Targeting Cervical Cancer Stem Cells by Phytochemicals


Cite item

Full Text

Abstract

:Cervical cancer (CaCx) poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide. Despite the emergence of advanced treatment strategies, recurrence remains a bottleneck in favorable treatment outcomes and contributes to poor prognosis. The chemo- or radio-therapy resistance coupled with frequent relapse of more aggressive tumors are some key components that contribute to CaCx-related mortality. The onset of therapy resistance and relapse are attributed to a small subset of, slow-proliferating Cancer Stem Cells (CSC). These CSCs possess the properties of tumorigenesis, self-renewal, and multi-lineage differentiation potential. Because of slow cycling, these cells maintain themselves in a semi-quiescent stage and protect themselves from different anti-proliferative anti-cancer drugs. Keeping in view recent advances in their phenotypic and functional characterization, the feasibility of targeting CSC and associated stem cell signaling bears a strong translational value. The presence of CSC has been reported in CaCx (CCSC) which remains a forefront area of research. However, we have yet to identify clinically useful leads that can target CCSC. There is compelling evidence that phytochemicals, because of their advantages over synthetic anticancer drugs, could emerge as potential therapeutic leads to target these CCSCs. The present article examined the potential of phytochemicals with reported anti-CSC properties and evaluated their future in preclinical and clinical applications against CaCx.

About the authors

Tanya Tripathi

Molecular Oncology Laboratory, Department of Zoology,, University of Delhi (North Campus)

Email: info@benthamscience.net

Joni Yadav

Molecular Oncology Laboratory, Department of Zoology,, University of Delhi (North Campus)

Email: info@benthamscience.net

Divya Janjua

Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus)

Email: info@benthamscience.net

Apoorva Chaudhary

Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus)

Email: info@benthamscience.net

Udit Joshi

Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus)

Email: info@benthamscience.net

Anna Senrung

Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus)

Email: info@benthamscience.net

Arun Chhokar

Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus)

Email: info@benthamscience.net

Nikita Aggarwal

Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus)

Email: info@benthamscience.net

Alok Chandra Bharti

Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjosé, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob. Health, 2020, 8(2), e191-e203. doi: 10.1016/S2214-109X(19)30482-6 PMID: 31812369
  2. Hausen, H. Papillomaviruses causing cancer: Evasion from host-cell control in early events in carcinogenesis. J. Natl. Cancer Inst., 2000, 92(9), 690-698. doi: 10.1093/jnci/92.9.690 PMID: 10793105
  3. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  4. Burmeister, C.A.; Khan, S.F.; Schäfer, G.; Mbatani, N.; Adams, T.; Moodley, J.; Prince, S. Cervical cancer therapies: Current challenges and future perspectives. Tumour Virus Research, 2022, 13, 200238. doi: 10.1016/j.tvr.2022.200238 PMID: 35460940
  5. Noda, K.; Teshima, K.; Tekeuti, K.; Hasegawa, K.; Inoue, K.; Yamashita, K.; Sawaragi, I.; Nakajima, T.; Takashima, E.; Ikeuchi, M.; Sekiba, K.; Okuda, H.; Ichijo, M.; Saito, T.; Ozawa, M.; Tamura, H.; Chihara, T.; Kuzuya, K.; Ozaki, M.; Inagaki, M.; Tominaga, S. Immunotherapy using the streptococcal preparation OK-432 for the treatment of uterine cervical cancer. Gynecol. Oncol., 1989, 35(3), 367-372. doi: 10.1016/0090-8258(89)90081-4 PMID: 2689304
  6. Patry, C.; Bouchard, L.; Labrecque, P.; Gendron, D.; Lemieux, B.; Toutant, J.; Lapointe, E.; Wellinger, R.; Chabot, B. Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer Res., 2003, 63(22), 7679-7688. PMID: 14633690
  7. Enríquez-Aceves, I.; Galicia-Carmona, T.; Coronel-Martínez, J.A.; Espinosa-Romero, R.; Calderillo-Ruíz, G.; Cortés-Esteban, P.; Cetina-Pérez, L. Standard treatment with bevacizumab as targeted therapy in cervical cancer. Rev. Invest. Clin., 2020, 72(4), 213-218. doi: 10.24875/RIC.20000061 PMID: 32488224
  8. Wright, J.D.; Matsuo, K.; Huang, Y.; Tergas, A.I.; Hou, J.Y.; Khoury-Collado, F.; St Clair, C.M.; Ananth, C.V.; Neugut, A.I.; Hershman, D.L. Prognostic performance of the 2018 international federation of gynecology and obstetrics cervical cancer staging guidelines. Obstet. Gynecol., 2019, 134(1), 49-57. doi: 10.1097/AOG.0000000000003311 PMID: 31188324
  9. Yoshida, K.; Kajiyama, H.; Utsumi, F.; Niimi, K.; Sakata, J.; Suzuki, S.; Shibata, K.; Kikkawa, F. A post-recurrence survival-predicting indicator for cervical cancer from the analysis of 165 patients who developed recurrence. Mol. Clin. Oncol., 2018, 8(2), 281-285. PMID: 29435288
  10. Yang, J.; Cai, H.; Xiao, Z.X.; Wang, H.; Yang, P. Effect of radiotherapy on the survival of cervical cancer patients. Medicine, 2019, 98(30), e16421. doi: 10.1097/MD.0000000000016421 PMID: 31348242
  11. Metcalf, D.; Moore, M.A. Factors modifying stem cell proliferation of myelomonocytic leukemic cells in vitro and in vivo. J. Natl. Cancer Inst., 1970, 44(4), 801-808. PMID: 11515047
  12. Yang, B.; Lu, Y.; Zhang, A.; Zhou, A.; Zhang, L.; Zhang, L.; Gao, L.; Zang, Y.; Tang, X.; Sun, L. Doxycycline induces apoptosis and inhibits proliferation and invasion of human cervical carcinoma stem cells. PLoS One, 2015, 10(6), e0129138. doi: 10.1371/journal.pone.0129138 PMID: 26111245
  13. Bigoni-Ordóñez, G.D.; Ortiz-Sánchez, E.; Rosendo-Chalma, P.; Valencia-González, H.A.; Aceves, C.; García-Carrancá, A. Molecular iodine inhibits the expression of stemness markers on cancer stem-like cells of established cell lines derived from cervical cancer. BMC Cancer, 2018, 18(1), 928. doi: 10.1186/s12885-018-4824-5 PMID: 30257666
  14. Wang, L.; Liu, Y.; Zhou, Y.; Wang, J.; Tu, L.; Sun, Z.; Wang, X.; Luo, F. Zoledronic acid inhibits the growth of cancer stem cell derived from cervical cancer cell by attenuating their stemness phenotype and inducing apoptosis and cell cycle arrest through the Erk1/2 and Akt pathways. J. Exp. Clin. Cancer Res., 2019, 38(1), 93. doi: 10.1186/s13046-019-1109-z PMID: 30791957
  15. Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer, 2003, 3(10), 768-780. doi: 10.1038/nrc1189 PMID: 14570043
  16. Lapidot, T.; Sirard, C.; Vormoor, J.; Murdoch, B.; Hoang, T.; Caceres-Cortes, J.; Minden, M.; Paterson, B.; Caligiuri, M.A.; Dick, J.E. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994, 367(6464), 645-648. doi: 10.1038/367645a0 PMID: 7509044
  17. Singh, S.K.; Clarke, I.D.; Terasaki, M.; Bonn, V.E.; Hawkins, C.; Squire, J.; Dirks, P.B. Identification of a cancer stem cell in human brain tumors. Cancer Res., 2003, 63(18), 5821-5828. PMID: 14522905
  18. Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci., 2003, 100(7), 3983-3988. doi: 10.1073/pnas.0530291100 PMID: 12629218
  19. Hamburger, A.W.; Salmon, S.E. Primary bioassay of human tumor stem cells. Science, 1977, 197(4302), 461-463. doi: 10.1126/science.560061 PMID: 560061
  20. Vermeulen, L.; Todaro, M.; de Sousa Mello, F.; Sprick, M.R.; Kemper, K.; Perez Alea, M.; Richel, D.J.; Stassi, G.; Medema, J.P. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Natl. Acad. Sci., 2008, 105(36), 13427-13432. doi: 10.1073/pnas.0805706105 PMID: 18765800
  21. Zhou, J.; Wulfkuhle, J.; Zhang, H.; Gu, P.; Yang, Y.; Deng, J.; Margolick, J.B.; Liotta, L.A.; Petricoin, E., III; Zhang, Y. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc. Natl. Acad. Sci., 2007, 104(41), 16158-16163. doi: 10.1073/pnas.0702596104 PMID: 17911267
  22. Tomasetti, C.; Levy, D. Role of symmetric and asymmetric division of stem cells in developing drug resistance. Proc. Natl. Acad. Sci., 2010, 107(39), 16766-16771. doi: 10.1073/pnas.1007726107 PMID: 20826440
  23. Huang, T.; Song, X.; Xu, D.; Tiek, D.; Goenka, A.; Wu, B.; Sastry, N.; Hu, B.; Cheng, S.Y. Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics, 2020, 10(19), 8721-8743. doi: 10.7150/thno.41648 PMID: 32754274
  24. Herfs, M.; Yamamoto, Y.; Laury, A.; Wang, X.; Nucci, M.R.; McLaughlin-Drubin, M.E.; Münger, K.; Feldman, S.; McKeon, F.D.; Xian, W.; Crum, C.P. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc. Natl. Acad. Sci. USA, 2012, 109(26), 10516-10521. doi: 10.1073/pnas.1202684109 PMID: 22689991
  25. Surviladze, Z.; Dziduszko, A.; Ozbun, M.A. Essential roles for soluble virion-associated heparan sulfonated proteoglycans and growth factors in human papillomavirus infections. PLoS Pathog., 2012, 8(2), e1002519. doi: 10.1371/journal.ppat.1002519 PMID: 22346752
  26. Thomas, J.T.; Laimins, L.A. Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle checkpoint. J. Virol., 1998, 72(2), 1131-1137. doi: 10.1128/JVI.72.2.1131-1137.1998 PMID: 9445009
  27. Dyson, N.; Howley, P.M.; Münger, K.; Harlow, E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science, 1989, 243(4893), 934-937. doi: 10.1126/science.2537532 PMID: 2537532
  28. Bhattacharjee, R.; Das, S.S.; Biswal, S.S.; Nath, A.; Das, D.; Basu, A.; Malik, S.; Kumar, L.; Kar, S.; Singh, S.K.; Upadhye, V.J.; Iqbal, D.; Almojam, S.; Roychoudhury, S.; Ojha, S.; Ruokolainen, J.; Jha, N.K.; Kesari, K.K. Mechanistic role of HPV-associated early proteins in cervical cancer: Molecular pathways and targeted therapeutic strategies. Crit. Rev. Oncol. Hematol., 2022, 174, 103675. doi: 10.1016/j.critrevonc.2022.103675 PMID: 35381343
  29. Lin, T.; Chao, C.; Saito, S.; Mazur, S.J.; Murphy, M.E.; Appella, E.; Xu, Y. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol., 2005, 7(2), 165-171. doi: 10.1038/ncb1211 PMID: 15619621
  30. Kareta, M.S.; Gorges, L.L.; Hafeez, S.; Benayoun, B.A.; Marro, S.; Zmoos, A.F.; Cecchini, M.J.; Spacek, D.; Batista, L.F.Z.; O’Brien, M.; Ng, Y.H.; Ang, C.E.; Vaka, D.; Artandi, S.E.; Dick, F.A.; Brunet, A.; Sage, J.; Wernig, M. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell, 2015, 16(1), 39-50. doi: 10.1016/j.stem.2014.10.019 PMID: 25467916
  31. Tyagi, A.; Vishnoi, K.; Mahata, S.; Verma, G.; Srivastava, Y.; Masaldan, S.; Roy, B.G.; Bharti, A.C.; Das, B.C. Cervical cancer stem cells selectively overexpress hpv oncoprotein e6 that controls stemness and self-renewal through upregulation of HES1. Clin. Cancer Res., 2016, 22(16), 4170-4184. doi: 10.1158/1078-0432.CCR-15-2574 PMID: 26988248
  32. Wang, Y-D.; Cai, N.; Wu, X-L.; Cao, H-Z.; Xie, L-L.; Zheng, P-S. OCT4 promotes tumorigenesis and inhibits apoptosis of cervical cancer cells by miR-125b/BAK1 pathway. Cell Death Dis., 2013, 4(8), e760. doi: 10.1038/cddis.2013.272 PMID: 23928699
  33. Noh, K.H.; Kim, B.W.; Song, K.H.; Cho, H.; Lee, Y.H.; Kim, J.H.; Chung, J.Y.; Kim, J.H.; Hewitt, S.M.; Seong, S.Y.; Mao, C.P.; Wu, T.C.; Kim, T.W. Nanog signaling in cancer promotes stem-like phenotype and immune evasion. J. Clin. Invest., 2012, 122(11), 4077-4093. doi: 10.1172/JCI64057 PMID: 23093782
  34. Zhang, L.; Guo, C.; Ji, T.; Chen, X. RETRACTED ARTICLE: SOX2 regulates lncRNA CCAT1/MicroRNA-185-3p/FOXP3 axis to affect the proliferation and self-renewal of cervical cancer stem cells. Nanoscale Res. Lett., 2021, 16(1), 2. doi: 10.1186/s11671-020-03449-z PMID: 33394184
  35. Ding, Y.; Yu, A.Q.; Li, C.L.; Fang, J.; Zeng, Y.; Li, D.S. TALEN-mediated Nanog disruption results in less invasiveness, more chemosensitivity and reversal of EMT in Hela cells. Oncotarget, 2014, 5(18), 8393-8401. doi: 10.18632/oncotarget.2298 PMID: 25245189
  36. Dontu, G.; Abdallah, W.M.; Foley, J.M.; Jackson, K.W.; Clarke, M.F.; Kawamura, M.J.; Wicha, M.S. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev., 2003, 17(10), 1253-1270. doi: 10.1101/gad.1061803 PMID: 12756227
  37. Pastrana, E.; Silva-Vargas, V.; Doetsch, F. Eyes wide open: A critical review of sphere-formation as an assay for stem cells. Cell Stem Cell, 2011, 8(5), 486-498. doi: 10.1016/j.stem.2011.04.007 PMID: 21549325
  38. Cabana, R.; Frolova, E.G.; Kapoor, V.; Thomas, R.A.; Krishan, A.; Telford, W.G. The minimal instrumentation requirements for Hoechst side population analysis: stem cell analysis on low-cost flow cytometry platforms. Stem Cells, 2006, 24(11), 2573-2581. doi: 10.1634/stemcells.2006-0266 PMID: 16888279
  39. López, J.; Poitevin, A.; Mendoza-Martínez, V.; Pérez-Plasencia, C.; García-Carrancá, A. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer, 2012, 12(1), 48. doi: 10.1186/1471-2407-12-48 PMID: 22284662
  40. Zhang, S.L.; Wang, Y.S.; Zhou, T.; Yu, X.W.; Wei, Z.T.; Li, Y.L. Isolation and characterization of cancer stem cells from cervical cancer HeLa cells. Cytotechnology, 2012, 64(4), 477-484. doi: 10.1007/s10616-012-9436-3 PMID: 22431223
  41. Liu, H.; Wang, Y.J.; Bian, L.; Fang, Z.H.; Zhang, Q.Y.; Cheng, J.X. CD44+/CD24+ cervical cancer cells resist radiotherapy and exhibit properties of cancer stem cells. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(9), 1745-1754. PMID: 27212166
  42. Abdel-Hamid, N.M.; Fathy, M.; Koike, C.; Yoshida, T.; Okabe, M.; Zho, K.; Abouzied, M.; Nikaido, T. Identification of chemo and radio-resistant sub-population of stem cells in human cervical cancer hela cells. Cancer Invest., 2021, 39(8), 661-674. doi: 10.1080/07357907.2021.1931875 PMID: 34076552
  43. Leung, T.H.Y.; Tang, H.W.M.; Siu, M.K.Y.; Chan, D.W.; Chan, K.K.L.; Cheung, A.N.Y.; Ngan, H.Y.S. CD71+ population enriched by HPV-E6 protein promotes cancer aggressiveness and radioresistance in cervical cancer cells. Mol. Cancer Res., 2019, 17(9), 1867-1880. doi: 10.1158/1541-7786.MCR-19-0068 PMID: 31235657
  44. Javed, S.; Sharma, B.K.; Sood, S.; Sharma, S.; Bagga, R.; Bhattacharyya, S.; Rayat, C.S.; Dhaliwal, L.; Srinivasan, R. Significance of CD133 positive cells in four novel HPV-16 positive cervical cancer-derived cell lines and biopsies of invasive cervical cancer. BMC Cancer, 2018, 18(1), 357. doi: 10.1186/s12885-018-4237-5 PMID: 29609538
  45. Xu, X.; Chai, S.; Wang, P.; Zhang, C.; Yang, Y.; Yang, Y.; Wang, K. Aldehyde dehydrogenases and cancer stem cells. Cancer Lett., 2015, 369(1), 50-57. doi: 10.1016/j.canlet.2015.08.018 PMID: 26319899
  46. Lin, J.; Liu, X.; Ding, D. Evidence for epithelial-mesenchymal transition in cancer stem-like cells derived from carcinoma cell lines of the cervix uteri. Int. J. Clin. Exp. Pathol., 2015, 8(1), 847-855. PMID: 25755785
  47. Liu, S.Y.; Zheng, P.S. High aldehyde dehydrogenase activity identifies cancer stem cells in human cervical cancer. Oncotarget, 2013, 4(12), 2462-2475. doi: 10.18632/oncotarget.1578 PMID: 24318570
  48. Rao, Q.X.; Yao, T.T.; Zhang, B.Z.; Lin, R.C.; Chen, Z.L.; Zhou, H.; Wang, L.J.; Lu, H.W.; Chen, Q.; Di, N.; Lin, Z.Q. Expression and functional role of ALDH1 in cervical carcinoma cells. Asian Pac. J. Cancer Prev., 2012, 13(4), 1325-1331. doi: 10.7314/APJCP.2012.13.4.1325 PMID: 22799327
  49. Marigo, V.; Johnson, R.L.; Vortkamp, A.; Tabin, C.J. Sonic hedgehog differentially regulates expression of GLI and GLI3 during limb development. Dev. Biol., 1996, 180(1), 273-283. doi: 10.1006/dbio.1996.0300 PMID: 8948590
  50. Jeng, K.S.; Chang, C.F.; Lin, S.S. Sonic hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int. J. Mol. Sci., 2020, 21(3), 758. doi: 10.3390/ijms21030758 PMID: 31979397
  51. Ingham, P.W. Hedgehog signaling. Curr. Top. Dev. Biol., 2022, 149, 1-58. doi: 10.1016/bs.ctdb.2022.04.003 PMID: 35606054
  52. Skoda, A.M.; Simovic, D.; Karin, V.; Kardum, V.; Vranic, S.; Serman, L. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn. J. Basic Med. Sci., 2018, 18(1), 8-20. doi: 10.17305/bjbms.2018.2756 PMID: 29274272
  53. Samarzija, I.; Beard, P. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration. Biochem. Biophys. Res. Commun., 2012, 425(1), 64-69. doi: 10.1016/j.bbrc.2012.07.051 PMID: 22820185
  54. Liu, C.; Wang, R. The roles of hedgehog signaling pathway in radioresistance of cervical cancer. Dose Response, 2019, 17(4) doi: 10.1177/1559325819885293 PMID: 31695582
  55. Po, A.; Ferretti, E.; Miele, E.; De Smaele, E.; Paganelli, A.; Canettieri, G.; Coni, S.; Di Marcotullio, L.; Biffoni, M.; Massimi, L.; Di Rocco, C.; Screpanti, I.; Gulino, A. Hedgehog controls neural stem cells through p53-independent regulation of Nanog. EMBO J., 2010, 29(15), 2646-2658. doi: 10.1038/emboj.2010.131 PMID: 20581804
  56. Vishnoi, K.; Mahata, S.; Tyagi, A.; Pandey, A.; Verma, G.; Jadli, M.; Singh, T.; Singh, S.M.; Bharti, A.C. Cross-talk between human papillomavirus oncoproteins and hedgehog signaling synergistically promotes stemness in cervical cancer cells. Sci. Rep., 2016, 6(1), 34377. doi: 10.1038/srep34377 PMID: 27678330
  57. Nayak, A.; Satapathy, S.R.; Das, D.; Siddharth, S.; Tripathi, N.; Bharatam, P.V.; Kundu, C. Nanoquinacrine induced apoptosis in cervical cancer stem cells through the inhibition of hedgehog-GLI1 cascade: Role of GLI-1. Sci. Rep., 2016, 6(1), 20600. doi: 10.1038/srep20600 PMID: 26846872
  58. Huang, C.; Lu, H.; Li, J.; Xie, X.; Fan, L.; Wang, D.; Tan, W.; Wang, Y.; Lin, Z.; Yao, T. SOX2 regulates radioresistance in cervical cancer via the hedgehog signaling pathway. Gynecol. Oncol., 2018, 151(3), 533-541. doi: 10.1016/j.ygyno.2018.10.005 PMID: 30336948
  59. Sharma, A.; De, R.; Javed, S.; Srinivasan, R.; Pal, A.; Bhattacharyya, S. Sonic hedgehog pathway activation regulates cervical cancer stem cell characteristics during epithelial to mesenchymal transition. J. Cell. Physiol., 2019, 234(9), 15726-15741. doi: 10.1002/jcp.28231 PMID: 30714153
  60. Kim, J.; Won, J.S.; Singh, A.K.; Sharma, A.K.; Singh, I. STAT3 regulation by S-nitrosylation: Implication for inflammatory disease. Antioxid. Redox Signal., 2014, 20(16), 2514-2527. doi: 10.1089/ars.2013.5223 PMID: 24063605
  61. Fukada, T.; Hibi, M.; Yamanaka, Y.; Takahashi-Tezuka, M.; Fujitani, Y.; Yamaguchi, T.; Nakajima, K.; Hirano, T. Two signals are necessary for cell proliferation induced by a cytokine receptor gp130: involvement of STAT3 in anti-apoptosis. Immunity, 1996, 5(5), 449-460. doi: 10.1016/S1074-7613(00)80501-4 PMID: 8934572
  62. Wu, Y.Y.; Bradshaw, R.A. Induction of neurite outgrowth by interleukin-6 is accompanied by activation of Stat3 signaling pathway in a variant PC12 cell (E2) line. J. Biol. Chem., 1996, 271(22), 13023-13032. doi: 10.1074/jbc.271.22.13023 PMID: 8662645
  63. Nakajima, K.; Yamanaka, Y.; Nakae, K.; Kojima, H.; Ichiba, M.; Kiuchi, N.; Kitaoka, T.; Fukada, T.; Hibi, M.; Hirano, T. A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells. EMBO J., 1996, 15(14), 3651-3658. doi: 10.1002/j.1460-2075.1996.tb00734.x PMID: 8670868
  64. Tolomeo, M.; Cascio, A. The multifaced role of STAT3 in cancer and its implication for anticancer therapy. Int. J. Mol. Sci., 2021, 22(2), 603. doi: 10.3390/ijms22020603 PMID: 33435349
  65. Shukla, S.; Mahata, S.; Shishodia, G.; Pandey, A.; Tyagi, A.; Vishnoi, K.; Basir, S.F.; Das, B.C.; Bharti, A.C. Functional regulatory role of STAT3 in HPV16-mediated cervical carcinogenesis. PLoS One, 2013, 8(7), e67849. doi: 10.1371/journal.pone.0067849 PMID: 23874455
  66. Shukla, S.; Shishodia, G.; Mahata, S.; Hedau, S.; Pandey, A.; Bhambhani, S.; Batra, S.; Basir, S.F.; Das, B.C.; Bharti, A.C. Aberrant expression and constitutive activation of STAT3 in cervical carcinogenesis: Implications in high-risk human papillomavirus infection. Mol. Cancer, 2010, 9(1), 282. doi: 10.1186/1476-4598-9-282 PMID: 20977777
  67. Shishodia, G.; Shukla, S.; Srivastava, Y.; Masaldan, S.; Mehta, S.; Bhambhani, S.; Sharma, S.; Mehrotra, R.; Das, B.C.; Bharti, A.C. Alterations in microRNAs miR-21 and let-7a correlate with aberrant STAT3 signaling and downstream effects during cervical carcinogenesis. Mol. Cancer, 2015, 14(1), 116. doi: 10.1186/s12943-015-0385-2 PMID: 26051842
  68. Shishodia, G.; Verma, G.; Srivastava, Y.; Mehrotra, R.; Das, B.C.; Bharti, A.C. Deregulation of microRNAs Let-7a and miR-21 mediate aberrant STAT3 signaling during human papillomavirus-induced cervical carcinogenesis: role of E6 oncoprotein. BMC Cancer, 2014, 14(1), 996. doi: 10.1186/1471-2407-14-996 PMID: 25539644
  69. Wang, H.; Cai, H.; Chen, L.; Zhao, W.; Li, P.; Wang, Z.; Li, Z. STAT3 correlates with stem cell-related transcription factors in cervical cancer. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2015, 35(6), 891-897. doi: 10.1007/s11596-015-1524-0 PMID: 26670442
  70. Wang, H.; Deng, J.; Ren, H.Y.; Jia, P.; Zhang, W.; Li, M.Q.; Li, S.W.; Zhou, Q.H. STAT3 influences the characteristics of stem cells in cervical carcinoma. Oncol. Lett., 2017, 14(2), 2131-2136. doi: 10.3892/ol.2017.6454 PMID: 28781654
  71. Mei, J.; Zhu, C.; Pan, L.; Li, M. MACC1 regulates the AKT/STAT3 signaling pathway to induce migration, invasion, cancer stemness, and suppress apoptosis in cervical cancer cells. Bioengineered, 2022, 13(1), 61-70. doi: 10.1080/21655979.2021.2006567 PMID: 34939526
  72. Thakur, K.; Janjua, D.; Aggarwal, N.; Chhokar, A.; Yadav, J.; Tripathi, T.; Chaudhary, A.; Senrung, A.; Shrivastav, A.; Bharti, A.C. Physical interaction between STAT3 and AP1 in cervical carcinogenesis: Implications in HPV transcription control. Biochim. Biophys. Acta Mol. Basis Dis., 2023, 1869(8), 166817. doi: 10.1016/j.bbadis.2023.166817 PMID: 37532113
  73. Seo, J.H.; Rah, J.C.; Choi, S.H.; Shin, J.K.; Min, K.; Kim, H.S.; Park, C.H.; Kim, S.; Kim, E.M.; Lee, S.H.; Lee, S.; Won Suh, S.; Suh, Y.H. α-Synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J., 2002, 16(13), 1-20. doi: 10.1096/fj.02-0041fje PMID: 12223445
  74. Zhuang, S.; Yan, Y.; Daubert, R.A.; Schnellmann, R.G. Epiregulin promotes proliferation and migration of renal proximal tubular cells. Am. J. Physiol. Renal Physiol., 2007, 293(1), F219-F226. doi: 10.1152/ajprenal.00082.2007 PMID: 17389679
  75. Rascio, F.; Spadaccino, F.; Rocchetti, M.T.; Castellano, G.; Stallone, G.; Netti, G.S.; Ranieri, E. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: An updated review. Cancers, 2021, 13(16), 3949. doi: 10.3390/cancers13163949 PMID: 34439105
  76. Sun, R.; Chen, C.; Deng, X.; Wang, F.; Song, S.; Cai, Q.; Wang, J.; Zhang, T.; Shi, M.; Ke, Q.; Luo, Z. IL-11 mediates the radioresistance of cervical cancer cells via the PI3K/Akt signaling pathway. J. Cancer, 2021, 12(15), 4638-4647. doi: 10.7150/jca.56185 PMID: 34149927
  77. Park, J.K.; Cho, C.H.; Ramachandran, S.; Shin, S.J.; Kwon, S.H.; Kwon, S.Y.; Cha, S.D. Augmentation of sodium butyrate-induced apoptosis by phosphatidylinositol 3-kinase inhibition in the human cervical cancer cell-line. Cancer Res. Treat., 2006, 38(2), 112-117. doi: 10.4143/crt.2006.38.2.112 PMID: 19771269
  78. Li, J.; Zhou, B.P. Activation of β-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer, 2011, 11(1), 49. doi: 10.1186/1471-2407-11-49 PMID: 21284870
  79. Camacho, P.M.; Petak, S.M.; Binkley, N.; Diab, D.L.; Eldeiry, L.S.; Farooki, A.; Harris, S.T.; Hurley, D.L.; Kelly, J.; Lewiecki, E.M.; Pessah-Pollack, R.; McClung, M.; Wimalawansa, S.J.; Watts, N.B. American association of clinical endocrinologists/american college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis—2020 update. Endocr. Pract., 2020, 26(Suppl. 1), 1-46. doi: 10.4158/GL-2020-0524SUPPL PMID: 32427503
  80. Gnant, M. Zoledronic acid in breast cancer: Latest findings and interpretations. Ther. Adv. Med. Oncol., 2011, 3(6), 293-301. doi: 10.1177/1758834011420599 PMID: 22084643
  81. Hattori, Y.; Shibuya, K.; Kojima, K.; Miatmoko, A.; Kawano, K.; Ozaki, K.I.; Yonemochi, E. Zoledronic acid enhances antitumor efficacy of liposomal doxorubicin. Int. J. Oncol., 2015, 47(1), 211-219. doi: 10.3892/ijo.2015.2991 PMID: 25955490
  82. Zhao, M.; Tominaga, Y.; Ohuchida, K.; Mizumoto, K.; Cui, L.; Kozono, S.; Fujita, H.; Maeyama, R.; Toma, H.; Tanaka, M. Significance of combination therapy of zoledronic acid and gemcitabine on pancreatic cancer. Cancer Sci., 2012, 103(1), 58-66. doi: 10.1111/j.1349-7006.2011.02113.x PMID: 21954965
  83. Zhang, T. Efficacy of zoledronic acid combined with radiotherapy on cervical cancer patients with bone metastasis and its influence on immune function and inflammatory factors. Int. J. Clin. Exp. Med., 2020, 13(8), 8.
  84. Barnabei, L.; Laplantine, E.; Mbongo, W.; Rieux-Laucat, F.; Weil, R. NF-κB: At the borders of autoimmunity and inflammation. Front. Immunol., 2021, 12, 716469. doi: 10.3389/fimmu.2021.716469 PMID: 34434197
  85. Mirzaei, S. Saghari, S.; Bassiri, F.; Raesi, R.; Zarrabi, A.; Hushmandi, K.; Sethi, G.; Tergaonkar, V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J. Cell. Physiol., 2022, 237(7), 2770-2795. doi: 10.1002/jcp.30759 PMID: 35561232
  86. Li, J.; Jia, H.; Xie, L.; Wang, X.; Wang, X.; He, H.; Lin, Y.; Hu, L. Association of constitutive nuclear factor-kappaB activation with aggressive aspects and poor prognosis in cervical cancer. Int. J. Gynecol. Cancer, 2009, 19(8), 1421-1426. doi: 10.1111/IGC.0b013e3181b70445 PMID: 20009901
  87. Wu, Z.; Li, J.; Zhang, Y.; Hu, L.; Peng, X. Synchronous co expression of Id 1 and nuclear NF κB p65 promotes cervical cancer progression and malignancy, and is associated with a poor prognosis and chemosensitivity. Oncol. Rep., 2019, 42(5), 2075-2086. doi: 10.3892/or.2019.7301 PMID: 31545447
  88. Kendellen, M.F.; Bradford, J.W.; Lawrence, C.L.; Clark, K.S.; Baldwin, A.S. Canonical and non-canonical NF-κB signaling promotes breast cancer tumor-initiating cells. Oncogene, 2014, 33(10), 1297-1305. doi: 10.1038/onc.2013.64 PMID: 23474754
  89. Helweg, L.P.; Storm, J.; Witte, K.E.; Schulten, W.; Wrachtrup, L.; Janotte, T.; Kitke, A.; Greiner, J.F.W.; Knabbe, C.; Kaltschmidt, B.; Simon, M.; Kaltschmidt, C. Targeting key signaling pathways in glioblastoma stem cells for the development of efficient chemo- and immunotherapy. Int. J. Mol. Sci., 2022, 23(21), 12919. doi: 10.3390/ijms232112919 PMID: 36361720
  90. Lizarraga, F.; Espinosa, M.; Ceballos-Cancino, G.; Vazquez-Santillan, K.; Bahena-Ocampo, I.; Schwarz-Cruz y Celis, A.; Vega-Gordillo, M.; Garcia Lopez, P.; Maldonado, V.; Melendez-Zajgla, J. Tissue inhibitor of metalloproteinases-4 (TIMP-4) regulates stemness in cervical cancer cells. Mol. Carcinog., 2016, 55(12), 1952-1961. doi: 10.1002/mc.22442 PMID: 26618609
  91. Komiya, Y.; Habas, R. Wnt signal transduction pathways. Organogenesis, 2008, 4(2), 68-75. doi: 10.4161/org.4.2.5851 PMID: 19279717
  92. Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene, 2017, 36(11), 1461-1473. doi: 10.1038/onc.2016.304 PMID: 27617575
  93. Banister, C.E.; Liu, C.; Pirisi, L.; Creek, K.E.; Buckhaults, P.J. Identification and characterization of HPV-independent cervical cancers. Oncotarget, 2017, 8(8), 13375-13386. doi: 10.18632/oncotarget.14533 PMID: 28077784
  94. Ramachandran, I.; Thavathiru, E.; Ramalingam, S.; Natarajan, G.; Mills, W.K.; Benbrook, D.M.; Zuna, R.; Lightfoot, S.; Reis, A.; Anant, S.; Queimado, L. Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene, 2012, 31(22), 2725-2737. doi: 10.1038/onc.2011.455 PMID: 22002305
  95. de Sousa e Melo, F.; Vermeulen, L. Wnt signaling in cancer stem cell biology. Cancers, 2016, 8(7), 60. doi: 10.3390/cancers8070060 PMID: 27355964
  96. Ortiz-Sánchez, E.; Santiago-López, L.; Cruz-Domínguez, V.B.; Toledo-Guzmán, M.E.; Hernández-Cueto, D.; Muñiz-Hernández, S.; Garrido, E.; De León, D.C.; García-Carrancá, A. Characterization of cervical cancer stem cell-like cells: phenotyping, stemness, and human papilloma virus co-receptor expression. Oncotarget, 2016, 7(22), 31943-31954. doi: 10.18632/oncotarget.8218 PMID: 27008711
  97. Yang, G.; He, Y.; Chen, Y.; Huang, Z.; Huang, J.; Ren, X.; Xu, S.; Li, P. Antitumor activity of galaxamide involved in cell apoptosis and stemness by inhibiting Wnt/β-catenin pathway in cervical cancer. Drug Dev. Res., 2023, 84(6), 1114-1126. doi: 10.1002/ddr.22073 PMID: 37154105
  98. Zhang, X.; Wang, M.; Zhang, Y.; Yang, J.; Duan, W. Knockdown of CENPU inhibits cervical cancer cell migration and stemness through the FOXM1/Wnt/β-catenin pathway. Tissue Cell, 2023, 81, 102009. doi: 10.1016/j.tice.2022.102009 PMID: 36608638
  99. Kopan, R. Notch signaling. Cold Spring Harb. Perspect. Biol., 2012, 4(10), a011213. doi: 10.1101/cshperspect.a011213 PMID: 23028119
  100. Misiorek, J.O.; Przybyszewska-Podstawka, A.; Kałafut, J.; Paziewska, B.; Rolle, K.; Rivero-Müller, A.; Nees, M. Context matters: NOTCH signatures and pathway in cancer progression and metastasis. Cells, 2021, 10(1), 94. doi: 10.3390/cells10010094 PMID: 33430387
  101. Anusewicz, D.; Orzechowska, M.; Bednarek, A.K. Notch signaling pathway in cancer—review with bioinformatic analysis. Cancers, 2021, 13(4), 768. doi: 10.3390/cancers13040768 PMID: 33673145
  102. Yu, L.; Li, W. Abnormal activation of notch 1 signaling causes apoptosis resistance in cervical cancer. Int. J. Clin. Exp. Pathol., 2022, 15(1), 11-19. PMID: 35145579
  103. Prabakaran, D.S.; Muthusami, S.; Sivaraman, T.; Yu, J.R.; Park, W.Y. Silencing of FTS increases radiosensitivity by blocking radiation-induced Notch1 activation and spheroid formation in cervical cancer cells. Int. J. Biol. Macromol., 2019, 126, 1318-1325. doi: 10.1016/j.ijbiomac.2018.09.114 PMID: 30244128
  104. Yin, X.; Lu, Y.; Zou, M.; Wang, L.; Zhou, X.; Zhang, Y.; Su, M. Synthesis and characterization of salinomycin-loaded high-density lipoprotein and its effects on cervical cancer cells and cervical cancer stem cells. Int. J. Nanomedicine, 2021, 16, 6367-6382. doi: 10.2147/IJN.S326089 PMID: 34584409
  105. Wang, L.; Guo, H.; Yang, L.; Dong, L.; Lin, C.; Zhang, J.; Lin, P.; Wang, X. Morusin inhibits human cervical cancer stem cell growth and migration through attenuation of NF-κB activity and apoptosis induction. Mol. Cell. Biochem., 2013, 379(1-2), 7-18. doi: 10.1007/s11010-013-1621-y PMID: 23543150
  106. Guo, H.; Liu, C.; Yang, L.; Dong, L.; Wang, L.; Wang, Q.; Li, H.; Zhang, J.; Lin, P.; Wang, X. Morusin inhibits glioblastoma stem cell growth in vitro and in vivo through stemness attenuation, adipocyte transdifferentiation, and apoptosis induction. Mol. Carcinog., 2016, 55(1), 77-89. doi: 10.1002/mc.22260 PMID: 25557841
  107. Zhou, Y.; Li, X.; Ye, M. Morusin inhibits the growth of human colorectal cancer HCT116 derived sphere forming cells via the inactivation of Akt pathway. Int. J. Mol. Med., 2021, 47(4), 51. doi: 10.3892/ijmm.2021.4884 PMID: 33576447
  108. Liu, J.; Cao, X.C.; Xiao, Q.; Quan, M.F. Apigenin inhibits HeLa sphere-forming cells through inactivation of casein kinase 2α. Mol. Med. Rep., 2015, 11(1), 665-669. doi: 10.3892/mmr.2014.2720 PMID: 25334018
  109. Li, Y.W.; Xu, J.; Zhu, G.Y.; Huang, Z.J.; Lu, Y.; Li, X.Q.; Wang, N.; Zhang, F.X. Apigenin suppresses the stem cell-like properties of triple-negative breast cancer cells by inhibiting YAP/TAZ activity. Cell Death Discov., 2018, 4(1), 105. doi: 10.1038/s41420-018-0124-8 PMID: 30479839
  110. Wu, C.H.; Hong, B.H.; Ho, C.T.; Yen, G.C. Targeting cancer stem cells in breast cancer: Potential anticancer properties of 6-shogaol and pterostilbene. J. Agric. Food Chem., 2015, 63(9), 2432-2441. doi: 10.1021/acs.jafc.5b00002 PMID: 25686711
  111. Shin, H.J.; Han, J.M.; Choi, Y.S.; Jung, H.J. Pterostilbene suppresses both cancer cells and cancer stem-like cells in cervical cancer with superior bioavailability to resveratrol. Molecules, 2020, 25(1), 228. doi: 10.3390/molecules25010228 PMID: 31935877
  112. Mori, S.; Kishi, S.; Honoki, K.; Fujiwara-Tani, R.; Moriguchi, T.; Sasaki, T.; Fujii, K.; Tsukamoto, S.; Fujii, H.; Kido, A.; Tanaka, Y.; Luo, Y.; Kuniyasu, H. Anti-stem cell property of pterostilbene in gastrointestinal cancer cells. Int. J. Mol. Sci., 2020, 21(24), 9347. doi: 10.3390/ijms21249347 PMID: 33302440
  113. Tyagi, A.; Vishnoi, K.; Kaur, H.; Srivastava, Y.; Roy, B.G.; Das, B.C.; Bharti, A.C. Cervical cancer stem cells manifest radioresistance: Association with upregulated AP-1 activity. Sci. Rep., 2017, 7(1), 4781. doi: 10.1038/s41598-017-05162-x PMID: 28684765
  114. Hu, C.; Li, M.; Guo, T.; Wang, S.; Huang, W.; Yang, K.; Liao, Z.; Wang, J.; Zhang, F.; Wang, H. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomedicine, 2019, 58, 152740. doi: 10.1016/j.phymed.2018.11.001 PMID: 31005718
  115. Ma, Y.; Yu, W.; Shrivastava, A.; Srivastava, R.K.; Shankar, S. Inhibition of pancreatic cancer stem cell characteristics by α;-Mangostin: Molecular mechanisms involving Sonic hedgehog and Nanog. J. Cell. Mol. Med., 2019, 23(4), 2719-2730. doi: 10.1111/jcmm.14178 PMID: 30712329
  116. Chien, H.J. Ying, T.H.; Hsieh, S.C.; Lin, C.L.; Yu, Y.L.; Kao, S.H.; Hsieh, Y.H. α;-Mangostin attenuates stemness and enhances cisplatin-induced cell death in cervical cancer stem like cells through induction of mitochondrial-mediated apoptosis. J. Cell. Physiol., 2020, 235(7-8), 5590-5601. doi: 10.1002/jcp.29489 PMID: 31960449
  117. Wang, X.; Cao, X.; Wang, D.; Qiu, Y.; Deng, K.; Cao, J.; Lin, S.; Xu, Y.; Ren, K. Casticin attenuates stemness in cervical cancer stem-like cells by regulating activity and expression of DNMT1. Chin. J. Integr. Med., 2023, 29(3), 224-232. doi: 10.1007/s11655-022-3469-z PMID: 35809177
  118. He, G.; Cao, X.; He, M.; Sheng, X.; Wu, Y.; Ai, X. Casticin inhibits self-renewal of liver cancer stem cells from the MHCC97 cell line. Oncol. Lett., 2014, 7(6), 2023-2028. doi: 10.3892/ol.2014.1972 PMID: 24932283
  119. He, M.; Cao, X.C.; He, G.C.; Sheng, X.F.; Ai, X.H.; Wu, Y.H. Casticin inhibits epithelial-mesenchymal transition of liver cancer stem cells of the SMMC-7721 cell line through downregulating Twist. Oncol. Lett., 2014, 7(5), 1625-1631. doi: 10.3892/ol.2014.1899 PMID: 24765190
  120. Liu, F.; Cao, X.; Liu, Z.; Guo, H.; Ren, K.; Quan, M.; Zhou, Y.; Xiang, H.; Cao, J. Casticin suppresses self-renewal and invasion of lung cancer stem-like cells from A549 cells through down-regulation of pAkt. Acta Biochim. Biophys. Sin., 2014, 46(1), 15-21. doi: 10.1093/abbs/gmt123 PMID: 24247269
  121. Pal, D.; Kolluru, V.; Chandrasekaran, B.; Baby, B.V.; Aman, M.; Suman, S.; Sirimulla, S.; Sanders, M.A.; Alatassi, H.; Ankem, M.K.; Damodaran, C. Targeting aberrant expression of Notch-1 in ALDH+ cancer stem cells in breast cancer. Mol. Carcinog., 2017, 56(3), 1127-1136. doi: 10.1002/mc.22579 PMID: 27753148
  122. Suman, S.; Das, T.P.; Damodaran, C. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. Br. J. Cancer, 2013, 109(10), 2587-2596. doi: 10.1038/bjc.2013.642 PMID: 24129237
  123. Lee, S.H.; Nam, H.J.; Kang, H.J.; Kwon, H.W.; Lim, Y.C. Epigallocatechin-3-gallate attenuates head and neck cancer stem cell traits through suppression of Notch pathway. Eur. J. Cancer, 2013, 49(15), 3210-3218. doi: 10.1016/j.ejca.2013.06.025 PMID: 23876835
  124. Chung, S.S.; Vadgama, J.V. Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling. Anticancer Res., 2015, 35(1), 39-46. PMID: 25550533
  125. Chen, Y.; Wang, X.Q.; Zhang, Q.; Zhu, J.Y.; Li, Y.; Xie, C.F.; Li, X.T.; Wu, J.S.; Geng, S.S.; Zhong, C.Y.; Han, H.Y. (-)-Epigallocatechin-3-gallate inhibits colorectal cancer stem cells by suppressing wnt/β-catenin pathway. Nutrients, 2017, 9(6), 572. doi: 10.3390/nu9060572 PMID: 28587207
  126. Toden, S.; Tran, H.M.; Tovar-Camargo, O.A.; Okugawa, Y.; Goel, A. Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer. Oncotarget, 2016, 7(13), 16158-16171. doi: 10.18632/oncotarget.7567 PMID: 26930714
  127. Sun, X.; Song, J.; Li, E.; Geng, H.; Li, Y.; Yu, D.; Zhong, C. () Epigallocatechin 3 gallate inhibits bladder cancer stem cells via suppression of sonic hedgehog pathway. Oncol. Rep., 2019, 42(1), 425-435. doi: 10.3892/or.2019.7170 PMID: 31180522
  128. Jiang, P.; Xu, C.; Zhang, P.; Ren, J.; Mageed, F.; Wu, X.; Chen, L.; Zeb, F.; Feng, Q.; Li, S. Epigallocatechin 3 gallate inhibits self renewal ability of lung cancer stem like cells through inhibition of CLOCK. Int. J. Mol. Med., 2020, 46(6), 2216-2224. doi: 10.3892/ijmm.2020.4758 PMID: 33125096
  129. Huang, Y.; Zeng, F.; Xu, L.; Zhou, J.; Liu, X.; Le, H. Anticancer effects of cinnamic acid in lung adenocarcinoma cell line h1299-derived stem-like cells. Oncol. Res., 2012, 20(11), 499-507. doi: 10.3727/096504013X13685487925095 PMID: 24063280
  130. Soltanian, S.; Riahirad, H.; Pabarja, A.; Jafari, E.; Khandani, B.K. Effect of Cinnamic acid and FOLFOX in diminishing side population and downregulating cancer stem cell markers in colon cancer cell line HT-29. Daru, 2018, 26(1), 19-29. doi: 10.1007/s40199-018-0210-8 PMID: 30209760
  131. Ray, A.; Vasudevan, S.; Sengupta, S. 6-Shogaol inhibits breast cancer cells and stem cell-like spheroids by modulation of notch signaling pathway and induction of autophagic cell death. PLoS One, 2015, 10(9), e0137614. doi: 10.1371/journal.pone.0137614 PMID: 26355461
  132. Zhen, X.; Choi, H.S.; Kim, J.H.; Kim, S.L.; Liu, R.; Yun, B.S.; Lee, D.S. Machilin D, a lignin derived from saururus chinensis, suppresses breast cancer stem cells and inhibits nf-κb signaling. Biomolecules, 2020, 10(2), 245. doi: 10.3390/biom10020245 PMID: 32033472
  133. Bhummaphan, N.; Petpiroon, N.; Prakhongcheep, O.; Sritularak, B.; Chanvorachote, P. Lusianthridin targeting of lung cancer stem cells via Src-STAT3 suppression. Phytomedicine, 2019, 62, 152932. doi: 10.1016/j.phymed.2019.152932 PMID: 31100681
  134. Ma, L.; Mao, R.; Shen, K.; Zheng, Y.; Li, Y.; Liu, J.; Ni, L. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits. Biochem. Biophys. Res. Commun., 2014, 450(1), 353-359. doi: 10.1016/j.bbrc.2014.05.110 PMID: 24944018
  135. Wang, K.; Huang, W.; Sang, X.; Wu, X.; Shan, Q.; Tang, D.; Xu, X.; Cao, G. Atractylenolide I inhibits colorectal cancer cell proliferation by affecting metabolism and stemness via AKT/mTOR signaling. Phytomedicine, 2020, 68, 153191. doi: 10.1016/j.phymed.2020.153191 PMID: 32135457
  136. Sehrawat, A.; Kim, S.H.; Hahm, E.R.; Arlotti, J.A.; Eiseman, J.; Shiva, S.S.; Rigatti, L.H.; Singh, S.V. Cancer-selective death of human breast cancer cells by leelamine is mediated by bax and bak activation. Mol. Carcinog., 2017, 56(2), 337-348. doi: 10.1002/mc.22497 PMID: 27149078
  137. Giacomelli, C.; Daniele, S.; Natali, L.; Iofrida, C.; Flamini, G.; Braca, A.; Trincavelli, M.L.; Martini, C. Carnosol controls the human glioblastoma stemness features through the epithelial-mesenchymal transition modulation and the induction of cancer stem cell apoptosis. Sci. Rep., 2017, 7(1), 15174. doi: 10.1038/s41598-017-15360-2 PMID: 29123181
  138. Aliebrahimi, S.; Kouhsari, S.M.; Arab, S.S.; Shadboorestan, A.; Ostad, S.N. Phytochemicals, withaferin A and carnosol, overcome pancreatic cancer stem cells as c-Met inhibitors. Biomed. Pharmacother., 2018, 106, 1527-1536. doi: 10.1016/j.biopha.2018.07.055 PMID: 30119228
  139. Leong, K.H.; Mahdzir, M.A.; Din, M.F.M.; Awang, K.; Tanaka, Y.; Kulkeaw, K.; Ishitani, T.; Sugiyama, D. Induction of intrinsic apoptosis in leukaemia stem cells and in vivo zebrafish model by betulonic acid isolated from Walsura pinnata Hassk (Meliaceae). Phytomedicine, 2017, 26, 11-21. doi: 10.1016/j.phymed.2016.12.018 PMID: 28257660
  140. Kakar, S.S.; Parte, S.; Carter, K.; Joshua, I.G.; Worth, C.; Rameshwar, P.; Ratajczak, M.Z.; Withaferin, A. WFA) inhibits tumor growth and metastasis by targeting ovarian cancer stem cells. Oncotarget, 2017, 8(43), 74494-74505. doi: 10.18632/oncotarget.20170 PMID: 29088802
  141. Issa, M.E.; Cuendet, M. Withaferin A induces cell death and differentiation in multiple myeloma cancer stem cells. MedChemComm, 2017, 8(1), 112-121. doi: 10.1039/C6MD00410E PMID: 30108696
  142. Lin, C.S.; Bamodu, O.A.; Kuo, K.T.; Huang, C.M.; Liu, S.C.; Wang, C.H.; Tzeng, Y.M.; Chao, T.Y.; Yeh, C.T. Investigation of ovatodiolide, a macrocyclic diterpenoid, as a potential inhibitor of oral cancer stem-like cells properties via the inhibition of the JAK2/STAT3/JARID1B signal circuit. Phytomedicine, 2018, 46, 93-103. doi: 10.1016/j.phymed.2018.04.016 PMID: 30097127
  143. Su, Y.; Bamodu, O.A.; Tzeng, Y.M.; Hsiao, M.; Yeh, C.T.; Lin, C.M. Ovatodiolide inhibits the oncogenicity and cancer stem cell-like phenotype of glioblastoma cells, as well as potentiate the anticancer effect of temozolomide. Phytomedicine, 2019, 61, 152840. doi: 10.1016/j.phymed.2019.152840 PMID: 31035045
  144. Liu, S.C.; Huang, C.M.; Bamodu, O.A.; Lin, C.S.; Liu, B.L.; Tzeng, Y.M.; Tsai, J.T.; Lee, W.H.; Chen, T.M. Ovatodiolide suppresses nasopharyngeal cancer by targeting stem cell-like population, inducing apoptosis, inhibiting EMT and dysregulating JAK/STAT signaling pathway. Phytomedicine, 2019, 56, 269-278. doi: 10.1016/j.phymed.2018.05.007 PMID: 30668347
  145. Sun, L.; Cao, J.; Chen, K.; Cheng, L.; Zhou, C.; Yan, B.; Qian, W.; Li, J.; Duan, W.; Ma, J.; Qi, D.; Wu, E.; Wang, Z.; Liu, Q.; Ma, Q.; Xu, Q. Betulinic acid inhibits stemness and EMT of pancreatic cancer cells via activation of AMPK signaling. Int. J. Oncol., 2019, 54(1), 98-110. PMID: 30365057
  146. Wang, D.; Upadhyaya, B.; Liu, Y.; Knudsen, D.; Dey, M. Phenethyl isothiocyanate upregulates death receptors 4 and 5 and inhibits proliferation in human cancer stem-like cells. BMC Cancer, 2014, 14(1), 591. doi: 10.1186/1471-2407-14-591 PMID: 25127663
  147. Upadhyaya, B.; Liu, Y.; Dey, M. Phenethyl isothiocyanate exposure promotes oxidative stress and suppresses sp1 transcription factor in cancer stem cells. Int. J. Mol. Sci., 2019, 20(5), 1027. doi: 10.3390/ijms20051027 PMID: 30818757
  148. Yun, J.H.; Kim, K.A.; Yoo, G.; Kim, S.Y.; Shin, J.M.; Kim, J.H.; Jung, S.H.; Kim, J.; Nho, C.W. Phenethyl isothiocyanate suppresses cancer stem cell properties in vitro and in a xenograft model. Phytomedicine, 2017, 30, 42-49. doi: 10.1016/j.phymed.2017.01.015 PMID: 28545668
  149. Zhang, T.; Zhang, W.; Hao, M. Phenethyl isothiocyanate reduces breast cancer stem cell-like properties by epigenetic reactivation of CDH1. Oncol. Rep., 2020, 45(1), 337-348. doi: 10.3892/or.2020.7860 PMID: 33416137
  150. Li, S.H.; Fu, J.; Watkins, D.N.; Srivastava, R.K.; Shankar, S. Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog–GLI pathway. Mol. Cell. Biochem., 2013, 373(1-2), 217-227. doi: 10.1007/s11010-012-1493-6 PMID: 23129257
  151. Zhu, J.; Wang, S.; Chen, Y.; Li, X.; Jiang, Y.; Yang, X.; Li, Y.; Wang, X.; Meng, Y.; Zhu, M.; Ma, X.; Huang, C.; Wu, R.; Xie, C.; Geng, S.; Wu, J.; Zhong, C.; Han, H. miR-19 targeting of GSK3β mediates sulforaphane suppression of lung cancer stem cells. J. Nutr. Biochem., 2017, 44, 80-91. doi: 10.1016/j.jnutbio.2017.02.020 PMID: 28431267
  152. Chen, L.; Chan, L.S.; Lung, H.L.; Yip, T.T.C.; Ngan, R.K.C.; Wong, J.W.C.; Lo, K.W.; Ng, W.T.; Lee, A.W.M.; Tsao, G.S.W.; Lung, M.L.; Mak, N.K. Crucifera sulforaphane (SFN) inhibits the growth of nasopharyngeal carcinoma through DNA methyltransferase 1 (DNMT1)/Wnt inhibitory factor 1 (WIF1) axis. Phytomedicine, 2019, 63, 153058. doi: 10.1016/j.phymed.2019.153058 PMID: 31394414
  153. Ahmadipour, F.; Noordin, M.I.; Mohan, S.; Arya, A.; Paydar, M.; Looi, C.Y.; Keong, Y.S.; Siyamak, E.N.; Fani, S.; Firoozi, M.; Yong, C.L.; Sukari, M.A.; Kamalidehghan, B. Koenimbin, a natural dietary compound of Murraya koenigii (L) Spreng: Inhibition of MCF7 breast cancer cells and targeting of derived MCF7 breast cancer stem cells (CD44(+)/CD24(-/low)): an in vitro study. Drug Des. Devel. Ther., 2015, 9, 1193-1208. PMID: 25759564
  154. Kamalidehghan, B.; Ghafouri-Fard, S.; Motevaseli, E.; Ahmadipour, F. Inhibition of human prostate cancer (PC-3) cells and targeting of PC-3-derived prostate cancer stem cells with koenimbin, a natural dietary compound from Murraya koenigii (L). Spreng. Drug Des. Devel. Ther., 2018, 12, 1119-1133. doi: 10.2147/DDDT.S156826 PMID: 29765202
  155. Li, X.; Meng, Y.; Xie, C.; Zhu, J.; Wang, X.; Li, Y.; Geng, S.; Wu, J.; Zhong, C.; Li, M. Diallyl Trisulfide inhibits breast cancer stem cells via suppression of Wnt/β-catenin pathway. J. Cell. Biochem., 2018, 119(5), 4134-4141. doi: 10.1002/jcb.26613 PMID: 29243835
  156. Zhang, Q.; Li, X.T.; Chen, Y.; Chen, J.Q.; Zhu, J.Y.; Meng, Y.; Wang, X.Q.; Li, Y.; Geng, S.S.; Xie, C.F.; Wu, J.S.; Zhong, C.Y.; Han, H.Y. Wnt/β-catenin signaling mediates the suppressive effects of diallyl trisulfide on colorectal cancer stem cells. Cancer Chemother. Pharmacol., 2018, 81(6), 969-977. doi: 10.1007/s00280-018-3565-0 PMID: 29594332
  157. Zhang, T.; Cao, W.; Sun, H.; Yu, D.; Zhong, C. Diallyl trisulfide suppresses the renal cancer stem-like cell properties via nanog. Nutr. Cancer, 2023, 75(3), 971-979. doi: 10.1080/01635581.2022.2156553 PMID: 36562732
  158. Das, M.; Kandimalla, R.; Gogoi, B.; Dutta, K.N.; Choudhury, P.; Devi, R.; Dutta, P.P.; Talukdar, N.C.; Samanta, S.K. Mahanine, A dietary phytochemical, represses mammary tumor burden in rat and inhibits subtype regardless breast cancer progression through suppressing self-renewal of breast cancer stem cells. Pharmacol. Res., 2019, 146, 104330. doi: 10.1016/j.phrs.2019.104330 PMID: 31251988
  159. Maitisha, G.; Aimaiti, M.; An, Z.; Li, X. Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathway. Mol. Biol. Rep., 2021, 48(11), 7261-7272. doi: 10.1007/s11033-021-06722-1 PMID: 34626309
  160. Naveen, C.R.; Gaikwad, S.; Agrawal-Rajput, R. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells. Phytomedicine, 2016, 23(7), 736-744. doi: 10.1016/j.phymed.2016.03.013 PMID: 27235712
  161. Ma, Y.; Yu, W.; Shrivastava, A.; Alemi, F.; Lankachandra, K.; Srivastava, R.K.; Shankar, S. Sanguinarine inhibits pancreatic cancer stem cell characteristics by inducing oxidative stress and suppressing sonic hedgehog-Gli-Nanog pathway. Carcinogenesis, 2017, 38(10), 1047-1056. doi: 10.1093/carcin/bgx070 PMID: 28968696
  162. Khan, A.Q.; Mohamed, E.A.N.; Hakeem, I.; Nazeer, A.; Kuttikrishnan, S.; Prabhu, K.S.; Siveen, K.S.; Nawaz, Z.; Ahmad, A.; Zayed, H.; Uddin, S. Sanguinarine induces apoptosis in papillary thyroid cancer cells via generation of reactive oxygen species. Molecules, 2020, 25(5), 1229. doi: 10.3390/molecules25051229 PMID: 32182833
  163. Li, W.; Zhang, Q.; Chen, K.; Sima, Z.; Liu, J.; Yu, Q.; Liu, J. 2-Ethoxystypandrone, a novel small-molecule STAT3 signaling inhibitor from Polygonum cuspidatum, inhibits cell growth and induces apoptosis of HCC cells and HCC cancer stem cells. BMC Complement. Altern. Med., 2019, 19(1), 38. doi: 10.1186/s12906-019-2440-9 PMID: 30709346
  164. Feng, D.; Peng, C.; Li, C.; Zhou, Y.; Li, M.; Ling, B.; Wei, H.; Tian, Z. Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri. Oncol. Rep., 2009, 22(5), 1129-1134. PMID: 19787230
  165. Ji, J.; Zheng, P.S. Expression of Sox2 in human cervical carcinogenesis. Hum. Pathol., 2010, 41(10), 1438-1447. doi: 10.1016/j.humpath.2009.11.021 PMID: 20709360
  166. Bortolomai, I.; Canevari, S.; Facetti, I.; De Cecco, L.; Castellano, G.; Zacchetti, A.; Alison, M.R.; Miotti, S. Tumor initiating cells: Development and critical characterization of a model derived from the A431 carcinoma cell line forming spheres in suspension. Cell Cycle, 2010, 9(6), 1194-1206. doi: 10.4161/cc.9.6.11108 PMID: 20237414
  167. Gu, W.; Yeo, E.; McMillan, N.; Yu, C. Silencing oncogene expression in cervical cancer stem-like cells inhibits their cell growth and self-renewal ability. Cancer Gene Ther., 2011, 18(12), 897-905. doi: 10.1038/cgt.2011.58 PMID: 21904396
  168. Wang, K.; Zeng, J.; Luo, L.; Yang, J.; Chen, J.; Li, B.; Shen, K. Identification of a cancer stem cell-like side population in the HeLa human cervical carcinoma cell line. Oncol. Lett., 2013, 6(6), 1673-1680. doi: 10.3892/ol.2013.1607 PMID: 24260061
  169. Liao, T.; Kaufmann, A.M.; Qian, X.; Sangvatanakul, V.; Chen, C.; Kube, T.; Zhang, G.; Albers, A.E. Susceptibility to cytotoxic T cell lysis of cancer stem cells derived from cervical and head and neck tumor cell lines. J. Cancer Res. Clin. Oncol., 2013, 139(1), 159-170. doi: 10.1007/s00432-012-1311-2 PMID: 23001491
  170. Hayashi, K.; Tamari, K.; Ishii, H.; Konno, M.; Nishida, N.; Kawamoto, K.; Koseki, J.; Fukusumi, T.; Kano, Y.; Nishikawa, S.; Miyo, M.; Noguchi, K.; Ogawa, H.; Hamabe, A.; Seo, Y.; Doki, Y.; Mori, M.; Ogawa, K. Visualization and characterization of cancer stem-like cells in cervical cancer. Int. J. Oncol., 2014, 45(6), 2468-2474. doi: 10.3892/ijo.2014.2670 PMID: 25269542
  171. Wang, L.; Guo, H.; Lin, C.; Yang, L.; Wang, X. Enrichment and characterization of cancer stem-like cells from a cervical cancer cell line. Mol. Med. Rep., 2014, 9(6), 2117-2123. doi: 10.3892/mmr.2014.2063 PMID: 24676900
  172. Liu, X.F.; Yang, W.T.; Xu, R.; Liu, J.T.; Zheng, P.S. Cervical cancer cells with positive Sox2 expression exhibit the properties of cancer stem cells. PLoS One, 2014, 9(1), e87092. doi: 10.1371/journal.pone.0087092 PMID: 24489842
  173. Villanueva-Toledo, J.; Ponciano-Gómez, A.; Ortiz-Sánchez, E.; Garrido, E. Side populations from cervical-cancer-derived cell lines have stem-cell-like properties. Mol. Biol. Rep., 2014, 41(4), 1993-2004. doi: 10.1007/s11033-014-3047-3 PMID: 24420854
  174. Kumazawa, S.; Kajiyama, H.; Umezu, T.; Mizuno, M.; Suzuki, S.; Yamamoto, E.; Mitsui, H.; Sekiya, R.; Shibata, K.; Kikkawa, F. Possible association between stem-like hallmark and radioresistance in human cervical carcinoma cells. J. Obstet. Gynaecol. Res., 2014, 40(5), 1389-1398. doi: 10.1111/jog.12357 PMID: 24750491
  175. Qi, W.; Zhao, C.; Zhao, L.; Liu, N.; Li, X.; Yu, W.; Wei, L. Sorting and identification of side population cells in the human cervical cancer cell line HeLa. Cancer Cell Int., 2014, 14(1), 3. doi: 10.1186/1475-2867-14-3 PMID: 24418020
  176. Liu, H.; Wang, H.; Li, C.; Zhang, T.; Meng, X.; Zhang, Y.; Qian, H. Spheres from cervical cancer cells display stemness and cancer drug resistance. Oncol. Lett., 2016, 12(3), 2184-2188. doi: 10.3892/ol.2016.4893 PMID: 27602161
  177. Asano, T.; Hirohashi, Y.; Torigoe, T.; Mariya, T.; Horibe, R.; Kuroda, T.; Tabuchi, Y.; Saijo, H.; Yasuda, K.; Mizuuchi, M.; Takahashi, A.; Asanuma, H.; Hasegawa, T.; Saito, T.; Sato, N. Brother of the regulator of the imprinted site (BORIS) variant subfamily 6 is involved in cervical cancer stemness and can be a target of immunotherapy. Oncotarget, 2016, 7(10), 11223-11237. doi: 10.18632/oncotarget.7165 PMID: 26849232
  178. Wei, Z.T.; Yu, X.W.; He, J.X.; Liu, Y.; Zhang, S.L. Characteristics of primary side population cervical cancer cells. Oncol. Lett., 2017, 14(3), 3536-3544. doi: 10.3892/ol.2017.6606 PMID: 28927110
  179. Yang, S.; Chen, T.; Huang, L.; Xu, S.; Cao, Z.; Zhang, S.; Xu, J.; Li, Y.; Yue, Y.; Lu, W.; Cheng, X.; Xie, X. High-risk human papillomavirus e7 maintains stemness via APH1B in cervical cancer stem-cell like cells. Cancer Manag. Res., 2019, 11, 9541-9552. doi: 10.2147/CMAR.S194239 PMID: 31814758
  180. Jung, J. Kim, S.; An, H.T.; Ko, J. α;-Actinin-4 regulates cancer stem cell properties and chemoresistance in cervical cancer. Carcinogenesis, 2020, 41(7), 940-949. doi: 10.1093/carcin/bgz168 PMID: 31584624
  181. Yao, T.; Weng, X.; Yao, Y.; Huang, C.; Li, J.; Peng, Y.; Lin, R.; Lin, Z. ALDH-1-positive cells exhibited a radioresistant phenotype that was enhanced with hypoxia in cervical cancer. BMC Cancer, 2020, 20(1), 891. doi: 10.1186/s12885-020-07337-8 PMID: 32942996
  182. Shi, J.; Zhao, H.; Lian, H.; Ke, L.; Zhao, L.; Wang, C.; Han, Q. CD276 (B7H3) improve cancer stem cells formation in cervical carcinoma cell lines. Transl. Cancer Res., 2021, 10(1), 65-72. doi: 10.21037/tcr-19-2910 PMID: 35116240
  183. García-Rocha, R.; Monroy-García, A.; Carrera-Martínez, M.; Hernández-Montes, J.; Don-López, C.A.; Weiss-Steider, B.; Monroy-Mora, K.A.; Ponce-Chavero, M.Á.; Montesinos-Montesinos, J.J.; Escobar-Sánchez, M.L.; Castillo, G.M.; Chacón-Salinas, R.; Vallejo-Castillo, L.; Pérez-Tapia, S.M.; Mora-García, M.L. Evidence that cervical cancer cells cultured as tumorspheres maintain high CD73 expression and increase their protumor characteristics through TGF‐β production. Cell Biochem. Funct., 2022, 40(7), 760-772. doi: 10.1002/cbf.3742 PMID: 36070413
  184. Yao, T.; Lu, R.; Li, Y.; Peng, Y.; Ding, M.; Xie, X.; Lin, Z. ALDH1 might influence the metastatic capability of HeLa cells. Tumour Biol., 2015, 36(9), 7045-7051. doi: 10.1007/s13277-015-3398-y PMID: 25864109
  185. Xie, Q.; Liang, J.; Rao, Q.; Xie, X.; Li, R.; Liu, Y.; Zhou, H.; Han, J.; Yao, T.; Lin, Z. Aldehyde dehydrogenase 1 expression predicts chemoresistance and poor clinical outcomes in patients with locally advanced cervical cancer treated with neoadjuvant chemotherapy prior to radical hysterectomy. Ann. Surg. Oncol., 2016, 23(1), 163-170. doi: 10.1245/s10434-015-4555-7 PMID: 25916979
  186. Fahmi, M.; Kusuma, F.; Hellyanti, T.; Kekalih, A.; Sekarutami, S.; Nurrana, L.; Purwoto, G.; Anggraeni, T. High ALDH-1 expression predicts non-complete response of radiotherapy in stage iii squamous cell cervical carcinoma patients. Asian Pac. J. Cancer Prev., 2023, 24(6), 1863-1868. doi: 10.31557/APJCP.2023.24.6.1863 PMID: 37378913
  187. Yao, T.; Wu, Z.; Liu, Y.; Rao, Q.; Lin, Z. Aldehyde dehydrogenase 1 (ALDH1) positivity correlates with poor prognosis in cervical cancer. J. Int. Med. Res., 2014, 42(4), 1038-1042. doi: 10.1177/0300060514527060 PMID: 24827824
  188. Hou, T.; Zhang, W.; Tong, C.; Kazobinka, G.; Huang, X.; Huang, Y.; Zhang, Y. Putative stem cell markers in cervical squamous cell carcinoma are correlated with poor clinical outcome. BMC Cancer, 2015, 15(1), 785. doi: 10.1186/s12885-015-1826-4 PMID: 26499463
  189. Fahmi, M.; Hertapanndika, I.; Kusuma, F. The prognostic value of cancer stem cell markers in cervical cancer: A systematic review and meta-analysis. Asian Pac. J. Cancer Prev., 2021, 22(12), 4057-4065. doi: 10.31557/APJCP.2021.22.12.4057 PMID: 34967589
  190. Javed, S.; Sood, S.; Rai, B.; Bhattacharyya, S.; Bagga, R.; Srinivasan, R. ALDH1 & CD133 in invasive cervical carcinoma & their association with the outcome of chemoradiation therapy. Indian J. Med. Res., 2021, 154(2), 367-374. PMID: 35295009
  191. Zhang, J.; Chen, X.; Bian, L.; Wang, Y.; Liu, H. CD44+/CD24+-expressing cervical cancer cells and radioresistant cervical cancer cells exhibit cancer stem cell characteristics. Gynecol. Obstet. Invest., 2019, 84(2), 174-182. doi: 10.1159/000493129 PMID: 30317240
  192. Wu, L.; Han, L.; Zhou, C.; Wei, W.; Chen, X.; Yi, H.; Wu, X.; Bai, X.; Guo, S.; Yu, Y.; Liang, L.; Wang, W. TGF-β1-induced CK 17 enhances cancer stem cell-like properties rather than EMT in promoting cervical cancer metastasis via the ERK 1/2- MZF 1 signaling pathway. FEBS J., 2017, 284(18), 3000-3017. doi: 10.1111/febs.14162 PMID: 28703907
  193. Ikeda, K.; Tate, G.; Suzuki, T.; Mitsuya, T. Coordinate expression of cytokeratin 8 and cytokeratin 17 immunohistochemical staining in cervical intraepithelial neoplasia and cervical squamous cell carcinoma: An immunohistochemical analysis and review of the literature. Gynecol. Oncol., 2008, 108(3), 598-602. doi: 10.1016/j.ygyno.2007.11.042 PMID: 18191996
  194. Li, S.W.; Wu, X.L.; Dong, C.L.; Xie, X.Y.; Wu, J.F.; Zhang, X. The differential expression of OCT4 isoforms in cervical carcinoma. PLoS One, 2015, 10(3), e0118033. doi: 10.1371/journal.pone.0118033 PMID: 25816351
  195. Yang, Y.; Wang, Y.; Yin, C.; Li, X. Clinical significance of the stem cell gene Oct-4 in cervical cancer. Tumour Biol., 2014, 35(6), 5339-5345. doi: 10.1007/s13277-014-1696-4 PMID: 24532469
  196. Shen, L.; Huang, X.; Xie, X.; Su, J.; Yuan, J.; Chen, X. High expression of SOX2 and OCT4 indicates radiation resistance and an independent negative prognosis in cervical squamous cell carcinoma. J. Histochem. Cytochem., 2014, 62(7), 499-509. doi: 10.1369/0022155414532654 PMID: 24710660
  197. Huang, X.; Qian, Y.; Wu, H.; Xie, X.; Zhou, Q.; Wang, Y.; Kuang, W.; Shen, L.; Li, K.; Su, J.; Shen, L.; Chen, X. Aberrant expression of osteopontin and E-cadherin indicates radiation resistance and poor prognosis for patients with cervical carcinoma. J. Histochem. Cytochem., 2015, 63(2), 88-98. doi: 10.1369/0022155414561329 PMID: 25380749
  198. Gong, P.; Wang, Y.; Gao, Y.; Gao, M.; Liu, L.; Qu, P.; Jin, X.; Gao, Q. Msi1 promotes tumor progression by epithelial-to-mesenchymal transition in cervical cancer. Hum. Pathol., 2017, 65, 53-61. doi: 10.1016/j.humpath.2016.12.026 PMID: 28088346
  199. Ding, Y.; Yu, A.Q.; Wang, X.L.; Guo, X.R.; Yuan, Y.H.; Li, D.S. Forced expression of Nanog with mRNA synthesized in vitro to evaluate the malignancy of HeLa cells through acquiring cancer stem cell phenotypes. Oncol. Rep., 2016, 35(5), 2643-2650. doi: 10.3892/or.2016.4639 PMID: 26936116
  200. Cao, H.Z.; Liu, X.F.; Yang, W.T.; Chen, Q.; Zheng, P.S. LGR5 promotes cancer stem cell traits and chemoresistance in cervical cancer. Cell Death Dis., 2017, 8(9), e3039. doi: 10.1038/cddis.2017.393 PMID: 28880275
  201. Pei, G.; Li, B.; Ma, A. Suppression of Hiwi inhibits the growth and epithelial mesenchymal transition of cervical cancer cells. Oncol. Lett., 2018, 16(3), 3874-3880. doi: 10.3892/ol.2018.9056 PMID: 30128001
  202. Liu, W.; Gao, Q.; Chen, K.; Xue, X.; Li, M.; Chen, Q.; Zhu, G.; Gao, Y. Hiwi facilitates chemoresistance as a cancer stem cell marker in cervical cancer. Oncol. Rep., 2014, 32(5), 1853-1860. doi: 10.3892/or.2014.3401 PMID: 25119492
  203. Chen, M.Y.; Hsu, C.H.; Setiawan, S.A.; Tzeng, D.T.W.; Ma, H.P.; Ong, J.R.; Chu, Y.C.; Hsieh, M.S.; Wu, A.T.H.; Tzeng, Y.M.; Yeh, C.T. Ovatodiolide and antrocin synergistically inhibit the stemness and metastatic potential of hepatocellular carcinoma via impairing ribosome biogenesis and modulating ERK/Akt-mTOR signaling axis. Phytomedicine, 2023, 108, 154478. doi: 10.1016/j.phymed.2022.154478 PMID: 36265255
  204. Jo, M.K.; Moon, C.M.; Kim, E.J.; Kwon, J.H.; Fei, X.; Kim, S.E.; Jung, S.A.; Kim, M.; Mun, Y.C.; Ahn, Y.H.; Seo, S.Y.; Kim, T.I. Suppressive effect of α-mangostin for cancer stem cells in colorectal cancer via the Notch pathway. BMC Cancer, 2022, 22(1), 341. doi: 10.1186/s12885-022-09414-6 PMID: 35351071
  205. Khan, A.Q.; Ahmed, E.I.; Elareer, N.; Fathima, H.; Prabhu, K.S.; Siveen, K.S.; Kulinski, M.; Azizi, F.; Dermime, S.; Ahmad, A.; Steinhoff, M.; Uddin, S. Curcumin-mediated apoptotic cell death in papillary thyroid cancer and cancer stem-like cells through targeting of the JAK/STAT3 signaling pathway. Int. J. Mol. Sci., 2020, 21(2), 438. doi: 10.3390/ijms21020438 PMID: 31936675

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers