Natures Elixir for Cancer Treatment: Targeting Tumor-induced Neovascularization
- Authors: Kumari R.1, Syeda S.2, Shrivastava A.2
-
Affiliations:
- Department of Zoology, University of Delhi
- Department of Zoology,, University of Delhi
- Issue: Vol 31, No 32 (2024)
- Pages: 5281-5304
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645049
- DOI: https://doi.org/10.2174/0109298673282525240222050051
- ID: 645049
Cite item
Full Text
Abstract
:Angiogenesis, a multistep process, involves sprouting of new vessels from the pre-existing vessels in response to a stimulus in its microenvironment. Normally, angiogenesis is important for tissue maintenance and homeostasis, however it is also known to be associated with various pathologies, including cancer. Importantly, neovascularization is very crucial for tumors to grow and metastasize since it allows delivery of oxygen and nutrients as well as promotes tumor cell dissemination to distant sites. Activation of angiogenic switch is a consequence of imbalance in pro- as well as anti-angiogenic factors, that are immensely impacted by reactive oxygen species and epigenetic regulation. Several reports have suggested that angiogenic inhibitors significantly inhibit tumor growth. Therefore, anti-angiogenic therapy has gained substantial attention and has been considered a rational approach in cancer therapeutics. In this line, several anti- angiogenic drugs have been approved, however, their long term usage caused several side effects. In view of this, researchers switched to plant-based natural compounds for identifying safe and cost-effective anti-angiogenic drugs. Of note, various phytochemicals have been evaluated to reduce tumor growth by inhibiting tumor-induced angiogenesis. Moreover, the implication of nano-carriers to enhance the bioavailability of phytochemicals has proven to be more efficient anti-cancer agents. The present review highlights the existing knowledge on tumor-induced neovascularization and its regulation at the epigenetic level. Further, we emphasize the inhibitory effect of phytochemicals on tumor- induced angiogenesis that will open up new avenues in cancer therapeutics.
About the authors
Rani Kumari
Department of Zoology, University of Delhi
Email: info@benthamscience.net
Saima Syeda
Department of Zoology,, University of Delhi
Email: info@benthamscience.net
Anju Shrivastava
Department of Zoology,, University of Delhi
Author for correspondence.
Email: info@benthamscience.net
References
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801), 249-257. doi: 10.1038/35025220 PMID: 11001068
- Eichhorn, M.E.; Kleespies, A.; Angele, M.K.; Jauch, K.W.; Bruns, C.J. Angiogenesis in cancer: molecular mechanisms, clinical impact. Langenbecks Arch. Surg., 2007, 392(3), 371-379. doi: 10.1007/s00423-007-0150-0 PMID: 17458577
- Pepper, M.S. Lymphangiogenesis and tumor metastasis: Myth or reality? Clin. Cancer Res., 2001, 7(3), 462-468. PMID: 11297234
- Cheng, J.; Yang, H-L.; Gu, C-J.; Liu, Y-K.; Shao, J.; Zhu, R.; He, Y-Y.; Zhu, X-Y.; Li, M-Q. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. Int. J. Mol. Med., 2018, 43(2), 943-955. doi: 10.3892/ijmm.2018.4021
- Saraswati, S.; Marrow, S.M.W.; Watch, L.A.; Young, P.P. Identification of a pro-angiogenic functional role for FSP1-positive fibroblast subtype in wound healing. Nat. Commun., 2019, 10(1), 3027. doi: 10.1038/s41467-019-10965-9 PMID: 31289275
- Sadri, N.; Zhang, P. Hypoxia-inducible factors: mediators of cancer progression; Prognostic and therapeutic targets in soft tissue sarcomas. Cancers, 2013, 5(4), 320-333. doi: 10.3390/cancers5020320 PMID: 24216979
- Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci., 2020, 77(9), 1745-1770. doi: 10.1007/s00018-019-03351-7 PMID: 31690961
- Sherwood, L.M.; Parris, E.E.; Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186. doi: 10.1056/NEJM197111182852108 PMID: 4938153
- Hanahan, D.; Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996, 86(3), 353-364. doi: 10.1016/S0092-8674(00)80108-7 PMID: 8756718
- Abuelizz, H.A.; Marzouk, M.; Bakheit, A.H.; Awad, H.M.; Soltan, M.M.; Naglah, A.M.; Al-Salahi, R. Antiproliferative and antiangiogenic properties of new vegfr-2-targeting 2-thioxobenzo g quinazoline derivatives (In Vitro). Molecules, 2020, 25(24), 5944. doi: 10.3390/molecules25245944 PMID: 33333992
- Carbajo-Pescador, S.; Ordoñez, R.; Benet, M.; Jover, R.; García-Palomo, A.; Mauriz, J.L.; González-Gallego, J. Inhibition of VEGF expression through blockade of Hif1α and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. Br. J. Cancer, 2013, 109(1), 83-91. doi: 10.1038/bjc.2013.285 PMID: 23756865
- Jussila, L.; Alitalo, K. Vascular growth factors and lymphangiogenesis. Physiol. Rev., 2002, 82(3), 673-700. doi: 10.1152/physrev.00005.2002 PMID: 12087132
- Gao, X.; Hicks, K.C.; Neumann, P.; Patel, T.B. Hypoxia inducible factors regulate the transcription of the sprouty2 gene and expression of the sprouty2 protein. PLoS One, 2017, 12(2), e0171616. doi: 10.1371/journal.pone.0171616 PMID: 28196140
- Abdollahi, A.; Folkman, J. Evading tumor evasion: Current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist. Updat., 2010, 13(1-2), 16-28. doi: 10.1016/j.drup.2009.12.001 PMID: 20061178
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219. doi: 10.2147/vhrm.2006.2.3.213 PMID: 17326328
- Claesson-Welsh, L.; Welsh, M.; Ito, N.; Anand-Apte, B.; Soker, S.; Zetter, B.; OReilly, M.; Folkman, J. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc. Natl. Acad. Sci. USA, 1998, 95(10), 5579-5583. doi: 10.1073/pnas.95.10.5579 PMID: 9576925
- Olofsson, S.O.; Asp, L.; Borén, J. The assembly and secretion of apolipoprotein B-containing lipoproteins. Curr. Opin. Lipidol., 1999, 10(4), 341-346. doi: 10.1097/00041433-199908000-00008 PMID: 10482137
- Olofsson, B.; Jeltsch, M.; Eriksson, U.; Alitalo, K. Current biology of VEGF-B and VEGF-C. Curr. Opin. Biotechnol., 1999, 10(6), 528-538. doi: 10.1016/S0958-1669(99)00024-5 PMID: 10600689
- Wiszniak, S.; Schwarz, Q. Exploring the intracrine functions of VEGF-A. Biomolecules, 2021, 11(1), 128. doi: 10.3390/biom11010128 PMID: 33478167
- Ng, K.T.P.; Xu, A.; Cheng, Q.; Guo, D.Y.; Lim, Z.X.H.; Sun, C.K.W.; Fung, J.H.S.; Poon, R.T.P.; Fan, S.T.; Lo, C.M.; Man, K. Clinical relevance and therapeutic potential of angiopoietin-like protein 4 in hepatocellular carcinoma. Mol. Cancer, 2014, 13(1), 196. doi: 10.1186/1476-4598-13-196 PMID: 25148701
- Master, Z.; Jones, N.; Tran, J.; Jones, J.; Kerbel, R.S.; Dumont, D.J. Dok-R plays a pivotal role in angiopoietin-1-dependent cell migration through recruitment and activation of Pak. EMBO J., 2001, 20(21), 5919-5928. doi: 10.1093/emboj/20.21.5919 PMID: 11689432
- Liao, Y-H.; Chiang, K-H.; Shieh, J-M.; Huang, C-R.; Shen, C-J.; Huang, W-C.; Chen, B-K. Epidermal growth factor-induced ANGPTL4 enhances anoikis resistance and tumour metastasis in head and neck squamous cell carcinoma. Oncogene, 2017, 36(16), 2228-2242. doi: 10.1038/onc.2016.371 PMID: 27797381
- Yu, X.; Ye, F. Role of angiopoietins in development of cancer and neoplasia associated with viral infection. Cells, 2020, 9(2), 457. doi: 10.3390/cells9020457 PMID: 32085414
- Pergaris, A.; Danas, E.; Goutas, D.; Sykaras, A.G.; Soranidis, A.; Theocharis, S. The clinical impact of the eph/ephrin system in cancer: Unwinding the thread. Int. J. Mol. Sci., 2021, 22(16), 8412. doi: 10.3390/ijms22168412 PMID: 34445116
- Hadjimichael, A.C.; Pergaris, A.; Kaspiris, A.; Foukas, A.F.; Kokkali, S.; Tsourouflis, G.; Theocharis, S. The EPH/Ephrin system in bone and soft tissue sarcomas pathogenesis and therapy: New advancements and a literature review. Int. J. Mol. Sci., 2022, 23(9), 5171. doi: 10.3390/ijms23095171 PMID: 35563562
- Coffin, J.D.; Homer-Bouthiette, C.; Hurley, M.M. Fibroblast growth factor 2 and its receptors in bone biology and disease. J. Endocr. Soc., 2018, 2(7), 657-671. doi: 10.1210/js.2018-00105 PMID: 29942929
- Ornitz, D.M.; Itoh, N. The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol., 2015, 4(3), 215-266. doi: 10.1002/wdev.176 PMID: 25772309
- Xie, Y.; Su, N.; Yang, J.; Tan, Q.; Huang, S.; Jin, M.; Ni, Z.; Zhang, B.; Zhang, D.; Luo, F.; Chen, H.; Sun, X.; Feng, J.Q.; Qi, H.; Chen, L. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther., 2020, 5(1), 181. doi: 10.1038/s41392-020-00222-7 PMID: 32879300
- Pan, M.; Schinke, H.; Luxenburger, E.; Kranz, G.; Shakhtour, J.; Libl, D.; Huang, Y.; Gaber, A.; Pavič, M.; Lenarčič, B.; Kitz, J.; Jakob, M.; Schwenk-Zieger, S.; Canis, M.; Hess, J.; Unger, K.; Baumeister, P.; Gires, O. EpCAM ectodomain EpEX is a ligand of EGFR that counteracts EGF-mediated epithelial-mesenchymal transition through modulation of phospho-ERK1/2 in head and neck cancers. PLoS Biol., 2018, 16(9), e2006624. doi: 10.1371/journal.pbio.2006624 PMID: 30261040
- Machado, C.M.L.; Andrade, L.N.S.; Teixeira, V.R.; Costa, F.F.; Melo, C.M.; dos Santos, S.N.; Nonogaki, S.; Liu, F.T.; Bernardes, E.S.; Camargo, A.A.; Chammas, R. Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGF β 1-induced macrophages. Cancer Med., 2014, 3(2), 201-214. doi: 10.1002/cam4.173 PMID: 24421272
- Tzavlaki, K.; Moustakas, A. TGF-β signaling. Biomolecules, 2020, 10(3), 487. doi: 10.3390/biom10030487 PMID: 32210029
- Tewari, D.; Priya, A.; Bishayee, A.; Bishayee, A. Targeting transforming growth factor-ß signalling for cancer prevention and intervention: Recent advances in developing small molecules of natural origin. Clin. Transl. Med., 2022, 12(4), e795. doi: 10.1002/ctm2.795 PMID: 35384373
- Peterson, J.E.; Zurakowski, D.; Italiano, J.E., Jr; Michel, L.V.; Fox, L.; Klement, G.L.; Folkman, J. Normal ranges of angiogenesis regulatory proteins in human platelets. Am. J. Hematol., 2010, 85(7), 487-493. doi: 10.1002/ajh.21732 PMID: 20575035
- Farooqi, A.A.; Siddik, Z.H. Platelet-derived growth factor ( PDGF ) signalling in cancer: Rapidly emerging signalling landscape. Cell Biochem. Funct., 2015, 33(5), 257-265. doi: 10.1002/cbf.3120 PMID: 26153649
- Lin, L.H.; Lin, J.S.; Yang, C.C.; Cheng, H.W.; Chang, K.W.; Liu, C.J. Overexpression of platelet-derived growth factor and its receptor are correlated with oral tumorigenesis and poor prognosis in oral squamous cell carcinoma. Int. J. Mol. Sci., 2020, 21(7), 2360. doi: 10.3390/ijms21072360 PMID: 32235327
- Wang, Z.; Dabrosin, C.; Yin, X.; Fuster, M.M.; Arreola, A.; Rathmell, W.K.; Generali, D.; Nagaraju, G.P.; El-Rayes, B.; Ribatti, D.; Chen, Y.C.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Nowsheen, S.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, B.; Yang, X.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Halicka, D.; Mohammed, S.I.; Azmi, A.S.; Bilsland, A.; Keith, W.N.; Jensen, L.D. Broad targeting of angiogenesis for cancer prevention and therapy. Semin. Cancer Biol., 2015, 35(Suppl.), S224-S243. doi: 10.1016/j.semcancer.2015.01.001 PMID: 25600295
- Salomon, B.L.; Leclerc, M.; Tosello, J.; Ronin, E.; Piaggio, E.; Cohen, J.L. Tumor necrosis factor α and regulatory T cells in oncoimmunology. Front. Immunol., 2018, 9, 444. doi: 10.3389/fimmu.2018.00444 PMID: 29593717
- Yamagishi, S.; Amano, S.; Inagaki, Y.; Okamoto, T.; Takeuchi, M.; Inoue, H. Pigment epithelium-derived factor inhibits leptin-induced angiogenesis by suppressing vascular endothelial growth factor gene expression through anti-oxidative properties. Microvasc. Res., 2003, 65(3), 186-190. doi: 10.1016/S0026-2862(03)00005-0 PMID: 12711260
- Kaidi, D.; Szeponik, L.; Yrlid, U.; Wettergren, Y.; Bexe Lindskog, E. Impact of thymidine phosphorylase and CD163 expression on prognosis in stage II colorectal cancer. Clin. Transl. Oncol., 2022, 24(9), 1818-1827. doi: 10.1007/s12094-022-02839-2 PMID: 35567733
- Dong, Y.; Lu, B.; Zhang, X.; Zhang, J.; Lai, L.; Li, D.; Wu, Y.; Song, Y.; Luo, J.; Pang, X.; Yi, Z.; Liu, M. Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway. Carcinogenesis, 2010, 31(12), 2097-2104. doi: 10.1093/carcin/bgq167 PMID: 20732905
- Matsumoto, K.; Umitsu, M.; De Silva, D.M.; Roy, A.; Bottaro, D.P. Hepatocyte growth factor/ MET in cancer progression and biomarker discovery. Cancer Sci., 2017, 108(3), 296-307. doi: 10.1111/cas.13156 PMID: 28064454
- Czyz, M. HGF/c-MET signaling in melanocytes and melanoma. Int. J. Mol. Sci., 2018, 19(12), 3844. doi: 10.3390/ijms19123844 PMID: 30513872
- Brat, D.J.; Bellail, A.C.; Van Meir, E.G. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-oncol., 2005, 7(2), 122-133. doi: 10.1215/S1152851704001061 PMID: 15831231
- Chen, W.T.; Ebelt, N.D.; Stracker, T.H.; Xhemalce, B.; Van Den Berg, C.L.; Miller, K.M. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion. eLife, 2015, 4, e07270. doi: 10.7554/eLife.07270 PMID: 26030852
- Kumar, S.; OMalley, J.; Chaudhary, A.K.; Inigo, J.R.; Yadav, N.; Kumar, R.; Chandra, D. Hsp60 and IL-8 axis promotes apoptosis resistance in cancer. Br. J. Cancer, 2019, 121(11), 934-943. doi: 10.1038/s41416-019-0617-0 PMID: 31673102
- Montero, S.; Guzmán, C.; Cortés-Funes, H.; Colomer, R. Angiogenin expression and prognosis in primary breast carcinoma. Clin. Cancer Res., 1998, 4(9), 2161-2168. PMID: 9748135
- Urquidi, V. Vascular endothelial growth factor, carbonic anhydrase 9, and angiogenin as urinary biomarkers for bladder cancer detection. Urology, 2012, 79(5), 1185 . doi: 10.1016/j.urology.2012.01.016
- Lee, S.J.; Nathans, D. Proliferin secreted by cultured cells binds to mannose 6-phosphate receptors. J. Biol. Chem., 1988, 263(7), 3521-3527. doi: 10.1016/S0021-9258(18)69101-X PMID: 2963825
- Toft, D.J.; Rosenberg, S.B.; Bergers, G.; Volpert, O.; Linzer, D.I.H. Reactivation of proliferin gene expression is associated with increased angiogenesis in a cell culture model of fibrosarcoma tumor progression. Proc. Natl. Acad. Sci. USA, 2001, 98(23), 13055-13059. doi: 10.1073/pnas.231364798 PMID: 11606769
- Esteban, F.; Ramos-García, P.; Muñoz, M.; González-Moles, M.Á. Substance P and neurokinin 1 receptor in chronic inflammation and cancer of the head and neck: A review of the literature. Int. J. Environ. Res. Public Health, 2021, 19(1), 375. doi: 10.3390/ijerph19010375 PMID: 35010633
- Pan, R.; Dai, Y.; Gao, X.H.; Lu, D.; Xia, Y.F. Inhibition of vascular endothelial growth factor-induced angiogenesis by scopoletin through interrupting the autophosphorylation of VEGF receptor 2 and its downstream signaling pathways. Vascul. Pharmacol., 2011, 54(1-2), 18-28. doi: 10.1016/j.vph.2010.11.001 PMID: 21078410
- Ushio-Fukai, M.; Nakamura, Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett., 2008, 266(1), 37-52. doi: 10.1016/j.canlet.2008.02.044 PMID: 18406051
- Lee, S.; Ju, M.; Jeon, H.; Lee, Y.; Kim, C.; Park, H.; Han, S.; Kang, H. Reactive oxygen species induce epithelial-mesenchymal transition, glycolytic switch, and mitochondrial repression through the Dlx-2/Snail signaling pathways in MCF-7 cells. Mol. Med. Rep., 2019, 20(3), 2339-2346. doi: 10.3892/mmr.2019.10466 PMID: 31322179
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med., 2020, 52(2), 192-203. doi: 10.1038/s12276-020-0384-2 PMID: 32060354
- Xia, C.; Meng, Q.; Liu, L.Z.; Rojanasakul, Y.; Wang, X.R.; Jiang, B.H. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res., 2007, 67(22), 10823-10830. doi: 10.1158/0008-5472.CAN-07-0783 PMID: 18006827
- Matsumoto, T.; Claesson-Welsh, L. VEGF receptor signal transduction. Sci. STKE, 2001, 2001(112), re21. doi: 10.1126/stke.2001.112.re21 PMID: 11741095
- van Wetering, S.; van Buul, J.D.; Quik, S.; Mul, F.P.J.; Anthony, E.C.; Klooster, J-P.; Collard, J.G.; Hordijk, P.L. Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J. Cell Sci., 2002, 115(9), 1837-1846. doi: 10.1242/jcs.115.9.1837 PMID: 11956315
- Lin, M.T.; Yen, M.L.; Lin, C.Y.; Kuo, M.L. Inhibition of vascular endothelial growth factor-induced angiogenesis by resveratrol through interruption of Src-dependent vascular endothelial cadherin tyrosine phosphorylation. Mol. Pharmacol., 2003, 64(5), 1029-1036. doi: 10.1124/mol.64.5.1029 PMID: 14573751
- Moosavi, A.; Motevalizadeh Ardekani, A. Role of epigenetics in biology and human diseases. Iran. Biomed. J., 2016, 20(5), 246-258. PMID: 27377127
- Zoghbi, H.Y.; Beaudet, A.L. Epigenetics and human disease. Cold Spring Harb. Perspect. Biol., 2016, 8(2), a019497. doi: 10.1101/cshperspect.a019497 PMID: 26834142
- Pulukuri, S.M.; Patibandla, S.; Patel, J.; Estes, N.; Rao, J.S. Epigenetic inactivation of the tissue inhibitor of metalloproteinase-2 (TIMP-2) gene in human prostate tumors. Oncogene, 2007, 26(36), 5229-5237. doi: 10.1038/sj.onc.1210329 PMID: 17325663
- Maleva Kostovska, I.; Jakimovska, M.; Popovska-Jankovic, K.; Kubelka-Sabit, K.; Karagjozov, M.; Plaseska-Karanfilska, D. TIMP3 promoter methylation represents an epigenetic marker of BRCA1ness breast cancer tumours. Pathol. Oncol. Res., 2018, 24(4), 937-940. doi: 10.1007/s12253-018-0398-4 PMID: 29524167
- Lindner, D.J.; Wu, Y.; Haney, R.; Jacobs, B.S.; Fruehauf, J.P.; Tuthill, R.; Borden, E.C. Thrombospondin-1 expression in melanoma is blocked by methylation and targeted reversal by 5-Aza-deoxycytidine suppresses angiogenesis. Matrix Biol., 2013, 32(2), 123-132. doi: 10.1016/j.matbio.2012.11.010 PMID: 23202046
- Hellebrekers, D.M.; Griffioen, A.W.; van Engeland, M. Dual targeting of epigenetic therapy in cancer. Biochim. Biophys. Acta, 2007, 1775(1), 76-91. PMID: 16930846
- Da, M.X.; Zhang, Y.B.; Yao, J.B.; Duan, Y.X. DNA methylation regulates expression of VEGF-C, and S-adenosylmethionine is effective for VEGF-C methylation and for inhibiting cancer growth. Braz. J. Med. Biol. Res., 2014, 47(12), 1021-1028. doi: 10.1590/1414-431X20144005 PMID: 25387667
- Pakneshan, P.; Têtu, B.; Rabbani, S.A. Demethylation of urokinase promoter as a prognostic marker in patients with breast carcinoma. Clin. Cancer Res., 2004, 10(9), 3035-3041. doi: 10.1158/1078-0432.CCR-03-0545 PMID: 15131040
- Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis, 2010, 31(1), 27-36. doi: 10.1093/carcin/bgp220 PMID: 19752007
- Costa, F. Epigenomics in cancer management. Cancer Manag. Res., 2010, 2, 255-265. doi: 10.2147/CMAR.S7280 PMID: 21188117
- Patnaik, S.; Anupriya Drugs targeting epigenetic modifications and plausible therapeutic strategies against colorectal cancer. Front. Pharmacol., 2019, 10, 588. doi: 10.3389/fphar.2019.00588 PMID: 31244652
- Delage, B.; Dashwood, R.H. Dietary manipulation of histone structure and function. Annu. Rev. Nutr., 2008, 28(1), 347-366. doi: 10.1146/annurev.nutr.28.061807.155354 PMID: 18598138
- Wang, G.G.; Allis, C.D.; Chi, P. Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends Mol. Med., 2007, 13(9), 373-380. doi: 10.1016/j.molmed.2007.07.004 PMID: 17822959
- Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), a026831. doi: 10.1101/cshperspect.a026831 PMID: 27599530
- Cao, L.L.; Song, X.; Pei, L.; Liu, L.; Wang, H.; Jia, M. Histone deacetylase HDAC1 expression correlates with the progression and prognosis of lung cancer. Medicine, 2017, 96(31), e7663. doi: 10.1097/MD.0000000000007663 PMID: 28767587
- Aspriţoiu, V.M.; Stoica, I.; Bleotu, C.; Diaconu, C.C. Epigenetic regulation of angiogenesis in development and tumors progression: Potential implications for cancer treatment. Front. Cell Dev. Biol., 2021, 9, 689962. doi: 10.3389/fcell.2021.689962 PMID: 34552922
- Chen, R.J.; Shun, C.T.; Yen, M.L.; Chou, C.H.; Lin, M.C. Methyltransferase G9a promotes cervical cancer angiogenesis and decreases patient survival. Oncotarget, 2017, 8(37), 62081-62098. doi: 10.18632/oncotarget.19060 PMID: 28977928
- Nguyen, A.T.; Zhang, Y. The diverse functions of Dot1 and H3K79 methylation. Genes Dev., 2011, 25(13), 1345-1358. doi: 10.1101/gad.2057811 PMID: 21724828
- Duan, Y.; Wu, X.; Zhao, Q.; Gao, J.; Huo, D.; Liu, X.; Ye, Z.; Dong, X.; Fu, Z.; Shang, Y.; Xuan, C. DOT1L promotes angiogenesis through cooperative regulation of VEGFR2 with ETS-1. Oncotarget, 2016, 7(43), 69674-69687. doi: 10.18632/oncotarget.11939 PMID: 27626484
- Zhang, Y.; Liu, J.; Lin, J.; Zhou, L.; Song, Y.; Wei, B.; Luo, X.; Chen, Z.; Chen, Y.; Xiong, J.; Xu, X.; Ding, L.; Ye, Q. The transcription factor GATA1 and the histone methyltransferase SET7 interact to promote VEGF-mediated angiogenesis and tumor growth and predict clinical outcome of breast cancer. Oncotarget, 2016, 7(9), 9859-9875. doi: 10.18632/oncotarget.7126 PMID: 26848522
- Reynoso-Roldán, A. Vascular endothelial growth factor production is induced by histone deacetylase 1 and suppressed by von Hippel-Lindau protein in HaCaT cells. In: Clin Invest Med; , 2012; pp. E340-E350.
- Kim, J.S.; Kim, H.; Shim, Y.M.; Han, J.; Park, J.; Kim, D.H. Aberrant methylation of the FHIT gene in chronic smokers with early stage squamous cell carcinoma of the lung. Carcinogenesis, 2004, 25(11), 2165-2171. doi: 10.1093/carcin/bgh217 PMID: 15231689
- Kim, M.S.; Kwon, H.J.; Lee, Y.M.; Baek, J.H.; Jang, J.E.; Lee, S.W.; Moon, E.J.; Kim, H.S.; Lee, S.K.; Chung, H.Y.; Kim, C.W.; Kim, K.W. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat. Med., 2001, 7(4), 437-443. doi: 10.1038/86507 PMID: 11283670
- Li, W.; Quan, Y.Y.; Li, Y.; Lu, L.; Cui, M. Monitoring of tumor vascular normalization: the key points from basic research to clinical application. Cancer Manag. Res., 2018, 10, 4163-4172. doi: 10.2147/CMAR.S174712 PMID: 30323672
- Wu, J.; Tang, Y.; Liang, X. Targeting VEGF pathway to normalize the vasculature: an emerging insight in cancer therapy. OncoTargets Ther., 2018, 11, 6901-6909. doi: 10.2147/OTT.S172042 PMID: 30410348
- Zondor, S.D.; Medina, P.J. Bevacizumab: An angiogenesis inhibitor with efficacy in colorectal and other malignancies. Ann. Pharmacother., 2004, 38(7-8), 1258-1264. doi: 10.1345/aph.1D470 PMID: 15187215
- Mahfouz, N.; Tahtouh, R.; Alaaeddine, N.; El Hajj, J.; Sarkis, R.; Hachem, R.; Raad, I.; Hilal, G. Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF-1α and VEGF receptors. PLoS One, 2017, 12(6), e0179202. doi: 10.1371/journal.pone.0179202 PMID: 28594907
- Faivre, S.; Delbaldo, C.; Vera, K.; Robert, C.; Lozahic, S.; Lassau, N.; Bello, C.; Deprimo, S.; Brega, N.; Massimini, G.; Armand, J.P.; Scigalla, P.; Raymond, E. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J. Clin. Oncol., 2006, 24(1), 25-35. doi: 10.1200/JCO.2005.02.2194 PMID: 16314617
- Adnane, L.; Trail, P.A.; Taylor, I.; Wilhelm, S.M. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol., 2006, 407, 597-612. doi: 10.1016/S0076-6879(05)07047-3 PMID: 16757355
- Bodnar, R.J. Anti-angiogenic drugs: Involvement in cutaneous side effects and wound-healing complication. Adv. Wound Care, 2014, 3(10), 635-646. doi: 10.1089/wound.2013.0496 PMID: 25302138
- Christoforidis, J.; Christoforidis, J.; Ricketts; Pratt; Pierce; Bean; Wells; Zhang; LaPerle The effect of intravitreal anti-VEGF agents on peripheral wound healing in a rabbit model. Clin. Ophthalmol., 2012, 6, 61-69. doi: 10.2147/OPTH.S28275 PMID: 22275809
- Verheul, H.M.W.; Pinedo, H.M. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat. Rev. Cancer, 2007, 7(6), 475-485. doi: 10.1038/nrc2152 PMID: 17522716
- Gacche, R.N.; Assaraf, Y.G. Redundant angiogenic signaling and tumor drug resistance. Drug Resist. Updat., 2018, 36, 47-76. doi: 10.1016/j.drup.2018.01.002 PMID: 29499837
- Wieser, V.; Marth, C. Resistance to chemotherapy and anti-angiogenic therapy in ovarian cancer. Mag. Eur. Med. Oncol., 2019, 12(2), 144-148. doi: 10.1007/s12254-019-0478-5
- Letellier, C.; Sasmal, S.K.; Draghi, C.; Denis, F.; Ghosh, D. A chemotherapy combined with an anti-angiogenic drug applied to a cancer model including angiogenesis. Chaos Solitons Fractals, 2017, 99, 297-311. doi: 10.1016/j.chaos.2017.04.013
- Robert, N.J.; Diéras, V.; Glaspy, J.; Brufsky, A.M.; Bondarenko, I.; Lipatov, O.N.; Perez, E.A.; Yardley, D.A.; Chan, S.Y.T.; Zhou, X.; Phan, S.C.; OShaughnessy, J. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J. Clin. Oncol., 2011, 29(10), 1252-1260. doi: 10.1200/JCO.2010.28.0982 PMID: 21383283
- Aghajanian, C.; Goff, B.; Nycum, L.R.; Wang, Y.V.; Husain, A.; Blank, S.V. Final overall survival and safety analysis of OCEANS, a phase 3 trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent ovarian cancer. Gynecol. Oncol., 2015, 139(1), 10-16. doi: 10.1016/j.ygyno.2015.08.004 PMID: 26271155
- Hameed, S.; Bhattarai, P.; Dai, Z. Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment. Sci. China Life Sci., 2018, 61(4), 380-391. doi: 10.1007/s11427-017-9256-1 PMID: 29607461
- Mukherjee, S.; Patra, C.R. Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale, 2016, 8(25), 12444-12470. doi: 10.1039/C5NR07887C PMID: 27067119
- Bhattarai, P.; Hameed, S.; Dai, Z. Recent advances in anti-angiogenic nanomedicines for cancer therapy. Nanoscale, 2018, 10(12), 5393-5423. doi: 10.1039/C7NR09612G PMID: 29528075
- Zhao, Y.; Wang, W.; Guo, S.; Wang, Y.; Miao, L.; Xiong, Y.; Huang, L. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nat. Commun., 2016, 7(1), 11822. doi: 10.1038/ncomms11822 PMID: 27264609
- Chen, Q.; Osada, K.; Ge, Z.; Uchida, S.; Tockary, T.A.; Dirisala, A.; Matsui, A.; Toh, K.; Takeda, K.M.; Liu, X.; Nomoto, T.; Ishii, T.; Oba, M.; Matsumoto, Y.; Kataoka, K. Polyplex micelle installing intracellular self-processing functionalities without free catiomers for safe and efficient systemic gene therapy through tumor vasculature targeting. Biomaterials, 2017, 113, 253-265. doi: 10.1016/j.biomaterials.2016.10.042 PMID: 27835820
- Dirisala, A.; Osada, K.; Chen, Q.; Tockary, T.A.; Machitani, K.; Osawa, S.; Liu, X.; Ishii, T.; Miyata, K.; Oba, M.; Uchida, S.; Itaka, K.; Kataoka, K. Optimized rod length of polyplex micelles for maximizing transfection efficiency and their performance in systemic gene therapy against stroma-rich pancreatic tumors. Biomaterials, 2014, 35(20), 5359-5368. doi: 10.1016/j.biomaterials.2014.03.037 PMID: 24720877
- Corti, A.; Curnis, F.; Arap, W.; Pasqualini, R. The neovasculature homing motif NGR: More than meets the eye. Blood, 2008, 112(7), 2628-2635. doi: 10.1182/blood-2008-04-150862 PMID: 18574027
- Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951. doi: 10.1038/nbt.3330 PMID: 26348965
- Braet, F.; Wisse, E.; Bomans, P.; Frederik, P.; Geerts, W.; Koster, A.; Soon, L.; Ringer, S. Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc. Res. Tech., 2007, 70(3), 230-242. doi: 10.1002/jemt.20408 PMID: 17279510
- Davda, J.; Labhasetwar, V. Characterization of nanoparticle uptake by endothelial cells. Int. J. Pharm., 2002, 233(1-2), 51-59. doi: 10.1016/S0378-5173(01)00923-1 PMID: 11897410
- Lian, L.; Tang, F.; Yang, J.; Liu, C.; Li, Y. Therapeutic angiogenesis of PLGA-heparin nanoparticle in mouse ischemic limb. J. Nanomater., 2012, 2012, 1-6. doi: 10.1155/2012/193704
- Janes, K.A.; Fresneau, M.P.; Marazuela, A.; Fabra, A.; Alonso, M.J. Chitosan nanoparticles as delivery systems for doxorubicin. J. Control. Release, 2001, 73(2-3), 255-267. doi: 10.1016/S0168-3659(01)00294-2 PMID: 11516503
- Yeo, Y.; Park, K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch. Pharm. Res., 2004, 27(1), 1-12. doi: 10.1007/BF02980037 PMID: 14969330
- Liu, R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr., 2003, 78(3)(Suppl.), 517S-520S. doi: 10.1093/ajcn/78.3.517S PMID: 12936943
- Ranjan, A.; Ramachandran, S.; Gupta, N.; Kaushik, I.; Wright, S.; Srivastava, S.; Das, H.; Srivastava, S.; Prasad, S.; Srivastava, S.K. Role of phytochemicals in cancer prevention. Int. J. Mol. Sci., 2019, 20(20), 4981. doi: 10.3390/ijms20204981 PMID: 31600949
- Banudevi, S.; Swaminathan, S.; Maheswari, K.U. Pleiotropic role of dietary phytochemicals in cancer: Emerging perspectives for combinational therapy. Nutr. Cancer, 2015, 67(7), 1021-1048. doi: 10.1080/01635581.2015.1073762 PMID: 26359767
- Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer, 2003, 3(10), 768-780. doi: 10.1038/nrc1189 PMID: 14570043
- Peng, W.; Lin, Z.; Wang, L.; Chang, J.; Gu, F.; Zhu, X. Molecular characteristics of Illicium verum extractives to activate acquired immune response. Saudi J. Biol. Sci., 2016, 23(3), 348-352. doi: 10.1016/j.sjbs.2015.10.027 PMID: 27081359
- Chattopadhyay, I. Turmeric and curcumin: Biological actions and medicinal applications. Curr. Sci., 2004, 44-53.
- Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer, 2011, 10(1), 12. doi: 10.1186/1476-4598-10-12 PMID: 21299897
- Yoysungnoen, P.; Wirachwong, P.; Bhattarakosol, P.; Niimi, H.; Patumraj, S. Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin. Hemorheol. Microcirc., 2006, 34(1-2), 109-115. PMID: 16543625
- Zhang, Z.; Li, C.; Tan, Q.; Xie, C.; Yang, Y.; Zhan, W.; Han, F.; Sharma, H.S.; Sharma, A. Curcumin suppresses tumor growth and angiogenesis in human glioma cells through modulation of vascular endothelial growth factor/ angiopoietin-2/thrombospondin-1 signaling. CNS Neurol. Disord. Drug Targets, 2017, 16(3), 346-350. doi: 10.2174/1871527315666160902144513 PMID: 27592626
- Perry, M.C.; Demeule, M.; Régina, A.; Moumdjian, R.; Béliveau, R. Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol. Nutr. Food Res., 2010, 54(8), 1192-1201. doi: 10.1002/mnfr.200900277 PMID: 20087857
- Lin, Y.G.; Kunnumakkara, A.B.; Nair, A.; Merritt, W.M.; Han, L.Y.; Armaiz-Pena, G.N.; Kamat, A.A.; Spannuth, W.A.; Gershenson, D.M.; Lutgendorf, S.K.; Aggarwal, B.B.; Sood, A.K. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin. Cancer Res., 2007, 13(11), 3423-3430. doi: 10.1158/1078-0432.CCR-06-3072 PMID: 17545551
- Mohan, R.; Sivak, J.; Ashton, P.; Russo, L.A.; Pham, B.Q.; Kasahara, N.; Raizman, M.B.; Fini, M.E. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J. Biol. Chem., 2000, 275(14), 10405-10412. doi: 10.1074/jbc.275.14.10405 PMID: 10744729
- Jung, Y.D.; Ellis, L.M. Inhibition of tumour invasion and angiogenesis by epigallocatechin gallate (EGCG), a major component of green tea. Int. J. Exp. Pathol., 2001, 82(6), 309-316. doi: 10.1046/j.1365-2613.2001.00205.x PMID: 11846837
- Cao, Y.; Cao, R. Angiogenesis inhibited by drinking tea. Nature, 1999, 398(6726), 381. doi: 10.1038/18793 PMID: 10201368
- Bruns, C.J.; Harbison, M.T.; Davis, D.W.; Portera, C.A.; Tsan, R.; McConkey, D.J.; Evans, D.B.; Abbruzzese, J.L.; Hicklin, D.J.; Radinsky, R. Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin. Cancer Res., 2000, 6(5), 1936-1948. PMID: 10815919
- Liang, Y.C.; Lin-shiau, S.Y.; Chen, C.F.; Lin, J.K. Suppression of extracellular signals and cell proliferation through EGF receptor binding by (-)-epigallocatechin gallate in human A431 epidermoid carcinoma cells. J. Cell. Biochem., 1997, 67(1), 55-65. doi: 10.1002/(SICI)1097-4644(19971001)67:13.0.CO;2-V PMID: 9328839
- Shankar, S.; Ganapathy, S.; Hingorani, S.R.; Srivastava, R.K. EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front. Biosci., 2008, 13(13), 440-452. doi: 10.2741/2691 PMID: 17981559
- Luo, H.Q.; Xu, M.; Zhong, W.T.; Cui, Z.Y.; Liu, F.M.; Zhou, K.Y.; Li, X.Y. EGCG decreases the expression of HIF-1α and VEGF and cell growth in MCF-7 breast cancer cells. J. BUON, 2014, 19(2), 435-439. PMID: 24965403
- Manikandan, P.; Murugan, R.S.; Priyadarsini, R.V.; Vinothini, G.; Nagini, S. Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG. Life Sci., 2010, 86(25-26), 936-941. doi: 10.1016/j.lfs.2010.04.010 PMID: 20434464
- Kouhestanian, K.; Baharara, J.; Zafarbalanezhad, S. Anti-angiogenic effect of eugenol on a Wistar rat aortic ring. KAUMS J., 2015, 19(3), 197-203.
- Zuco, V.; Supino, R.; Righetti, S.C.; Cleris, L.; Marchesi, E.; Gambacorti-Passerini, C.; Formelli, F. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett., 2002, 175(1), 17-25. doi: 10.1016/S0304-3835(01)00718-2 PMID: 11734332
- Kwon, H.J.; Shim, J.S.; Kim, J.H.; Cho, H.Y.; Yum, Y.N.; Kim, S.H.; Yu, J. Betulinic acid inhibits growth factor-induced in vitro angiogenesis via the modulation of mitochondrial function in endothelial cells. Jpn. J. Cancer Res., 2002, 93(4), 417-425. doi: 10.1111/j.1349-7006.2002.tb01273.x PMID: 11985792
- Chintharlapalli, S.; Papineni, S.; Ramaiah, S.K.; Safe, S. Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors. Cancer Res., 2007, 67(6), 2816-2823. doi: 10.1158/0008-5472.CAN-06-3735 PMID: 17363604
- Shin, J.; Lee, H.J.; Jung, D.B.; Jung, J.H.; Lee, H.J.; Lee, E.O.; Lee, S.G.; Shim, B.S.; Choi, S.H.; Ko, S.G.; Ahn, K.S.; Jeong, S.J.; Kim, S.H. Suppression of STAT3 and HIF-1 alpha mediates anti-angiogenic activity of betulinic acid in hypoxic PC-3 prostate cancer cells. PLoS One, 2011, 6(6), e21492. doi: 10.1371/journal.pone.0021492 PMID: 21731766
- Priyadarsini, R.V.; Vinothini, G.; Murugan, R.S.; Manikandan, P.; Nagini, S. The flavonoid quercetin modulates the hallmark capabilities of hamster buccal pouch tumors. Nutr. Cancer, 2011, 63(2), 218-226. doi: 10.1080/01635581.2011.523503 PMID: 21294050
- Pratheeshkumar, P.; Budhraja, A.; Son, Y.O.; Wang, X.; Zhang, Z.; Ding, S.; Wang, L.; Hitron, A.; Lee, J.C.; Xu, M.; Chen, G.; Luo, J.; Shi, X. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One, 2012, 7(10), e47516. doi: 10.1371/journal.pone.0047516 PMID: 23094058
- Liu, Y.; Li, C.L.; Xu, Q.Q.; Cheng, D.; Liu, K.D.; Sun, Z.Q. Quercetin inhibits invasion and angiogenesis of esophageal cancer cells. Pathol. Res. Pract., 2021, 222, 153455. doi: 10.1016/j.prp.2021.153455 PMID: 33962176
- Uttarawichien, T.; Kamnerdnond, C.; Inwisai, T.; Suwannalert, P.; Sibmooh, N.; Payuhakrit, W. Quercetin Inhibits colorectal cancer cells induced-angiogenesis in both colorectal cancer cell and endothelial cell through downregulation of VEGF-A/VEGFR2. Sci. Pharm., 2021, 89(2), 23. doi: 10.3390/scipharm89020023
- Yang, F.; Jiang, X.; Song, L.; Wang, H.; Mei, Z.; Xu, Z.; Xing, N. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo. Oncol. Rep., 2016, 35(3), 1602-1610. doi: 10.3892/or.2015.4481 PMID: 26676551
- Esteghlal, S.; Mokhtari, M.J.; Beyzaei, Z. Quercetin can inhibit angiogenesis via the down regulation of MALAT1 and MIAT LncRNAs in human umbilical vein endothelial cells. Int. J. Prev. Med., 2021, 12, 59. PMID: 34447501
- Kaneshiro, T.; Morioka, T.; Inamine, M.; Kinjo, T.; Arakaki, J.; Chiba, I.; Sunagawa, N.; Suzui, M.; Yoshimi, N. Anthraquinone derivative emodin inhibits tumor-associated angiogenesis through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation. Eur. J. Pharmacol., 2006, 553(1-3), 46-53. doi: 10.1016/j.ejphar.2006.09.026 PMID: 17056031
- Kwak, H.J.; Park, M.J.; Park, C.M.; Moon, S.I.; Yoo, D.H.; Lee, H.C.; Lee, S.H.; Kim, M.S.; Lee, H.W.; Shin, W.S.; Park, I.C.; Rhee, C.H.; Hong, S.I. Emodin inhibits vascular endothelial growth factor-A-induced angiogenesis by blocking receptor-2 (KDR/Flk-1) phosphorylation. Int. J. Cancer, 2006, 118(11), 2711-2720. doi: 10.1002/ijc.21641 PMID: 16388516
- Lu, Y.; Zhang, J.; Qian, J. The effect of emodin on VEGF receptors in human colon cancer cells. Cancer Biother. Radiopharm., 2008, 23(2), 222-228. doi: 10.1089/cbr.2007.0425 PMID: 18454691
- Lin, S.Z.; Wei, W.T.; Chen, H.; Chen, K.J.; Tong, H.F.; Wang, Z.H.; Ni, Z.L.; Liu, H.B.; Guo, H.C.; Liu, D.L. Antitumor activity of emodin against pancreatic cancer depends on its dual role: Promotion of apoptosis and suppression of angiogenesis. PLoS One, 2012, 7(8), e42146. doi: 10.1371/journal.pone.0042146 PMID: 22876305
- Fang, J.; Zhou, Q.; Liu, L.Z.; Xia, C.; Hu, X.; Shi, X.; Jiang, B.H. Apigenin inhibits tumor angiogenesis through decreasing HIF-1 and VEGF expression. Carcinogenesis, 2006, 28(4), 858-864. doi: 10.1093/carcin/bgl205 PMID: 17071632
- Fang, J.; Xia, C.; Cao, Z.; Zheng, J.Z.; Reed, E.; Jiang, B.H. Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J., 2005, 19(3), 342-353. doi: 10.1096/fj.04-2175com PMID: 15746177
- Fu, J.; Zeng, W.; Chen, M.; Huang, L.; Li, S.; Li, Z.; Pan, Q.; Lv, S.; Yang, X.; Wang, Y.; Yi, M.; Zhang, J.; Lei, X. Apigenin suppresses tumor angiogenesis and growth via inhibiting HIF-1α expression in non-small cell lung carcinoma. Chem. Biol. Interact., 2022, 361, 109966. doi: 10.1016/j.cbi.2022.109966 PMID: 35513012
- Anjani, G.; Ayustaningwarno, F.; Eviana, R. Critical review on the immunomodulatory activities of carrots β-carotene and other bioactive compounds. J. Funct. Foods, 2022, 99, 105303. doi: 10.1016/j.jff.2022.105303
- Bae, S.; Lim, J.W.; Kim, H. β-carotene inhibits expression of matrix metalloproteinase-10 and invasion in helicobacter pylori-infected gastric epithelial cells. Molecules, 2021, 26(6), 1567. doi: 10.3390/molecules26061567 PMID: 33809289
- Guruvayoorappan, C.; Kuttan, G. Beta-carotene inhibits tumor-specific angiogenesis by altering the cytokine profile and inhibits the nuclear translocation of transcription factors in B16F-10 melanoma cells. Integr. Cancer Ther., 2007, 6(3), 258-270. doi: 10.1177/1534735407305978 PMID: 17761639
- Farina, H.; Pomies, M.; Alonso, D.; Gomez, D. Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncol. Rep., 2006, 16(4), 885-891. doi: 10.3892/or.16.4.885 PMID: 16969510
- El-Far, Y.M.; Khodir, A.E.; Emarah, Z.A.; Ebrahim, M.A.; Al-Gayyar, M.M.H. Chemopreventive and hepatoprotective effects of genistein via inhibition of oxidative stress and the versican/PDGF/PKC signaling pathway in experimentally induced hepatocellular carcinoma in rats by thioacetamide. Redox Rep., 2022, 27(1), 9-20. doi: 10.1080/13510002.2022.2031515 PMID: 35080474
- Su, S.J.; Yeh, T.M.; Chuang, W.J.; Ho, C.L.; Chang, K.L.; Cheng, H.L.; Liu, H.S.; Cheng, H.L.; Hsu, P.Y.; Chow, N.H. The novel targets for anti-angiogenesis of genistein on human cancer cells. Biochem. Pharmacol., 2005, 69(2), 307-318. doi: 10.1016/j.bcp.2004.09.025 PMID: 15627483
- Li, Y.; Sarkar, F.H. Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Lett., 2002, 186(2), 157-164. doi: 10.1016/S0304-3835(02)00349-X PMID: 12213285
- Yu, X.; Zhu, J.; Mi, M.; Chen, W.; Pan, Q.; Wei, M. Anti-angiogenic genistein inhibits VEGF-induced endothelial cell activation by decreasing PTK activity and MAPK activation. Med. Oncol., 2012, 29(1), 349-357. doi: 10.1007/s12032-010-9770-2 PMID: 21132400
- Gu, Y.; Zhu, C.F.; Iwamoto, H.; Chen, J.S. Genistein inhibits invasive potential of human hepatocellular carcinoma by altering cell cycle, apoptosis, and angiogenesis. World J. Gastroenterol., 2005, 11(41), 6512-6517. doi: 10.3748/wjg.v11.i41.6512 PMID: 16425425
- Kim, J.H.; Lee, B.J.; Kim, J.H.; Yu, Y.S.; Kim, M.Y.; Kim, K.W. Rosmarinic acid suppresses retinal neovascularization via cell cycle arrest with increase of p21WAF1 expression. Eur. J. Pharmacol., 2009, 615(1-3), 150-154. doi: 10.1016/j.ejphar.2009.05.015 PMID: 19470386
- Huang, S.; Zheng, R. Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Lett., 2006, 239(2), 271-280. doi: 10.1016/j.canlet.2005.08.025 PMID: 16239062
- Mahmoud, M.A.; Okda, T.M.; Omran, G.A.; Abd-Alhaseeb, M.M. Rosmarinic acid suppresses inflammation, angiogenesis, and improves paclitaxel induced apoptosis in a breast cancer model via NF3 κB-p53-caspase-3 pathways modulation. J. Appl. Biomed., 2021, 19(4), 202-209. doi: 10.32725/jab.2021.024 PMID: 34907739
- Davis, R.; Singh, K.P.; Kurzrock, R.; Shankar, S. Sulforaphane inhibits angiogenesis through activation of FOXO transcription factors. Oncol. Rep., 2009, 22(6), 1473-1478. PMID: 19885601
- Bertl, E.; Bartsch, H.; Gerhäuser, C. Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Mol. Cancer Ther., 2006, 5(3), 575-585. doi: 10.1158/1535-7163.MCT-05-0324 PMID: 16546971
- Liu, P.; Atkinson, S.J.; Akbareian, S.E.; Zhou, Z.; Munsterberg, A.; Robinson, S.D.; Bao, Y. Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF-1α/VEGF signalling. Sci. Rep., 2017, 7(1), 12651. doi: 10.1038/s41598-017-12855-w PMID: 28978924
- Shankar, S.; Ganapathy, S.; Srivastava, R.K. Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis. Clin. Cancer Res., 2008, 14(21), 6855-6866. doi: 10.1158/1078-0432.CCR-08-0903 PMID: 18980980
- Ali, H.; Dixit, S. Extraction optimization of Tinospora cordifolia and assessment of the anticancer activity of its alkaloid palmatine. ScientificWorldJournal, 2013, 2013, 1-10. doi: 10.1155/2013/376216 PMID: 24379740
- Sun, M.; Xu, L.; Peng, Y.; Liu, T.; Zhang, Y.; Zhou, Z. Multiscale analysis of the contents of palmatine in the Nature populations of Phellodendron amurense in Northeast China. J. For. Res., 2016, 27(2), 265-272. doi: 10.1007/s11676-015-0200-3
- Grabarska, A.; Wróblewska-Łuczka, P.; Kukula-Koch, W.; Łuszczki, J.J.; Kalpoutzakis, E.; Adamczuk, G.; Skaltsounis, A.L.; Stepulak, A. Palmatine, a bioactive protoberberine alkaloid isolated from berberis cretica, inhibits the growth of human estrogen receptor-positive breast cancer cells and acts synergistically and additively with doxorubicin. Molecules, 2021, 26(20), 6253. doi: 10.3390/molecules26206253 PMID: 34684834
- Kim, Y.M.; Ha, Y.M.; Jin, Y.C.; Shi, L.Y.; Lee, Y.S.; Kim, H.J.; Seo, H.G.; Choi, J.S.; Kim, Y.S.; Kang, S.S.; Lee, J.H.; Chang, K.C. Palmatine from coptidis rhizoma reduces ischemiareperfusion-mediated acute myocardial injury in the rat. Food Chem. Toxicol., 2009, 47(8), 2097-2102. doi: 10.1016/j.fct.2009.05.031 PMID: 19497345
- Jia, F.; Zou, G.; Fan, J.; Yuan, Z. Identification of palmatine as an inhibitor of West Nile virus. Arch. Virol., 2010, 155(8), 1325-1329. doi: 10.1007/s00705-010-0702-4 PMID: 20496087
- Zhang, L.; Li, J.; Ma, F.; Yao, S.; Li, N.; Wang, J.; Wang, Y.; Wang, X.; Yao, Q. Synthesis and cytotoxicity evaluation of 13-n-alkyl berberine and palmatine analogues as anticancer agents. Molecules, 2012, 17(10), 11294-11302. doi: 10.3390/molecules171011294 PMID: 23011273
- Yoo, M.J.; Choi, J.; Jang, Y.; Park, S.Y.; Seol, J.W. Anti-cancer effect of palmatine through inhibition of the PI3K/AKT pathway in canine mammary gland tumor CMT-U27 cells. BMC Vet. Res., 2023, 19(1), 223. doi: 10.1186/s12917-023-03782-2 PMID: 37880653
- Zhou, Y.; Cao, F.; Luo, F.; Lin, Q. Octacosanol and health benefits: Biological functions and mechanisms of action. Food Biosci., 2022, 47, 101632. doi: 10.1016/j.fbio.2022.101632
- Chu, B.; Qu, Y.; Huang, Y.; Zhang, L.; Chen, X.; Long, C.; He, Y.; Ou, C.; Qian, Z. PEG-derivatized octacosanol as micellar carrier for paclitaxel delivery. Int. J. Pharm., 2016, 500(1-2), 345-359. doi: 10.1016/j.ijpharm.2016.01.030 PMID: 26794876
- Thippeswamy, G.; Sheela, M.L.; Salimath, B.P. Octacosanol isolated from Tinospora cordifolia downregulates VEGF gene expression by inhibiting nuclear translocation of NF-κB and its DNA binding activity. Eur. J. Pharmacol., 2008, 588(2-3), 141-150. doi: 10.1016/j.ejphar.2008.04.027 PMID: 18513715
- Li, C.; Zhang, J.; Zu, Y.J.; Nie, S.F.; Cao, J.; Wang, Q.; Nie, S.P.; Deng, Z.Y.; Xie, M.Y.; Wang, S. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chin. J. Nat. Med., 2015, 13(9), 641-652. doi: 10.1016/S1875-5364(15)30061-3 PMID: 26412423
- Rizwanullah, M.; Amin, S.; Mir, S.R.; Fakhri, K.U.; Rizvi, M.M.A. Phytochemical based nanomedicines against cancer: current status and future prospects. J. Drug Target., 2018, 26(9), 731-752. doi: 10.1080/1061186X.2017.1408115 PMID: 29157022
- Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160. doi: 10.1038/nrd1632 PMID: 15688077
- de Pace, R.C.C.; Liu, X.; Sun, M.; Nie, S.; Zhang, J.; Cai, Q.; Gao, W.; Pan, X.; Fan, Z.; Wang, S. Anticancer activities of (−)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. J. Liposome Res., 2013, 23(3), 187-196. doi: 10.3109/08982104.2013.788023 PMID: 23600473
- Mullauer, F.B.; van Bloois, L.; Daalhuisen, J.B.; Ten Brink, M.S.; Storm, G.; Medema, J.P.; Schiffelers, R.M.; Kessler, J.H. Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anticancer Drugs, 2011, 22(3), 223-233. doi: 10.1097/CAD.0b013e3283421035 PMID: 21263311
- Xu, H.; Gong, Z.; Zhou, S.; Yang, S.; Wang, D.; Chen, X.; Wu, J.; Liu, L.; Zhong, S.; Zhao, J.; Tang, J. Liposomal curcumin targeting endometrial cancer through the NF-κB pathway. Cell. Physiol. Biochem., 2018, 48(2), 569-582. doi: 10.1159/000491886 PMID: 30021217
- Saengkrit, N.; Saesoo, S.; Srinuanchai, W.; Phunpee, S.; Ruktanonchai, U.R. Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. Colloids Surf. B Biointerfaces, 2014, 114, 349-356. doi: 10.1016/j.colsurfb.2013.10.005 PMID: 24246195
- Tan, B.J.; Liu, Y.; Chang, K.L.; Lim, B.K.; Chiu, G.N. Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer. Int. J. Nanomedicine, 2012, 7, 651-661. PMID: 22334787
- Munyendo, W.L.L.; Zhang, Z.; Abbad, S.; Waddad, A.Y.; Lv, H.; Baraza, L.D.; Zhou, J. Micelles of TPGS modified apigenin phospholipid complex for oral administration: Preparation, in vitro and in vivo evaluation. J. Biomed. Nanotechnol., 2013, 9(12), 2034-2047. doi: 10.1166/jbn.2013.1704 PMID: 24266259
- Saxena, V.; Hussain, M.D. Polymeric mixed micelles for delivery of curcumin to multidrug resistant ovarian cancer. J. Biomed. Nanotechnol., 2013, 9(7), 1146-1154. doi: 10.1166/jbn.2013.1632 PMID: 23909128
- Tang, H.; Murphy, C.J.; Zhang, B.; Shen, Y.; Van Kirk, E.A.; Murdoch, W.J.; Radosz, M. Curcumin polymers as anticancer conjugates. Biomaterials, 2010, 31(27), 7139-7149. doi: 10.1016/j.biomaterials.2010.06.007 PMID: 20591475
- Nassir, A.M.; Shahzad, N.; Ibrahim, I.A.A.; Ahmad, I.; Md, S.; Ain, M.R. Resveratrol-loaded PLGA nanoparticles mediated programmed cell death in prostate cancer cells. Saudi Pharm. J., 2018, 26(6), 876-885. doi: 10.1016/j.jsps.2018.03.009 PMID: 30202231
- Yallapu, M.M.; Ebeling, M.C.; Khan, S.; Sundram, V.; Chauhan, N.; Gupta, B.K.; Puumala, S.E.; Jaggi, M.; Chauhan, S.C. Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment. Mol. Cancer Ther., 2013, 12(8), 1471-1480. doi: 10.1158/1535-7163.MCT-12-1227 PMID: 23704793
- Cai, W.; Gao, T.; Hong, H.; Sun, J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl., 2008, 1, 17-32. doi: 10.2147/NSA.S3788 PMID: 24198458
- Chen, C.C.; Hsieh, D.S.; Huang, K.J.; Chan, Y.L.; Hong, P.D.; Yeh, M.K.; Wu, C.J. Improving anticancer efficacy of (-)-epigallocatechin-3-gallate gold nanoparticles in murine B16F10 melanoma cells. Drug Des. Devel. Ther., 2014, 8, 459-474. PMID: 24855338
- Srinivas Raghavan, B.; Kondath, S.; Anantanarayanan, R.; Rajaram, R. Kaempferol mediated synthesis of gold nanoparticles and their cytotoxic effects on MCF-7 cancer cell line. Process Biochem., 2015, 50(11), 1966-1976. doi: 10.1016/j.procbio.2015.08.003
- Aghapour, F.; Moghadamnia, A.A.; Nicolini, A.; Kani, S.N.M.; Barari, L.; Morakabati, P.; Rezazadeh, L.; Kazemi, S. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines. Biochem. Biophys. Res. Commun., 2018, 500(4), 860-865. doi: 10.1016/j.bbrc.2018.04.174 PMID: 29698680
- Rawat, K.; Syeda, S.; Shrivastava, A. A novel role of Tinospora cordifolia in amelioration of cancer-induced systemic deterioration by taming neutrophil infiltration and hyperactivation. Phytomedicine, 2023, 108, 154488. doi: 10.1016/j.phymed.2022.154488 PMID: 36240606
- Bala, M.; Pratap, K.; Verma, P.K.; Singh, B.; Padwad, Y. Validation of ethnomedicinal potential of Tinospora cordifolia for anticancer and immunomodulatory activities and quantification of bioactive molecules by HPTLC. J. Ethnopharmacol., 2015, 175, 131-137. doi: 10.1016/j.jep.2015.08.001 PMID: 26253577
Supplementary files
