Cancer Pathways Targeted by Berberine: Role of microRNAs


Cite item

Full Text

Abstract

:Cancer is a complex and heterogeneous malignant disease. Due to its multifactorial nature, including progressive changes in genetic, epigenetic, transcript, and protein levels, conventional therapeutics fail to save cancer patients. Evidence indicates that dysregulation of microRNA (miRNA) expression plays a crucial role in tumorigenesis, metastasis, cell proliferation, differentiation, metabolism, and signaling pathways. Moreover, miRNAs can be used as diagnostic and prognostic markers and therapeutic targets in cancer. Berberine, a naturally occurring plant alkaloid, has a wide spectrum of biological activities in different types of cancers. Inhibition of cell proliferation, metastasis, migration, invasion, and angiogenesis, as well as induction of cell cycle arrest and apoptosis in cancer cells, is reported by berberine. Recent studies suggested that berberine regulates many oncogenic and tumor suppressor miRNAs implicated in different phases of cancer. This review discussed how berberine inhibits cancer growth and propagation and regulates miRNAs in cancer cells. And how berberine-mediated miRNA regulation changes the landscape of transcripts and proteins that promote or suppress cancer progression. Overall, the underlying molecular pathways altered by berberine and miRNA influencing the tumor pathophysiology will enhance our understanding to combat the malignancy.

About the authors

Mansoor Ali

Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University

Email: info@benthamscience.net

Deepali Mishra

Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University

Email: info@benthamscience.net

Rana Singh

Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Pipitò, L.; Illingworth, T.A.; Deganutti, G. Targeting hPKM2 in cancer: A bio isosteric approach for ligand design. Comput. Biol. Med., 2023, 158, 106852. doi: 10.1016/j.compbiomed.2023.106852 PMID: 37044047
  2. Tompa, A.; Major, J.; Jakab, M.G. Application of UV-Induced Unscheduled DNA-Synthesis Measurements in Human Genotoxicological Risk Assessment; In InTech eBooks, 2011. doi: 10.5772/21021
  3. Margiana, R.; Markov, A.; Zekiy, A.O.; Hamza, M.U.; Al-Dabbagh, K.A.; Al-Zubaidi, S.H.; Hameed, N.M.; Ahmad, I.; Sivaraman, R.; Kzar, H.H.; Al-Gazally, M.E.; Mustafa, Y.F.; Siahmansouri, H. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res. Ther., 2022, 13(1), 366. doi: 10.1186/s13287-022-03054-0 PMID: 35902958
  4. Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, Ø.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A.L.; Brown, P.O.; Botstein, D. Molecular portraits of human breast tumours. Nature, 2000, 406(6797), 747-752. doi: 10.1038/35021093 PMID: 10963602
  5. Mustafa, Y.F. Harmful free radicals in aging: A narrative review of their detrimental effects on health. Indian J. Clin. Biochem., 2023, 1-14. doi: 10.1007/s12291-023-01147-y
  6. Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Thorsen, T.; Quist, H.; Matese, J.C.; Brown, P.O.; Botstein, D.; Lønning, P.E.; Børresen-Dale, A.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci., 2001, 98(19), 10869-10874. doi: 10.1073/pnas.191367098 PMID: 11553815
  7. Craig, W.J. Nutrition concerns and health effects of vegetarian diets. Nutr. Clin. Pract., 2010, 25(6), 613-620. doi: 10.1177/0884533610385707 PMID: 21139125
  8. Ranjan, A.; Ramachandran, S.; Gupta, N.; Kaushik, I.; Wright, S.; Srivastava, S.; Das, H.; Srivastava, S.; Prasad, S.; Srivastava, S.K. Role of phytochemicals in cancer prevention. Int. J. Mol. Sci., 2019, 20(20), 4981. doi: 10.3390/ijms20204981 PMID: 31600949
  9. Mustafa, Y.F.; Ismael, R.N.; Jebir, R.M. Natural coumarins from two cultivars of watermelon seeds as biosafe anticancer agents, an algorithm for their isolation and evaluation. J. Mol. Struct., 2024, 1295, 136644. doi: 10.1016/j.molstruc.2023.136644
  10. Zhong, X.D.; Chen, L.J.; Xu, X.Y.; Liu, Y.J.; Tao, F.; Zhu, M.H.; Li, C.Y.; Zhao, D.; Yang, G.J.; Chen, J. Berberine as a potential agent for breast cancer therapy. Front. Oncol., 2022, 12, 993775. doi: 10.3389/fonc.2022.993775 PMID: 36119505
  11. Rauf, A.; Abu-Izneid, T.; Khalil, A.A.; Imran, M.; Shah, Z.A.; Emran, T.B.; Mitra, S.; Khan, Z.; Alhumaydhi, F.A.; Aljohani, A.S.M.; Khan, I.; Rahman, M.M.; Jeandet, P.; Gondal, T.A. Berberine as a potential anticancer agent: A comprehensive review. Molecules, 2021, 26(23), 7368. doi: 10.3390/molecules26237368 PMID: 34885950
  12. Aghanoori, M.R.; Mirzaei, B.; Tavallaei, M. MiRNA molecular profiles in human medical conditions: Connecting lung cancer and lung development phenomena. Asian Pac. J. Cancer Prev., 2014, 15(22), 9557-9565. doi: 10.7314/APJCP.2014.15.22.9557 PMID: 25520067
  13. Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854. doi: 10.1016/0092-8674(93)90529-Y PMID: 8252621
  14. O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol., 2018, 9, 402. doi: 10.3389/fendo.2018.00402 PMID: 30123182
  15. Cheng, C.W.; Chen, P.M.; Hsieh, Y.H.; Weng, C.C.; Chang, C.W.; Yao, C.C.; Hu, L.Y.; Wu, P.E.; Shen, C.Y. Foxo3a-mediated overexpression of microRNA-622 suppresses tumor metastasis by repressing hypoxia-inducible factor-1α in erk-responsive lung cancer. Oncotarget, 2015, 6(42), 44222-44238. doi: 10.18632/oncotarget.5826 PMID: 26528854
  16. Hammond, S.M. An overview of microRNAs. Adv. Drug Deliv. Rev., 2015, 87, 3-14. doi: 10.1016/j.addr.2015.05.001 PMID: 25979468
  17. Huang, L.; Guo, Z.; Wang, F.; Fu, L. KRAS mutation: From undruggable to druggable in cancer. Signal Transduct. Target. Ther., 2021, 6(1), 386. doi: 10.1038/s41392-021-00780-4 PMID: 34776511
  18. Mokhlis, H.A.; Bayraktar, R.; Kabil, N.N.; Caner, A.; Kahraman, N.; Rodríguez-Aguayo, C.; Zambalde, E.P.; Sheng, J.; Karagoz, K.; Kanlikilicer, P.; Abdel Aziz, A.A.H.; Abdelghany, T.M.; Ashour, A.A.; Wong, S.; Gatza, M.L.; Calin, G.A.; López-Berestein, G.; Özpolat, B. The modulatory role of microRNA-873 in the progression of KRAS-driven cancers. Mol. Ther. Nucleic Acids, 2019, 14, 301-317. doi: 10.1016/j.omtn.2018.11.019 PMID: 30654191
  19. Warowicka, A.; Nawrot, R.; Goździcka-Józefiak, A. Antiviral activity of berberine. Arch. Virol., 2020, 165(9), 1935-1945. doi: 10.1007/s00705-020-04706-3 PMID: 32594322
  20. Wang, K.; Zhang, C.; Bao, J.; Jia, X.; Liang, Y.; Wang, X.; Chen, M.; Su, H.; Li, P.; Wan, J.B.; He, C. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death. Sci. Rep., 2016, 6(1), 26064. doi: 10.1038/srep26064 PMID: 27263652
  21. Ma, J.; Chan, C.C.; Huang, W.C.; Kuo, M.L. Berberine inhibits pro-inflammatory cytokine-induced IL-6 and CCL11 production via modulation of STAT6 pathway in human bronchial epithelial cells. Int. J. Med. Sci., 2020, 17(10), 1464-1473. doi: 10.7150/ijms.45400 PMID: 32624703
  22. Gu, W.; Zhang, M.; Gao, F.; Niu, Y.; Sun, L.; Xia, H.; Li, W.; Zhang, Y.; Guo, Z.; Du, G. Berberine regulates PADI4-related macrophage function to prevent lung cancer. Int. Immunopharmacol., 2022, 110, 108965. doi: 10.1016/j.intimp.2022.108965 PMID: 35764017
  23. Guo, P.; Cai, C.; Wu, X.; Fan, X.; Huang, W.; Zhou, J.; Wu, Q.; Huang, Y.; Zhao, W.; Zhang, F.; Wang, Q.; Zhang, Y.; Fang, J. An insight into the molecular mechanism of berberine towards multiple cancer types through systems pharmacology. Front. Pharmacol., 2019, 10, 857. doi: 10.3389/fphar.2019.00857 PMID: 31447670
  24. Karnam, K.C.; Ellutla, M.; Bodduluru, L.N.; Kasala, E.R.; Uppulapu, S.K.; Kalyankumarraju, M.; Lahkar, M. Preventive effect of berberine against DMBA-induced breast cancer in female Sprague Dawley rats. Biomed. Pharmacother., 2017, 92, 207-214. doi: 10.1016/j.biopha.2017.05.069 PMID: 28544934
  25. Cao, H.; Song, S.; Zhang, H.; Zhang, Y.; Qu, R.; Yang, B.; Jing, Y.; Hu, T.; Yan, F.; Wang, B. Chemopreventive effects of berberine on intestinal tumor development in Apc min/+mice. BMC Gastroenterol., 2013, 13(1), 163. doi: 10.1186/1471-230X-13-163 PMID: 24279644
  26. He, B.; Yang, Q.; Mu, Y.; Zhou, L.; Liu, Y.; Zhou, Q.; He, B. Berberine inhibits the proliferation of colon cancer cells by inactivating Wnt/β-catenin signaling. Int. J. Oncol., 2012, 41(1), 292-298. doi: 10.3892/ijo.2012.1423 PMID: 22469784
  27. Zhu, Y.; Xie, N.; Chai, Y.; Nie, Y.; Liu, K.; Liu, Y.; Yang, Y.; Su, J.; Zhang, C. Apoptosis induction, a sharp edge of berberine to exert anti-cancer effects, focus on breast, lung, and liver cancer. Front. Pharmacol., 2022, 13, 803717. doi: 10.3389/fphar.2022.803717 PMID: 35153781
  28. Ni, L.; Li, Z.; Ren, H.; Kong, L.; Chen, X.; Xiong, M.; Zhang, X.; Ning, B.; Li, J. Berberine inhibits non-small cell lung cancer cell growth through repressing DNA repair and replication rather than through apoptosis. Clin. Exp. Pharmacol. Physiol., 2022, 49(1), 134-144. doi: 10.1111/1440-1681.13582 PMID: 34448246
  29. Jain, V.; Singh, M.P.; Amaravadi, R.K. Recent advances in targeting autophagy in cancer. Trends Pharmacol. Sci., 2023, 44(5), 290-302. doi: 10.1016/j.tips.2023.02.003 PMID: 36931971
  30. Wang, Y.; Liu, Y.; Du, X.; Ma, H.; Yao, J. The anti-cancer mechanisms of berberine: A review. Cancer Manag. Res., 2020, 12, 695-702. doi: 10.2147/CMAR.S242329 PMID: 32099466
  31. Li, G.; Zhang, C.; Liang, W.; Zhang, Y.; Shen, Y.; Tian, X. Berberine regulates the Notch1/PTEN/PI3K/AKT/mTOR pathway and acts synergistically with 17-AAG and SAHA in SW480 colon cancer cells. Pharm. Biol., 2021, 59(1), 21-30. doi: 10.1080/13880209.2020.1865407 PMID: 33417512
  32. Liu, Y.; Hua, W.; Li, Y.; Xian, X.; Zhao, Z.; Liu, C.; Zou, J.; Li, J.; Fang, X.; Zhu, Y. Berberine suppresses colon cancer cell proliferation by inhibiting the SCAP/SREBP-1 signaling pathway-mediated lipogenesis. Biochem. Pharmacol., 2020, 174, 113776. doi: 10.1016/j.bcp.2019.113776 PMID: 31874145
  33. El Khalki, L.; Maire, V.; Dubois, T.; Zyad, A. Berberine impairs the survival of triple negative breast cancer cells: cellular and molecular analyses. Molecules, 2020, 25(3), 506. doi: 10.3390/molecules25030506 PMID: 31991634
  34. Tak, J.; Sabarwal, A.; Shyanti, R.K.; Singh, R.P. Berberine enhances posttranslational protein stability of p21/cip1 in breast cancer cells via down-regulation of Akt. Mol. Cell. Biochem., 2019, 458(1-2), 49-59. doi: 10.1007/s11010-019-03529-4 PMID: 30911957
  35. Sakaguchi, M.; Kitaguchi, D.; Morinami, S.; Kurashiki, Y.; Hashida, H.; Miyata, S.; Yamaguchi, M.; Sakai, M.; Murata, N.; Tanaka, S. Berberine-induced nucleolar stress response in a human breast cancer cell line. Biochem. Biophys. Res. Commun., 2020, 528(1), 227-233. doi: 10.1016/j.bbrc.2020.05.020 PMID: 32475643
  36. Yao, M.; Fan, X.; Yuan, B.; Takagi, N.; Liu, S.; Han, X.; Ren, J.; Liu, J. Berberine inhibits NLRP3 Inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell. BMC Complement. Altern. Med., 2019, 19(1), 216. doi: 10.1186/s12906-019-2615-4 PMID: 31412862
  37. Zhang, C.; Sheng, J.; Li, G.; Zhao, L.; Wang, Y.; Yang, W.; Yao, X.; Sun, L.; Zhang, Z.; Cui, R. Effects of berberine and its derivatives on cancer: A systems pharmacology review. Front. Pharmacol., 2020, 10, 1461. doi: 10.3389/fphar.2019.01461 PMID: 32009943
  38. Park, K.S.; Kim, J.B.; Bae, J.; Park, S.Y.; Jee, H.G.; Lee, K.E.; Youn, Y.K. Berberine inhibited the growth of thyroid cancer cell lines 8505C and TPC1. Yonsei Med. J., 2012, 53(2), 346-351. doi: 10.3349/ymj.2012.53.2.346 PMID: 22318822
  39. Liu, J.; Luo, X.; Guo, R.; Jing, W.; Lü, H. Cell metabolomics reveals berberine-inhibited pancreatic cancer cell viability and metastasis by regulating citrate metabolism. J. Proteome Res., 2020, 19(9), 3825-3836. doi: 10.1021/acs.jproteome.0c00394 PMID: 32692565
  40. Tian, W.; Hao, H.; Chu, M.; Gong, J.; Li, W.; Fang, Y.; Zhang, J.; Zhang, C.; Huang, Y.; Pei, F.; Duan, L. Berberine suppresses lung metastasis of cancer via inhibiting endothelial transforming growth factor beta receptor 1. Front. Pharmacol., 2022, 13, 917827. doi: 10.3389/fphar.2022.917827 PMID: 35784732
  41. Qian, K.; Tang, C.; Chen, L.; Zheng, S.; Zhao, Y.; Ma, L.; Xu, L.; Fan, L.; Yu, J.; Tan, H.; Sun, Y.; Shen, L.; Lu, Y.; Liu, Q.; Liu, Y.; Xiong, Y. Berberine reverses breast cancer multidrug resistance based on fluorescence pharmacokinetics in vitro and in vivo. ACS Omega, 2021, 6(16), 10645-10654. doi: 10.1021/acsomega.0c06288 PMID: 34056218
  42. Walcher, L.; Kistenmacher, A.K.; Suo, H.; Kitte, R.; Dluczek, S.; Strauß, A.; Blaudszun, A.R.; Yevsa, T.; Fricke, S.; Kossatz-Boehlert, U. Cancer stem cells—origins and biomarkers: Perspectives for targeted personalized therapies. Front. Immunol., 2020, 11, 1280. doi: 10.3389/fimmu.2020.01280 PMID: 32849491
  43. Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284. doi: 10.1038/nrc1590 PMID: 15803154
  44. Singh, A.; Settleman, J. EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene, 2010, 29(34), 4741-4751. doi: 10.1038/onc.2010.215 PMID: 20531305
  45. Zhao, Z.; Zeng, J.; Guo, Q.; Pu, K.; Yang, Y.; Chen, N.; Zhang, G.; Zhao, M.; Zheng, Q.; Tang, J.; Hu, Q. Berberine suppresses stemness and tumorigenicity of colorectal cancer stem-like cells by inhibiting m6A methylation. Front. Oncol., 2021, 11, 775418. doi: 10.3389/fonc.2021.775418 PMID: 34869024
  46. Aravindan, N.; Jain, D.; Somasundaram, D.B.; Herman, S.; Aravindan, S. Cancer stem cells in neuroblastoma therapy resistance. Cancer Drug Resist., 2019, 2(4), 948-967. doi: 10.20517/cdr.2019.72 PMID: 31867574
  47. Cognetti, F.; Bazzichetto, C.; Falcone, I.; Ferretti, G.; Cognetti, F.; Milella, M.; Ciuffreda, L. Colorectal cancer stem cells properties and features: Evidence of interleukin-8 involvement. Cancer Drug Resist., 2019, 2(4), 968-979. doi: 10.20517/cdr.2019.56
  48. Naveen, C.R.; Gaikwad, S.; Agrawal-Rajput, R. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells. Phytomedicine, 2016, 23(7), 736-744. doi: 10.1016/j.phymed.2016.03.013 PMID: 27235712
  49. Faller, M.; Guo, F. MicroRNA biogenesis: There’s more than one way to skin a cat. Biochim. Biophys. Acta. Gene Regul. Mech., 2008, 1779(11), 663-667. doi: 10.1016/j.bbagrm.2008.08.005 PMID: 18778799
  50. Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 2004, 23(20), 4051-4060. doi: 10.1038/sj.emboj.7600385 PMID: 15372072
  51. Macfarlane, L.A.; Murphy, P.R. MicroRNA: Biogenesis, function and role in cancer. Curr. Genomics, 2010, 11(7), 537-561. doi: 10.2174/138920210793175895 PMID: 21532838
  52. Gregory, R.I.; Yan, K.; Amuthan, G.; Chendrimada, T.; Doratotaj, B.; Cooch, N.; Shiekhattar, R. The Microprocessor complex mediates the genesis of microRNAs. Nature, 2004, 432(7014), 235-240. doi: 10.1038/nature03120 PMID: 15531877
  53. Okamura, K.; Hagen, J.W.; Duan, H.; Tyler, D.M.; Lai, E.C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell, 2007, 130(1), 89-100. doi: 10.1016/j.cell.2007.06.028 PMID: 17599402
  54. Liu, J.; Zhou, F.; Guan, Y.; Meng, F.; Zhao, Z.; Su, Q.; Bao, W.; Wang, X.; Zhao, J.; Huo, Z.; Zhang, L.; Zhou, S.; Chen, Y.; Wang, X. The biogenesis of miRNAs and their role in the development of amyotrophic lateral sclerosis. Cells, 2022, 11(3), 572. doi: 10.3390/cells11030572 PMID: 35159383
  55. Nakanishi, K. Anatomy of RISC : how do small RNAS and chaperones activate Argonaute proteins? Wiley Interdiscip. Rev. RNA, 2016, 7(5), 637-660. doi: 10.1002/wrna.1356 PMID: 27184117
  56. Wang, Z.; Li, Y.; Kong, D.; Ahmad, A.; Banerjee, S.; Sarkar, F.H. Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett., 2010, 292(2), 141-148. doi: 10.1016/j.canlet.2009.11.012 PMID: 20022691
  57. Abolfathi, H.; Arabi, M.; Sheikhpour, M. A literature review of microRNA and gene signaling pathways involved in the apoptosis pathway of lung cancer. Respir. Res., 2023, 24(1), 55. doi: 10.1186/s12931-023-02366-w PMID: 36800962
  58. Zhan, M.N.; Yu, X.T.; Tang, J.; Zhou, C.X.; Wang, C.L.; Yin, Q.Q.; Gong, X.F.; He, M.; He, J.R.; Chen, G.Q.; Zhao, Q. MicroRNA-494 inhibits breast cancer progression by directly targeting PAK1. Cell Death Dis., 2017, 8(1), e2529. doi: 10.1038/cddis.2016.440 PMID: 28055013
  59. Hy, L.; Yy, Z.; Bl, Z.; Fz, F. H, Y.; Hy, Z.; Zhou, B. miR-21 regulates the proliferation and apoptosis of ovarian cancer cells through PTEN/PI3K/AKT. PubMed, 2019, 23(10), 4149-4155. doi: 10.26355/eurrev_201905_17917
  60. Zhou, H.; Liu, H.; Jiang, M.; Zhang, S.; Chen, J.; Fan, X. Targeting MicroRNA-21 suppresses gastric cancer cell proliferation and migration via PTEN/Akt signaling axis. Cell Transplant., 2019, 28(3), 306-317. doi: 10.1177/0963689719825573 PMID: 30700111
  61. Egorova, O.; Lau, H.H.C.; McGraphery, K.; Sheng, Y. Mdm2 and MdmX RING domains play distinct roles in the regulation of p53 responses: A comparative study of Mdm2 and MdmX RING Domains in U2OS Cells. Int. J. Mol. Sci., 2020, 21(4), 1309. doi: 10.3390/ijms21041309 PMID: 32075226
  62. Li, H.; Wang, Z.; Jiang, M.; Fang, R.; Shi, H.; Shen, Y.; Cai, X.; Liu, Q.; Ye, K.; Fan, S.; Zhang, W.; Ye, L. The oncoprotein HBXIP promotes human breast cancer growth through down-regulating p53 via miR-18b/MDM2 and pAKT/MDM2 pathways. Acta Pharmacol. Sin., 2018, 39(11), 1787-1796. doi: 10.1038/s41401-018-0034-6 PMID: 30181579
  63. Lessard, L.; Stuible, M.; Tremblay, M.L. The two faces of PTP1B in cancer. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(3), 613-619. doi: 10.1016/j.bbapap.2009.09.018 PMID: 19782770
  64. Xu, X.; Tao, Y.; Niu, Y.; Wang, Z.; Zhang, C.; Yu, Y.; Ma, L. miR-125a-5p inhibits tumorigenesis in hepatocellular carcinoma. Aging, 2019, 11(18), 7639-7662. doi: 10.18632/aging.102276 PMID: 31527306
  65. Charalambous, M.P.; Lightfoot, T.; Speirs, V.; Horgan, K.; Gooderham, N.J. Expression of COX-2, NF-κB-p65, NF-κB-p50 and IKKα in malignant and adjacent normal human colorectal tissue. Br. J. Cancer, 2009, 101(1), 106-115. doi: 10.1038/sj.bjc.6605120 PMID: 19513071
  66. Li, B.; Lü, Y.; Yu, L.; Han, X.; Wang, H.; Mao, J.; Shen, J.; Wang, B.; Tang, J.; Li, C.; Song, B. miR-221/222 promote cancer stem-like cell properties and tumor growth of breast cancer via targeting PTEN and sustained Akt/NF-κB/COX-2 activation. Chem. Biol. Interact., 2017, 277, 33-42. doi: 10.1016/j.cbi.2017.08.014 PMID: 28844858
  67. Minami, A.; Nakanishi, A.; Ogura, Y.; Kitagishi, Y.; Matsuda, S. Connection between tumor suppressor BRCA1 and PTEN in damaged DNA repair. Front. Oncol., 2014, 4, 318. doi: 10.3389/fonc.2014.00318 PMID: 25426449
  68. Chehade, R.; Pettapiece-Phillips, R.; Salmena, L.; Kotlyar, M.; Jurišica, I.; Narod, S.A.; Akbari, M.R.; Kotsopoulos, J. Reduced BRCA1 transcript levels in freshly isolated blood leukocytes from BRCA1 mutation carriers is mutation specific. Breast Cancer Res., 2016, 18(1), 87. doi: 10.1186/s13058-016-0739-8 PMID: 27534398
  69. Matamala, N.; Vargas, M.T.; González-Cámpora, R.; Arias, J.I.; Menéndez, P.; Andrés-León, E.; Yanowsky, K.; Llaneza-Folgueras, A.; Miñambres, R.; Martínez-Delgado, B.; Benítez, J. MicroRNA deregulation in triple negative breast cancer reveals a role of miR-498 in regulating BRCA1 expression. Oncotarget, 2016, 7(15), 20068-20079. doi: 10.18632/oncotarget.7705 PMID: 26933805
  70. Kazanets, A.; Shorstova, T.; Hilmi, K.; Marques, M.; Witcher, M. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential. Biochim. Biophys. Acta Rev. Cancer, 2016, 1865(2), 275-288. doi: 10.1016/j.bbcan.2016.04.001 PMID: 27085853
  71. Zhang, H.; Sun, P.; Wang, Y-L.; Yu, X.F.; Tong, J.J. MiR-214 promotes proliferation and inhibits apoptosis of oral cancer cells through MAPK/ERK signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(7), 3710-3716. PMID: 32329847
  72. Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism, and disease. Cell, 2017, 168(6), 960-976. doi: 10.1016/j.cell.2017.02.004 PMID: 28283069
  73. Razaviyan, J.; Hadavi, R.; Tavakoli, R.; Kamani, F.; Paknejad, M.; Mohammadi-Yeganeh, S. Expression of miRNAs targeting mTOR and S6K1 genes of mTOR signaling pathway including miR-96, miR-557, and miR-3182 in triple-negative breast cancer. Appl. Biochem. Biotechnol., 2018, 186(4), 1074-1089. doi: 10.1007/s12010-018-2773-8 PMID: 29862445
  74. Chang, D.L.F.; Wei, W.; Yu, Z.P.; Qin, C.K. miR-152-5p inhibits proliferation and induces apoptosis of liver cancer cells by up-regulating FOXO expression. Pharmazie, 2017, 72(6), 338-343. doi: 10.1691/ph.2017.7406 PMID: 29442022
  75. Yeh, T.C.; Huang, T.T.; Yeh, T.S.; Chen, Y.R.; Hsu, K.W.; Yin, P.H.; Lee, H.C.; Tseng, L.M. miR-151-3p Targets TWIST1 to repress migration of human breast cancer cells. PLoS One, 2016, 11(12), e0168171. doi: 10.1371/journal.pone.0168171 PMID: 27930738
  76. Pastorino, R.; Sassano, M.; Danilo Tiziano, F.; Giraldi, L.; Amore, R.; Arzani, D.; Abiusi, E.; Ahrens, W.; Vilches, L.A.; Canova, C.; Healy, C.M.; Holcátová, I.; Lagiou, P.; Polesel, J.; Popović, M.; Nygård, S.; Cadoni, G.; Znaor, A.; Boffetta, P.; Matsuo, K.; Oze, I.; Brennan, P.; Boccia, S. Plasma miR-151-3p as a candidate diagnostic biomarker for head and neck cancer: A cross-sectional study within the inhance consortium. Cancer Epidemiol. Biomarkers Prev., 2022, 31(12), 2237-2243. doi: 10.1158/1055-9965.EPI-22-0376 PMID: 36126276
  77. MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26. doi: 10.1016/j.devcel.2009.06.016 PMID: 19619488
  78. Tan, Z.; Zheng, H.; Liu, X.; Zhang, W.; Zhu, J.; Wu, G.; Cao, L.; Song, J.; Wu, S.; Song, L.; Li, J. MicroRNA-1229 overexpression promotes cell proliferation and tumorigenicity and activates Wnt/β-catenin signaling in breast cancer. Oncotarget, 2016, 7(17), 24076-24087. doi: 10.18632/oncotarget.8119 PMID: 26992223
  79. Ge, S.; Wang, D.; Kong, Q.; Gao, W.; Sun, J. Function of miR-152 as a tumor suppressor in human breast cancer by targeting PIK3CA. Oncol. Res., 2017, 25(8), 1363-1371. doi: 10.3727/096504017X14878536973557 PMID: 28247844
  80. Guo, Y.; Ying, L.; Tian, Y.; Yang, P.; Zhu, Y.; Wang, Z.; Qiu, F.; Lin, J. miR-144 downregulation increases bladder cancer cell proliferation by targeting EZH 2 and regulating Wnt signaling. FEBS J., 2013, 280(18), 4531-4538. doi: 10.1111/febs.12417 PMID: 23815091
  81. Sheng, S.; Xie, L.; Wu, Y.; Ding, M.; Zhang, T.; Wang, X. MiR-144 inhibits growth and metastasis in colon cancer by down-regulating SMAD4. Biosci. Rep., 2019, 39(3), BSR20181895. doi: 10.1042/BSR20181895 PMID: 30745456
  82. Li, B.; Ding, C.M.; Li, Y.X.; Peng, J.C.; Geng, N.; Qin, W.W. MicroRNA-145 inhibits migration and induces apoptosis in human non-small cell lung cancer cells through regulation of the EGFR/PI3K/AKT signaling pathway. Oncol. Rep., 2018, 40(5), 2944-2954. doi: 10.3892/or.2018.6666 PMID: 30226581
  83. Phuah, N.H.; Nagoor, N.H. Regulation of microRNAs by natural agents: New strategies in cancer therapies. BioMed Res. Int., 2014, 2014, 1-17. doi: 10.1155/2014/804510 PMID: 25254214
  84. Zheng, F.; Li, J.; Ma, C.; Tang, X.; Tang, Q.; Wu, J.; Chai, X.; Xie, J.; Yang, X.; Hann, S.S. Novel regulation of miR-34a-5p and HOTAIR by the combination of berberine and gefitinib leading to inhibition of EMT in human lung cancer. J. Cell. Mol. Med., 2020, 24(10), 5578-5592. doi: 10.1111/jcmm.15214 PMID: 32248643
  85. Chen, Q.; Shi, J.; Ding, Z.; Xia, Q.; Zheng, T.; Ren, Y.; Li, M.; Fan, L. Berberine induces apoptosis in non-small-cell lung cancer cells by upregulating miR-19a targeting tissue factor. Cancer Manag. Res., 2019, 11, 9005-9015. doi: 10.2147/CMAR.S207677 PMID: 31695492
  86. Chen, S.; Li, P.; Li, J.; Wang, Y.; Du, Y.; Chen, X.; Zang, W.; Wang, H.; Chu, H.; Zhao, G.; Zhang, G. MiR-144 inhibits proliferation and induces apoptosis and autophagy in lung cancer cells by targeting TIGAR. Cell. Physiol. Biochem., 2015, 35(3), 997-1007. doi: 10.1159/000369755 PMID: 25660220
  87. Gao, Z.; Tan, C. Y.; Sha, R. Berberine promotes a549 cell apoptosis and autophagy via MIR-144. Natural Product Communications, 2022, 17(9) doi: 10.1177/1934578X221124752
  88. Zhu, C.; Li, J.; Hua, Y.; Wang, J.; Wang, K.; Sun, J. Berberine inhibits the expression of sct through mir-214-3p stimulation in breast cancer cells. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-13. doi: 10.1155/2020/2817147 PMID: 33312221
  89. Lo, S.N.; Wang, C.W.; Chen, Y.S.; Huang, C.C.; Wu, T.S.; Li, L.A.; Lee, I.J.; Ueng, Y.F. Berberine activates aryl hydrocarbon receptor but suppresses CYP1A1 induction through miR-21-3p stimulation in MCF-7 breast cancer cells. Molecules, 2017, 22(11), 1847. doi: 10.3390/molecules22111847 PMID: 29143794
  90. Hashemi- Niasari, F.; Rabbani-Chadegani, A.; Razmi, M.; Fallah, S. Synergy of theophylline reduces necrotic effect of berberine, induces cell cycle arrest and PARP, HMGB1, Bcl-2 family mediated apoptosis in MDA-MB-231 breast cancer cells. Biomed. Pharmacother., 2018, 106, 858-867. doi: 10.1016/j.biopha.2018.07.019 PMID: 30119256
  91. Ebeid, S. A.; Moneim, N. a. A. E.; Ghoneim, H.; El-Benhawy, S. A.; Ismail, S. E. Combination of doxorubicin and berberine generated synergistic anticancer effect on breast cancer cells through down-regulation of NANOG and MIRNA-21 gene expression. DOAJ, 2020, 11(3), 273-285. doi: 10.30476/mejc.2019.81277.0
  92. Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2021, 7(1), 6. doi: 10.1038/s41572-020-00240-3 PMID: 33479224
  93. Li, C.H.; Tang, S.C.; Wong, C.H.; Wang, Y.; Jiang, J.; Chen, Y. Berberine induces miR-373 expression in hepatocytes to inactivate hepatic steatosis associated AKT-S6 kinase pathway. Eur. J. Pharmacol., 2018, 825, 107-118. doi: 10.1016/j.ejphar.2018.02.035 PMID: 29477657
  94. Chen, J.; Wu, F.X.; Luo, H.L.; Liu, J-J.; Luo, T.; Bai, T.; Li, L.Q.; Fan, X.H. Berberine upregulates miR-22-3p to suppress hepatocellular carcinoma cell proliferation by targeting Sp1. Am. J. Transl. Res., 2016, 8(11), 4932-4941. PMID: 27904693
  95. Wei, S.; Zhang, M.; Yu, Y.; Lan, X.; Yao, F.; Yan, X.; Chen, L.; Hatch, G.M. Berberine attenuates development of the hepatic gluconeogenesis and lipid metabolism disorder in type 2 diabetic mice and in palmitate-incubated HepG2 cells through suppression of the HNF-4α miR122 pathway. PLoS One, 2016, 11(3), e0152097. doi: 10.1371/journal.pone.0152097 PMID: 27011261
  96. Wang, N.; Zhu, M.; Wang, X.; Tan, H.Y.; Tsao, S.; Feng, Y. Berberine-induced tumor suppressor p53 up-regulation gets involved in the regulatory network of MIR-23a in hepatocellular carcinoma. Biochim. Biophys. Acta. Gene Regul. Mech., 2014, 1839(9), 849-857. doi: 10.1016/j.bbagrm.2014.05.027 PMID: 24942805
  97. Lo, T.F.; Tsai, W.C.; Chen, S.T. MicroRNA-21-3p, a berberine-induced miRNA, directly down-regulates human methionine adenosyltransferases 2A and 2B and inhibits hepatoma cell growth. PLoS One, 2013, 8(9), e75628. doi: 10.1371/journal.pone.0075628 PMID: 24098708
  98. Hong, Y.; Ye, M.; Wang, F.; Fang, J.; Wang, C.; Luo, J.; Liu, J.; Liu, J.; Liu, L.; Zhao, Q.; Chang, Y. MiR-21-3p promotes hepatocellular carcinoma progression via SMAD7/YAP1 regulation. Front. Oncol., 2021, 11, 642030. doi: 10.3389/fonc.2021.642030 PMID: 33763375
  99. Yan, S.; Chang, J.; Hao, X.; Liu, J.; Tan, X.; Geng, Z.; Wang, Z. Berberine regulates short-chain fatty acid metabolism and alleviates the colitis-associated colorectal tumorigenesis through remodeling intestinal flora. Phytomedicine, 2022, 102, 154217. doi: 10.1016/j.phymed.2022.154217 PMID: 35660350
  100. Lü, Y.; Han, B.; Yu, H.; Cui, Z.; Li, Z.; Wang, J. Berberine regulates the microRNA-21-ITGΒ4-PDCD4 axis and inhibits colon cancer viability. Oncol. Lett., 2018, 15(4), 5971-5976. doi: 10.3892/ol.2018.7997 PMID: 29564000
  101. Huang, C.; Liu, H.; Gong, X.L.; Wu, L.Y.; Wen, B. Effect of evodiamine and berberine on the interaction between DNMTs and target microRNAs during malignant transformation of the colon by TGF-β1. Oncol. Rep., 2017, 37(3), 1637-1645. doi: 10.3892/or.2017.5379 PMID: 28098901
  102. Wen, B.; Huang, C.; Wu, L.; Liu, H. Effect of evodiamine and berberine on miR-429 as an oncogene in human colorectal cancer. OncoTargets Ther., 2016, 9, 4121-4127. doi: 10.2147/OTT.S104729 PMID: 27462166
  103. Ling, Q.; Fang, J.; Zhai, C.; Huang, W.; Chen, Y.; Zhou, T.; Liu, Y.; Fang, X. Berberine induces SOCS1 pathway to reprogram the M1 polarization of macrophages via miR-155–5p in colitis-associated colorectal cancer. Eur. J. Pharmacol., 2023, 949, 175724. doi: 10.1016/j.ejphar.2023.175724 PMID: 37059377
  104. Lee, K.H.; Lin, F.C.; Hsu, T.I.; Lin, J.T.; Guo, J.H.; Tsai, C.H.; Lee, Y.C.; Lee, Y.C.; Chen, C.L.; Hsiao, M.; Lu, P.J. MicroRNA-296-5p (miR-296-5p) functions as a tumor suppressor in prostate cancer by directly targeting Pin1. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(9), 2055-2066. doi: 10.1016/j.bbamcr.2014.06.001 PMID: 24915000
  105. Hallajzadeh, J.; Maleki Dana, P.; Mobini, M.; Asemi, Z.; Mansournia, M.A.; Sharifi, M.; Yousefi, B. Targeting of oncogenic signaling pathways by berberine for treatment of colorectal cancer. Med. Oncol., 2020, 37(6), 49. doi: 10.1007/s12032-020-01367-9 PMID: 32303850
  106. Jiang, Z.; Zhang, Y.; Zhang, Y.; Jia, Z.; Zhang, Z.; Yang, J. Cancer derived exosomes induce macrophages immunosuppressive polarization to promote bladder cancer progression. Cell Commun. Signal., 2021, 19(1), 93. doi: 10.1186/s12964-021-00768-1 PMID: 34521440
  107. Chen, C.L.; Cen, L.; Kohout, J.; Hutzen, B.; Chan, C.; Hsieh, F.C.; Loy, A.; Huang, V.; Cheng, G.; Lin, J. Signal transducer and activator of transcription 3 activation is associated with bladder cancer cell growth and survival. Mol. Cancer, 2008, 7(1), 78. doi: 10.1186/1476-4598-7-78 PMID: 18939995
  108. Qureshy, Z.; Johnson, D.E.; Grandis, J.R. Targeting the JAK/STAT pathway in solid tumors. J. Cancer Metastasis Treat., 2020, 2020, 27. doi: 10.20517/2394-4722.2020.58 PMID: 33521321
  109. Xia, Y.; Chen, S.; Cui, J.; Wang, Y.; Liu, X.; Shen, Y.; Gong, L.; Jiang, X.; Wang, W.; Zhu, Y.; Sun, S.; Li, J.; Zou, Y.; Shi, B. Berberine suppresses bladder cancer cell proliferation by inhibiting JAK1-STAT3 signaling via upregulation of miR-17-5p. Biochem. Pharmacol., 2021, 188, 114575. doi: 10.1016/j.bcp.2021.114575 PMID: 33887260
  110. Cardona-Mendoza, A.; Olivares-Niño, G.; Díaz-Báez, D.; Lafaurie, G.I.; Perdomo, S.J. Chemopreventive and anti-tumor potential of natural products in oral cancer. Nutr. Cancer, 2022, 74(3), 779-795. doi: 10.1080/01635581.2021.1931698 PMID: 34100309
  111. Solomon, M.C.; Radhakrishnan, R.A. MicroRNA’s – The vibrant performers in the oral cancer scenario. Jpn. Dent. Sci. Rev., 2020, 56(1), 85-89. doi: 10.1016/j.jdsr.2020.04.001 PMID: 32612717
  112. Zheng, G.; Li, N.; Jia, X.; Peng, C.; Luo, L.; Deng, Y.; Yin, J.; Song, Y.; Líu, H.; Lu, M.; Zhang, Z.; Gu, Y.; He, Z. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J. Mol. Med., 2016, 94(10), 1129-1141. doi: 10.1007/s00109-016-1417-0 PMID: 27055844
  113. Lin, C.Y.; Hsieh, P.L.; Liao, Y.W.; Peng, C.Y.; Lu, M.Y.; Yang, C.H.; Yu, C.C.; Liu, C.M. Berberine-targeted miR-21 chemosensitizes oral carcinomas stem cells. Oncotarget, 2017, 8(46), 80900-80908. doi: 10.18632/oncotarget.20723 PMID: 29113353
  114. Aleissa, M.S.; AL-Zharani, M.; Alneghery, L.M.; Aleissa, A.M. Berberine enhances the sensitivity of radiotherapy in ovarian cancer cell line (SKOV-3). Saudi Pharm. J., 2023, 31(1), 110-118. doi: 10.1016/j.jsps.2022.11.009 PMID: 36685297
  115. Liberti, M.V.; Locasale, J.W. The warburg effect: How does it benefit cancer cells? Trends Biochem. Sci., 2016, 41(3), 211-218. doi: 10.1016/j.tibs.2015.12.001 PMID: 26778478
  116. Xu, X.D.; Shao, S.X.; Jiang, H.P.; Cao, Y.W.; Wang, Y.H.; Yang, X.C.; Wang, Y.L.; Wang, X.S.; Niu, H.T. Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncol. Res. Treat., 2015, 38(3), 117-122. doi: 10.1159/000375435 PMID: 25792083
  117. Li, J.; Zou, Y.; Pei, M.; Zhang, Y.; Jiang, Y. Berberine inhibits the Warburg effect through TET3/miR-145/HK2 pathways in ovarian cancer cells. J. Cancer, 2021, 12(1), 207-216. doi: 10.7150/jca.48896 PMID: 33391417
  118. Chen, Q.; Qin, R.; Fang, Y.; Li, H. Berberine sensitizes human ovarian cancer cells to cisplatin through miR-93/PTEN/Akt signaling pathway. Cell. Physiol. Biochem., 2015, 36(3), 956-965. doi: 10.1159/000430270 PMID: 26087719
  119. Li, J.; Zhang, S.; Wu, L.; Pei, M.; Jiang, Y. Berberine inhibited metastasis through miR-145/MMP16 axis in vitro. J. Ovarian Res., 2021, 14(1), 4. doi: 10.1186/s13048-020-00752-2 PMID: 33407764
  120. Matsuhashi, S.; Manirujjaman, M.; Hamajima, H.; Ozaki, I. Control mechanisms of the tumor suppressor PDCD4: Expression and functions. Int. J. Mol. Sci., 2019, 20(9), 2304. doi: 10.3390/ijms20092304 PMID: 31075975
  121. Liu, S.; Fang, Y.; Shen, H.; Xu, W.; Li, H. Berberine sensitizes ovarian cancer cells to cisplatin through miR-21/PDCD4 axis. Acta Biochim. Biophys. Sin., 2013, 45(9), 756-762. doi: 10.1093/abbs/gmt075 PMID: 23824073
  122. Liu, Q.; Tang, J.; Chen, S.; Hu, S.; Shen, C.; Xiang, J.; Chen, N.; Wang, J.; Ma, X.; Zhang, Y.; Zeng, J. Berberine for gastric cancer prevention and treatment: Multi-step actions on the Correa’s cascade underlie its therapeutic effects. Pharmacol. Res., 2022, 184, 106440. doi: 10.1016/j.phrs.2022.106440 PMID: 36108874
  123. Li, X.; Ren, C.; Huang, A.; Zhao, Y.; Wang, L.; Shen, H.; Gao, C.; Chen, B.; Zhu, T.; Xiong, J.; Zhu, D.; Huang, Y.; Ding, J.; Yuan, Z.; Ding, W.; Wang, H. PIBF1 regulates multiple gene expression via impeding long-range chromatin interaction to drive the malignant transformation of HPV16 integration epithelial cells. J. Adv. Res., 2023, 585, 1-20. doi: 10.1016/j.jare.2023.04.015 PMID: 37182685
  124. Sasaki, T.; Kuniyasu, H. Significance of AKT in gastric cancer (Review). Int. J. Oncol., 2014, 45(6), 2187-2192. doi: 10.3892/ijo.2014.2678 PMID: 25270272
  125. You, H.Y.; Xie, X.M.; Zhang, W.J.; Zhu, H.L.; Jiang, F.Z. Berberine modulates cisplatin sensitivity of human gastric cancer cells by upregulation of miR-203. In vitro Cell. Dev. Biol. Anim., 2016, 52(8), 857-863. doi: 10.1007/s11626-016-0044-y PMID: 27142767
  126. Calvani, M.; Subbiani, A.; Bruno, G.; Favre, C. Beta-Blockers and berberine: A possible dual approach to contrast neuroblastoma growth and progression. Oxid. Med. Cell. Longev., 2020, 2020, 1-11. doi: 10.1155/2020/7534693 PMID: 32855766
  127. Dong, X.; Nao, J. Relationship between the therapeutic potential of various plant-derived bioactive compounds and their related microRNAs in neurological disorders. Phytomedicine, 2023, 108, 154501. doi: 10.1016/j.phymed.2022.154501 PMID: 36368284
  128. Li, X.; Su, Y.; Li, N.; Zhang, F.R.; Zhang, N. Berberine attenuates MPP+-induced neuronal injury by regulating LINC00943/miR-142-5p/KPNA4/NF-κB pathway in SK-N-SH cells. Neurochem. Res., 2021, 46(12), 3286-3300. doi: 10.1007/s11064-021-03431-w PMID: 34427876
  129. Abdelmaksoud, N.M.; El-Mahdy, H.A.; Ismail, A.; Elsakka, E.G.E.; El-Husseiny, A.A.; Khidr, E.G.; Ali, E.M.; Rashed, M.H.; El-Demerdash, F.E.S.; Doghish, A.S. The role of miRNAs in the pathogenesis and therapeutic resistance of endometrial cancer: A spotlight on the convergence of signaling pathways. Pathol. Res. Pract., 2023, 244, 154411. doi: 10.1016/j.prp.2023.154411 PMID: 36921547
  130. Kim, W.R.; Park, E.G.; Lee, D.H.; Lee, Y.J.; Bae, W.H.; Kim, H.S. The tumorigenic role of circular RNA-MicroRNA axis in cancer. Int. J. Mol. Sci., 2023, 24(3), 3050. doi: 10.3390/ijms24033050 PMID: 36769372
  131. Liang, H.; Liu, Y.; Fu, L.; Li, L.; Gong, N. Berberine inhibits the development of endometrial cancer through circ_ZNF608/miR-377-3p/COX2 axis. Autoimmunity, 2022, 55(7), 485-495. doi: 10.1080/08916934.2021.2010050 PMID: 35876160
  132. Yarla, N.S.; Bishayee, A.; Sethi, G.; Reddanna, P.; Kalle, A.M.; Dhananjaya, B.L.; Dowluru, K.S.V.G.K.; Chintala, R.; Duddukuri, G.R. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin. Cancer Biol., 2016, 40-41, 48-81. doi: 10.1016/j.semcancer.2016.02.001 PMID: 26853158
  133. Wang, Y.; Zhang, S. Berberine suppresses growth and metastasis of endometrial cancer cells via miR-101/COX-2. Biomed. Pharmacother., 2018, 103, 1287-1293. doi: 10.1016/j.biopha.2018.04.161 PMID: 29864910
  134. Yin, Z.; Yang, J.; Ning, R.; Liu, Y.; Feng, M.; Gu, C.; Fei, J.; Li, Y. Signal pathways, diseases, and functions associated with the miR-19a/92a cluster and the use of berberine to modulate the expression of this cluster in multiple myeloma cells. J. Biochem. Mol. Toxicol., 2018, 32(6), e22057. doi: 10.1002/jbt.22057 PMID: 29687521
  135. Gu, C.; Li, T.; Yin, Z.; Chen, S.; Fei, J.; Shen, J.; Zhang, Y. Integrative analysis of signaling pathways and diseases associated with the miR-106b/25 cluster and their function study in berb erine-induced multiple myeloma cells. Funct. Integr. Genomics, 2017, 17(2-3), 253-262. doi: 10.1007/s10142-016-0519-7 PMID: 27647143
  136. Hu, H.; Li, K.; Wang, X.; Liu, Y.; Lu, Z.; Dong, R.; Guo, H.; Zhang, M. Set9, NF-κB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cells. Acta Pharmacol. Sin., 2013, 34(1), 157-166. doi: 10.1038/aps.2012.161 PMID: 23247593
  137. Feng, M.; Luo, X.; Gu, C.; Li, Y.; Zhu, X.; Fei, J. Systematic analysis of berberine-induced signaling pathway between miRNA clusters and mRNAs and identification of mir-99a-125b cluster function by seed-targeting inhibitors in multiple myeloma cells. RNA Biol., 2015, 12(1), 82-91. doi: 10.1080/15476286.2015.1017219 PMID: 25826415
  138. Luo, X.; Gu, J.; Zhu, R.; Feng, M.; Zhu, X.; Li, Y.; Fei, J. Integrative analysis of differential miRNA and functional study of miR-21 by seed-targeting inhibition in multiple myeloma cells in response to berberine. BMC Syst. Biol., 2014, 8(1), 82. doi: 10.1186/1752-0509-8-82 PMID: 25000828
  139. Letašiová, S.; Jantová, S.; Čipák, L.; Múčková, M. Berberine—antiproliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett., 2006, 239(2), 254-262. doi: 10.1016/j.canlet.2005.08.024 PMID: 16229943
  140. Căruntu, A.; Căruntu, C. Recent advances in oral squamous cell carcinoma. J. Clin. Med., 2022, 11(21), 6406. doi: 10.3390/jcm11216406 PMID: 36362637
  141. Li, L.; Li, X.; Huang, X.; Jiang, W.; Liu, L.; Hou, C.; Yang, Y.; Zhang, L.; Zhang, X.; Ye, L.; Yuan, J.; Li, G.; Sun, H.; Mao, L. Synergistic anticancer effects of nanocarrier loaded with berberine and miR-122. Biosci. Rep., 2018, 38(3), BSR20180311. doi: 10.1042/BSR20180311 PMID: 29769413
  142. Ali, M.; Bamezai, R.N.K.; Singh, R.P. Invasive breast cancer: miR-24-2 targets genes associated with survival and sensitizes MDA-MB-231 cells to berberine. OMICS, 2023, 27(9), 409-420. doi: 10.1089/omi.2023.0092 PMID: 37669117

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers