Nature’s Elixir for Cancer Treatment: Targeting Tumor-induced Neovascularization


Cite item

Full Text

Abstract

:Angiogenesis, a multistep process, involves sprouting of new vessels from the pre-existing vessels in response to a stimulus in its microenvironment. Normally, angiogenesis is important for tissue maintenance and homeostasis, however it is also known to be associated with various pathologies, including cancer. Importantly, neovascularization is very crucial for tumors to grow and metastasize since it allows delivery of oxygen and nutrients as well as promotes tumor cell dissemination to distant sites. Activation of angiogenic switch is a consequence of imbalance in pro- as well as anti-angiogenic factors, that are immensely impacted by reactive oxygen species and epigenetic regulation. Several reports have suggested that angiogenic inhibitors significantly inhibit tumor growth. Therefore, anti-angiogenic therapy has gained substantial attention and has been considered a rational approach in cancer therapeutics. In this line, several anti- angiogenic drugs have been approved, however, their long term usage caused several side effects. In view of this, researchers switched to plant-based natural compounds for identifying safe and cost-effective anti-angiogenic drugs. Of note, various phytochemicals have been evaluated to reduce tumor growth by inhibiting tumor-induced angiogenesis. Moreover, the implication of nano-carriers to enhance the bioavailability of phytochemicals has proven to be more efficient anti-cancer agents. The present review highlights the existing knowledge on tumor-induced neovascularization and its regulation at the epigenetic level. Further, we emphasize the inhibitory effect of phytochemicals on tumor- induced angiogenesis that will open up new avenues in cancer therapeutics.

About the authors

Rani Kumari

Department of Zoology, University of Delhi

Email: info@benthamscience.net

Saima Syeda

Department of Zoology,, University of Delhi

Email: info@benthamscience.net

Anju Shrivastava

Department of Zoology,, University of Delhi

Author for correspondence.
Email: info@benthamscience.net

References

  1. Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801), 249-257. doi: 10.1038/35025220 PMID: 11001068
  2. Eichhorn, M.E.; Kleespies, A.; Angele, M.K.; Jauch, K.W.; Bruns, C.J. Angiogenesis in cancer: molecular mechanisms, clinical impact. Langenbecks Arch. Surg., 2007, 392(3), 371-379. doi: 10.1007/s00423-007-0150-0 PMID: 17458577
  3. Pepper, M.S. Lymphangiogenesis and tumor metastasis: Myth or reality? Clin. Cancer Res., 2001, 7(3), 462-468. PMID: 11297234
  4. Cheng, J.; Yang, H-L.; Gu, C-J.; Liu, Y-K.; Shao, J.; Zhu, R.; He, Y-Y.; Zhu, X-Y.; Li, M-Q. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. Int. J. Mol. Med., 2018, 43(2), 943-955. doi: 10.3892/ijmm.2018.4021
  5. Saraswati, S.; Marrow, S.M.W.; Watch, L.A.; Young, P.P. Identification of a pro-angiogenic functional role for FSP1-positive fibroblast subtype in wound healing. Nat. Commun., 2019, 10(1), 3027. doi: 10.1038/s41467-019-10965-9 PMID: 31289275
  6. Sadri, N.; Zhang, P. Hypoxia-inducible factors: mediators of cancer progression; Prognostic and therapeutic targets in soft tissue sarcomas. Cancers, 2013, 5(4), 320-333. doi: 10.3390/cancers5020320 PMID: 24216979
  7. Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci., 2020, 77(9), 1745-1770. doi: 10.1007/s00018-019-03351-7 PMID: 31690961
  8. Sherwood, L.M.; Parris, E.E.; Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186. doi: 10.1056/NEJM197111182852108 PMID: 4938153
  9. Hanahan, D.; Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996, 86(3), 353-364. doi: 10.1016/S0092-8674(00)80108-7 PMID: 8756718
  10. Abuelizz, H.A.; Marzouk, M.; Bakheit, A.H.; Awad, H.M.; Soltan, M.M.; Naglah, A.M.; Al-Salahi, R. Antiproliferative and antiangiogenic properties of new vegfr-2-targeting 2-thioxobenzo g quinazoline derivatives (In Vitro). Molecules, 2020, 25(24), 5944. doi: 10.3390/molecules25245944 PMID: 33333992
  11. Carbajo-Pescador, S.; Ordoñez, R.; Benet, M.; Jover, R.; García-Palomo, A.; Mauriz, J.L.; González-Gallego, J. Inhibition of VEGF expression through blockade of Hif1α and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. Br. J. Cancer, 2013, 109(1), 83-91. doi: 10.1038/bjc.2013.285 PMID: 23756865
  12. Jussila, L.; Alitalo, K. Vascular growth factors and lymphangiogenesis. Physiol. Rev., 2002, 82(3), 673-700. doi: 10.1152/physrev.00005.2002 PMID: 12087132
  13. Gao, X.; Hicks, K.C.; Neumann, P.; Patel, T.B. Hypoxia inducible factors regulate the transcription of the sprouty2 gene and expression of the sprouty2 protein. PLoS One, 2017, 12(2), e0171616. doi: 10.1371/journal.pone.0171616 PMID: 28196140
  14. Abdollahi, A.; Folkman, J. Evading tumor evasion: Current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist. Updat., 2010, 13(1-2), 16-28. doi: 10.1016/j.drup.2009.12.001 PMID: 20061178
  15. Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219. doi: 10.2147/vhrm.2006.2.3.213 PMID: 17326328
  16. Claesson-Welsh, L.; Welsh, M.; Ito, N.; Anand-Apte, B.; Soker, S.; Zetter, B.; O’Reilly, M.; Folkman, J. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc. Natl. Acad. Sci. USA, 1998, 95(10), 5579-5583. doi: 10.1073/pnas.95.10.5579 PMID: 9576925
  17. Olofsson, S.O.; Asp, L.; Borén, J. The assembly and secretion of apolipoprotein B-containing lipoproteins. Curr. Opin. Lipidol., 1999, 10(4), 341-346. doi: 10.1097/00041433-199908000-00008 PMID: 10482137
  18. Olofsson, B.; Jeltsch, M.; Eriksson, U.; Alitalo, K. Current biology of VEGF-B and VEGF-C. Curr. Opin. Biotechnol., 1999, 10(6), 528-538. doi: 10.1016/S0958-1669(99)00024-5 PMID: 10600689
  19. Wiszniak, S.; Schwarz, Q. Exploring the intracrine functions of VEGF-A. Biomolecules, 2021, 11(1), 128. doi: 10.3390/biom11010128 PMID: 33478167
  20. Ng, K.T.P.; Xu, A.; Cheng, Q.; Guo, D.Y.; Lim, Z.X.H.; Sun, C.K.W.; Fung, J.H.S.; Poon, R.T.P.; Fan, S.T.; Lo, C.M.; Man, K. Clinical relevance and therapeutic potential of angiopoietin-like protein 4 in hepatocellular carcinoma. Mol. Cancer, 2014, 13(1), 196. doi: 10.1186/1476-4598-13-196 PMID: 25148701
  21. Master, Z.; Jones, N.; Tran, J.; Jones, J.; Kerbel, R.S.; Dumont, D.J. Dok-R plays a pivotal role in angiopoietin-1-dependent cell migration through recruitment and activation of Pak. EMBO J., 2001, 20(21), 5919-5928. doi: 10.1093/emboj/20.21.5919 PMID: 11689432
  22. Liao, Y-H.; Chiang, K-H.; Shieh, J-M.; Huang, C-R.; Shen, C-J.; Huang, W-C.; Chen, B-K. Epidermal growth factor-induced ANGPTL4 enhances anoikis resistance and tumour metastasis in head and neck squamous cell carcinoma. Oncogene, 2017, 36(16), 2228-2242. doi: 10.1038/onc.2016.371 PMID: 27797381
  23. Yu, X.; Ye, F. Role of angiopoietins in development of cancer and neoplasia associated with viral infection. Cells, 2020, 9(2), 457. doi: 10.3390/cells9020457 PMID: 32085414
  24. Pergaris, A.; Danas, E.; Goutas, D.; Sykaras, A.G.; Soranidis, A.; Theocharis, S. The clinical impact of the eph/ephrin system in cancer: Unwinding the thread. Int. J. Mol. Sci., 2021, 22(16), 8412. doi: 10.3390/ijms22168412 PMID: 34445116
  25. Hadjimichael, A.C.; Pergaris, A.; Kaspiris, A.; Foukas, A.F.; Kokkali, S.; Tsourouflis, G.; Theocharis, S. The EPH/Ephrin system in bone and soft tissue sarcomas’ pathogenesis and therapy: New advancements and a literature review. Int. J. Mol. Sci., 2022, 23(9), 5171. doi: 10.3390/ijms23095171 PMID: 35563562
  26. Coffin, J.D.; Homer-Bouthiette, C.; Hurley, M.M. Fibroblast growth factor 2 and its receptors in bone biology and disease. J. Endocr. Soc., 2018, 2(7), 657-671. doi: 10.1210/js.2018-00105 PMID: 29942929
  27. Ornitz, D.M.; Itoh, N. The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol., 2015, 4(3), 215-266. doi: 10.1002/wdev.176 PMID: 25772309
  28. Xie, Y.; Su, N.; Yang, J.; Tan, Q.; Huang, S.; Jin, M.; Ni, Z.; Zhang, B.; Zhang, D.; Luo, F.; Chen, H.; Sun, X.; Feng, J.Q.; Qi, H.; Chen, L. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther., 2020, 5(1), 181. doi: 10.1038/s41392-020-00222-7 PMID: 32879300
  29. Pan, M.; Schinke, H.; Luxenburger, E.; Kranz, G.; Shakhtour, J.; Libl, D.; Huang, Y.; Gaber, A.; Pavšič, M.; Lenarčič, B.; Kitz, J.; Jakob, M.; Schwenk-Zieger, S.; Canis, M.; Hess, J.; Unger, K.; Baumeister, P.; Gires, O. EpCAM ectodomain EpEX is a ligand of EGFR that counteracts EGF-mediated epithelial-mesenchymal transition through modulation of phospho-ERK1/2 in head and neck cancers. PLoS Biol., 2018, 16(9), e2006624. doi: 10.1371/journal.pbio.2006624 PMID: 30261040
  30. Machado, C.M.L.; Andrade, L.N.S.; Teixeira, V.R.; Costa, F.F.; Melo, C.M.; dos Santos, S.N.; Nonogaki, S.; Liu, F.T.; Bernardes, E.S.; Camargo, A.A.; Chammas, R. Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGF β 1-induced macrophages. Cancer Med., 2014, 3(2), 201-214. doi: 10.1002/cam4.173 PMID: 24421272
  31. Tzavlaki, K.; Moustakas, A. TGF-β signaling. Biomolecules, 2020, 10(3), 487. doi: 10.3390/biom10030487 PMID: 32210029
  32. Tewari, D.; Priya, A.; Bishayee, A.; Bishayee, A. Targeting transforming growth factor-ß signalling for cancer prevention and intervention: Recent advances in developing small molecules of natural origin. Clin. Transl. Med., 2022, 12(4), e795. doi: 10.1002/ctm2.795 PMID: 35384373
  33. Peterson, J.E.; Zurakowski, D.; Italiano, J.E., Jr; Michel, L.V.; Fox, L.; Klement, G.L.; Folkman, J. Normal ranges of angiogenesis regulatory proteins in human platelets. Am. J. Hematol., 2010, 85(7), 487-493. doi: 10.1002/ajh.21732 PMID: 20575035
  34. Farooqi, A.A.; Siddik, Z.H. Platelet-derived growth factor ( PDGF ) signalling in cancer: Rapidly emerging signalling landscape. Cell Biochem. Funct., 2015, 33(5), 257-265. doi: 10.1002/cbf.3120 PMID: 26153649
  35. Lin, L.H.; Lin, J.S.; Yang, C.C.; Cheng, H.W.; Chang, K.W.; Liu, C.J. Overexpression of platelet-derived growth factor and its receptor are correlated with oral tumorigenesis and poor prognosis in oral squamous cell carcinoma. Int. J. Mol. Sci., 2020, 21(7), 2360. doi: 10.3390/ijms21072360 PMID: 32235327
  36. Wang, Z.; Dabrosin, C.; Yin, X.; Fuster, M.M.; Arreola, A.; Rathmell, W.K.; Generali, D.; Nagaraju, G.P.; El-Rayes, B.; Ribatti, D.; Chen, Y.C.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Nowsheen, S.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, B.; Yang, X.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Halicka, D.; Mohammed, S.I.; Azmi, A.S.; Bilsland, A.; Keith, W.N.; Jensen, L.D. Broad targeting of angiogenesis for cancer prevention and therapy. Semin. Cancer Biol., 2015, 35(Suppl.), S224-S243. doi: 10.1016/j.semcancer.2015.01.001 PMID: 25600295
  37. Salomon, B.L.; Leclerc, M.; Tosello, J.; Ronin, E.; Piaggio, E.; Cohen, J.L. Tumor necrosis factor α and regulatory T cells in oncoimmunology. Front. Immunol., 2018, 9, 444. doi: 10.3389/fimmu.2018.00444 PMID: 29593717
  38. Yamagishi, S.; Amano, S.; Inagaki, Y.; Okamoto, T.; Takeuchi, M.; Inoue, H. Pigment epithelium-derived factor inhibits leptin-induced angiogenesis by suppressing vascular endothelial growth factor gene expression through anti-oxidative properties. Microvasc. Res., 2003, 65(3), 186-190. doi: 10.1016/S0026-2862(03)00005-0 PMID: 12711260
  39. Kaidi, D.; Szeponik, L.; Yrlid, U.; Wettergren, Y.; Bexe Lindskog, E. Impact of thymidine phosphorylase and CD163 expression on prognosis in stage II colorectal cancer. Clin. Transl. Oncol., 2022, 24(9), 1818-1827. doi: 10.1007/s12094-022-02839-2 PMID: 35567733
  40. Dong, Y.; Lu, B.; Zhang, X.; Zhang, J.; Lai, L.; Li, D.; Wu, Y.; Song, Y.; Luo, J.; Pang, X.; Yi, Z.; Liu, M. Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway. Carcinogenesis, 2010, 31(12), 2097-2104. doi: 10.1093/carcin/bgq167 PMID: 20732905
  41. Matsumoto, K.; Umitsu, M.; De Silva, D.M.; Roy, A.; Bottaro, D.P. Hepatocyte growth factor/ MET in cancer progression and biomarker discovery. Cancer Sci., 2017, 108(3), 296-307. doi: 10.1111/cas.13156 PMID: 28064454
  42. Czyz, M. HGF/c-MET signaling in melanocytes and melanoma. Int. J. Mol. Sci., 2018, 19(12), 3844. doi: 10.3390/ijms19123844 PMID: 30513872
  43. Brat, D.J.; Bellail, A.C.; Van Meir, E.G. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-oncol., 2005, 7(2), 122-133. doi: 10.1215/S1152851704001061 PMID: 15831231
  44. Chen, W.T.; Ebelt, N.D.; Stracker, T.H.; Xhemalce, B.; Van Den Berg, C.L.; Miller, K.M. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion. eLife, 2015, 4, e07270. doi: 10.7554/eLife.07270 PMID: 26030852
  45. Kumar, S.; O’Malley, J.; Chaudhary, A.K.; Inigo, J.R.; Yadav, N.; Kumar, R.; Chandra, D. Hsp60 and IL-8 axis promotes apoptosis resistance in cancer. Br. J. Cancer, 2019, 121(11), 934-943. doi: 10.1038/s41416-019-0617-0 PMID: 31673102
  46. Montero, S.; Guzmán, C.; Cortés-Funes, H.; Colomer, R. Angiogenin expression and prognosis in primary breast carcinoma. Clin. Cancer Res., 1998, 4(9), 2161-2168. PMID: 9748135
  47. Urquidi, V. Vascular endothelial growth factor, carbonic anhydrase 9, and angiogenin as urinary biomarkers for bladder cancer detection. Urology, 2012, 79(5), 1185 . doi: 10.1016/j.urology.2012.01.016
  48. Lee, S.J.; Nathans, D. Proliferin secreted by cultured cells binds to mannose 6-phosphate receptors. J. Biol. Chem., 1988, 263(7), 3521-3527. doi: 10.1016/S0021-9258(18)69101-X PMID: 2963825
  49. Toft, D.J.; Rosenberg, S.B.; Bergers, G.; Volpert, O.; Linzer, D.I.H. Reactivation of proliferin gene expression is associated with increased angiogenesis in a cell culture model of fibrosarcoma tumor progression. Proc. Natl. Acad. Sci. USA, 2001, 98(23), 13055-13059. doi: 10.1073/pnas.231364798 PMID: 11606769
  50. Esteban, F.; Ramos-García, P.; Muñoz, M.; González-Moles, M.Á. Substance P and neurokinin 1 receptor in chronic inflammation and cancer of the head and neck: A review of the literature. Int. J. Environ. Res. Public Health, 2021, 19(1), 375. doi: 10.3390/ijerph19010375 PMID: 35010633
  51. Pan, R.; Dai, Y.; Gao, X.H.; Lu, D.; Xia, Y.F. Inhibition of vascular endothelial growth factor-induced angiogenesis by scopoletin through interrupting the autophosphorylation of VEGF receptor 2 and its downstream signaling pathways. Vascul. Pharmacol., 2011, 54(1-2), 18-28. doi: 10.1016/j.vph.2010.11.001 PMID: 21078410
  52. Ushio-Fukai, M.; Nakamura, Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett., 2008, 266(1), 37-52. doi: 10.1016/j.canlet.2008.02.044 PMID: 18406051
  53. Lee, S.; Ju, M.; Jeon, H.; Lee, Y.; Kim, C.; Park, H.; Han, S.; Kang, H. Reactive oxygen species induce epithelial-mesenchymal transition, glycolytic switch, and mitochondrial repression through the Dlx-2/Snail signaling pathways in MCF-7 cells. Mol. Med. Rep., 2019, 20(3), 2339-2346. doi: 10.3892/mmr.2019.10466 PMID: 31322179
  54. Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med., 2020, 52(2), 192-203. doi: 10.1038/s12276-020-0384-2 PMID: 32060354
  55. Xia, C.; Meng, Q.; Liu, L.Z.; Rojanasakul, Y.; Wang, X.R.; Jiang, B.H. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res., 2007, 67(22), 10823-10830. doi: 10.1158/0008-5472.CAN-07-0783 PMID: 18006827
  56. Matsumoto, T.; Claesson-Welsh, L. VEGF receptor signal transduction. Sci. STKE, 2001, 2001(112), re21. doi: 10.1126/stke.2001.112.re21 PMID: 11741095
  57. van Wetering, S.; van Buul, J.D.; Quik, S.; Mul, F.P.J.; Anthony, E.C.; Klooster, J-P.; Collard, J.G.; Hordijk, P.L. Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J. Cell Sci., 2002, 115(9), 1837-1846. doi: 10.1242/jcs.115.9.1837 PMID: 11956315
  58. Lin, M.T.; Yen, M.L.; Lin, C.Y.; Kuo, M.L. Inhibition of vascular endothelial growth factor-induced angiogenesis by resveratrol through interruption of Src-dependent vascular endothelial cadherin tyrosine phosphorylation. Mol. Pharmacol., 2003, 64(5), 1029-1036. doi: 10.1124/mol.64.5.1029 PMID: 14573751
  59. Moosavi, A.; Motevalizadeh Ardekani, A. Role of epigenetics in biology and human diseases. Iran. Biomed. J., 2016, 20(5), 246-258. PMID: 27377127
  60. Zoghbi, H.Y.; Beaudet, A.L. Epigenetics and human disease. Cold Spring Harb. Perspect. Biol., 2016, 8(2), a019497. doi: 10.1101/cshperspect.a019497 PMID: 26834142
  61. Pulukuri, S.M.; Patibandla, S.; Patel, J.; Estes, N.; Rao, J.S. Epigenetic inactivation of the tissue inhibitor of metalloproteinase-2 (TIMP-2) gene in human prostate tumors. Oncogene, 2007, 26(36), 5229-5237. doi: 10.1038/sj.onc.1210329 PMID: 17325663
  62. Maleva Kostovska, I.; Jakimovska, M.; Popovska-Jankovic, K.; Kubelka-Sabit, K.; Karagjozov, M.; Plaseska-Karanfilska, D. TIMP3 promoter methylation represents an epigenetic marker of BRCA1ness breast cancer tumours. Pathol. Oncol. Res., 2018, 24(4), 937-940. doi: 10.1007/s12253-018-0398-4 PMID: 29524167
  63. Lindner, D.J.; Wu, Y.; Haney, R.; Jacobs, B.S.; Fruehauf, J.P.; Tuthill, R.; Borden, E.C. Thrombospondin-1 expression in melanoma is blocked by methylation and targeted reversal by 5-Aza-deoxycytidine suppresses angiogenesis. Matrix Biol., 2013, 32(2), 123-132. doi: 10.1016/j.matbio.2012.11.010 PMID: 23202046
  64. Hellebrekers, D.M.; Griffioen, A.W.; van Engeland, M. Dual targeting of epigenetic therapy in cancer. Biochim. Biophys. Acta, 2007, 1775(1), 76-91. PMID: 16930846
  65. Da, M.X.; Zhang, Y.B.; Yao, J.B.; Duan, Y.X. DNA methylation regulates expression of VEGF-C, and S-adenosylmethionine is effective for VEGF-C methylation and for inhibiting cancer growth. Braz. J. Med. Biol. Res., 2014, 47(12), 1021-1028. doi: 10.1590/1414-431X20144005 PMID: 25387667
  66. Pakneshan, P.; Têtu, B.; Rabbani, S.A. Demethylation of urokinase promoter as a prognostic marker in patients with breast carcinoma. Clin. Cancer Res., 2004, 10(9), 3035-3041. doi: 10.1158/1078-0432.CCR-03-0545 PMID: 15131040
  67. Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis, 2010, 31(1), 27-36. doi: 10.1093/carcin/bgp220 PMID: 19752007
  68. Costa, F. Epigenomics in cancer management. Cancer Manag. Res., 2010, 2, 255-265. doi: 10.2147/CMAR.S7280 PMID: 21188117
  69. Patnaik, S.; Anupriya Drugs targeting epigenetic modifications and plausible therapeutic strategies against colorectal cancer. Front. Pharmacol., 2019, 10, 588. doi: 10.3389/fphar.2019.00588 PMID: 31244652
  70. Delage, B.; Dashwood, R.H. Dietary manipulation of histone structure and function. Annu. Rev. Nutr., 2008, 28(1), 347-366. doi: 10.1146/annurev.nutr.28.061807.155354 PMID: 18598138
  71. Wang, G.G.; Allis, C.D.; Chi, P. Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends Mol. Med., 2007, 13(9), 373-380. doi: 10.1016/j.molmed.2007.07.004 PMID: 17822959
  72. Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), a026831. doi: 10.1101/cshperspect.a026831 PMID: 27599530
  73. Cao, L.L.; Song, X.; Pei, L.; Liu, L.; Wang, H.; Jia, M. Histone deacetylase HDAC1 expression correlates with the progression and prognosis of lung cancer. Medicine, 2017, 96(31), e7663. doi: 10.1097/MD.0000000000007663 PMID: 28767587
  74. Aspriţoiu, V.M.; Stoica, I.; Bleotu, C.; Diaconu, C.C. Epigenetic regulation of angiogenesis in development and tumors progression: Potential implications for cancer treatment. Front. Cell Dev. Biol., 2021, 9, 689962. doi: 10.3389/fcell.2021.689962 PMID: 34552922
  75. Chen, R.J.; Shun, C.T.; Yen, M.L.; Chou, C.H.; Lin, M.C. Methyltransferase G9a promotes cervical cancer angiogenesis and decreases patient survival. Oncotarget, 2017, 8(37), 62081-62098. doi: 10.18632/oncotarget.19060 PMID: 28977928
  76. Nguyen, A.T.; Zhang, Y. The diverse functions of Dot1 and H3K79 methylation. Genes Dev., 2011, 25(13), 1345-1358. doi: 10.1101/gad.2057811 PMID: 21724828
  77. Duan, Y.; Wu, X.; Zhao, Q.; Gao, J.; Huo, D.; Liu, X.; Ye, Z.; Dong, X.; Fu, Z.; Shang, Y.; Xuan, C. DOT1L promotes angiogenesis through cooperative regulation of VEGFR2 with ETS-1. Oncotarget, 2016, 7(43), 69674-69687. doi: 10.18632/oncotarget.11939 PMID: 27626484
  78. Zhang, Y.; Liu, J.; Lin, J.; Zhou, L.; Song, Y.; Wei, B.; Luo, X.; Chen, Z.; Chen, Y.; Xiong, J.; Xu, X.; Ding, L.; Ye, Q. The transcription factor GATA1 and the histone methyltransferase SET7 interact to promote VEGF-mediated angiogenesis and tumor growth and predict clinical outcome of breast cancer. Oncotarget, 2016, 7(9), 9859-9875. doi: 10.18632/oncotarget.7126 PMID: 26848522
  79. Reynoso-Roldán, A. Vascular endothelial growth factor production is induced by histone deacetylase 1 and suppressed by von Hippel-Lindau protein in HaCaT cells. In: Clin Invest Med; , 2012; pp. E340-E350.
  80. Kim, J.S.; Kim, H.; Shim, Y.M.; Han, J.; Park, J.; Kim, D.H. Aberrant methylation of the FHIT gene in chronic smokers with early stage squamous cell carcinoma of the lung. Carcinogenesis, 2004, 25(11), 2165-2171. doi: 10.1093/carcin/bgh217 PMID: 15231689
  81. Kim, M.S.; Kwon, H.J.; Lee, Y.M.; Baek, J.H.; Jang, J.E.; Lee, S.W.; Moon, E.J.; Kim, H.S.; Lee, S.K.; Chung, H.Y.; Kim, C.W.; Kim, K.W. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat. Med., 2001, 7(4), 437-443. doi: 10.1038/86507 PMID: 11283670
  82. Li, W.; Quan, Y.Y.; Li, Y.; Lu, L.; Cui, M. Monitoring of tumor vascular normalization: the key points from basic research to clinical application. Cancer Manag. Res., 2018, 10, 4163-4172. doi: 10.2147/CMAR.S174712 PMID: 30323672
  83. Wu, J.; Tang, Y.; Liang, X. Targeting VEGF pathway to normalize the vasculature: an emerging insight in cancer therapy. OncoTargets Ther., 2018, 11, 6901-6909. doi: 10.2147/OTT.S172042 PMID: 30410348
  84. Zondor, S.D.; Medina, P.J. Bevacizumab: An angiogenesis inhibitor with efficacy in colorectal and other malignancies. Ann. Pharmacother., 2004, 38(7-8), 1258-1264. doi: 10.1345/aph.1D470 PMID: 15187215
  85. Mahfouz, N.; Tahtouh, R.; Alaaeddine, N.; El Hajj, J.; Sarkis, R.; Hachem, R.; Raad, I.; Hilal, G. Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF-1α and VEGF receptors. PLoS One, 2017, 12(6), e0179202. doi: 10.1371/journal.pone.0179202 PMID: 28594907
  86. Faivre, S.; Delbaldo, C.; Vera, K.; Robert, C.; Lozahic, S.; Lassau, N.; Bello, C.; Deprimo, S.; Brega, N.; Massimini, G.; Armand, J.P.; Scigalla, P.; Raymond, E. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J. Clin. Oncol., 2006, 24(1), 25-35. doi: 10.1200/JCO.2005.02.2194 PMID: 16314617
  87. Adnane, L.; Trail, P.A.; Taylor, I.; Wilhelm, S.M. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol., 2006, 407, 597-612. doi: 10.1016/S0076-6879(05)07047-3 PMID: 16757355
  88. Bodnar, R.J. Anti-angiogenic drugs: Involvement in cutaneous side effects and wound-healing complication. Adv. Wound Care, 2014, 3(10), 635-646. doi: 10.1089/wound.2013.0496 PMID: 25302138
  89. Christoforidis, J.; Christoforidis, J.; Ricketts; Pratt; Pierce; Bean; Wells; Zhang; LaPerle The effect of intravitreal anti-VEGF agents on peripheral wound healing in a rabbit model. Clin. Ophthalmol., 2012, 6, 61-69. doi: 10.2147/OPTH.S28275 PMID: 22275809
  90. Verheul, H.M.W.; Pinedo, H.M. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat. Rev. Cancer, 2007, 7(6), 475-485. doi: 10.1038/nrc2152 PMID: 17522716
  91. Gacche, R.N.; Assaraf, Y.G. Redundant angiogenic signaling and tumor drug resistance. Drug Resist. Updat., 2018, 36, 47-76. doi: 10.1016/j.drup.2018.01.002 PMID: 29499837
  92. Wieser, V.; Marth, C. Resistance to chemotherapy and anti-angiogenic therapy in ovarian cancer. Mag. Eur. Med. Oncol., 2019, 12(2), 144-148. doi: 10.1007/s12254-019-0478-5
  93. Letellier, C.; Sasmal, S.K.; Draghi, C.; Denis, F.; Ghosh, D. A chemotherapy combined with an anti-angiogenic drug applied to a cancer model including angiogenesis. Chaos Solitons Fractals, 2017, 99, 297-311. doi: 10.1016/j.chaos.2017.04.013
  94. Robert, N.J.; Diéras, V.; Glaspy, J.; Brufsky, A.M.; Bondarenko, I.; Lipatov, O.N.; Perez, E.A.; Yardley, D.A.; Chan, S.Y.T.; Zhou, X.; Phan, S.C.; O’Shaughnessy, J. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J. Clin. Oncol., 2011, 29(10), 1252-1260. doi: 10.1200/JCO.2010.28.0982 PMID: 21383283
  95. Aghajanian, C.; Goff, B.; Nycum, L.R.; Wang, Y.V.; Husain, A.; Blank, S.V. Final overall survival and safety analysis of OCEANS, a phase 3 trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent ovarian cancer. Gynecol. Oncol., 2015, 139(1), 10-16. doi: 10.1016/j.ygyno.2015.08.004 PMID: 26271155
  96. Hameed, S.; Bhattarai, P.; Dai, Z. Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment. Sci. China Life Sci., 2018, 61(4), 380-391. doi: 10.1007/s11427-017-9256-1 PMID: 29607461
  97. Mukherjee, S.; Patra, C.R. Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale, 2016, 8(25), 12444-12470. doi: 10.1039/C5NR07887C PMID: 27067119
  98. Bhattarai, P.; Hameed, S.; Dai, Z. Recent advances in anti-angiogenic nanomedicines for cancer therapy. Nanoscale, 2018, 10(12), 5393-5423. doi: 10.1039/C7NR09612G PMID: 29528075
  99. Zhao, Y.; Wang, W.; Guo, S.; Wang, Y.; Miao, L.; Xiong, Y.; Huang, L. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nat. Commun., 2016, 7(1), 11822. doi: 10.1038/ncomms11822 PMID: 27264609
  100. Chen, Q.; Osada, K.; Ge, Z.; Uchida, S.; Tockary, T.A.; Dirisala, A.; Matsui, A.; Toh, K.; Takeda, K.M.; Liu, X.; Nomoto, T.; Ishii, T.; Oba, M.; Matsumoto, Y.; Kataoka, K. Polyplex micelle installing intracellular self-processing functionalities without free catiomers for safe and efficient systemic gene therapy through tumor vasculature targeting. Biomaterials, 2017, 113, 253-265. doi: 10.1016/j.biomaterials.2016.10.042 PMID: 27835820
  101. Dirisala, A.; Osada, K.; Chen, Q.; Tockary, T.A.; Machitani, K.; Osawa, S.; Liu, X.; Ishii, T.; Miyata, K.; Oba, M.; Uchida, S.; Itaka, K.; Kataoka, K. Optimized rod length of polyplex micelles for maximizing transfection efficiency and their performance in systemic gene therapy against stroma-rich pancreatic tumors. Biomaterials, 2014, 35(20), 5359-5368. doi: 10.1016/j.biomaterials.2014.03.037 PMID: 24720877
  102. Corti, A.; Curnis, F.; Arap, W.; Pasqualini, R. The neovasculature homing motif NGR: More than meets the eye. Blood, 2008, 112(7), 2628-2635. doi: 10.1182/blood-2008-04-150862 PMID: 18574027
  103. Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951. doi: 10.1038/nbt.3330 PMID: 26348965
  104. Braet, F.; Wisse, E.; Bomans, P.; Frederik, P.; Geerts, W.; Koster, A.; Soon, L.; Ringer, S. Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc. Res. Tech., 2007, 70(3), 230-242. doi: 10.1002/jemt.20408 PMID: 17279510
  105. Davda, J.; Labhasetwar, V. Characterization of nanoparticle uptake by endothelial cells. Int. J. Pharm., 2002, 233(1-2), 51-59. doi: 10.1016/S0378-5173(01)00923-1 PMID: 11897410
  106. Lian, L.; Tang, F.; Yang, J.; Liu, C.; Li, Y. Therapeutic angiogenesis of PLGA-heparin nanoparticle in mouse ischemic limb. J. Nanomater., 2012, 2012, 1-6. doi: 10.1155/2012/193704
  107. Janes, K.A.; Fresneau, M.P.; Marazuela, A.; Fabra, A.; Alonso, M.J. Chitosan nanoparticles as delivery systems for doxorubicin. J. Control. Release, 2001, 73(2-3), 255-267. doi: 10.1016/S0168-3659(01)00294-2 PMID: 11516503
  108. Yeo, Y.; Park, K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch. Pharm. Res., 2004, 27(1), 1-12. doi: 10.1007/BF02980037 PMID: 14969330
  109. Liu, R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr., 2003, 78(3)(Suppl.), 517S-520S. doi: 10.1093/ajcn/78.3.517S PMID: 12936943
  110. Ranjan, A.; Ramachandran, S.; Gupta, N.; Kaushik, I.; Wright, S.; Srivastava, S.; Das, H.; Srivastava, S.; Prasad, S.; Srivastava, S.K. Role of phytochemicals in cancer prevention. Int. J. Mol. Sci., 2019, 20(20), 4981. doi: 10.3390/ijms20204981 PMID: 31600949
  111. Banudevi, S.; Swaminathan, S.; Maheswari, K.U. Pleiotropic role of dietary phytochemicals in cancer: Emerging perspectives for combinational therapy. Nutr. Cancer, 2015, 67(7), 1021-1048. doi: 10.1080/01635581.2015.1073762 PMID: 26359767
  112. Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer, 2003, 3(10), 768-780. doi: 10.1038/nrc1189 PMID: 14570043
  113. Peng, W.; Lin, Z.; Wang, L.; Chang, J.; Gu, F.; Zhu, X. Molecular characteristics of Illicium verum extractives to activate acquired immune response. Saudi J. Biol. Sci., 2016, 23(3), 348-352. doi: 10.1016/j.sjbs.2015.10.027 PMID: 27081359
  114. Chattopadhyay, I. Turmeric and curcumin: Biological actions and medicinal applications. Curr. Sci., 2004, 44-53.
  115. Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer, 2011, 10(1), 12. doi: 10.1186/1476-4598-10-12 PMID: 21299897
  116. Yoysungnoen, P.; Wirachwong, P.; Bhattarakosol, P.; Niimi, H.; Patumraj, S. Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin. Hemorheol. Microcirc., 2006, 34(1-2), 109-115. PMID: 16543625
  117. Zhang, Z.; Li, C.; Tan, Q.; Xie, C.; Yang, Y.; Zhan, W.; Han, F.; Sharma, H.S.; Sharma, A. Curcumin suppresses tumor growth and angiogenesis in human glioma cells through modulation of vascular endothelial growth factor/ angiopoietin-2/thrombospondin-1 signaling. CNS Neurol. Disord. Drug Targets, 2017, 16(3), 346-350. doi: 10.2174/1871527315666160902144513 PMID: 27592626
  118. Perry, M.C.; Demeule, M.; Régina, A.; Moumdjian, R.; Béliveau, R. Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol. Nutr. Food Res., 2010, 54(8), 1192-1201. doi: 10.1002/mnfr.200900277 PMID: 20087857
  119. Lin, Y.G.; Kunnumakkara, A.B.; Nair, A.; Merritt, W.M.; Han, L.Y.; Armaiz-Pena, G.N.; Kamat, A.A.; Spannuth, W.A.; Gershenson, D.M.; Lutgendorf, S.K.; Aggarwal, B.B.; Sood, A.K. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin. Cancer Res., 2007, 13(11), 3423-3430. doi: 10.1158/1078-0432.CCR-06-3072 PMID: 17545551
  120. Mohan, R.; Sivak, J.; Ashton, P.; Russo, L.A.; Pham, B.Q.; Kasahara, N.; Raizman, M.B.; Fini, M.E. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J. Biol. Chem., 2000, 275(14), 10405-10412. doi: 10.1074/jbc.275.14.10405 PMID: 10744729
  121. Jung, Y.D.; Ellis, L.M. Inhibition of tumour invasion and angiogenesis by epigallocatechin gallate (EGCG), a major component of green tea. Int. J. Exp. Pathol., 2001, 82(6), 309-316. doi: 10.1046/j.1365-2613.2001.00205.x PMID: 11846837
  122. Cao, Y.; Cao, R. Angiogenesis inhibited by drinking tea. Nature, 1999, 398(6726), 381. doi: 10.1038/18793 PMID: 10201368
  123. Bruns, C.J.; Harbison, M.T.; Davis, D.W.; Portera, C.A.; Tsan, R.; McConkey, D.J.; Evans, D.B.; Abbruzzese, J.L.; Hicklin, D.J.; Radinsky, R. Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin. Cancer Res., 2000, 6(5), 1936-1948. PMID: 10815919
  124. Liang, Y.C.; Lin-shiau, S.Y.; Chen, C.F.; Lin, J.K. Suppression of extracellular signals and cell proliferation through EGF receptor binding by (-)-epigallocatechin gallate in human A431 epidermoid carcinoma cells. J. Cell. Biochem., 1997, 67(1), 55-65. doi: 10.1002/(SICI)1097-4644(19971001)67:13.0.CO;2-V PMID: 9328839
  125. Shankar, S.; Ganapathy, S.; Hingorani, S.R.; Srivastava, R.K. EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front. Biosci., 2008, 13(13), 440-452. doi: 10.2741/2691 PMID: 17981559
  126. Luo, H.Q.; Xu, M.; Zhong, W.T.; Cui, Z.Y.; Liu, F.M.; Zhou, K.Y.; Li, X.Y. EGCG decreases the expression of HIF-1α and VEGF and cell growth in MCF-7 breast cancer cells. J. BUON, 2014, 19(2), 435-439. PMID: 24965403
  127. Manikandan, P.; Murugan, R.S.; Priyadarsini, R.V.; Vinothini, G.; Nagini, S. Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG. Life Sci., 2010, 86(25-26), 936-941. doi: 10.1016/j.lfs.2010.04.010 PMID: 20434464
  128. Kouhestanian, K.; Baharara, J.; Zafarbalanezhad, S. Anti-angiogenic effect of eugenol on a Wistar rat aortic ring. KAUMS J., 2015, 19(3), 197-203.
  129. Zuco, V.; Supino, R.; Righetti, S.C.; Cleris, L.; Marchesi, E.; Gambacorti-Passerini, C.; Formelli, F. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett., 2002, 175(1), 17-25. doi: 10.1016/S0304-3835(01)00718-2 PMID: 11734332
  130. Kwon, H.J.; Shim, J.S.; Kim, J.H.; Cho, H.Y.; Yum, Y.N.; Kim, S.H.; Yu, J. Betulinic acid inhibits growth factor-induced in vitro angiogenesis via the modulation of mitochondrial function in endothelial cells. Jpn. J. Cancer Res., 2002, 93(4), 417-425. doi: 10.1111/j.1349-7006.2002.tb01273.x PMID: 11985792
  131. Chintharlapalli, S.; Papineni, S.; Ramaiah, S.K.; Safe, S. Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors. Cancer Res., 2007, 67(6), 2816-2823. doi: 10.1158/0008-5472.CAN-06-3735 PMID: 17363604
  132. Shin, J.; Lee, H.J.; Jung, D.B.; Jung, J.H.; Lee, H.J.; Lee, E.O.; Lee, S.G.; Shim, B.S.; Choi, S.H.; Ko, S.G.; Ahn, K.S.; Jeong, S.J.; Kim, S.H. Suppression of STAT3 and HIF-1 alpha mediates anti-angiogenic activity of betulinic acid in hypoxic PC-3 prostate cancer cells. PLoS One, 2011, 6(6), e21492. doi: 10.1371/journal.pone.0021492 PMID: 21731766
  133. Priyadarsini, R.V.; Vinothini, G.; Murugan, R.S.; Manikandan, P.; Nagini, S. The flavonoid quercetin modulates the hallmark capabilities of hamster buccal pouch tumors. Nutr. Cancer, 2011, 63(2), 218-226. doi: 10.1080/01635581.2011.523503 PMID: 21294050
  134. Pratheeshkumar, P.; Budhraja, A.; Son, Y.O.; Wang, X.; Zhang, Z.; Ding, S.; Wang, L.; Hitron, A.; Lee, J.C.; Xu, M.; Chen, G.; Luo, J.; Shi, X. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One, 2012, 7(10), e47516. doi: 10.1371/journal.pone.0047516 PMID: 23094058
  135. Liu, Y.; Li, C.L.; Xu, Q.Q.; Cheng, D.; Liu, K.D.; Sun, Z.Q. Quercetin inhibits invasion and angiogenesis of esophageal cancer cells. Pathol. Res. Pract., 2021, 222, 153455. doi: 10.1016/j.prp.2021.153455 PMID: 33962176
  136. Uttarawichien, T.; Kamnerdnond, C.; Inwisai, T.; Suwannalert, P.; Sibmooh, N.; Payuhakrit, W. Quercetin Inhibits colorectal cancer cells induced-angiogenesis in both colorectal cancer cell and endothelial cell through downregulation of VEGF-A/VEGFR2. Sci. Pharm., 2021, 89(2), 23. doi: 10.3390/scipharm89020023
  137. Yang, F.; Jiang, X.; Song, L.; Wang, H.; Mei, Z.; Xu, Z.; Xing, N. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo. Oncol. Rep., 2016, 35(3), 1602-1610. doi: 10.3892/or.2015.4481 PMID: 26676551
  138. Esteghlal, S.; Mokhtari, M.J.; Beyzaei, Z. Quercetin can inhibit angiogenesis via the down regulation of MALAT1 and MIAT LncRNAs in human umbilical vein endothelial cells. Int. J. Prev. Med., 2021, 12, 59. PMID: 34447501
  139. Kaneshiro, T.; Morioka, T.; Inamine, M.; Kinjo, T.; Arakaki, J.; Chiba, I.; Sunagawa, N.; Suzui, M.; Yoshimi, N. Anthraquinone derivative emodin inhibits tumor-associated angiogenesis through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation. Eur. J. Pharmacol., 2006, 553(1-3), 46-53. doi: 10.1016/j.ejphar.2006.09.026 PMID: 17056031
  140. Kwak, H.J.; Park, M.J.; Park, C.M.; Moon, S.I.; Yoo, D.H.; Lee, H.C.; Lee, S.H.; Kim, M.S.; Lee, H.W.; Shin, W.S.; Park, I.C.; Rhee, C.H.; Hong, S.I. Emodin inhibits vascular endothelial growth factor-A-induced angiogenesis by blocking receptor-2 (KDR/Flk-1) phosphorylation. Int. J. Cancer, 2006, 118(11), 2711-2720. doi: 10.1002/ijc.21641 PMID: 16388516
  141. Lu, Y.; Zhang, J.; Qian, J. The effect of emodin on VEGF receptors in human colon cancer cells. Cancer Biother. Radiopharm., 2008, 23(2), 222-228. doi: 10.1089/cbr.2007.0425 PMID: 18454691
  142. Lin, S.Z.; Wei, W.T.; Chen, H.; Chen, K.J.; Tong, H.F.; Wang, Z.H.; Ni, Z.L.; Liu, H.B.; Guo, H.C.; Liu, D.L. Antitumor activity of emodin against pancreatic cancer depends on its dual role: Promotion of apoptosis and suppression of angiogenesis. PLoS One, 2012, 7(8), e42146. doi: 10.1371/journal.pone.0042146 PMID: 22876305
  143. Fang, J.; Zhou, Q.; Liu, L.Z.; Xia, C.; Hu, X.; Shi, X.; Jiang, B.H. Apigenin inhibits tumor angiogenesis through decreasing HIF-1 and VEGF expression. Carcinogenesis, 2006, 28(4), 858-864. doi: 10.1093/carcin/bgl205 PMID: 17071632
  144. Fang, J.; Xia, C.; Cao, Z.; Zheng, J.Z.; Reed, E.; Jiang, B.H. Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J., 2005, 19(3), 342-353. doi: 10.1096/fj.04-2175com PMID: 15746177
  145. Fu, J.; Zeng, W.; Chen, M.; Huang, L.; Li, S.; Li, Z.; Pan, Q.; Lv, S.; Yang, X.; Wang, Y.; Yi, M.; Zhang, J.; Lei, X. Apigenin suppresses tumor angiogenesis and growth via inhibiting HIF-1α expression in non-small cell lung carcinoma. Chem. Biol. Interact., 2022, 361, 109966. doi: 10.1016/j.cbi.2022.109966 PMID: 35513012
  146. Anjani, G.; Ayustaningwarno, F.; Eviana, R. Critical review on the immunomodulatory activities of carrot’s β-carotene and other bioactive compounds. J. Funct. Foods, 2022, 99, 105303. doi: 10.1016/j.jff.2022.105303
  147. Bae, S.; Lim, J.W.; Kim, H. β-carotene inhibits expression of matrix metalloproteinase-10 and invasion in helicobacter pylori-infected gastric epithelial cells. Molecules, 2021, 26(6), 1567. doi: 10.3390/molecules26061567 PMID: 33809289
  148. Guruvayoorappan, C.; Kuttan, G. Beta-carotene inhibits tumor-specific angiogenesis by altering the cytokine profile and inhibits the nuclear translocation of transcription factors in B16F-10 melanoma cells. Integr. Cancer Ther., 2007, 6(3), 258-270. doi: 10.1177/1534735407305978 PMID: 17761639
  149. Farina, H.; Pomies, M.; Alonso, D.; Gomez, D. Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncol. Rep., 2006, 16(4), 885-891. doi: 10.3892/or.16.4.885 PMID: 16969510
  150. El-Far, Y.M.; Khodir, A.E.; Emarah, Z.A.; Ebrahim, M.A.; Al-Gayyar, M.M.H. Chemopreventive and hepatoprotective effects of genistein via inhibition of oxidative stress and the versican/PDGF/PKC signaling pathway in experimentally induced hepatocellular carcinoma in rats by thioacetamide. Redox Rep., 2022, 27(1), 9-20. doi: 10.1080/13510002.2022.2031515 PMID: 35080474
  151. Su, S.J.; Yeh, T.M.; Chuang, W.J.; Ho, C.L.; Chang, K.L.; Cheng, H.L.; Liu, H.S.; Cheng, H.L.; Hsu, P.Y.; Chow, N.H. The novel targets for anti-angiogenesis of genistein on human cancer cells. Biochem. Pharmacol., 2005, 69(2), 307-318. doi: 10.1016/j.bcp.2004.09.025 PMID: 15627483
  152. Li, Y.; Sarkar, F.H. Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Lett., 2002, 186(2), 157-164. doi: 10.1016/S0304-3835(02)00349-X PMID: 12213285
  153. Yu, X.; Zhu, J.; Mi, M.; Chen, W.; Pan, Q.; Wei, M. Anti-angiogenic genistein inhibits VEGF-induced endothelial cell activation by decreasing PTK activity and MAPK activation. Med. Oncol., 2012, 29(1), 349-357. doi: 10.1007/s12032-010-9770-2 PMID: 21132400
  154. Gu, Y.; Zhu, C.F.; Iwamoto, H.; Chen, J.S. Genistein inhibits invasive potential of human hepatocellular carcinoma by altering cell cycle, apoptosis, and angiogenesis. World J. Gastroenterol., 2005, 11(41), 6512-6517. doi: 10.3748/wjg.v11.i41.6512 PMID: 16425425
  155. Kim, J.H.; Lee, B.J.; Kim, J.H.; Yu, Y.S.; Kim, M.Y.; Kim, K.W. Rosmarinic acid suppresses retinal neovascularization via cell cycle arrest with increase of p21WAF1 expression. Eur. J. Pharmacol., 2009, 615(1-3), 150-154. doi: 10.1016/j.ejphar.2009.05.015 PMID: 19470386
  156. Huang, S.; Zheng, R. Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Lett., 2006, 239(2), 271-280. doi: 10.1016/j.canlet.2005.08.025 PMID: 16239062
  157. Mahmoud, M.A.; Okda, T.M.; Omran, G.A.; Abd-Alhaseeb, M.M. Rosmarinic acid suppresses inflammation, angiogenesis, and improves paclitaxel induced apoptosis in a breast cancer model via NF3 κB-p53-caspase-3 pathways modulation. J. Appl. Biomed., 2021, 19(4), 202-209. doi: 10.32725/jab.2021.024 PMID: 34907739
  158. Davis, R.; Singh, K.P.; Kurzrock, R.; Shankar, S. Sulforaphane inhibits angiogenesis through activation of FOXO transcription factors. Oncol. Rep., 2009, 22(6), 1473-1478. PMID: 19885601
  159. Bertl, E.; Bartsch, H.; Gerhäuser, C. Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Mol. Cancer Ther., 2006, 5(3), 575-585. doi: 10.1158/1535-7163.MCT-05-0324 PMID: 16546971
  160. Liu, P.; Atkinson, S.J.; Akbareian, S.E.; Zhou, Z.; Munsterberg, A.; Robinson, S.D.; Bao, Y. Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF-1α/VEGF signalling. Sci. Rep., 2017, 7(1), 12651. doi: 10.1038/s41598-017-12855-w PMID: 28978924
  161. Shankar, S.; Ganapathy, S.; Srivastava, R.K. Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis. Clin. Cancer Res., 2008, 14(21), 6855-6866. doi: 10.1158/1078-0432.CCR-08-0903 PMID: 18980980
  162. Ali, H.; Dixit, S. Extraction optimization of Tinospora cordifolia and assessment of the anticancer activity of its alkaloid palmatine. ScientificWorldJournal, 2013, 2013, 1-10. doi: 10.1155/2013/376216 PMID: 24379740
  163. Sun, M.; Xu, L.; Peng, Y.; Liu, T.; Zhang, Y.; Zhou, Z. Multiscale analysis of the contents of palmatine in the Nature populations of Phellodendron amurense in Northeast China. J. For. Res., 2016, 27(2), 265-272. doi: 10.1007/s11676-015-0200-3
  164. Grabarska, A.; Wróblewska-Łuczka, P.; Kukula-Koch, W.; Łuszczki, J.J.; Kalpoutzakis, E.; Adamczuk, G.; Skaltsounis, A.L.; Stepulak, A. Palmatine, a bioactive protoberberine alkaloid isolated from berberis cretica, inhibits the growth of human estrogen receptor-positive breast cancer cells and acts synergistically and additively with doxorubicin. Molecules, 2021, 26(20), 6253. doi: 10.3390/molecules26206253 PMID: 34684834
  165. Kim, Y.M.; Ha, Y.M.; Jin, Y.C.; Shi, L.Y.; Lee, Y.S.; Kim, H.J.; Seo, H.G.; Choi, J.S.; Kim, Y.S.; Kang, S.S.; Lee, J.H.; Chang, K.C. Palmatine from coptidis rhizoma reduces ischemia–reperfusion-mediated acute myocardial injury in the rat. Food Chem. Toxicol., 2009, 47(8), 2097-2102. doi: 10.1016/j.fct.2009.05.031 PMID: 19497345
  166. Jia, F.; Zou, G.; Fan, J.; Yuan, Z. Identification of palmatine as an inhibitor of West Nile virus. Arch. Virol., 2010, 155(8), 1325-1329. doi: 10.1007/s00705-010-0702-4 PMID: 20496087
  167. Zhang, L.; Li, J.; Ma, F.; Yao, S.; Li, N.; Wang, J.; Wang, Y.; Wang, X.; Yao, Q. Synthesis and cytotoxicity evaluation of 13-n-alkyl berberine and palmatine analogues as anticancer agents. Molecules, 2012, 17(10), 11294-11302. doi: 10.3390/molecules171011294 PMID: 23011273
  168. Yoo, M.J.; Choi, J.; Jang, Y.; Park, S.Y.; Seol, J.W. Anti-cancer effect of palmatine through inhibition of the PI3K/AKT pathway in canine mammary gland tumor CMT-U27 cells. BMC Vet. Res., 2023, 19(1), 223. doi: 10.1186/s12917-023-03782-2 PMID: 37880653
  169. Zhou, Y.; Cao, F.; Luo, F.; Lin, Q. Octacosanol and health benefits: Biological functions and mechanisms of action. Food Biosci., 2022, 47, 101632. doi: 10.1016/j.fbio.2022.101632
  170. Chu, B.; Qu, Y.; Huang, Y.; Zhang, L.; Chen, X.; Long, C.; He, Y.; Ou, C.; Qian, Z. PEG-derivatized octacosanol as micellar carrier for paclitaxel delivery. Int. J. Pharm., 2016, 500(1-2), 345-359. doi: 10.1016/j.ijpharm.2016.01.030 PMID: 26794876
  171. Thippeswamy, G.; Sheela, M.L.; Salimath, B.P. Octacosanol isolated from Tinospora cordifolia downregulates VEGF gene expression by inhibiting nuclear translocation of NF-κB and its DNA binding activity. Eur. J. Pharmacol., 2008, 588(2-3), 141-150. doi: 10.1016/j.ejphar.2008.04.027 PMID: 18513715
  172. Li, C.; Zhang, J.; Zu, Y.J.; Nie, S.F.; Cao, J.; Wang, Q.; Nie, S.P.; Deng, Z.Y.; Xie, M.Y.; Wang, S. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chin. J. Nat. Med., 2015, 13(9), 641-652. doi: 10.1016/S1875-5364(15)30061-3 PMID: 26412423
  173. Rizwanullah, M.; Amin, S.; Mir, S.R.; Fakhri, K.U.; Rizvi, M.M.A. Phytochemical based nanomedicines against cancer: current status and future prospects. J. Drug Target., 2018, 26(9), 731-752. doi: 10.1080/1061186X.2017.1408115 PMID: 29157022
  174. Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160. doi: 10.1038/nrd1632 PMID: 15688077
  175. de Pace, R.C.C.; Liu, X.; Sun, M.; Nie, S.; Zhang, J.; Cai, Q.; Gao, W.; Pan, X.; Fan, Z.; Wang, S. Anticancer activities of (−)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. J. Liposome Res., 2013, 23(3), 187-196. doi: 10.3109/08982104.2013.788023 PMID: 23600473
  176. Mullauer, F.B.; van Bloois, L.; Daalhuisen, J.B.; Ten Brink, M.S.; Storm, G.; Medema, J.P.; Schiffelers, R.M.; Kessler, J.H. Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anticancer Drugs, 2011, 22(3), 223-233. doi: 10.1097/CAD.0b013e3283421035 PMID: 21263311
  177. Xu, H.; Gong, Z.; Zhou, S.; Yang, S.; Wang, D.; Chen, X.; Wu, J.; Liu, L.; Zhong, S.; Zhao, J.; Tang, J. Liposomal curcumin targeting endometrial cancer through the NF-κB pathway. Cell. Physiol. Biochem., 2018, 48(2), 569-582. doi: 10.1159/000491886 PMID: 30021217
  178. Saengkrit, N.; Saesoo, S.; Srinuanchai, W.; Phunpee, S.; Ruktanonchai, U.R. Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. Colloids Surf. B Biointerfaces, 2014, 114, 349-356. doi: 10.1016/j.colsurfb.2013.10.005 PMID: 24246195
  179. Tan, B.J.; Liu, Y.; Chang, K.L.; Lim, B.K.; Chiu, G.N. Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer. Int. J. Nanomedicine, 2012, 7, 651-661. PMID: 22334787
  180. Munyendo, W.L.L.; Zhang, Z.; Abbad, S.; Waddad, A.Y.; Lv, H.; Baraza, L.D.; Zhou, J. Micelles of TPGS modified apigenin phospholipid complex for oral administration: Preparation, in vitro and in vivo evaluation. J. Biomed. Nanotechnol., 2013, 9(12), 2034-2047. doi: 10.1166/jbn.2013.1704 PMID: 24266259
  181. Saxena, V.; Hussain, M.D. Polymeric mixed micelles for delivery of curcumin to multidrug resistant ovarian cancer. J. Biomed. Nanotechnol., 2013, 9(7), 1146-1154. doi: 10.1166/jbn.2013.1632 PMID: 23909128
  182. Tang, H.; Murphy, C.J.; Zhang, B.; Shen, Y.; Van Kirk, E.A.; Murdoch, W.J.; Radosz, M. Curcumin polymers as anticancer conjugates. Biomaterials, 2010, 31(27), 7139-7149. doi: 10.1016/j.biomaterials.2010.06.007 PMID: 20591475
  183. Nassir, A.M.; Shahzad, N.; Ibrahim, I.A.A.; Ahmad, I.; Md, S.; Ain, M.R. Resveratrol-loaded PLGA nanoparticles mediated programmed cell death in prostate cancer cells. Saudi Pharm. J., 2018, 26(6), 876-885. doi: 10.1016/j.jsps.2018.03.009 PMID: 30202231
  184. Yallapu, M.M.; Ebeling, M.C.; Khan, S.; Sundram, V.; Chauhan, N.; Gupta, B.K.; Puumala, S.E.; Jaggi, M.; Chauhan, S.C. Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment. Mol. Cancer Ther., 2013, 12(8), 1471-1480. doi: 10.1158/1535-7163.MCT-12-1227 PMID: 23704793
  185. Cai, W.; Gao, T.; Hong, H.; Sun, J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl., 2008, 1, 17-32. doi: 10.2147/NSA.S3788 PMID: 24198458
  186. Chen, C.C.; Hsieh, D.S.; Huang, K.J.; Chan, Y.L.; Hong, P.D.; Yeh, M.K.; Wu, C.J. Improving anticancer efficacy of (-)-epigallocatechin-3-gallate gold nanoparticles in murine B16F10 melanoma cells. Drug Des. Devel. Ther., 2014, 8, 459-474. PMID: 24855338
  187. Srinivas Raghavan, B.; Kondath, S.; Anantanarayanan, R.; Rajaram, R. Kaempferol mediated synthesis of gold nanoparticles and their cytotoxic effects on MCF-7 cancer cell line. Process Biochem., 2015, 50(11), 1966-1976. doi: 10.1016/j.procbio.2015.08.003
  188. Aghapour, F.; Moghadamnia, A.A.; Nicolini, A.; Kani, S.N.M.; Barari, L.; Morakabati, P.; Rezazadeh, L.; Kazemi, S. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines. Biochem. Biophys. Res. Commun., 2018, 500(4), 860-865. doi: 10.1016/j.bbrc.2018.04.174 PMID: 29698680
  189. Rawat, K.; Syeda, S.; Shrivastava, A. A novel role of Tinospora cordifolia in amelioration of cancer-induced systemic deterioration by taming neutrophil infiltration and hyperactivation. Phytomedicine, 2023, 108, 154488. doi: 10.1016/j.phymed.2022.154488 PMID: 36240606
  190. Bala, M.; Pratap, K.; Verma, P.K.; Singh, B.; Padwad, Y. Validation of ethnomedicinal potential of Tinospora cordifolia for anticancer and immunomodulatory activities and quantification of bioactive molecules by HPTLC. J. Ethnopharmacol., 2015, 175, 131-137. doi: 10.1016/j.jep.2015.08.001 PMID: 26253577

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers