Phytochemicals as Potential Lead Molecules against Hepatocellular Carcinoma


Cite item

Full Text

Abstract

:Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, accounting for 85-90% of liver cancer cases and is a leading cause of cancer-related mortality worldwide. The major risk factors for HCC include hepatitis C and B viral infections, along with chronic liver diseases, such as cirrhosis, fibrosis, and non-alcoholic steatohepatitis associated with metabolic syndrome. Despite the advancements in modern medicine, there is a continuous rise in the annual global incidence rate of HCC, and it is estimated to reach >1 million cases by 2025. Emerging research in phytomedicine and chemotherapy has established the anti-cancer potential of phytochemicals, owing to their diverse biological activities. In this review, we report the major phytochemicals that have been explored in combating hepatocellular carcinoma and possess great potential to be used as an alternative or in conjunction with the existing HCC treatment modalities. An overview of the pre-clinical observations, mechanism of action and molecular targets of some of these phytochemicals is also incorporated.

About the authors

Tennyson Rayginia

Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology

Email: info@benthamscience.net

Chenicheri Keerthana

Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology

Email: info@benthamscience.net

Sadiq Shifana

Molecular Bioassay Laboratory, Institute of Advanced Virology

Email: info@benthamscience.net

Maria Pellissery

Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology

Email: info@benthamscience.net

Ajmani Abhishek

Molecular Bioassay Laboratory, Institute of Advanced Virology

Email: info@benthamscience.net

Ruby Anto

Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Seo, D.Y.; Lee, S.R.; Heo, J.W.; No, M.H.; Rhee, B.D.; Ko, K.S.; Kwak, H.B.; Han, J. Ursolic acid in health and disease. Korean J. Physiol. Pharmacol., 2018, 22(3), 235-248. doi: 10.4196/kjpp.2018.22.3.235 PMID: 29719446
  3. Craig, A.J.; von Felden, J.; Garcia-Lezana, T.; Sarcognato, S.; Villanueva, A. Tumour evolution in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(3), 139-152. doi: 10.1038/s41575-019-0229-4 PMID: 31792430
  4. Ahmed, O.; Liu, L.; Gayed, A.; Baadh, A.; Patel, M.; Tasse, J.; Turba, U.; Arslan, B. The changing face of hepatocellular carcinoma: Forecasting prevalence of nonalcoholic steatohepatitis and hepatitis C cirrhosis. J. Clin. Exp. Hepatol., 2019, 9(1), 50-55. doi: 10.1016/j.jceh.2018.02.006 PMID: 30765939
  5. Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; Sangro, B.; Singal, A.G.; Vogel, A.; Fuster, J.; Ayuso, C.; Bruix, J. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol., 2022, 76(3), 681-693. doi: 10.1016/j.jhep.2021.11.018 PMID: 34801630
  6. Toh, M.R.; Wong, E.Y.T.; Wong, S.H.; Ng, A.W.T.; Loo, L.H.; Chow, P.K.H.; Ngeow, J. Global epidemiology and genetics of hepatocellular carcinoma. Gastroenterology, 2023, 164(5), 766-782. doi: 10.1053/j.gastro.2023.01.033 PMID: 36738977
  7. Ogunwobi, O.O.; Harricharran, T.; Huaman, J.; Galuza, A.; Odumuwagun, O.; Tan, Y.; Ma, G.X.; Nguyen, M.T. Mechanisms of hepatocellular carcinoma progression. World J. Gastroenterol., 2019, 25(19), 2279-2293. doi: 10.3748/wjg.v25.i19.2279 PMID: 31148900
  8. Tarocchi, M.; Polvani, S.; Marroncini, G.; Galli, A. Molecular mechanism of hepatitis B virus-induced hepatocarcinogenesis. World J. Gastroenterol., 2014, 20(33), 11630-11640. doi: 10.3748/wjg.v20.i33.11630 PMID: 25206269
  9. Ramakrishna, G.; Rastogi, A.; Trehanpati, N.; Sen, B.; Khosla, R.; Sarin, S.K. From cirrhosis to hepatocellular carcinoma: New molecular insights on inflammation and cellular senescence. Liver Cancer, 2013, 2(3-4), 367-383. doi: 10.1159/000343852 PMID: 24400224
  10. Bartosch, B.; Thimme, R.; Blum, H.E.; Zoulim, F. Hepatitis C virus-induced hepatocarcinogenesis. J. Hepatol., 2009, 51(4), 810-820. doi: 10.1016/j.jhep.2009.05.008 PMID: 19545926
  11. Shampay, J.; Szostak, J.W.; Blackburn, E.H. DNA sequences of telomeres maintained in yeast. Nature, 1984, 310(5973), 154-157. doi: 10.1038/310154a0 PMID: 6330571
  12. Jafri, M.A.; Ansari, S.A.; Alqahtani, M.H.; Shay, J.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med., 2016, 8(1), 69. doi: 10.1186/s13073-016-0324-x PMID: 27323951
  13. Mangnall, D.; Bird, N.C.; Majeed, A.W. The molecular physiology of liver regeneration following partial hepatectomy. Liver Int., 2003, 23(2), 124-138. doi: 10.1034/j.1600-0676.2003.00812.x PMID: 12654135
  14. Hoare, M.; Das, T.; Alexander, G. Ageing, telomeres, senescence, and liver injury. J. Hepatol., 2010, 53(5), 950-961. doi: 10.1016/j.jhep.2010.06.009 PMID: 20739078
  15. Schulze, K.; Imbeaud, S.; Letouzé, E.; Alexandrov, L.B.; Calderaro, J.; Rebouissou, S.; Couchy, G.; Meiller, C.; Shinde, J.; Soysouvanh, F.; Calatayud, A.L.; Pinyol, R.; Pelletier, L.; Balabaud, C.; Laurent, A.; Blanc, J.F.; Mazzaferro, V.; Calvo, F.; Villanueva, A.; Nault, J.C.; Bioulac-Sage, P.; Stratton, M.R.; Llovet, J.M.; Zucman-Rossi, J. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet., 2015, 47(5), 505-511. doi: 10.1038/ng.3252 PMID: 25822088
  16. Nault, J.C.; Datta, S.; Imbeaud, S.; Franconi, A.; Mallet, M.; Couchy, G.; Letouzé, E.; Pilati, C.; Verret, B.; Blanc, J.F.; Balabaud, C.; Calderaro, J.; Laurent, A.; Letexier, M.; Bioulac-Sage, P.; Calvo, F.; Zucman-Rossi, J. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet., 2015, 47(10), 1187-1193. doi: 10.1038/ng.3389 PMID: 26301494
  17. La Bella, T.; Imbeaud, S.; Peneau, C.; Mami, I.; Datta, S.; Bayard, Q.; Caruso, S.; Hirsch, T.Z.; Calderaro, J.; Morcrette, G.; Guettier, C.; Paradis, V.; Amaddeo, G.; Laurent, A.; Possenti, L.; Chiche, L.; Bioulac-Sage, P.; Blanc, J.F.; Letouze, E.; Nault, J.C.; Zucman-Rossi, J. Adeno-associated virus in the liver: Natural history and consequences in tumour development. Gut, 2020, 69(4), 737-747. doi: 10.1136/gutjnl-2019-318281 PMID: 31375600
  18. Ningarhari, M.; Caruso, S.; Hirsch, T.Z.; Bayard, Q.; Franconi, A.; Védie, A.L.; Noblet, B.; Blanc, J.F.; Amaddeo, G.; Ganne, N.; Ziol, M.; Paradis, V.; Guettier, C.; Calderaro, J.; Morcrette, G.; Kim, Y.; MacLeod, A.R.; Nault, J.C.; Rebouissou, S.; Zucman-Rossi, J. Telomere length is key to hepatocellular carcinoma diversity and telomerase addiction is an actionable therapeutic target. J. Hepatol., 2021, 74(5), 1155-1166. doi: 10.1016/j.jhep.2020.11.052 PMID: 33338512
  19. Zhang, C.; Li, J.; Huang, T.; Duan, S.; Dai, D.; Jiang, D.; Sui, X.; Li, D.; Chen, Y.; Ding, F.; Huang, C.; Chen, G.; Wang, K. Meta-analysis of DNA methylation biomarkers in hepatocellular carcinoma. Oncotarget, 2016, 7(49), 81255-81267. doi: 10.18632/oncotarget.13221 PMID: 27835605
  20. Xu, G.; Zhou, X.; Xing, J.; Xiao, Y.; Jin, B.; Sun, L.; Yang, H.; Du, S.; Xu, H.; Mao, Y. Identification of RASSF1A promoter hypermethylation as a biomarker for hepatocellular carcinoma. Cancer Cell Int., 2020, 20(1), 547. doi: 10.1186/s12935-020-01638-5 PMID: 33292241
  21. Liu, M.; Cui, L.H.; Li, C.C.; Zhang, L. Association of APC, GSTP1 and SOCS1 promoter methylation with the risk of hepatocellular carcinoma. Eur. J. Cancer Prev., 2015, 24(6), 470-483. doi: 10.1097/CEJ.0000000000000121 PMID: 25853848
  22. Villanueva, A.; Portela, A.; Sayols, S.; Battiston, C.; Hoshida, Y.; Méndez-González, J.; Imbeaud, S.; Letouzé, E.; Hernandez-Gea, V.; Cornella, H.; Pinyol, R.; Solé, M.; Fuster, J.; Zucman-Rossi, J.; Mazzaferro, V.; Esteller, M.; Llovet, J.M. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology, 2015, 61(6), 1945-1956. doi: 10.1002/hep.27732 PMID: 25645722
  23. Li, Y.; Chen, X.; Lu, C. The interplay between DNA and histone methylation: Molecular mechanisms and disease implications. EMBO Rep., 2021, 22(5), e51803. doi: 10.15252/embr.202051803 PMID: 33844406
  24. Tang, B.; Tang, F.; Li, B.; Yuan, S.; Xu, Q.; Tomlinson, S.; Jin, J.; Hu, W.; He, S. High USP22 expression indicates poor prognosis in hepatocellular carcinoma. Oncotarget, 2015, 6(14), 12654-12667. doi: 10.18632/oncotarget.3705 PMID: 25909224
  25. Ling, S.; Li, J.; Shan, Q.; Dai, H.; Lu, D.; Wen, X.; Song, P.; Xie, H.; Zhou, L.; Liu, J.; Xu, X.; Zheng, S. USP22 mediates the multidrug resistance of hepatocellular carcinoma via the SIRT1/AKT/MRP1 signaling pathway. Mol. Oncol., 2017, 11(6), 682-695. doi: 10.1002/1878-0261.12067 PMID: 28417539
  26. Zhang, J.; Luo, N.; Tian, Y.; Li, J.; Yang, X.; Yin, H.; Xiao, C.; Sheng, J.; Li, Y.; Tang, B.; Li, R. USP22 knockdown enhanced chemosensitivity of hepatocellular carcinoma cells to 5-Fu by up-regulation of Smad4 and suppression of Akt. Oncotarget, 2017, 8(15), 24728-24740. doi: 10.18632/oncotarget.15798 PMID: 28445968
  27. Shen, Z.T.; Chen, Y.; Huang, G-C.; Zhu, X-X.; Wang, R.; Chen, L-B. Aurora-a confers radioresistance in human hepatocellular carcinoma by activating NF-κB signaling pathway. BMC Cancer, 2019, 19(1), 1075. doi: 10.1186/s12885-019-6312-y PMID: 30606139
  28. Lin, Z.Z.; Jeng, Y.M.; Hu, F.C.; Pan, H.W.; Tsao, H.W.; Lai, P.L.; Lee, P.H.; Cheng, A.L.; Hsu, H.C. Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B Overexpression in HCC. BMC Cancer, 2010, 10(1), 461. doi: 10.1186/1471-2407-10-461 PMID: 20799978
  29. Gailhouste, L.; Liew, L.C.; Yasukawa, K.; Hatada, I.; Tanaka, Y.; Nakagama, H.; Ochiya, T. Differentiation therapy by epigenetic reconditioning exerts antitumor effects on liver cancer cells. Mol. Ther., 2018, 26(7), 1840-1854. doi: 10.1016/j.ymthe.2018.04.018 PMID: 29759938
  30. Liu, M.; Zhang, L.; Li, H.; Hinoue, T.; Zhou, W.; Ohtani, H.; El-Khoueiry, A.; Daniels, J.; O’Connell, C.; Dorff, T.B.; Lu, Q.; Weisenberger, D.J.; Liang, G. Integrative epigenetic analysis reveals therapeutic targets to the DNA methyltransferase inhibitor guadecitabine (SGI-110) in hepatocellular carcinoma. Hepatology, 2018, 68(4), 1412-1428. doi: 10.1002/hep.30091 PMID: 29774579
  31. Alqahtani, A.; Khan, Z.; Alloghbi, A.; Said Ahmed, T.S.; Ashraf, M.; Hammouda, D.M. Hepatocellular carcinoma: Molecular mechanisms and targeted therapies. Medicina, 2019, 55(9), 526. doi: 10.3390/medicina55090526 PMID: 31450841
  32. Farzaneh, Z.; Vosough, M.; Agarwal, T.; Farzaneh, M. Critical signaling pathways governing hepatocellular carcinoma behavior: Small molecule-based approaches. Cancer Cell Int., 2021, 21(1), 208. doi: 10.1186/s12935-021-01924-w PMID: 33849569
  33. Ho, D.W.H.; Lo, R.C.L.; Chan, L.K.; Ng, I.O.L. Molecular pathogenesis of hepatocellular carcinoma. Liver Cancer, 2016, 5(4), 290-302. doi: 10.1159/000449340 PMID: 27781201
  34. Mekuria, A.; Abdi, A. Potential molecular targets and drugs for treatment of hepatocellular carcinoma. J. Cancer Sci. Ther., 2017, 9, 12.
  35. Morse, M.A.; Sun, W.; Kim, R.; He, A.R.; Abada, P.B.; Mynderse, M.; Finn, R.S. The role of angiogenesis in hepatocellular carcinoma. Clin. Cancer Res., 2019, 25(3), 912-920. doi: 10.1158/1078-0432.CCR-18-1254 PMID: 30274981
  36. Bais, C. Comprehensive reassessment of plasma VEGFA (pVEGFA) as a candidate predictive biomarker for bevacizumab (Bv) in 13 pivotal trials (seven indications); American Society of Clinical Oncology, 2014. doi: 10.1200/jco.2014.32.15_suppl.3040
  37. Whittaker, S.; Marais, R.; Zhu, A.X. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene, 2010, 29(36), 4989-5005. doi: 10.1038/onc.2010.236 PMID: 20639898
  38. Fruman, D.A.; Rommel, C. PI3K and cancer: Lessons, challenges and opportunities. Nat. Rev. Drug Discov., 2014, 13(2), 140-156. doi: 10.1038/nrd4204 PMID: 24481312
  39. Khan, K.H.; Yap, T.A.; Yan, L.; Cunningham, D. Targeting the PI3K-AKT-mTOR signaling network in cancer. Chin. J. Cancer, 2013, 32(5), 253-265. doi: 10.5732/cjc.013.10057 PMID: 23642907
  40. Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K pathway in human disease. Cell, 2017, 170(4), 605-635. doi: 10.1016/j.cell.2017.07.029 PMID: 28802037
  41. Wang, L.; Wang, W.L.; Zhang, Y.; Guo, S.P.; Zhang, J.; Li, Q.L. Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma. Hepatol. Res., 2007, 37(5), 389-396. doi: 10.1111/j.1872-034X.2007.00042.x PMID: 17441812
  42. Zhu, Y.; Zheng, B.; Wang, H.; Chen, L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol. Sin., 2017, 38(5), 614-622. doi: 10.1038/aps.2017.5 PMID: 28344323
  43. Sun, E.J.; Wankell, M.; Palamuthusingam, P.; McFarlane, C.; Hebbard, L. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Biomedicines, 2021, 9(11), 1639. doi: 10.3390/biomedicines9111639 PMID: 34829868
  44. Tian, L.Y.; Smit, D.J.; Jücker, M. The role of PI3K/AKT/mTOR signaling in hepatocellular carcinoma metabolism. Int. J. Mol. Sci., 2023, 24(3), 2652. doi: 10.3390/ijms24032652 PMID: 36768977
  45. Wang, Z.; Sheng, Y.Y.; Gao, X.M.; Wang, C.Q.; Wang, X.Y.; Lu, X.; Wei, J.W.; Zhang, K.L.; Dong, Q.Z.; Qin, L.X. β-catenin mutation is correlated with a favorable prognosis in patients with hepatocellular carcinoma. Mol. Clin. Oncol., 2015, 3(4), 936-940. doi: 10.3892/mco.2015.569 PMID: 26171210
  46. Peng, S.Y.; Chen, W.J.; Lai, P.L.; Jeng, Y.M.; Sheu, J.C.; Hsu, H.C. High α-fetoprotein level correlates with high stage, early recurrence and poor prognosis of hepatocellular carcinoma: Significance of hepatitis virus infection, age, p53 and β-catenin mutations. Int. J. Cancer, 2004, 112(1), 44-50. doi: 10.1002/ijc.20279 PMID: 15305374
  47. Waisberg, J.; Saba, G.T. Wnt-/-β-catenin pathway signaling in human hepatocellular carcinoma. World J. Hepatol., 2015, 7(26), 2631-2635. doi: 10.4254/wjh.v7.i26.2631 PMID: 26609340
  48. Khalaf, A.M.; Fuentes, D.; Morshid, A.I.; Burke, M.R.; Kaseb, A.O.; Hassan, M.; Hazle, J.D.; Elsayes, K.M. Role of Wnt/β-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J. Hepatocell. Carcinoma, 2018, 5, 61-73. doi: 10.2147/JHC.S156701 PMID: 29984212
  49. Bugter, J.M.; Fenderico, N.; Maurice, M.M. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat. Rev. Cancer, 2021, 21(1), 5-21. doi: 10.1038/s41568-020-00307-z PMID: 33097916
  50. Xu, C.; Xu, Z.; Zhang, Y.; Evert, M.; Calvisi, D.F.; Chen, X. β-Catenin signaling in hepatocellular carcinoma. J. Clin. Invest., 2022, 132(4), e154515. doi: 10.1172/JCI154515 PMID: 35166233
  51. Qu, B.; Liu, B.R.; Du, Y.J.; Chen, J.; Cheng, Y.Q.; Xu, W.; Wang, X.H. Wnt/β-catenin signaling pathway may regulate the expression of angiogenic growth factors in hepatocellular carcinoma. Oncol. Lett., 2014, 7(4), 1175-1178. doi: 10.3892/ol.2014.1828 PMID: 24944688
  52. Lo, R.C.L.; Leung, C.O.N.; Chan, K.K.S.; Ho, D.W.H.; Wong, C.M.; Lee, T.K.W.; Ng, I.O.L. Cripto-1 contributes to stemness in hepatocellular carcinoma by stabilizing Dishevelled-3 and activating Wnt/β-catenin pathway. Cell Death Differ., 2018, 25(8), 1426-1441. doi: 10.1038/s41418-018-0059-x PMID: 29445127
  53. Leung, H.W.; Leung, C.O.N.; Lau, E.Y.; Chung, K.P.S.; Mok, E.H.; Lei, M.M.L.; Leung, R.W.H.; Tong, M.; Keng, V.W.; Ma, C.; Zhao, Q.; Ng, I.O.L.; Ma, S.; Lee, T.K. EPHB2 activates β-catenin to enhance cancer stem cell properties and drive sorafenib resistance in hepatocellular carcinoma. Cancer Res., 2021, 81(12), 3229-3240. doi: 10.1158/0008-5472.CAN-21-0184 PMID: 33903122
  54. Karabicici, M.; Azbazdar, Y.; Ozhan, G.; Senturk, S.; Firtina Karagonlar, Z.; Erdal, E. Changes in Wnt and TGF-β signaling mediate the development of regorafenib resistance in hepatocellular carcinoma cell line HuH7. Front. Cell Dev. Biol., 2021, 9, 639779. doi: 10.3389/fcell.2021.639779 PMID: 34458250
  55. Arensman, M.D.; Telesca, D.; Lay, A.R.; Kershaw, K.M.; Wu, N.; Donahue, T.R.; Dawson, D.W. The CREB-binding protein inhibitor ICG-001 suppresses pancreatic cancer growth. Mol. Cancer Ther., 2014, 13(10), 2303-2314. doi: 10.1158/1535-7163.MCT-13-1005 PMID: 25082960
  56. Emami, K.H.; Nguyen, C.; Ma, H.; Kim, D.H.; Jeong, K.W.; Eguchi, M.; Moon, R.T.; Teo, J-L.; Oh, S.W.; Kim, H.Y.; Moon, S.H.; Ha, J.R.; Kahn, M. A small molecule inhibitor of β-catenin/cyclic AMP response element-binding protein transcription. Proc. Natl. Acad. Sci. USA, 2004, 101(34), 12682-12687. doi: 10.1073/pnas.0404875101 PMID: 15314234
  57. Dihlmann, S.; Klein, S.; Doeberitz Mv, Mv. Reduction of β-catenin/T-cell transcription factor signaling by aspirin and indomethacin is caused by an increased stabilization of phosphorylated β-catenin. Mol. Cancer Ther., 2003, 2(6), 509-516. PMID: 12813129
  58. Thorne, C.A.; Hanson, A.J.; Schneider, J.; Tahinci, E.; Orton, D.; Cselenyi, C.S.; Jernigan, K.K.; Meyers, K.C.; Hang, B.I.; Waterson, A.G.; Kim, K.; Melancon, B.; Ghidu, V.P.; Sulikowski, G.A.; LaFleur, B.; Salic, A.; Lee, L.A.; Miller, D.M., III; Lee, E. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. Nat. Chem. Biol., 2010, 6(11), 829-836. doi: 10.1038/nchembio.453 PMID: 20890287
  59. Boon, E.M.J.; Keller, J.J.; Wormhoudt, T A M.; Giardiello, F.M.; Offerhaus, G.J.A.; van der Neut, R.; Pals, S.T. Sulindac targets nuclear β-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines. Br. J. Cancer, 2004, 90(1), 224-229. doi: 10.1038/sj.bjc.6601505 PMID: 14710233
  60. Gedaly, R.; Galuppo, R.; Daily, M.F.; Shah, M.; Maynard, E.; Chen, C.; Zhang, X.; Esser, K.A.; Cohen, D.A.; Evers, B.M.; Jiang, J.; Spear, B.T. Targeting the Wnt/β-catenin signaling pathway in liver cancer stem cells and hepatocellular carcinoma cell lines with FH535. PLoS One, 2014, 9(6), e99272. doi: 10.1371/journal.pone.0099272 PMID: 24940873
  61. Wei, W.; Chua, M.S.; Grepper, S.; So, S. Small molecule antagonists of Tcf4/β-catenin complex inhibit the growth of HCC cells in vitro and in vivo. Int. J. Cancer, 2010, 126(10), 2426-2436. doi: 10.1002/ijc.24810 PMID: 19662654
  62. Yamada, Y.; Yoshimi, N.; Hirose, Y.; Hara, A.; Shimizu, M.; Kuno, T.; Katayama, M.; Qiao, Z.; Mori, H. Suppression of occurrence and advancement of β-catenin-accumulated crypts, possible premalignant lesions of colon cancer, by selective cyclooxygenase-2 inhibitor, celecoxib. Jpn. J. Cancer Res., 2001, 92(6), 617-623. doi: 10.1111/j.1349-7006.2001.tb01139.x PMID: 11429049
  63. Byers, S. 9 TGF-p, Notch, and Wnt in normal and malignant stem cells: Differentiating agents and epigenetic modulation; Cancer Stem Cells, 2009, p. 139.
  64. Zheng, X.; Zeng, W.; Gai, X.; Xu, Q.; Li, C.; Liang, Z.; Tuo, H.; Liu, Q. Role of the Hedgehog pathway in hepatocellular carcinoma (Review). Oncol. Rep., 2013, 30(5), 2020-2026. doi: 10.3892/or.2013.2690 PMID: 23970376
  65. Philips, G.M.; Chan, I.S.; Swiderska, M.; Schroder, V.T.; Guy, C.; Karaca, G.F.; Moylan, C.; Venkatraman, T.; Feuerlein, S.; Syn, W.K.; Jung, Y.; Witek, R.P.; Choi, S.; Michelotti, G.A.; Rangwala, F.; Merkle, E.; Lascola, C.; Diehl, A.M. Hedgehog signaling antagonist promotes regression of both liver fibrosis and hepatocellular carcinoma in a murine model of primary liver cancer. PLoS One, 2011, 6(9), e23943. doi: 10.1371/journal.pone.0023943 PMID: 21912653
  66. Verdelho Machado, M.; Diehl, A.M. The hedgehog pathway in nonalcoholic fatty liver disease. Crit. Rev. Biochem. Mol. Biol., 2018, 53(3), 264-278. doi: 10.1080/10409238.2018.1448752 PMID: 29557675
  67. Cheng, W-T.; Xu, K.; Tian, D.Y.; Zhang, Z.G.; Liu, L.J.; Chen, Y. Role of Hedgehog signaling pathway in proliferation and invasiveness of hepatocellular carcinoma cells. Int. J. Oncol., 2009, 34(3), 829-836. PMID: 19212688
  68. Chan, I.S.; Guy, C.D.; Machado, M.V.; Wank, A.; Kadiyala, V.; Michelotti, G.; Choi, S.; Swiderska-Syn, M.; Karaca, G.; Pereira, T.A.; Yip-Schneider, M.T.; Max Schmidt, C.; Diehl, A.M. Alcohol activates the hedgehog pathway and induces related procarcinogenic processes in the alcohol-preferring rat model of hepatocarcinogenesis. Alcohol. Clin. Exp. Res., 2014, 38(3), 787-800. doi: 10.1111/acer.12279 PMID: 24164383
  69. Huang, X.B.; Li, J.; Zheng, L.; Zuo, G.H.; Han, K.Q.; Li, H.Y.; Liang, P. Bioinformatics analysis reveals potential candidate drugs for HCC. Pathol. Oncol. Res., 2013, 19(2), 251-258. doi: 10.1007/s12253-012-9576-y PMID: 23341104
  70. Liu, Z.; Liu, X.; Liang, J.; Liu, Y.; Hou, X.; Zhang, M.; Li, Y.; Jiang, X. Immunotherapy for hepatocellular carcinoma: Current status and future prospects. Front. Immunol., 2021, 12, 765101-765101. doi: 10.3389/fimmu.2021.765101 PMID: 34675942
  71. Mandlik, D.S.; Mandlik, S.K.; Choudhary, H.B. Immunotherapy for hepatocellular carcinoma: Current status and future perspectives. World J. Gastroenterol., 2023, 29(6), 1054-1075. doi: 10.3748/wjg.v29.i6.1054 PMID: 36844141
  72. Li, J.; Xuan, S.; Dong, P.; Xiang, Z.; Gao, C.; Li, M.; Huang, L.; Wu, J. Immunotherapy of hepatocellular carcinoma: Recent progress and new strategy. Front. Immunol., 2023, 14, 1192506. doi: 10.3389/fimmu.2023.1192506 PMID: 37234162
  73. Guven, D.C.; Sahin, T.K.; Rizzo, A.; Ricci, A.D.; Aksoy, S.; Sahin, K. The use of phytochemicals to improve the efficacy of immune checkpoint inhibitors: Opportunities and challenges. Appl. Sci., 2022, 12(20), 10548. doi: 10.3390/app122010548
  74. Lee, J.; Han, Y.; Wang, W.; Jo, H.; Kim, H.; Kim, S.; Yang, K.M.; Kim, S.J.; Dhanasekaran, D.N.; Song, Y.S. Phytochemicals in cancer immune checkpoint inhibitor therapy. Biomolecules, 2021, 11(8), 1107. doi: 10.3390/biom11081107 PMID: 34439774
  75. Singh, S. Medicinal plants and phytochemicals in prevention and management of life style disorders: Pharmacological studies and challenges. Asian J. Pharm. Clin. Res., 2021, 14(12), 1-6.
  76. Costa, A.G.V.; Garcia-Diaz, D.F.; Jimenez, P.; Silva, P.I. Bioactive compounds and health benefits of exotic tropical red–black berries. J. Funct. Foods, 2013, 5(2), 539-549. doi: 10.1016/j.jff.2013.01.029
  77. Prahalathan, P.; Saravanakumar, M.; Raja, B. The flavonoid morin restores blood pressure and lipid metabolism in DOCA-salt hypertensive rats. Redox Rep., 2012, 17(4), 167-175. doi: 10.1179/1351000212Y.0000000015 PMID: 22781105
  78. Chan, J.Y.Y.; Yuen, A.C.Y.; Chan, R.Y.K.; Chan, S.W. A review of the cardiovascular benefits and antioxidant properties of allicin. Phytother. Res., 2013, 27(5), 637-646. doi: 10.1002/ptr.4796 PMID: 22888009
  79. Dong, J.; Zhang, X.; Zhang, L.; Bian, H.X.; Xu, N.; Bao, B.; Liu, J. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: A mechanism including AMPKα1/SIRT1. J. Lipid Res., 2014, 55(3), 363-374. doi: 10.1194/jlr.M038786 PMID: 24465016
  80. Anto, R.J.; Mukhopadhyay, A.; Denning, K.; Aggarwal, B.B. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: Its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis, 2002, 23(1), 143-150. doi: 10.1093/carcin/23.1.143 PMID: 11756235
  81. Vinod, B.S.; Maliekal, T.T.; Anto, R.J. Phytochemicals as chemosensitizers: From molecular mechanism to clinical significance. Antioxid. Redox Signal., 2013, 18(11), 1307-1348. doi: 10.1089/ars.2012.4573 PMID: 22871022
  82. Kunnumakkara, A.B.; Bordoloi, D.; Harsha, C.; Banik, K.; Gupta, S.C.; Aggarwal, B.B. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin. Sci., 2017, 131(15), 1781-1799. doi: 10.1042/CS20160935 PMID: 28679846
  83. Puliyappadamba, V.T.; Thulasidasan, A.K.T.; Vijayakurup, V.; Antony, J.; Bava, S.V.; Anwar, S.; Sundaram, S.; Anto, R.J. Curcumin inhibits B a PDE -induced procarcinogenic signals in lung cancer cells, and curbs B a P -induced mutagenesis and lung carcinogenesis. Biofactors, 2015, 41(6), 431-442. doi: 10.1002/biof.1244 PMID: 26643788
  84. Puliyappadamba, V.T.; Cheriyan, V.T.; Thulasidasan, A.K.T.; Bava, S.V.; Vinod, B.S.; Prabhu, P.R.; Varghese, R.; Bevin, A.; Venugopal, S.; Anto, R.J. Nicotine-induced survival signaling in lung cancer cells is dependent on their p53 status while its down-regulation by curcumin is independent. Mol. Cancer, 2010, 9(1), 220. doi: 10.1186/1476-4598-9-220 PMID: 20727180
  85. Haritha, N.H.; Nawab, A.; Vijayakurup, V.; Anto, N.P.; Liju, V.B.; Alex, V.V.; Amrutha, A.N.; Aiswarya, S.U.; Swetha, M.; Vinod, B.S.; Sundaram, S.; Guijarro, M.V.; Herlevich, T.; Krishna, A.; Nestory, N.K.; Bava, S.V.; Sadasivan, C.; Zajac-Kaye, M.; Anto, R.J. Targeting thymidylate synthase enhances the chemosensitivity of triple-negative breast cancer towards 5-FU-based combinatorial therapy. Front. Oncol., 2021, 11, 656804. doi: 10.3389/fonc.2021.656804 PMID: 34336653
  86. Bava, S.V.; Puliappadamba, V.T.; Deepti, A.; Nair, A.; Karunagaran, D.; Anto, R.J. Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J. Biol. Chem., 2005, 280(8), 6301-6308. doi: 10.1074/jbc.M410647200 PMID: 15590651
  87. Bava, S.V.; Sreekanth, C.N.; Thulasidasan, A.K.T.; Anto, N.P.; Cheriyan, V.T.; Puliyappadamba, V.T.; Menon, S.G.; Ravichandran, S.D.; Anto, R.J. Akt is upstream and MAPKs are downstream of NF-κB in paclitaxel-induced survival signaling events, which are down-regulated by curcumin contributing to their synergism. Int. J. Biochem. Cell Biol., 2011, 43(3), 331-341. doi: 10.1016/j.biocel.2010.09.011 PMID: 20883815
  88. Pan, Z.; Zhuang, J.; Ji, C.; Cai, Z.; Liao, W.; Huang, Z. Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression. Oncol. Lett., 2018, 15(4), 4821-4826. doi: 10.3892/ol.2018.7988 PMID: 29552121
  89. Abouzied, M.M.M.; Eltahir, H.M.; Abdel Aziz, M.A.; Ahmed, N.S.; Abd El-Ghany, A.A.; Abd El-Aziz, E.A.; Abd El-Aziz, H.O. Curcumin ameliorate DENA-induced HCC via modulating TGF-β, AKT, and caspase-3 expression in experimental rat model. Tumour Biol., 2015, 36(3), 1763-1771. doi: 10.1007/s13277-014-2778-z PMID: 25519685
  90. Li, J. Curcumin inhibits hepatocellular carcinoma via regulating miR-21/TIMP3 axis. Evid Based Complement. Altern. Med., 2020.
  91. Shao, S. Curcumin suppresses hepatic stellate cell-induced hepatocarcinoma angiogenesis and invasion through downregulating CTGF. Oxid. Med. Cell. Longev., 2019. doi: 10.1155/2019/8148510
  92. Wang, J.; Wang, C.; Bu, G. Curcumin inhibits the growth of liver cancer stem cells through the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Exp. Ther. Med., 2018, 15(4), 3650-3658. doi: 10.3892/etm.2018.5805 PMID: 29545895
  93. Thulasidasan, A.K.T.; Retnakumari, A.P.; Shankar, M.; Vijayakurup, V.; Anwar, S.; Thankachan, S.; Pillai, K.S.; Pillai, J.J.; Nandan, C.D.; Alex, V.V.; Chirayil, T.J.; Sundaram, S.; Kumar, G.S.V.; Anto, R.J. Folic acid conjugation improves the bioavailability and chemosensitizing efficacy of curcumin-encapsulated PLGA-PEG nanoparticles towards paclitaxel chemotherapy. Oncotarget, 2017, 8(64), 107374-107389. doi: 10.18632/oncotarget.22376 PMID: 29296172
  94. Vijayakurup, V.; Thulasidasan, A.T.; Shankar G, M.; Retnakumari, A.P.; Nandan, C.D.; Somaraj, J.; Antony, J.; Alex, V.V.; Vinod, B.S.; Liju, V.B.; Sundaram, S.; Kumar, G.S.V.; Anto, R.J. Chitosan encapsulation enhances the bioavailability and tissue retention of curcumin and improves its efficacy in preventing B a P-induced lung carcinogenesis. Cancer Prev. Res., 2019, 12(4), 225-236. doi: 10.1158/1940-6207.CAPR-18-0437 PMID: 30760502
  95. Zheng, Y.; Jia, R.; Li, J.; Tian, X.; Qian, Y. Curcumin- and resveratrol-co-loaded nanoparticles in synergistic treatment of hepatocellular carcinoma. J. Nanobiotechnology, 2022, 20(1), 339. doi: 10.1186/s12951-022-01554-y PMID: 35858935
  96. Banerjee, S.; Bueso-Ramos, C.; Aggarwal, B.B. Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: Role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res., 2002, 62(17), 4945-4954. PMID: 12208745
  97. Zhang, B.; Yin, X.; Sui, S. Resveratrol inhibited the progression of human hepatocellular carcinoma by inducing autophagy via regulating p53 and the phosphoinositide 3-kinase/protein kinase B pathway. Oncol. Rep., 2018, 40(5), 2758-2765. doi: 10.3892/or.2018.6648 PMID: 30132535
  98. Bhattacharya, S. Therapeutic role of resveratrol against hepatocellular carcinoma: A review on its molecular mechanisms of action; Pharmacological Research-Modern Chinese Medicine, 2023, p. 100233.
  99. Vinod, B.S.; Nair, H.H.; Vijayakurup, V.; Shabna, A.; Shah, S.; Krishna, A.; Pillai, K.S.; Thankachan, S.; Anto, R.J. Resveratrol chemosensitizes HER-2-overexpressing breast cancer cells to docetaxel chemoresistance by inhibiting docetaxel-mediated activation of HER-2–Akt axis. Cell Death Discov., 2015, 1(1), 15061. doi: 10.1038/cddiscovery.2015.61 PMID: 27551486
  100. Gao, M.; Deng, C.; Dang, F. Synergistic antitumor effect of resveratrol and sorafenib on hepatocellular carcinoma through PKA/AMPK/eEF2K pathway. Food Nutr. Res., 2021, 65, 65. doi: 10.29219/fnr.v65.3602 PMID: 34776832
  101. Izzo, C.; Annunziata, M.; Melara, G.; Sciorio, R.; Dallio, M.; Masarone, M.; Federico, A.; Persico, M. The role of resveratrol in liver disease: A comprehensive review from in vitro to clinical trials. Nutrients, 2021, 13(3), 933. doi: 10.3390/nu13030933 PMID: 33805795
  102. Bishayee, A.; Dhir, N. Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: Inhibition of cell proliferation and induction of apoptosis. Chem. Biol. Interact., 2009, 179(2-3), 131-144. doi: 10.1016/j.cbi.2008.11.015 PMID: 19073162
  103. Xie, L.; Dai, H.; Li, M.; Yang, W.; Yu, G.; Wang, X.; Wang, P.; Liu, W.; Hu, X.; Zhao, M. MARCH1 encourages tumour progression of hepatocellular carcinoma via regulation of PI3K-AKT-β-catenin pathways. J. Cell. Mol. Med., 2019, 23(5), 3386-3401. doi: 10.1111/jcmm.14235 PMID: 30793486
  104. Chan, E.W.C. Resveratrol and pterostilbene: A comparative overview of their chemistry, biosynthesis, plant sources and pharmacological properties. J. Appl. Pharm. Sci., 2019, 9(7), 124-129. doi: 10.7324/JAPS.2019.90717
  105. Shin, H.J.; Han, J.M.; Choi, Y.S.; Jung, H.J. Pterostilbene suppresses both cancer cells and cancer stem-like cells in cervical cancer with superior bioavailability to resveratrol. Molecules, 2020, 25(1), 228. doi: 10.3390/molecules25010228 PMID: 31935877
  106. Wang, R.; Xu, Z.; Tian, J.; Liu, Q.; Dong, J.; Guo, L.; Hai, B.; Liu, X.; Yao, H.; Chen, Z.; Xu, J.; Zhu, L.; Chen, H.; Hou, T.; Zhu, W.; Shao, J. Pterostilbene inhibits hepatocellular carcinoma proliferation and HBV replication by targeting ribonucleotide reductase M2 protein. Am. J. Cancer Res., 2021, 11(6), 2975-2989. PMID: 34249439
  107. Qian, Y.Y.; Liu, Z.S.; Pan, D.Y.; Li, K. Tumoricidal activities of pterostilbene depend upon destabilizing the MTA1-NuRD complex and enhancing P53 acetylation in hepatocellular carcinoma. Exp. Ther. Med., 2017, 14(4), 3098-3104. doi: 10.3892/etm.2017.4923 PMID: 29042910
  108. Qian, Y.Y.; Liu, Z.S.; Zhang, Z.; Levenson, A.; Li, K. Pterostilbene increases PTEN expression through the targeted downregulation of microRNA-19a in hepatocellular carcinoma. Mol. Med. Rep., 2018, 17(4), 5193-5201. doi: 10.3892/mmr.2018.8515 PMID: 29393488
  109. Yu, C.L.; Yang, S.F.; Hung, T.W.; Lin, C.L.; Hsieh, Y.H.; Chiou, H.L. Inhibition of eIF2α dephosphorylation accelerates pterostilbene-induced cell death in human hepatocellular carcinoma cells in an ER stress and autophagy-dependent manner. Cell Death Dis., 2019, 10(6), 418. doi: 10.1038/s41419-019-1639-5 PMID: 31138785
  110. Lee, C.-M. BlueBerry isolate, pterostilbene, functions as a potential anticancer stem cell agent in suppressing irradiation-mediated enrichment of hepatoma stem cells. Evid Based Complement. Altern. Med., 2013. doi: 10.1155/2013/258425
  111. Pan, M.H.; Chiou, Y.S.; Chen, W.J.; Wang, J.M.; Badmaev, V.; Ho, C.T. Pterostilbene inhibited tumor invasion via suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Carcinogenesis, 2009, 30(7), 1234-1242. doi: 10.1093/carcin/bgp121 PMID: 19447859
  112. Huang, C.S.; Ho, C.T.; Tu, S.H.; Pan, M.H.; Chuang, C.H.; Chang, H.W.; Chang, C.H.; Wu, C.H.; Ho, Y.S. Long-term ethanol exposure-induced hepatocellular carcinoma cell migration and invasion through lysyl oxidase activation are attenuated by combined treatment with pterostilbene and curcumin analogues. J. Agric. Food Chem., 2013, 61(18), 4326-4335. doi: 10.1021/jf4004175 PMID: 23560895
  113. Wang, P.; Sang, S. Metabolism and pharmacokinetics of resveratrol and pterostilbene. Biofactors, 2018, 44(1), 16-25. doi: 10.1002/biof.1410 PMID: 29315886
  114. Nath, L.R.; Gorantla, J.N.; Thulasidasan, A.K.T.; Vijayakurup, V.; Shah, S.; Anwer, S.; Joseph, S.M.; Antony, J.; Veena, K.S.; Sundaram, S.; Marelli, U.K.; Lankalapalli, R.S.; Anto, R.J. Evaluation of uttroside B, a saponin from Solanum nigrum Linn, as a promising chemotherapeutic agent against hepatocellular carcinoma. Sci. Rep., 2016, 6(1), 36318. doi: 10.1038/srep36318 PMID: 27808117
  115. Swetha, M.; Keerthana, C.K.; Rayginia, T.P.; Nath, L.R.; Haritha, N.H.; Shabna, A.; Kalimuthu, K.; Thangarasu, A.K.; Aiswarya, S.U.; Jannet, S.; Pillai, S.; Harikumar, K.B.; Sundaram, S.; Anto, N.P.; Wu, D.H.; Lankalapalli, R.S.; Towner, R.; Isakov, N.; Deepa, S.S.; Anto, R.J. Augmented efficacy of uttroside B over sorafenib in a murine model of human hepatocellular carcinoma. Pharmaceuticals, 2022, 15(5), 636. doi: 10.3390/ph15050636 PMID: 35631464
  116. Nath, L.R. Blockade of uttroside B-induced autophagic pro-survival signals augments its chemotherapeutic efficacy against hepatocellular carcinoma. Front. Oncol., 2022, 12, 247.
  117. Suresh Varma, S.; Aiswarya, S.U.; Keerthana, C.K.; Rayginia, T.P.; Induja, D.K.; John Anto, R.; Lankalapalli, R.S. Putative role of uttronin (degalactotigonin) in cytotoxicity of uttroside B in HepG2 cells. Tetrahedron Lett., 2023, 127, 154668. doi: 10.1016/j.tetlet.2023.154668
  118. Wu, K. Study on chemical components of steroidal saponins from Tribulus terrestris L. J. Tianjin Univ. Trad. Chin. Med, 2012, 31, 225-228.
  119. Jin, J.M.; Zhang, Y.J.; Yang, C.R. Spirostanol and furostanol glycosides from the fresh tubers of Polianthes tuberosa. J. Nat. Prod., 2004, 67(1), 5-9. doi: 10.1021/np034028a PMID: 14738376
  120. Alam, M.F.; Ajeibi, A.O.; Safhi, M.H.; Alabdly, A.J.A.; Alshahrani, S.; Rashid, H.; Qadri, M.; Jali, A.M.; Alqahtani, S.; Nomier, Y.; Moni, S.S.; Khalid, M.; Anwer, T. Therapeutic potential of capsaicin against cyclophosphamide-induced liver damage. J. Clin. Med., 2023, 12(3), 911. doi: 10.3390/jcm12030911 PMID: 36769559
  121. Hacioglu, C.; Kar, F. Capsaicin induces redox imbalance and ferroptosis through ACSL4/GPx4 signaling pathways in U87-MG and U251 glioblastoma cells. Metab. Brain Dis., 2023, 38(2), 393-408. doi: 10.1007/s11011-022-00983-w PMID: 35438378
  122. Ilie, M.; Caruntu, C.; Tampa, M.; Georgescu, S.R.; Matei, C.; Negrei, C.; Ion, R.M.; Constantin, C.; Neagu, M.; Boda, D. Capsaicin: Physicochemical properties, cutaneous reactions and potential applications in painful and inflammatory conditions (Review). Exp. Ther. Med., 2019, 18(2), 916-925. doi: 10.3892/etm.2019.7513 PMID: 31384324
  123. Zhang, S.; Wang, D.; Huang, J.; Hu, Y.; Xu, Y. Application of capsaicin as a potential new therapeutic drug in human cancers. J. Clin. Pharm. Ther., 2020, 45(1), 16-28. doi: 10.1111/jcpt.13039 PMID: 31545523
  124. Jung, M.Y.; Kang, H.J.; Moon, A. Capsaicin-induced apoptosis in SK-Hep-1 hepatocarcinoma cells involves Bcl-2 downregulation and caspase-3 activation. Cancer Lett., 2001, 165(2), 139-145. doi: 10.1016/S0304-3835(01)00426-8 PMID: 11275362
  125. Hacioglu, C. Capsaicin inhibits cell proliferation by enhancing oxidative stress and apoptosis through SIRT1/NOX4 signaling pathways in HepG2 and HL-7702 cells. J. Biochem. Mol. Toxicol., 2022, 36(3), e22974. doi: 10.1002/jbt.22974 PMID: 34939720
  126. Xie, Z.Q.; Li, H.X.; Hou, X.J.; Huang, M.Y.; Zhu, Z.M.; Wei, L.X.; Tang, C.X. Capsaicin suppresses hepatocarcinogenesis by inhibiting the stemness of hepatic progenitor cells via SIRT1 / SOX2 signaling pathway. Cancer Med., 2022, 11(22), 4283-4296. doi: 10.1002/cam4.4777 PMID: 35674129
  127. Dai, N.; Ye, R.; He, Q.; Guo, P.; Chen, H.; Zhang, Q. Capsaicin and sorafenib combination treatment exerts synergistic anti-hepatocellular carcinoma activity by suppressing EGFR and PI3K/Akt/mTOR signaling. Oncol. Rep., 2018, 40(6), 3235-3248. PMID: 30272354
  128. Bort, A.; Spínola, E.; Rodríguez-Henche, N.; Díaz-Laviada, I. Capsaicin exerts synergistic antitumor effect with sorafenib in hepatocellular carcinoma cells through AMPK activation. Oncotarget, 2017, 8(50), 87684-87698. doi: 10.18632/oncotarget.21196 PMID: 29152112
  129. Chaiyasit, K.; Khovidhunkit, W.; Wittayalertpanya, S. Pharmacokinetic and the effect of capsaicin in Capsicum frutescens on decreasing plasma glucose level. J. Med. Assoc. Thai., 2009, 92(1), 108-113. PMID: 19260251
  130. Osarieme, E.D.; Modupe, D.T.; Oluchukwu, O.P. The anticancer activity of caffeine-a review. Arch. Clin. Biomed. Res., 2019, 3(5), 326-342.
  131. Kisku, T.; Paul, K.; Singh, B.; Das, S.; Mukherjee, S.; Kundu, A.; Rath, J.; Sekhar Das, R. Synthesis of Cu(II)-caffeine complex as potential therapeutic agent: Studies on antioxidant, anticancer and pharmacological activities. J. Mol. Liq., 2022, 364, 119897. doi: 10.1016/j.molliq.2022.119897
  132. Okano, J.; Nagahara, T.; Matsumoto, K.; Murawaki, Y. Caffeine inhibits the proliferation of liver cancer cells and activates the MEK/ERK/EGFR signalling pathway. Basic Clin. Pharmacol. Toxicol., 2008, 102(6), 543-551. doi: 10.1111/j.1742-7843.2008.00231.x PMID: 18346049
  133. Wang, Z.; Gu, C.; Wang, X.; Lang, Y.; Wu, Y.; Wu, X.; Zhu, X.; Wang, K.; Yang, H. Caffeine enhances the anti-tumor effect of 5-fluorouracil via increasing the production of reactive oxygen species in hepatocellular carcinoma. Med. Oncol., 2019, 36(12), 97. doi: 10.1007/s12032-019-1323-8 PMID: 31664534
  134. Kawano, Y.; Nagata, M.; Kohno, T.; Ichimiya, A.; Iwakiri, T.; Okumura, M.; Arimori, K. Caffeine increases the antitumor effect of Cisplatin in human hepatocellular carcinoma cells. Biol. Pharm. Bull., 2012, 35(3), 400-407. doi: 10.1248/bpb.35.400 PMID: 22382328
  135. Wang, T.J.; Liu, Z.S.; Zeng, Z.C.; Du, S.S.; Qiang, M.; Zhang, S.M.; Zhang, Z.Y.; Tang, Z.Y.; Wu, W.Z.; Zeng, H.Y. Caffeine enhances radiosensitization to orthotopic transplant LM3 hepatocellular carcinoma in vivo. Cancer Sci., 2010, 101(6), 1440-1446. doi: 10.1111/j.1349-7006.2010.01564.x PMID: 20384627
  136. Goh, Y.X.; Jalil, J.; Lam, K.W.; Husain, K.; Premakumar, C.M. Genistein: A review on its anti-inflammatory properties. Front. Pharmacol., 2022, 13, 820969. doi: 10.3389/fphar.2022.820969 PMID: 35140617
  137. Mousavi, Y.; Adlercreutz, H. Genistein is an effective stimulator of sex hormone-binding globulin production in hepatocarcinoma human liver cancer cells and suppresses proliferation of these cells in culture. Steroids, 1993, 58(7), 301-304. doi: 10.1016/0039-128X(93)90088-5 PMID: 8212077
  138. Chodon, D.; Ramamurty, N.; Sakthisekaran, D. Preliminary studies on induction of apoptosis by genistein on HepG2 cell line. Toxicol. In vitro, 2007, 21(5), 887-891. doi: 10.1016/j.tiv.2007.01.023 PMID: 17391909
  139. Chodon, D.; Banu, S.M.; Padmavathi, R.; Sakthisekaran, D. Inhibition of cell proliferation and induction of apoptosis by genistein in experimental hepatocellular carcinoma. Mol. Cell. Biochem., 2007, 297(1-2), 73-80. doi: 10.1007/s11010-006-9324-2 PMID: 17006617
  140. Zhang, Q. Inhibitory effect of genistein on PLC/PRF5 hepatocellular carcinoma cell line. 2015.
  141. Zhang, Q.; Bao, J.; Yang, J. Genistein-triggered anticancer activity against liver cancer cell line HepG2 involves ROS generation, mitochondrial apoptosis, G2/M cell cycle arrest and inhibition of cell migrationand inhibition of cell migration. Arch. Med. Sci., 2019, 15(4), 1001-1009. doi: 10.5114/aoms.2018.78742 PMID: 31360194
  142. Lee, S.R.; Kwon, S.W.; Lee, Y.H.; Kaya, P.; Kim, J.M.; Ahn, C.; Jung, E.M.; Lee, G.S.; An, B.S.; Jeung, E.B.; Park, B.; Hong, E.J. Dietary intake of genistein suppresses hepatocellular carcinoma through AMPK-mediated apoptosis and anti-inflammation. BMC Cancer, 2019, 19(1), 6. doi: 10.1186/s12885-018-5222-8 PMID: 30606143
  143. Dai, W.; Wang, F.; He, L.; Lin, C.; Wu, S.; Chen, P.; Zhang, Y.; Shen, M.; Wu, D.; Wang, C.; Lu, J.; Zhou, Y.; Xu, X.; Xu, L.; Guo, C. Genistein inhibits hepatocellular carcinoma cell migration by reversing the epithelial–mesenchymal transition: Partial mediation by the transcription factor NFAT 1. Mol. Carcinog., 2015, 54(4), 301-311. doi: 10.1002/mc.22100 PMID: 24243709
  144. Gu, Y.; Zhu, C.F.; Dai, Y.L.; Zhong, Q.; Sun, B. Inhibitory effects of genistein on metastasis of human hepatocellular carcinoma. World J. Gastroenterol., 2009, 15(39), 4952-4957. doi: 10.3748/wjg.15.4952 PMID: 19842228
  145. Wang, S.D.; Chen, B.C.; Kao, S.T.; Liu, C.J.; Yeh, C.C. Genistein inhibits tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. BMC Complement. Altern. Med., 2014, 14(1), 26. doi: 10.1186/1472-6882-14-26 PMID: 24433534
  146. Chodon, D.; Arumugam, A.; Rajasekaran, D.; Dhanapal, S. Effect of genistein on modulating lipid peroxidation and membrane-bound enzymes in N-nitrosodiethylamine-induced and phenobarbital-promoted rat liver carcinogenesis. J. Health Sci., 2008, 54(2), 137-142. doi: 10.1248/jhs.54.137
  147. Chen, P.; Hu, M.D.; Deng, X.F.; Li, B. Genistein reinforces the inhibitory effect of Cisplatin on liver cancer recurrence and metastasis after curative hepatectomy. Asian Pac. J. Cancer Prev., 2013, 14(2), 759-764. doi: 10.7314/APJCP.2013.14.2.759 PMID: 23621233
  148. Sanaei, M.; Kavoosi, F.; Atashpour, S.; Haghighat, S. Effects of genistein and synergistic action in combination with tamoxifen on the HepG2 human hepatocellular carcinoma cell line. Asian Pac. J. Cancer Prev. APJCP, 2017, 18(9), 2381-2385. PMID: 28950682
  149. Li, D.; Cao, D.; Cui, Y.; Sun, Y.; Jiang, J.; Cao, X. The potential of epigallocatechin gallate in the chemoprevention and therapy of hepatocellular carcinoma. Front. Pharmacol., 2023, 14, 1201085. doi: 10.3389/fphar.2023.1201085 PMID: 37292151
  150. Min, K.; Kwon, T.K. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integr. Med. Res., 2014, 3(1), 16-24. doi: 10.1016/j.imr.2013.12.001 PMID: 28664074
  151. Kuo, P-L.; Lin, C-C. Green tea constituent (-)-epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways. J. Biomed. Sci., 2003, 10(2), 219-227. PMID: 12595758
  152. Shimizu, M.; Shirakami, Y.; Sakai, H.; Tatebe, H.; Nakagawa, T.; Hara, Y.; Weinstein, I.B.; Moriwaki, H. EGCG inhibits activation of the insulin-like growth factor (IGF)/IGF-1 receptor axis in human hepatocellular carcinoma cells. Cancer Lett., 2008, 262(1), 10-18. doi: 10.1016/j.canlet.2007.11.026 PMID: 18164805
  153. Shirakami, Y.; Shimizu, M.; Adachi, S.; Sakai, H.; Nakagawa, T.; Yasuda, Y.; Tsurumi, H.; Hara, Y.; Moriwaki, H. (–)-Epigallocatechin gallate suppresses the growth of human hepatocellular carcinoma cells by inhibiting activation of the vascular endothelial growth factor–vascular endothelial growth factor receptor axis. Cancer Sci., 2009, 100(10), 1957-1962. doi: 10.1111/j.1349-7006.2009.01241.x PMID: 19558547
  154. Tang, Y.; Cao, J.; Cai, Z.; An, H.; Li, Y.; Peng, Y.; Chen, N.; Luo, A.; Tao, H.; Li, K. Epigallocatechin gallate induces chemopreventive effects on rats with diethylnitrosamine-induced liver cancer via inhibition of cell division cycle 25A. Mol. Med. Rep., 2020, 22(5), 3873-3885. doi: 10.3892/mmr.2020.11463 PMID: 33000276
  155. Sur, S.; Pal, D.; Roy, R.; Barua, A.; Roy, A.; Saha, P.; Panda, C.K. Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice. Toxicol. Appl. Pharmacol., 2016, 300, 34-46. doi: 10.1016/j.taap.2016.03.016 PMID: 27058323
  156. Shen, X.; Zhao, J.; Wang, Q.; Chen, P.; Hong, Y.; He, X.; Chen, D.; Liu, H.; Wang, Y.; Cai, X. The invasive potential of hepatoma cells induced by radiotherapy is related to the activation of hepatic stellate cells and could be inhibited by EGCG through the TLR4 signaling pathway. Radiat. Res., 2022, 197(4), 365-375. doi: 10.1667/RADE-21-00129.1 PMID: 35051295
  157. Liang, G.; Tang, A.; Lin, X.; Li, L.; Zhang, S.; Huang, Z.; Tang, H.; Li, Q.Q. Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int. J. Oncol., 2010, 37(1), 111-123. PMID: 20514403
  158. Wei, D.Z.; Yang, J.Y.; Liu, J.W.; Tong, W.Y. Inhibition of liver cancer cell proliferation and migration by a combination of (-)-epigallocatechin-3-gallate and ascorbic acid. J. Chemother., 2003, 15(6), 591-595. doi: 10.1179/joc.2003.15.6.591 PMID: 14998086
  159. Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112, 108612. doi: 10.1016/j.biopha.2019.108612 PMID: 30798142
  160. Çetinkaya, M.; Baran, Y. Therapeutic potential of luteolin on cancer. Vaccines, 2023, 11(3), 554. doi: 10.3390/vaccines11030554 PMID: 36992138
  161. Yao, C.; Dai, S.; Wang, C.; Fu, K.; Wu, R.; Zhao, X.; Yao, Y.; Li, Y. Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies. Biomed. Pharmacother., 2023, 167, 115464. doi: 10.1016/j.biopha.2023.115464 PMID: 37713990
  162. Ding, S.; Hu, A.; Hu, Y.; Ma, J.; Weng, P.; Dai, J. Anti-hepatoma cells function of luteolin through inducing apoptosis and cell cycle arrest. Tumour Biol., 2014, 35(4), 3053-3060. doi: 10.1007/s13277-013-1396-5 PMID: 24287949
  163. Hwang, Y.J.; Lee, E.J.; Kim, H.R.; Hwang, K.A. Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways. BMB Rep., 2013, 46(12), 611-616. doi: 10.5483/BMBRep.2013.46.12.133 PMID: 24257119
  164. Niu, J.X.; Guo, H.P.; Gan, H.M.; Bao, L.D.; Ren, J.J. Effect of luteolin on gene expression in mouse H22 hepatoma cells. Genet. Mol. Res., 2015, 14(4), 14448-14456. doi: 10.4238/2015.November.18.7 PMID: 26600503
  165. Cao, Z.; Zhang, H.; Cai, X.; Fang, W.; Chai, D.; Wen, Y.; Chen, H.; Chu, F.; Zhang, Y. Luteolin promotes cell apoptosis by inducing autophagy in hepatocellular carcinoma. Cell. Physiol. Biochem., 2017, 43(5), 1803-1812. doi: 10.1159/000484066 PMID: 29049999
  166. Zhang, Q.; Yang, J.; Wang, J. Modulatory effect of luteolin on redox homeostasis and inflammatory cytokines in a mouse model of liver cancer. Oncol. Lett., 2016, 12(6), 4767-4772. doi: 10.3892/ol.2016.5291 PMID: 28101223
  167. Balamurugan, K.; Karthikeyan, J. Evaluation of the antioxidant and anti-inflammatory nature of luteolin in experimentally induced hepatocellular carcinoma. Biomed. Prev. Nutr., 2012, 2(2), 86-90. doi: 10.1016/j.bionut.2012.01.002
  168. Nazim, U.M.; Park, S.Y. Luteolin sensitizes human liver cancer cells to TRAIL-induced apoptosis via autophagy and JNK-mediated death receptor 5 upregulation. Int. J. Oncol., 2019, 54(2), 665-672. PMID: 30431076
  169. Horiuchi, K.; Shiota, S.; Kuroda, T.; Hatano, T.; Yoshida, T.; Tsuchiya, T. Potentiation of antimicrobial activity of aminoglycosides by carnosol from Salvia officinalis. Biol. Pharm. Bull., 2007, 30(2), 287-290. doi: 10.1248/bpb.30.287 PMID: 17268067
  170. Offord, E.A.; Macé, K.; Avanti, O.; Pfeifer, A.M.A. Mechanisms involved in the chemoprotective effects of rosemary extract studied in human liver and bronchial cells. Cancer Lett., 1997, 114(1-2), 275-281. doi: 10.1016/S0304-3835(97)04680-6 PMID: 9103309
  171. Sotelo-Félix, J.I.; Martinez-Fong, D.; Muriel De la Torre, P. Protective effect of carnosol on CCl4-induced acute liver damage in rats. Eur. J. Gastroenterol. Hepatol., 2002, 14(9), 1001-1006. doi: 10.1097/00042737-200209000-00011 PMID: 12352220
  172. Kong, S.; Xiao, W.; Ma, T.; Chen, Y.; Shi, H.; Tu, J.; Zou, J.; Zhang, M. Carnosol inhibits the proliferation, migration, and invasion of hepatocellular carcinoma cells in vitro by regulating the ampk signaling pathway. Anticancer. Agents Med. Chem., 2023. PMID: 37073668
  173. Castellano, J.M.; Ramos-Romero, S.; Perona, J.S. Oleanolic acid: Extraction, characterization and biological activity. Nutrients, 2022, 14(3), 623. doi: 10.3390/nu14030623 PMID: 35276982
  174. Wang, H.; Zhong, W.; Zhao, J.; Zhang, H.; Zhang, Q.; Liang, Y.; Chen, S.; Liu, H.; Zong, S.; Tian, Y.; Zhou, H.; Sun, T.; Liu, Y.; Yang, C. Oleanolic acid inhibits epithelial–mesenchymal transition of hepatocellular carcinoma by promoting iNOS dimerization. Mol. Cancer Ther., 2019, 18(1), 62-74. doi: 10.1158/1535-7163.MCT-18-0448 PMID: 30297361
  175. Shyu, M.H.; Kao, T.C.; Yen, G.C. Oleanolic acid and ursolic acid induce apoptosis in HuH7 human hepatocellular carcinoma cells through a mitochondrial-dependent pathway and downregulation of XIAP. J. Agric. Food Chem., 2010, 58(10), 6110-6118. doi: 10.1021/jf100574j PMID: 20415421
  176. Khan, M.; Zhao, P.; Khan, A.; Raza, F.; Raza, S.M.; Sarfraz, M.; Chen, Y.; Li, M.; Yang, T.; Ma, X.; Xiang, G. Synergism of cisplatin-oleanolic acid co-loaded calcium carbonate nanoparticles on hepatocellular carcinoma cells for enhanced apoptosis and reduced hepatotoxicity. Int. J. Nanomedicine, 2019, 14, 3753-3771. doi: 10.2147/IJN.S196651 PMID: 31239661
  177. Jeong, D.W.; Kim, Y.H.; Kim, H.H.; Ji, H.Y.; Yoo, S.D.; Choi, W.R.; Lee, S.M.; Han, C.K.; Lee, H.S. Dose-linear pharmacokinetics of oleanolic acid after intravenous and oral administration in rats. Biopharm. Drug Dispos., 2007, 28(2), 51-57. doi: 10.1002/bdd.530 PMID: 17163409
  178. Bava, S.V.; Puliyappadamba, V.T.; Deepti, A.; Nair, A.; Karunagaran, D.; Anto, R.J. Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-κ B and the serine/threonine kinase Akt and is independent of tubulin polymerization. J. Biol. Chem., 2018, 293(31), 12283. doi: 10.1074/jbc.AAC118.004745 PMID: 30076255
  179. Arumuggam, N.; Bhowmick, N.A.; Rupasinghe, H.P.V. A review: Phytochemicals targeting JAK/STAT signaling and IDO expression in cancer. Phytother. Res., 2015, 29(6), 805-817. doi: 10.1002/ptr.5327 PMID: 25787773
  180. Parveen, A.; Subedi, L.; Kim, H.; Khan, Z.; Zahra, Z.; Farooqi, M.; Kim, S. Phytochemicals targeting VEGF and VEGF-related multifactors as anticancer therapy. J. Clin. Med., 2019, 8(3), 350. doi: 10.3390/jcm8030350 PMID: 30871059
  181. Dave, A. Phytochemicals and cancer chemoprevention. J. Cancer. Metastasis. Treat., 2020, 6, 46.
  182. Capiralla, H.; Vingtdeux, V.; Zhao, H.; Sankowski, R.; Al-Abed, Y.; Davies, P.; Marambaud, P. Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J. Neurochem., 2012, 120(3), 461-472. doi: 10.1111/j.1471-4159.2011.07594.x PMID: 22118570
  183. Ferrari, E.; Bettuzzi, S.; Naponelli, V. The potential of epigallocatechin gallate (EGCG) in targeting autophagy for cancer treatment: A narrative review. Int. J. Mol. Sci., 2022, 23(11), 6075. doi: 10.3390/ijms23116075 PMID: 35682754
  184. Bimonte, S.; Albino, V.; Piccirillo, M.; Nasto, A.; Molino, C.; Palaia, R.; Cascella, M. Epigallocatechin-3-gallate in the prevention and treatment of hepatocellular carcinoma: Experimental findings and translational perspectives. Drug Des. Devel. Ther., 2019, 13, 611-621. doi: 10.2147/DDDT.S180079 PMID: 30858692
  185. Zhou, Q.; Lui, V.W.Y.; Yeo, W. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol., 2011, 7(10), 1149-1167. doi: 10.2217/fon.11.95 PMID: 21992728
  186. Witkowska-Banaszczak, E.; Krajka-Kuźniak, V.; Papierska, K. The effect of luteolin 7-glucoside, apigenin 7-glucoside and Succisa pratensis extracts on NF-κB activation and α-amylase activity in HepG2 cells. Acta Biochim. Pol., 2020, 67(1), 41-47. doi: 10.18388/abp.2020_2894 PMID: 32129972
  187. Gu, Y.; Zhu, C.F.; Iwamoto, H.; Chen, J.S. Genistein inhibits invasive potential of human hepatocellular carcinoma by altering cell cycle, apoptosis, and angiogenesis. World J. Gastroenterol., 2005, 11(41), 6512-6517. doi: 10.3748/wjg.v11.i41.6512 PMID: 16425425
  188. Tong, Y.; Wang, M.; Huang, H.; Zhang, J.; Huang, Y.; Chen, Y.; Pan, H. Inhibitory effects of genistein in combination with gefitinib on the hepatocellular carcinoma Hep3B cell line. Exp. Ther. Med., 2019, 18(5), 3793-3800. doi: 10.3892/etm.2019.8027 PMID: 31611933
  189. Seydi, E.; Salimi, A.; Rasekh, H.R.; Mohsenifar, Z.; Pourahmad, J. Selective cytotoxicity of luteolin and kaempferol on cancerous hepatocytes obtained from rat model of hepatocellular carcinoma: involvement of ROS-mediated mitochondrial targeting. Nutr. Cancer, 2018, 70(4), 594-604. doi: 10.1080/01635581.2018.1460679 PMID: 29693446
  190. Yang, P.W.; Lu, Z.Y.; Pan, Q.; Chen, T.T.; Feng, X.J.; Wang, S.M.; Pan, Y.C.; Zhu, M.H.; Zhang, S.H. MicroRNA-6809-5p mediates luteolin-induced anticancer effects against hepatoma by targeting flotillin 1. Phytomedicine, 2019, 57, 18-29. doi: 10.1016/j.phymed.2018.10.027 PMID: 30668319
  191. Liao, S.; Lin, J.; Liu, J.; Chen, T.; Xu, M.; Zheng, J. Chemoprevention of elite tea variety CFT-1 rich in EGCG against chemically induced liver cancer in rats. Food Sci. Nutr., 2019, 7(8), 2647-2665. doi: 10.1002/fsn3.1121 PMID: 31428352
  192. Chen, R.J.; Kuo, H.C.; Cheng, L.H.; Lee, Y.H.; Chang, W.T.; Wang, B.J.; Wang, Y.J.; Cheng, H.C. Apoptotic and nonapoptotic activities of pterostilbene against cancer. Int. J. Mol. Sci., 2018, 19(1), 287. doi: 10.3390/ijms19010287 PMID: 29346311
  193. Qian, Y.; Liu, Z.; Yan, H.; Yuan, Y.; Levenson, A.S.; Li, K. Pterostilbene inhibits MTA1/HDAC1 complex leading to PTEN acetylation in hepatocellular carcinoma. Biomed. Pharmacother., 2018, 101, 852-859. doi: 10.1016/j.biopha.2018.03.022 PMID: 29635894

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers