10.2147/DDDT.S401293 PMID: 37077411
  64. Liu, Y.; Liu, X.; Zhang, N.; Yin, M.; Dong, J.; Zeng, Q.; Mao, G.; Song, D.; Liu, L.; Deng, H. Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5. Acta Pharm. Sin. B, 2020, 10(12), 2299-2312. doi: 10.1016/j.apsb.2020.06.014 PMID: 33354502
  65. Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol., 2009, 41(1), 40-59. doi: 10.1016/j.biocel.2008.06.010 PMID: 18662800
  66. Anand, P.; Thomas, S.G.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Misra, K.; Priyadarsini, I.K.; Rajasekharan, K.N.; Aggarwal, B.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem. Pharmacol., 2008, 76(11), 1590-1611. doi: 10.1016/j.bcp.2008.08.008 PMID: 18775680
  67. Gupta, S.C.; Sung, B.; Kim, J.H.; Prasad, S.; Li, S.; Aggarwal, B.B. Multitargeting by turmeric, the golden spice: From kitchen to clinic. Mol. Nutr. Food Res., 2013, 57(9), 1510-1528. doi: 10.1002/mnfr.201100741 PMID: 22887802
  68. Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol., 2017, 174(11), 1325-1348. doi: 10.1111/bph.13621 PMID: 27638428
  69. Kunnumakkara, A.B.; Hegde, M.; Parama, D.; Girisa, S.; Kumar, A.; Daimary, U.D.; Garodia, P.; Yenisetti, S.C.; Oommen, O.V.; Aggarwal, B.B. Role of turmeric and curcumin in prevention and treatment of chronic diseases: Lessons learned from clinical trials. ACS Pharmacol. Transl. Sci., 2023, 6(4), 447-518. doi: 10.1021/acsptsci.2c00012 PMID: 37082752
  70. Karaboğa Arslan, A.K.; Uzunhisarcıklı, E.; Yerer, M.B.; Bishayee, A. The golden spice curcumin in cancer. J. Cancer Res. Ther., 2022, 18(1), 19-26. doi: 10.4103/jcrt.JCRT_1017_20 PMID: 35381757
  71. Tong, Q.; Wu, Z. Curcumin inhibits colon cancer malignant progression and promotes T cell killing by regulating miR-206 expression. Clin. Anat., 2024, 37(1), 2-11. PMID: 37191314
  72. Sun, L.; Yao, X.; Liu, J.; Zhang, Y.; Hu, J. Curcumin enhances the efficacy of docetaxel by promoting anti-tumor immune response in head and neck squamous cell carcinoma. Cancer Invest., 2023, 41(5), 524-533. doi: 10.1080/07357907.2023.2194420 PMID: 36946609
  73. Zhang, L.J.; Huang, R.; Shen, Y.W.; Liu, J.; Wu, Y.; Jin, J.M.; Zhang, H.; Sun, Y.; Chen, H.Z.; Luan, X. Enhanced anti-tumor efficacy by inhibiting HIF-1α to reprogram TAMs via core-satellite upconverting nanoparticles with curcumin mediated photodynamic therapy. Biomater. Sci., 2021, 9(19), 6403-6415. doi: 10.1039/D1BM00675D PMID: 34259235
  74. Xiu, Z.; Sun, T.; Yang, Y.; He, Y.; Yang, S.; Xue, X.; Yang, W. Curcumin enhanced ionizing radiation-induced immunogenic cell death in glioma cells through endoplasmic reticulum stress signaling pathways. Oxid. Med. Cell. Longev., 2022, 2022, 1-17. doi: 10.1155/2022/5424411 PMID: 36238646
  75. Hayakawa, T.; Yaguchi, T.; Kawakami, Y. Enhanced anti-tumor effects of the PD-1 blockade combined with a highly absorptive form of curcumin targeting STAT3. Cancer Sci., 2020, 111(12), 4326-4335. doi: 10.1111/cas.14675 PMID: 33006786
  76. Mardani, R.; Hamblin, M.R.; Taghizadeh, M.; Banafshe, H.R.; Nejati, M.; Mokhtari, M.; Borran, S.; Davoodvandi, A.; Khan, H.; Jaafari, M.R.; Mirzaei, H. Nanomicellar-curcumin exerts its therapeutic effects via affecting angiogenesis, apoptosis, and T cells in a mouse model of melanoma lung metastasis. Pathol. Res. Pract., 2020, 216(9), 153082. doi: 10.1016/j.prp.2020.153082 PMID: 32825950
  77. Xu, B.; Yu, L.; Zhao, L.Z. Curcumin up regulates T helper 1 cells in patients with colon cancer. Am. J. Transl. Res., 2017, 9(4), 1866-1875. PMID: 28469791
  78. Zou, J.Y.; Su, C.H.; Luo, H.H.; Lei, Y.Y.; Zeng, B.; Zhu, H.S.; Chen, Z.G. Curcumin converts FOXP3+ regulatory T cells to T helper 1 cells in patients with lung cancer. J. Cell. Biochem., 2018, 119(2), 1420-1428. doi: 10.1002/jcb.26302 PMID: 28731226
  79. Shao, Y.; Zhu, W.; Da, J.; Xu, M.; Wang, Y.; Zhou, J.; Wang, Z. Bisdemethoxycurcumin in combination with α-PD-L1 antibody boosts immune response against bladder cancer. OncoTargets Ther., 2017, 10, 2675-2683. doi: 10.2147/OTT.S130653 PMID: 28579805
  80. Marín, V.; Burgos, V.; Pérez, R.; Maria, D.A.; Pardi, P.; Paz, C. The potential role of Epigallocatechin-3-Gallate (EGCG) in breast cancer treatment. Int. J. Mol. Sci., 2023, 24(13), 10737. doi: 10.3390/ijms241310737 PMID: 37445915
  81. James, A.; Wang, K.; Wang, Y. Therapeutic activity of green tea epigallocatechin-3-gallate on metabolic diseases and non-alcoholic fatty liver diseases: The current updates. Nutrients, 2023, 15(13), 3022. doi: 10.3390/nu15133022 PMID: 37447347
  82. Kciuk, M.; Alam, M.; Ali, N.; Rashid, S.; Głowacka, P.; Sundaraj, R.; Celik, I.; Yahya, E.B.; Dubey, A.; Zerroug, E.; Kontek, R. Epigallocatechin-3-gallate therapeutic potential in cancer: Mechanism of action and clinical implications. Molecules, 2023, 28(13), 5246. doi: 10.3390/molecules28135246 PMID: 37446908
  83. Ravindran Menon, D.; Li, Y.; Yamauchi, T.; Osborne, D.G.; Vaddi, P.K.; Wempe, M.F.; Zhai, Z.; Fujita, M. EGCG inhibits tumor growth in melanoma by targeting JAK-STAT signaling and its downstream PD-L1/PD-L2-PD1 axis in tumors and enhancing cytotoxic T-cell responses. Pharmaceuticals, 2021, 14(11), 1081. doi: 10.3390/ph14111081 PMID: 34832863
  84. Xu, P.; Yan, F.; Zhao, Y.; Chen, X.; Sun, S.; Wang, Y.; Ying, L. Green tea polyphenol EGCG attenuates MDSCs-mediated immunosuppression through canonical and non-canonical pathways in a 4T1 murine breast cancer model. Nutrients, 2020, 12(4), 1042. doi: 10.3390/nu12041042 PMID: 32290071
  85. Rawangkan, A.; Wongsirisin, P.; Namiki, K.; Iida, K.; Kobayashi, Y.; Shimizu, Y.; Fujiki, H.; Suganuma, M. Green tea catechin is an alternative immune checkpoint inhibitor that inhibits PD-L1 expression and lung tumor growth. Molecules, 2018, 23(8), 2071. doi: 10.3390/molecules23082071 PMID: 30126206
  86. Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; Bishayee, A. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci., 2019, 22(3), 225-237. PMID: 31156781
  87. Wianowska, D.; Olszowy-Tomczyk, M. A concise profile of gallic acid-from its natural sources through biological properties and chemical methods of determination. Molecules, 2023, 28(3), 1186. doi: 10.3390/molecules28031186 PMID: 36770851
  88. Bhuia, M.S.; Rahaman, M.M.; Islam, T.; Bappi, M.H.; Sikder, M.I.; Hossain, K.N.; Akter, F.; Al Shamsh Prottay, A.; Rokonuzzman, M.; Gürer, E.S.; Calina, D.; Islam, M.T.; Sharifi-Rad, J. Neurobiological effects of gallic acid: Current perspectives. Chin. Med., 2023, 18(1), 27. doi: 10.1186/s13020-023-00735-7 PMID: 36918923
  89. Deng, B.; Yang, B.; Chen, J.; Wang, S.; Zhang, W.; Guo, Y.; Han, Y.; Li, H.; Dang, Y.; Yuan, Y.; Dai, X.; Zang, Y.; Li, Y.; Li, B. Gallic acid induces T-helper-1-like T reg cells and strengthens immune checkpoint blockade efficacy. J. Immunother. Cancer, 2022, 10(7), e004037. doi: 10.1136/jitc-2021-004037 PMID: 35817479
  90. Lee, H.; Lee, H.; Kwon, Y.; Lee, J.H.; Kim, J.; Shin, M.K.; Kim, S.H.; Bae, H. Methyl gallate exhibits potent antitumor activities by inhibiting tumor infiltration of CD4+CD25+ regulatory T cells. J. Immunol., 2010, 185(11), 6698-6705. doi: 10.4049/jimmunol.1001373 PMID: 21048105
  91. Petrocelli, G.; Marrazzo, P.; Bonsi, L.; Facchin, F.; Alviano, F.; Canaider, S. Plumbagin, a natural compound with several biological effects and anti-inflammatory properties. Life, 2023, 13(6), 1303. doi: 10.3390/life13061303 PMID: 37374085
  92. Roy, A. Plumbagin: A potential anti-cancer compound. Mini Rev. Med. Chem., 2021, 21(6), 731-737. doi: 10.2174/18755607MTEx2NTM02 PMID: 33200707
  93. Jiang, Z.B.; Xu, C.; Wang, W.; Zhang, Y.Z.; Huang, J.M.; Xie, Y.J.; Wang, Q.Q.; Fan, X.X.; Yao, X.J.; Xie, C.; Wang, X.R.; Yan, P.Y.; Ma, Y.P.; Wu, Q.B.; Leung, E.L.H. Plumbagin suppresses non-small cell lung cancer progression through downregulating ARF1 and by elevating CD8+ T cells. Pharmacol. Res., 2021, 169, 105656. doi: 10.1016/j.phrs.2021.105656 PMID: 33964470
  94. Wang, B.; Yang, L.; Liu, T.; Xun, J.; Zhuo, Y.; Zhang, L.; Zhang, Q.; Wang, X. Hydroxytyrosol inhibits MDSCs and promotes M1 macrophages in mice with orthotopic pancreatic tumor. Front. Pharmacol., 2021, 12, 759172. doi: 10.3389/fphar.2021.759172 PMID: 34858184
  95. Harikumar, K.B.; Aggarwal, B.B. Resveratrol: A multitargeted agent for age-associated chronic diseases. Cell Cycle, 2008, 7(8), 1020-1035. doi: 10.4161/cc.7.8.5740 PMID: 18414053
  96. Shakibaei, M.; Harikumar, K.B.; Aggarwal, B.B. Resveratrol addiction: To die or not to die. Mol. Nutr. Food Res., 2009, 53(1), 115-128. doi: 10.1002/mnfr.200800148 PMID: 19072742
  97. Brockmueller, A.; Sajeev, A.; Koklesova, L.; Samuel, S.M.; Kubatka, P.; Büsselberg, D.; Kunnumakkara, A.B.; Shakibaei, M. Resveratrol as sensitizer in colorectal cancer plasticity. Cancer Metastasis Rev., 2023, 1-31. doi: 10.1007/s10555-023-10126-x PMID: 37507626
  98. Radwan, F.F.Y.; Zhang, L.; Hossain, A.; Doonan, B.P.; God, J.M.; Haque, A. Mechanisms regulating enhanced human leukocyte antigen class II-mediated CD4+ T cell recognition of human B-cell lymphoma by resveratrol. Leuk. Lymphoma, 2012, 53(2), 305-314. doi: 10.3109/10428194.2011.615423 PMID: 21854084
  99. Craveiro, M.; Cretenet, G.; Mongellaz, C.; Matias, M.I.; Caron, O.; de Lima, M.C.P.; Zimmermann, V.S.; Solary, E.; Dardalhon, V.; Dulić, V.; Taylor, N. Resveratrol stimulates the metabolic reprogramming of human CD4+ T cells to enhance effector function. Sci. Signal., 2017, 10(501), eaal3024. doi: 10.1126/scisignal.aal3024 PMID: 29042482
  100. Zhang, Y.; Yang, S.; Yang, Y.; Liu, T. Resveratrol induces immunogenic cell death of human and murine ovarian carcinoma cells. Infect. Agent. Cancer, 2019, 14(1), 27. doi: 10.1186/s13027-019-0247-4 PMID: 31636696
  101. Verdura, S.; Cuyàs, E.; Cortada, E.; Brunet, J.; Lopez-Bonet, E.; Martin-Castillo, B.; Bosch-Barrera, J.; Encinar, J.A.; Menendez, J.A. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity. Aging, 2020, 12(1), 8-34. doi: 10.18632/aging.102646 PMID: 31901900
  102. Kim, J.S.; Jeong, S.K.; Oh, S.J.; Lee, C.G.; Kang, Y.R.; Jo, W.S.; Jeong, M.H. The resveratrol analogue, HS-1793, enhances the effects of radiation therapy through the induction of anti-tumor immunity in mammary tumor growth. Int. J. Oncol., 2020, 56(6), 1405-1416. doi: 10.3892/ijo.2020.5017 PMID: 32236622
  103. Han, X.; Zhao, N.; Zhu, W.; Wang, J.; Liu, B.; Teng, Y. Resveratrol attenuates TNBC lung metastasis by down-regulating PD-1 expression on pulmonary T cells and converting macrophages to M1 phenotype in a murine tumor model. Cell. Immunol., 2021, 368, 104423. doi: 10.1016/j.cellimm.2021.104423 PMID: 34399171
  104. Sun, L.; Chen, B.; Jiang, R.; Li, J.; Wang, B. Resveratrol inhibits lung cancer growth by suppressing M2-like polarization of tumor associated macrophages. Cell. Immunol., 2017, 311, 86-93. doi: 10.1016/j.cellimm.2016.11.002 PMID: 27825563
  105. Jia, L.; Gao, Y.; Zhou, T.; Zhao, X.L.; Hu, H.Y.; Chen, D.W.; Qiao, M.X. Enhanced response to PD-L1 silencing by modulation of TME via balancing glucose metabolism and robust co-delivery of siRNA/Resveratrol with dual-responsive polyplexes. Biomaterials, 2021, 271, 120711. doi: 10.1016/j.biomaterials.2021.120711 PMID: 33592352

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers