Small Molecule Inhibitors of Human Papillomavirus: A Review of Research from 1997 to 2021


Cite item

Full Text

Abstract

:Human papillomavirus (HPV) infections are the cause of warts, lesions and cancer, with different types of HPV causing different symptoms. HPV infections are the primary cause of cervical cancer. There are over 220 different types of HPV, and only nine of these can currently be vaccinated. There is a need to treat these viral infections without just treating the symptoms of the infection, as is currently the main method. There is a wide range of small molecules that have been used to inhibit various stages of the HPV infectious cycle. This review examined 132 small molecules from 121 studies that specifically target aspects of HPV infections. HPV DNA encodes for six early genes (E1 to E7, skipping E3) and two late genes (L1 and L2). According to the results, these targets for small molecule inhibitors fall into three categories: those targeting E1 and E2, targeting E6 and E7 and, finally, targeting L1 and L2. Inhibitors of E6 and E7 are the most widely studied targets, with the majority of HPV inhibition in this area. While compounds targeting both E1/E2 and E6/E7 have made it to clinical trials, there has been no significant advancement on the topic.

About the authors

Caitlin Duncan

School of Molecular and Life Sciences, Curtin University

Email: info@benthamscience.net

Hendra Gunosewoyo

Curtin Medical School, Curtin University

Email: info@benthamscience.net

Mauro Mocerino

School of Molecular and Life Sciences, Curtin University

Author for correspondence.
Email: info@benthamscience.net

Alan Payne

School of Molecular and Life Sciences, Curtin University

Email: info@benthamscience.net

References

  1. Van Doorslaer, K.; Tan, Q.; Xirasagar, S.; Bandaru, S.; Gopalan, V.; Mohamoud, Y.; Huyen, Y.; McBride, A.A. The Papillomavirus Episteme: a central resource for papillomavirus sequence data and analysis. Nucleic Acids Res., 2013, 41(Database issue), D571-D578. PMID: 23093593
  2. Arroyo, L.S. Utrotning av HPV och livmoderhalscancer. , 2021. Available from: https://www.hpvcenter.se/=
  3. Van Doorslaer, K. Evolution of the papillomaviridae. Virology, 2013, 445(1-2), 11-20. doi: 10.1016/j.virol.2013.05.012 PMID: 23769415
  4. Smith, L.; Angarone, M.P. Sexually transmitted infections. Urol. Clin. North Am., 2015, 42(4), 507-518. doi: 10.1016/j.ucl.2015.06.004 PMID: 26475947
  5. Koutsky, L. Epidemiology of genital human papillomavirus infection. Am. J. Med., 1997, 102(5A), 3-8. doi: 10.1016/S0002-9343(97)00177-0 PMID: 9217656
  6. Chesson, H.W.; Dunne, E.F.; Hariri, S.; Markowitz, L.E. The estimated lifetime probability of acquiring human papillomavirus in the United States. Sex. Transm. Dis., 2014, 41(11), 660-664. doi: 10.1097/OLQ.0000000000000193 PMID: 25299412
  7. Koshiol, J.; Lindsay, L.; Pimenta, J.M.; Poole, C.; Jenkins, D.; Smith, J.S. Persistent human papillomavirus infection and cervical neoplasia: a systematic review and meta-analysis. Am. J. Epidemiol., 2008, 168(2), 123-137. doi: 10.1093/aje/kwn036 PMID: 18483125
  8. Schiffman, M. Integration of human papillomavirus vaccination, cytology, and human papillomavirus testing. Cancer, 2007, 111(3), 145-153. doi: 10.1002/cncr.22751 PMID: 17487850
  9. Gheit, T. Mucosal and cutaneous human papillomavirus infections and cancer biology. Front. Oncol., 2019, 9(355) doi: 10.3389/fonc.2019.00355 PMID: 31134154
  10. Bouvard, V.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; Cogliano, V. A review of human carcinogens—Part B: biological agents. Lancet Oncol., 2009, 10(4), 321-322. doi: 10.1016/S1470-2045(09)70096-8 PMID: 19350698
  11. Saraiya, M.; Unger, E.R.; Thompson, T.D.; Lynch, C.F.; Hernandez, B.Y.; Lyu, C.W.; Steinau, M.; Watson, M.; Wilkinson, E.J.; Hopenhayn, C.; Copeland, G.; Cozen, W.; Peters, E.S.; Huang, Y.; Saber, M.S.; Altekruse, S.; Goodman, M.T. US assessment of HPV types in cancers: implications for current and 9-valent HPV vaccines. J. Natl. Cancer Inst., 2015, 107(6), djv086. doi: 10.1093/jnci/djv086 PMID: 25925419
  12. Harper, D.M.; DeMars, L.R. HPV vaccines – A review of the first decade. Gynecol. Oncol., 2017, 146(1), 196-204. doi: 10.1016/j.ygyno.2017.04.004 PMID: 28442134
  13. Stanley, M.A. Genital human papillomavirus infections: current and prospective therapies. J. Gen. Virol., 2012, 93(4), 681-691. doi: 10.1099/vir.0.039677-0 PMID: 22323530
  14. Stanley, M.A. Epithelial cell responses to infection with human papillomavirus. Clin. Microbiol. Rev., 2012, 25(2), 215-222. doi: 10.1128/CMR.05028-11 PMID: 22491770
  15. Graham, S.V. The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clin. Sci. (Lond.), 2017, 131(17), 2201-2221. doi: 10.1042/CS20160786 PMID: 28798073
  16. Graham, S.V. Human papillomavirus: gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Future Microbiol., 2010, 5(10), 1493-1506. doi: 10.2217/fmb.10.107 PMID: 21073310
  17. Bernard, H.U.; Burk, R.D.; Chen, Z.; van Doorslaer, K.; Hausen, H.; de Villiers, E.M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology, 2010, 401(1), 70-79. doi: 10.1016/j.virol.2010.02.002 PMID: 20206957
  18. Reference Clones, H.P.V. HPV reference clones. International Human Papillomavirus Reference Center. , 2022. Available from:https://www.hpvcenter.se/human_ reference_clones/
  19. Lowy, D.R.; Solomon, D.; Hildesheim, A.; Schiller, J.T.; Schiffman, M. Human papillomavirus infection and the primary and secondary prevention of cervical cancer. Cancer, 2008, 113(S7)(Suppl.), 1980-1993. doi: 10.1002/cncr.23704 PMID: 18798536
  20. Kavanagh, K.; Pollock, K.G.; Cuschieri, K.; Palmer, T.; Cameron, R.L.; Watt, C.; Bhatia, R.; Moore, C.; Cubie, H.; Cruickshank, M.; Robertson, C. Changes in the prevalence of human papillomavirus following a national bivalent human papillomavirus vaccination programme in Scotland: a 7-year cross-sectional study. Lancet Infect. Dis., 2017, 17(12), 1293-1302. doi: 10.1016/S1473-3099(17)30468-1 PMID: 28965955
  21. Arbyn, M.; Tommasino, M.; Depuydt, C.; Dillner, J. Are 20 human papillomavirus types causing cervical cancer? J. Pathol., 2014, 234(4), 431-435. doi: 10.1002/path.4424 PMID: 25124771
  22. Fradet-Turcotte, A.; Archambault, J. Recent advances in the search for antiviral agents against human papillomaviruses. Antivir. Ther., 2007, 12(4), 431-451. doi: 10.1177/135965350701200417 PMID: 17668552
  23. D’Abramo, C.M.; Archambault, J. Small molecule inhibitors of human papillomavirus protein - protein interactions. Open Virol. J., 2011, 5(1), 80-95. doi: 10.2174/1874357901105010080 PMID: 21769307
  24. Messa, L.; Loregian, A. HPV-induced cancers: preclinical therapeutic advancements. Expert Opin. Investig. Drugs, 2022, 31(1), 79-93. doi: 10.1080/13543784.2021.2010703 PMID: 34927502
  25. Bergvall, M.; Melendy, T.; Archambault, J. The E1 proteins. Virology, 2013, 445(1-2), 35-56. doi: 10.1016/j.virol.2013.07.020 PMID: 24029589
  26. McBride, A.A. The papillomavirus E2 proteins. Virology, 2013, 445(1-2), 57-79. doi: 10.1016/j.virol.2013.06.006 PMID: 23849793
  27. White, P.W.; Faucher, A-M.; Goudreau, N. Small Molecule Inhibitors of the Human Papillomavirus E1-E2 Interaction. In: Small-Molecule Inhibitors of Protein-Protein Interactions; Vassilev, L.; Fry, D., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2010; pp. 61-88. doi: 10.1007/82_2010_92
  28. Faucher, A.M.; White, P.W.; Brochu, C.; Grand-Maître, C.; Rancourt, J.; Fazal, G. Discovery of small-molecule inhibitors of the ATPase activity of human papillomavirus E1 helicase. J. Med. Chem., 2004, 47(1), 18-21. doi: 10.1021/jm034206x PMID: 14695816
  29. White, P.W.; Faucher, A.M.; Massariol, M.J.; Welchner, E.; Rancourt, J.; Cartier, M.; Archambault, J. Biphenylsulfonacetic acid inhibitors of the human papillomavirus type 6 E1 helicase inhibit ATP hydrolysis by an allosteric mechanism involving tyrosine 486. Antimicrob. Agents Chemother., 2005, 49(12), 4834-4842. doi: 10.1128/AAC.49.12.4834-4842.2005 PMID: 16304143
  30. Lu, X.; Zhang, Y.; Chen, S.; Li, Y.; Jia, D.; Wang, W.; Gao, B.; Liu, H. Molecular dynamics simulation study on the mechanism of the inhibition of ATP hydrolysis with inhibitors in human papillomavirus type 18 E1 helicase. 2013, 44-47. doi: 10.2991/iccnce.2013.12
  31. Iryani, I.; Amelia, F.; Iswendi, I. Active sites prediction and binding analysis E1-E2 protein human papillomavirus with biphenylsulfonacetic acid. IOP Conf. Series Mater. Sci. Eng., 2018, 335, 012031. doi: 10.1088/1757-899X/335/1/012031
  32. White, P.W.; Titolo, S.; Brault, K.; Thauvette, L.; Pelletier, A.; Welchner, E.; Bourgon, L.; Doyon, L.; Ogilvie, W.W.; Yoakim, C.; Cordingley, M.G.; Archambault, J. Inhibition of human papillomavirus DNA replication by small molecule antagonists of the E1-E2 protein interaction. J. Biol. Chem., 2003, 278(29), 26765-26772. doi: 10.1074/jbc.M303608200 PMID: 12730224
  33. Berg, M.; Stenlund, A. Functional interactions between papillomavirus E1 and E2 proteins. J. Virol., 1997, 71(5), 3853-3863. doi: 10.1128/jvi.71.5.3853-3863.1997 PMID: 9094661
  34. Yoakim, C.; Ogilvie, W.W.; Goudreau, N.; Naud, J.; Haché, B.; O’Meara, J.A.; Cordingley, M.G.; Archambault, J.; White, P.W. Discovery of the first series of inhibitors of human papillomavirus type 11: inhibition of the assembly of the E1–E2–Origin DNA complex. Bioorg. Med. Chem. Lett., 2003, 13(15), 2539-2541. doi: 10.1016/S0960-894X(03)00510-9 PMID: 12852961
  35. Davidson, W.; McGibbon, G.A.; White, P.W.; Yoakim, C.; Hopkins, J.L.; Guse, I.; Hambly, D.M.; Frego, L.; Ogilvie, W.W.; Lavallée, P.; Archambault, J. Characterization of the binding site for inhibitors of the HPV11 E1-E2 protein interaction on the E2 transactivation domain by photoaffinity labeling and mass spectrometry. Anal. Chem., 2004, 76(7), 2095-2102. doi: 10.1021/ac035335o PMID: 15053675
  36. Goudreau, N.; Cameron, D.R.; Déziel, R.; Haché, B.; Jakalian, A.; Malenfant, E.; Naud, J.; Ogilvie, W.W.; O’Meara, J.; White, P.W.; Yoakim, C. Optimization and determination of the absolute configuration of a series of potent inhibitors of human papillomavirus type-11 E1–E2 protein–protein interaction: A combined medicinal chemistry, NMR and computational chemistry approach. Bioorg. Med. Chem., 2007, 15(7), 2690-2700. doi: 10.1016/j.bmc.2007.01.036 PMID: 17306550
  37. Wang, Y.; Coulombe, R.; Cameron, D.R.; Thauvette, L.; Massariol, M.J.; Amon, L.M.; Fink, D.; Titolo, S.; Welchner, E.; Yoakim, C.; Archambault, J.; White, P.W. Crystal structure of the E2 transactivation domain of human papillomavirus type 11 bound to a protein interaction inhibitor. J. Biol. Chem., 2004, 279(8), 6976-6985. doi: 10.1074/jbc.M311376200 PMID: 14634007
  38. Moggio, Y.; Legnani, L.; Bovio, B.; Memeo, M.G.; Quadrelli, P. Synthesis of novel anthracene derivatives of isoxazolino-carbocyclic nucleoside analogues. Tetrahedron, 2012, 68(5), 1384-1392. doi: 10.1016/j.tet.2011.12.047
  39. Memeo, M.G.; Lapolla, F.; Maga, G.; Quadrelli, P. Synthesis and antiviral activity of anthracene derivatives of isoxazolino-carbocyclic nucleoside analogues. Tetrahedron Lett., 2015, 56(15), 1986-1990. doi: 10.1016/j.tetlet.2015.02.114
  40. Al-Saad, D.; Memeo, M.G.; Quadrelli, P. Pericyclic reactions for anti-HPV antivirals: Unconventional nucleoside analogue synthesis via nitrosocarbonyl chemistry. ChemistrySelect, 2017, 2(32), 10340-10346. doi: 10.1002/slct.201702059
  41. Dalya, A-S.; Misal, G.M.; Paolo, Q. Pericyclic reactions for antivirals: Synthesis of 4-bromo-N-(1R*,4S*)-4-hydroxy-2-cyclohexen-1-yl-2-thiazolecarboxamide. Lett. Org. Chem., 2016, 13(10), 757-763.
  42. Hajduk, P.J.; Dinges, J.; Miknis, G.F.; Merlock, M.; Middleton, T.; Kempf, D.J.; Egan, D.A.; Walter, K.A.; Robins, T.S.; Shuker, S.B.; Holzman, T.F.; Fesik, S.W. NMR-based discovery of lead inhibitors that block DNA binding of the human papillomavirus E2 protein. J. Med. Chem., 1997, 40(20), 3144-3150. doi: 10.1021/jm9703404 PMID: 9379433
  43. Yanofsky, V.R.; Patel, R.V.; Goldenberg, G. Genital warts: a comprehensive review. J. Clin. Aesthet. Dermatol., 2012, 5(6), 25-36. PMID: 22768354
  44. Saitoh, T.; Kuramochi, K.; Imai, T.; Takata, K.; Takehara, M.; Kobayashi, S.; Sakaguchi, K.; Sugawara, F. Podophyllotoxin directly binds a hinge domain in E2 of HPV and inhibits an E2/E7 interaction in vitro. Bioorg. Med. Chem., 2008, 16(10), 5815-5825. doi: 10.1016/j.bmc.2008.03.053 PMID: 18396405
  45. de Planell-Mas, E.; Martínez-Garriga, B.; Zalacain, A.J.; Vinuesa, T.; Viñas, M. Human papillomaviruses genotyping in plantar warts. J. Med. Virol., 2017, 89(5), 902-907. doi: 10.1002/jmv.24713 PMID: 27736001
  46. Gammoh, N.; Isaacson, E.; Tomaić, V.; Jackson, D.J.; Doorbar, J.; Banks, L. Inhibition of HPV-16 E7 oncogenic activity by HPV-16 E2. Oncogene, 2009, 28(23), 2299-2304. doi: 10.1038/onc.2009.78 PMID: 19421149
  47. Wang, X.; Helfer, C.M.; Pancholi, N.; Bradner, J.E.; You, J. Recruitment of Brd4 to the human papillomavirus type 16 DNA replication complex is essential for replication of viral DNA. J. Virol., 2013, 87(7), 3871-3884. doi: 10.1128/JVI.03068-12 PMID: 23365439
  48. Helfer, C.M.; Wang, R.; You, J. Analysis of the papillomavirus E2 and bromodomain protein Brd4 interaction using bimolecular fluorescence complementation. PLoS One, 2013, 8(10), e77994. doi: 10.1371/journal.pone.0077994 PMID: 24205059
  49. Helfer, C.; Yan, J.; You, J. The cellular bromodomain protein Brd4 has multiple functions in E2-mediated papillomavirus transcription activation. Viruses, 2014, 6(8), 3228-3249. doi: 10.3390/v6083228 PMID: 25140737
  50. Morse, M.A.; Balogh, K.K.; Brendle, S.A.; Campbell, C.A.; Chen, M.X.; Furze, R.C.; Harada, I.L.; Holyer, I.D.; Kumar, U.; Lee, K.; Prinjha, R.K.; Rüdiger, M.; Seal, J.T.; Taylor, S.; Witherington, J.; Christensen, N.D. BET bromodomain inhibitors show anti-papillomavirus activity in vitro and block CRPV wart growth in vivo. Antiviral Res., 2018, 154, 158-165. doi: 10.1016/j.antiviral.2018.03.012 PMID: 29653131
  51. Doorbar, J. The E4 protein; structure, function and patterns of expression. Virology, 2013, 445(1-2), 80-98. doi: 10.1016/j.virol.2013.07.008 PMID: 24016539
  52. Davy, C.E.; Jackson, D.J.; Wang, Q.; Raj, K.; Masterson, P.J.; Fenner, N.F.; Southern, S.; Cuthill, S.; Millar, J.B.A.; Doorbar, J. Identification of a G(2) arrest domain in the E1 wedge E4 protein of human papillomavirus type 16. J. Virol., 2002, 76(19), 9806-9818. doi: 10.1128/JVI.76.19.9806-9818.2002 PMID: 12208959
  53. Piirsoo, A.; Piirsoo, M.; Kala, M.; Sankovski, E.; Lototskaja, E.; Levin, V.; Salvi, M.; Ustav, M. Activity of CK2α protein kinase is required for efficient replication of some HPV types. PLoS Pathog., 2019, 15(5), e1007788. doi: 10.1371/journal.ppat.1007788 PMID: 31091289
  54. Wolfgang, G.H.I.; Shibata, R.; Wang, J.; Ray, A.S.; Wu, S.; Doerrfler, E.; Reiser, H.; Lee, W.A.; Birkus, G.; Christensen, N.D.; Andrei, G.; Snoeck, R. GS-9191 is a novel topical prodrug of the nucleotide analog 9-(2-phosphonylmethoxyethyl)guanine with antiproliferative activity and possible utility in the treatment of human papillomavirus lesions. Antimicrob. Agents Chemother., 2009, 53(7), 2777-2784. doi: 10.1128/AAC.00103-09 PMID: 19398642
  55. Safety and Effectiveness Study of an Experimental Topical Ointment (GS-9191) for the Treatment of Genital Warts. NCT00499967, 2009.
  56. Valiaeva, N.; Trahan, J.; Aldern, K.A.; Beadle, J.R.; Hostetler, K.Y. Antiproliferative effects of octadecyloxyethyl 9-2-(phosphonomethoxy)ethylguanine against Me-180 human cervical cancer cells in vitro and in vivo. Chemotherapy, 2010, 56(1), 54-59. doi: 10.1159/000292582 PMID: 20215748
  57. Beadle, J.R.; Valiaeva, N.; Yang, G.; Yu, J.H.; Broker, T.R.; Aldern, K.A.; Harden, E.A.; Keith, K.A.; Prichard, M.N.; Hartman, T.; Buckheit, R.W., Jr; Chow, L.T.; Hostetler, K.Y. Synthesis and antiviral evaluation of octadecyloxyethyl benzyl 9-(2-phosphonomethoxy)ethyl guanine (ODE-Bn-PMEG), a potent inhibitor of transient HPV DNA amplification. J. Med. Chem., 2016, 59(23), 10470-10478. doi: 10.1021/acs.jmedchem.6b00659 PMID: 27933957
  58. Banerjee, N.S.; Wang, H.K.; Beadle, J.R.; Hostetler, K.Y.; Chow, L.T. Evaluation of ODE-Bn-PMEG, an acyclic nucleoside phosphonate prodrug, as an antiviral against productive HPV infection in 3D organotypic epithelial cultures. Antiviral Res., 2018, 150, 164-173. doi: 10.1016/j.antiviral.2017.12.013 PMID: 29287913
  59. Study of Topical ABI-1968 in Subjects with Precancerous Anal Lesions Resulting from Human Papillomavirus (HPV) Infection NCT03202992 2017.
  60. Study of Topical ABI-1968 in Subjects with Precancerous Cervical Lesions from Human Papillomavirus (HPV) Infection. NCT03697226, 2018.
  61. Study of Topical ABI-1968 in Subjects with Precancerous Cervical Lesions from Human Papillomavirus (HPV) Infection NCT03239223 2017.
  62. Study of Topical ABI-1968 in Subjects with Precancerous Anal Lesions Resulting from Human Papillomavirus (HPV) Infection NCT03677960 2018.
  63. Toots, M.; Ustav, M., Jr; Männik, A.; Mumm, K.; Tämm, K.; Tamm, T.; Ustav, E.; Ustav, M. Identification of several high-risk HPV inhibitors and drug targets with a novel high-throughput screening assay. PLoS Pathog., 2017, 13(2), e1006168. doi: 10.1371/journal.ppat.1006168 PMID: 28182794
  64. Estêvão, D.; Costa, N.R.; Gil da Costa, R.M.; Medeiros, R. Hallmarks of HPV carcinogenesis: The role of E6, E7 and E5 oncoproteins in cellular malignancy. Gene Regulatory Mechanisms., 2019, 1862(2), 153-162. PMID: 30707946
  65. Buitrago-Pérez, A.; Garaulet, G.; Vázquez-Carballo, A.; Paramio, J.; García-Escudero, R. Molecular signature of HPV-induced carcinogenesis: pRb, p53 and gene expression profiling. Curr. Genomics, 2009, 10(1), 26-34. doi: 10.2174/138920209787581235 PMID: 19721808
  66. Giacinti, C.; Giordano, A. RB and cell cycle progression. Oncogene, 2006, 25(38), 5220-5227. doi: 10.1038/sj.onc.1209615 PMID: 16936740
  67. Tommasino, M.; Crawford, L. Human papillomavirus E6 and E7: Proteins which deregulate the cell cycle. BioEssays, 1995, 17(6), 509-518. doi: 10.1002/bies.950170607 PMID: 7575492
  68. Sak, K. Characteristic features of cytotoxic activity of flavonoids on human cervical cancer cells. Asian Pac. J. Cancer Prev., 2014, 15(19), 8007-8018. doi: 10.7314/APJCP.2014.15.19.8007 PMID: 25338977
  69. Moga, M.; Dimienescu, O.; Arvatescu, C.; Mironescu, A.; Dracea, L.; Ples, L. The role of natural polyphenols in the prevention and treatment of cervical cancer—An overview. Molecules, 2016, 21(8), 1055. doi: 10.3390/molecules21081055 PMID: 27548122
  70. Yuan, C.H.; Filippova, M.; Tungteakkhun, S.S.; Duerksen-Hughes, P.J.; Krstenansky, J.L. Small molecule inhibitors of the HPV16-E6 interaction with caspase 8. Bioorg. Med. Chem. Lett., 2012, 22(5), 2125-2129. doi: 10.1016/j.bmcl.2011.12.145 PMID: 22300659
  71. Cherry, J.J.; Rietz, A.; Malinkevich, A.; Liu, Y.; Xie, M.; Bartolowits, M.; Davisson, V.J.; Baleja, J.D.; Androphy, E.J. Structure based identification and characterization of flavonoids that disrupt human papillomavirus-16 E6 function. PLoS One, 2013, 8(12), e84506. doi: 10.1371/journal.pone.0084506 PMID: 24376816
  72. Huibregtse, J.M.; Scheffner, M.; Howley, P.M. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J., 1991, 10(13), 4129-4135. doi: 10.1002/j.1460-2075.1991.tb04990.x PMID: 1661671
  73. Rietz, A.; Petrov, D.P.; Bartolowits, M.; DeSmet, M.; Davisson, V.J.; Androphy, E.J. Molecular probing of the HPV-16 E6 protein alpha helix binding groove with small molecule inhibitors. PLoS One, 2016, 11(2), e0149845. doi: 10.1371/journal.pone.0149845 PMID: 26915086
  74. Clemente-Soto, A.F.; Salas-Vidal, E.; Milan-Pacheco, C.; Sánchez-Carranza, J.N.; Peralta-Zaragoza, O.; González-Maya, L. Quercetin induces G2 phase arrest and apoptosis with the activation of p53 in an E6 expression independent manner in HPV positive human cervical cancer derived cells. Mol. Med. Rep., 2019, 19(3), 2097-2106. doi: 10.3892/mmr.2019.9850 PMID: 30664221
  75. Yuan, C-H.; Filippova, M.; Krstenansky, J.L.; Duerksen-Hughes, P.J. Flavonol and imidazole derivatives block HPV16 E6 activities and reactivate apoptotic pathways in HPV+ cells. Cell Death Dis., 2016, 7(1), e2060. doi: 10.1038/cddis.2015.391 PMID: 26794656
  76. Malecka, K.A.; Fera, D.; Schultz, D.C.; Hodawadekar, S.; Reichman, M.; Donover, P.S.; Murphy, M.E.; Marmorstein, R. Identification and characterization of small molecule human papillomavirus E6 inhibitors. ACS Chem. Biol., 2014, 9(7), 1603-1612. doi: 10.1021/cb500229d PMID: 24854633
  77. Bisol, .; Campos, P.S.; Lamers, M.L. Flavonoids as anticancer therapies: A systematic review of clinical trials. Phytother. Res., 2020, 34(3), 568-582. doi: 10.1002/ptr.6551 PMID: 31752046
  78. Ahn, W-S.; Yoo, J.; Huh, S-W.; Kim, C-K.; Lee, J-M.; Namkoong, S-E.; Bae, S-M.; Lee, I.P. Protective effects of green tea extracts (polyphenon E and EGCG) on human cervical lesions. Eur. J. Cancer Prev., 2003, 12(5), 383-390. doi: 10.1097/00008469-200310000-00007 PMID: 14512803
  79. Ahn, W.S.; Huh, S.W.; Bae, S.M.; Lee, I.P.; Lee, J.M.; Namkoong, S.E.; Kim, C.K.; Sin, J.I. A major constituent of green tea, EGCG, inhibits the growth of a human cervical cancer cell line, CaSki cells, through apoptosis, G(1) arrest, and regulation of gene expression. DNA Cell Biol., 2003, 22(3), 217-224. doi: 10.1089/104454903321655846 PMID: 12804120
  80. Qiao, Y.; Cao, J.; Xie, L.; Shi, X. Cell growth inhibition and gene expression regulation by (-)-epigallocatechin-3-gallate in human cervical cancer cells. Arch. Pharm. Res., 2009, 32(9), 1309-1315. doi: 10.1007/s12272-009-1917-3 PMID: 19784588
  81. Wang, Y.Q.; Lu, J.L.; Liang, Y.R.; Li, Q.S. Suppressive effects of EGCG on cervical cancer. Molecules, 2018, 23(9), 2334. doi: 10.3390/molecules23092334 PMID: 30213130
  82. He, L.; Zhang, E.; Shi, J.; Li, X.; Zhou, K.; Zhang, Q.; Le, A.D.; Tang, X. (−)-Epigallocatechin-3-gallate inhibits human papillomavirus (HPV)-16 oncoprotein-induced angiogenesis in non-small cell lung cancer cells by targeting HIF-1α. Cancer Chemother. Pharmacol., 2013, 71(3), 713-725. doi: 10.1007/s00280-012-2063-z PMID: 23292117
  83. Jun, J.C.; Rathore, A.; Younas, H.; Gilkes, D.; Polotsky, V.Y. Hypoxia-inducible factors and cancer. Curr. Sleep Med. Rep., 2017, 3(1), 1-10. doi: 10.1007/s40675-017-0062-7 PMID: 28944164
  84. Tang, X.; Zhang, Q.; Nishitani, J.; Brown, J.; Shi, S.; Le, A.D. Overexpression of human papillomavirus type 16 oncoproteins enhances hypoxia-inducible factor 1 α protein accumulation and vascular endothelial growth factor expression in human cervical carcinoma cells. Clin. Cancer Res., 2007, 13(9), 2568-2576. doi: 10.1158/1078-0432.CCR-06-2704 PMID: 17473185
  85. Natarajan, T.; Anandhi, M.; Aiswarya, D.; Ramkumar, R.; Kumar, S.; Perumal, P. Idaein chloride induced p53 dependent apoptosis in cervical cancer cells through inhibition of viral oncoproteins. Biochimie, 2016, 121, 13-20. doi: 10.1016/j.biochi.2015.11.008 PMID: 26586108
  86. Elbendary, A.A.; Cirisano, F.D.; Evans, A.C., Jr; Davis, P.L.; Iglehart, J.D.; Marks, J.R.; Berchuck, A. Relationship between p21 expression and mutation of the p53 tumor suppressor gene in normal and malignant ovarian epithelial cells. Clin. Cancer Res., 1996, 2(9), 1571-1575. PMID: 9816335
  87. Chatterjee, K.; AlSharif, D.; Mazza, C.; Syar, P.; Al Sharif, M.; Fata, J. Resveratrol and pterostilbene exhibit anticancer properties involving the downregulation of HPV oncoprotein E6 in cervical cancer cells. Nutrients, 2018, 10(2), 243. doi: 10.3390/nu10020243 PMID: 29485619
  88. Chatterjee, K.; Mukherjee, S.; Vanmanen, J.; Banerjee, P.; Fata, J.E. Dietary polyphenols, resveratrol and pterostilbene exhibit antitumor activity on an HPV E6-positive cervical cancer model: An in vitro and in vivo analysis. Front. Oncol., 2019, 9, 352. doi: 10.3389/fonc.2019.00352 PMID: 31143704
  89. Sun, X.; Fu, P.; Xie, L.; Chai, S.; Xu, Q.; Zeng, L.; Wang, X.; Jiang, N.; Sang, M. Resveratrol inhibits the progression of cervical cancer by suppressing the transcription and expression of HPV E6 and E7 genes. Int. J. Mol. Med., 2020, 47(1), 335-345. doi: 10.3892/ijmm.2020.4789 PMID: 33236130
  90. Flowers, L. Topical Curcumin for Precancer Cervical Lesions. NCT02944578, 2016. https://clinicaltrials.gov/ct2/show/NCT02944578
  91. Flowers, L. Topical Curcumin for HPV Related Cervical Disease. NCT04266275, 2020. https://clinicaltrials.gov/ct2/show/NCT04266275
  92. Teymouri, M.; Pirro, M.; Johnston, T.P.; Sahebkar, A. Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. Biofactors, 2017, 43(3), 331-346. doi: 10.1002/biof.1344 PMID: 27896883
  93. Divya, C.S.; Pillai, M.R. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Mol. Carcinog., 2006, 45(5), 320-332. doi: 10.1002/mc.20170 PMID: 16526022
  94. Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem., 2017, 60(5), 1620-1637. doi: 10.1021/acs.jmedchem.6b00975 PMID: 28074653
  95. Rastogi, N.; Duggal, S.; Singh, S.K.; Porwal, K.; Srivastava, V.K.; Maurya, R.; Bhatt, M.L.B.; Mishra, D.P. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-Gingerol in cervical cancer cells. Oncotarget, 2015, 6(41), 43310-43325. doi: 10.18632/oncotarget.6383 PMID: 26621832
  96. Zivarpour, P.; Nikkhah, E.; Maleki Dana, P.; Asemi, Z.; Hallajzadeh, J. Molecular and biological functions of gingerol as a natural effective therapeutic drug for cervical cancer. J. Ovarian Res., 2021, 14(1), 43. doi: 10.1186/s13048-021-00789-x PMID: 33706784
  97. Kashyap, V.K.; Dan, N.; Chauhan, N.; Wang, Q.; Setua, S.; Nagesh, P.K.B.; Malik, S.; Batra, V.; Yallapu, M.M.; Miller, D.D.; Li, W.; Hafeez, B.B.; Jaggi, M.; Chauhan, S.C. VERU-111 suppresses tumor growth and metastatic phenotypes of cervical cancer cells through the activation of p53 signaling pathway. Cancer Lett., 2020, 470, 64-74. doi: 10.1016/j.canlet.2019.11.035 PMID: 31809801
  98. Hassan, A.Y.; El-Sebaey, S.A.; El Deeb, M.A.; Elzoghbi, M.S. Potential antiviral and anticancer effect of imidazoles and bridgehead imidazoles generated by HPV-Induced cervical carcinomas via reactivating the P53/pRb pathway and inhibition of CA IX. J. Mol. Struct., 2021, 1230, 129865. doi: 10.1016/j.molstruc.2020.129865
  99. Delgado, G.; Sulbaran, M.E.; Mora, A.J. Synthesis, crystal structure and hydrogen-bonding patterns in rac-N-acetyl-2-thiohydantoin-leucine. Int. J. Mat. Chem., 2013, 3(1), 1-4.
  100. Yim, E.K.; Lee, M.J.; Lee, K.H.; Um, S.J.; Park, J.S. Antiproliferative and antiviral mechanisms of ursolic acid and dexamethasone in cervical carcinoma cell lines. Int. J. Gynecol. Cancer, 2006, 16(6), 2023-2031. doi: 10.1111/j.1525-1438.2006.00726.x PMID: 17177841
  101. Paul, P.; Rajendran, S.K.; Peuhu, E.; Alshatwi, A.A.; Akbarsha, M.A.; Hietanen, S.; Eriksson, J.E. Novel action modality of the diterpenoid anisomelic acid causes depletion of E6 and E7 viral oncoproteins in HPV-transformed cervical carcinoma cells. Biochem. Pharmacol., 2014, 89(2), 171-184. doi: 10.1016/j.bcp.2014.02.011 PMID: 24565908
  102. Kuida, K. Caspase-9. Int. J. Biochem. Cell Biol., 2000, 32(2), 121-124. doi: 10.1016/S1357-2725(99)00024-2 PMID: 10687948
  103. Senthilkumar, R.; Brusentsev, Y.; Paul, P.; Marimuthu, P.; Cheng, F.; Eklund, P.C.; Eriksson, J.E. Synthesis and evaluation of anisomelic acid-like compounds for the treatment of HPV-mediated carcinomas. Sci. Rep., 2019, 9(1), 20295. doi: 10.1038/s41598-019-56410-1 PMID: 31889069
  104. Rocha, S.M.M.; Cardoso, P.C.S.; Bahia, M.O.; Pessoa, C.Ó.; Soares, P.C.; Rocha, S.M.; Burbano, R.M.R.; Rocha, C.A.M. Effect of the kaurenoic acid on genotoxicity and cell cycle progression in cervical cancer cells lines. Toxicol. In Vitro, 2019, 57, 126-131. doi: 10.1016/j.tiv.2019.02.022 PMID: 30822460
  105. Chitsike, L.; Yuan, C.H.; Roy, A.; Boyle, K.; Duerksen-Hughes, P.J. A high-content AlphaScreen™ identifies E6-specific small molecule inhibitors as potential therapeutics for HPV+ head and neck squamous cell carcinomas. Oncotarget, 2021, 12(6), 549-561. doi: 10.18632/oncotarget.27908 PMID: 33796223
  106. Han, Q.B.; Yang, L.; Wang, Y.L.; Qiao, C.F.; Song, J.Z.; Sun, H.D.; Xu, H.X. A pair of novel cytotoxic polyprenylated xanthone epimers from gamboges. Chem. Biodivers., 2006, 3(1), 101-105. doi: 10.1002/cbdv.200690000 PMID: 17193222
  107. Munagala, R.; Kausar, H.; Munjal, C.; Gupta, R.C. Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis, 2011, 32(11), 1697-1705. doi: 10.1093/carcin/bgr192 PMID: 21859835
  108. Caicedo-Granados, E.; Lin, R.; Fujisawa, C.; Yueh, B.; Sangwan, V.; Saluja, A. Wild-type p53 reactivation by small-molecule Minnelide™ in human papillomavirus (HPV)-positive head and neck squamous cell carcinoma. Oral Oncol., 2014, 50(12), 1149-1156. doi: 10.1016/j.oraloncology.2014.09.013 PMID: 25311433
  109. Fang, Zy.; Zhang, M. Liu J-n, Zhao X, Zhang Y-q, Fang L. Tanshinone IIA: A review of its anticancer effects. Front. Pharmacol., 2021, 11(2189)
  110. Munagala, R.; Aqil, F.; Jeyabalan, J.; Gupta, R.C. Tanshinone IIA inhibits viral oncogene expression leading to apoptosis and inhibition of cervical cancer. Cancer Lett., 2015, 356(2)(2, Part B), 536-546. doi: 10.1016/j.canlet.2014.09.037 PMID: 25304375
  111. Li, M.; Wang, G.; Zhang, R.; Duan, S.; Chen, J. Tanshinone IIA inhibits proliferation and activates apoptosis in C4-1 cervical carcinoma cells in vitro. Biotechnol. Biotechnol. Equip., 2019, 33(1), 1599-1607. doi: 10.1080/13102818.2019.1677175
  112. Mahata, S.; Bharti, A.C.; Shukla, S.; Tyagi, A.; Husain, S.A.; Das, B.C. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells. Mol. Cancer, 2011, 10(1), 39. doi: 10.1186/1476-4598-10-39 PMID: 21496227
  113. Shaulian, E.; Karin, M. AP-1 in cell proliferation and survival. Oncogene, 2001, 20(19), 2390-2400. doi: 10.1038/sj.onc.1204383 PMID: 11402335
  114. Saha, S.K.; Khuda-Bukhsh, A.R. Berberine alters epigenetic modifications, disrupts microtubule network, and modulates HPV-18 E6–E7 oncoproteins by targeting p53 in cervical cancer cell HeLa: A mechanistic study including molecular docking. Eur. J. Pharmacol., 2014, 744, 132-146. doi: 10.1016/j.ejphar.2014.09.048 PMID: 25448308
  115. Wang, Y.; Li, X.; Song, S.; Wu, J. Development of basal-like HaCaT keratinocytes containing the genome of human papillomavirus (HPV) type 11 for screening of anti-HPV effects. SLAS Discov., 2014, 19(8), 1154-1163. doi: 10.1177/1087057114536987 PMID: 24874507
  116. Mortazavi, H.; Nikfar, B.; Esmaeili, S.A.; Rafieenia, F.; Saburi, E.; Chaichian, S.; Heidari Gorji, M.A.; Momtazi-Borojeni, A.A. Potential cytotoxic and anti-metastatic effects of berberine on gynaecological cancers with drug-associated resistance. Eur. J. Med. Chem., 2020, 187, 111951. doi: 10.1016/j.ejmech.2019.111951 PMID: 31821990
  117. Dasari, S.; Bakthavachalam, V.; Chinnapaka, S.; Venkatesan, R.; Samy, A.L.P.A.; Munirathinam, G. Neferine, an alkaloid from lotus seed embryo targets HELA and SIHA cervical cancer cells via pro‐oxidant anticancer mechanism. Phytother. Res., 2020, 34(9), 2366-2384. doi: 10.1002/ptr.6687 PMID: 32364634
  118. Beerheide, W.; Bernard, H.U.; Tan, Y.J.; Ganesan, A.; Rice, W.G.; Ting, A.E. Potential drugs against cervical cancer: zinc-ejecting inhibitors of the human papillomavirus type 16 E6 oncoprotein. J. Natl. Cancer Inst., 1999, 91(14), 1211-1220. doi: 10.1093/jnci/91.14.1211 PMID: 10413422
  119. Beerheide, W.; Sim, M.M.; Tan, Y.J.; Bernard, H.U.; Ting, A.E. Inactivation of the human papillomavirus-16 e6 oncoprotein by organic disulfides. Bioorg. Med. Chem., 2000, 8(11), 2549-2560. doi: 10.1016/S0968-0896(00)00193-0 PMID: 11092540
  120. Fera, D.; Schultz, D.C.; Hodawadekar, S.; Reichman, M.; Donover, P.S.; Melvin, J.; Troutman, S.; Kissil, J.L.; Huryn, D.M.; Marmorstein, R. Identification and characterization of small molecule antagonists of pRb inactivation by viral oncoproteins. Chem. Biol., 2012, 19(4), 518-528. doi: 10.1016/j.chembiol.2012.03.007 PMID: 22520758
  121. Zhao, C.Y.; Szekely, L.; Bao, W.; Selivanova, G. Rescue of p53 function by small-molecule RITA in cervical carcinoma by blocking E6-mediated degradation. Cancer Res., 2010, 70(8), 3372-3381. doi: 10.1158/0008-5472.CAN-09-2787 PMID: 20395210
  122. Singh, M.; Modi, A.; Narayan, G.; Singh, S.K. Benzothiazole derivatives bearing amide moiety. Anticancer Drugs, 2016, 27(6), 519-532. doi: 10.1097/CAD.0000000000000357 PMID: 26945135
  123. Modi, A.; Singh, M.; Gutti, G.; Shanker, O.R.; Singh, V.K.; Singh, S.; Singh, S.K.; Pradhan, S.; Narayan, G. Benzothiazole derivative bearing amide moiety induces p53-mediated apoptosis in HPV16 positive cervical cancer cells. Invest. New Drugs, 2020, 38(4), 934-945. doi: 10.1007/s10637-019-00848-7 PMID: 31432292
  124. Celegato, M.; Messa, L.; Goracci, L.; Mercorelli, B.; Bertagnin, C.; Spyrakis, F.; Suarez, I.; Cousido-Siah, A.; Travé, G.; Banks, L.; Cruciani, G.; Palù, G.; Loregian, A. A novel small-molecule inhibitor of the human papillomavirus E6-p53 interaction that reactivates p53 function and blocks cancer cells growth. Cancer Lett., 2020, 470, 115-125. doi: 10.1016/j.canlet.2019.10.046 PMID: 31693922
  125. Hietanen, S.; Lain, S.; Krausz, E.; Blattner, C.; Lane, D.P. Activation of p53 in cervical carcinoma cells by small molecules. Proc. Natl. Acad. Sci. USA, 2000, 97(15), 8501-8506. doi: 10.1073/pnas.97.15.8501 PMID: 10900010
  126. Zhang, W.; Che, Q.; Tan, H.; Qi, X.; Li, J.; Li, D.; Gu, Q.; Zhu, T.; Liu, M. Marine Streptomyces sp. derived antimycin analogues suppress HeLa cells via depletion HPV E6/E7 mediated by ROS-dependent ubiquitin–proteasome system. Sci. Rep., 2017, 7(1), 42180. doi: 10.1038/srep42180 PMID: 28176847
  127. Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchiya, H.; Takahashi, Y.; Asuma, R. A new alkaloid AM-2282 of Streptomyces origin taxonomy, fermentation, isolation and preliminary characterization. J. Antibiot. (Tokyo), 1977, 30(4), 275-282. doi: 10.7164/antibiotics.30.275 PMID: 863788
  128. Funato, N.; Takayanagi, H.; Konda, Y.; Toda, Y.; Harigaya, Y.; Iwai, Y.; Ōmura, S. Absolute configuration of staurosporine by X-Ray analysis. Tetrahedron Lett., 1994, 35(8), 1251-1254. doi: 10.1016/0040-4039(94)88036-0
  129. Bernard, B.; Fest, T.; Prétet, J-L.; Mougin, C. Staurosporine-induced apoptosis of HPV positive and negative human cervical cancer cells from different points in the cell cycle. Cell Death Differ., 2001, 8(3), 234-244. doi: 10.1038/sj.cdd.4400796 PMID: 11319606
  130. Bernard, B.; Prétet, J.L.; Charlot, J.F.; Mougin, C. Human papillomaviruses type 16+ and 18+ cervical carcinoma cells are sensitive to staurosporine-mediated apoptosis. Biol. Cell, 2003, 95(1), 17-26. doi: 10.1016/S0248-4900(02)01220-0 PMID: 12753950
  131. Decrion-Barthod, A-Z.; Bosset, M.; Plissonnier, M-L.; Marchini, A.; Nicolier, M.; Launay, S.; Prétet, J.L.; Rommelaere, J.; Mougin, C. Sodium butyrate with UCN-01 has marked antitumour activity against cervical cancer cells. Anticancer Res., 2010, 30(10), 4049-4061. PMID: 21036719
  132. Singh, S.B.; Zink, D.L.; Polishook, J.D.; Dombrowski, A.W.; Darkin-Rattray, S.J.; Schmatz, D.M.; Goetz, M.A. Apicidins: Novel cyclic tetrapeptides as coccidiostats and antimalarial agents from Fusarium pallidoroseum. Tetrahedron Lett., 1996, 37(45), 8077-8080. doi: 10.1016/0040-4039(96)01844-8
  133. Łuczak, M.W.; Jagodzinski, P.P. Apicidin down-regulates human papillomavirus type 16 E6 and E7 transcripts and proteins in SiHa cervical cancer cells. Cancer Lett., 2008, 272(1), 53-60. doi: 10.1016/j.canlet.2008.06.030 PMID: 18687520
  134. Baleja, J.D.; Cherry, J.J.; Liu, Z.; Gao, H.; Nicklaus, M.C.; Voigt, J.H.; Chen, J.J.; Androphy, E.J. Identification of inhibitors to papillomavirus type 16 E6 protein based on three-dimensional structures of interacting proteins. Antiviral Res., 2006, 72(1), 49-59. doi: 10.1016/j.antiviral.2006.03.014 PMID: 16690141
  135. Baylin, S.B. DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol., 2005, 2(S1)(Suppl. 1), S4-S11. doi: 10.1038/ncponc0354 PMID: 16341240
  136. Kalantari, M.; Lee, D.; Calleja-Macias, I.E.; Lambert, P.F.; Bernard, H.U. Effects of cellular differentiation, chromosomal integration and 5-aza-2′-deoxycytidine treatment on human papillomavirus-16 DNA methylation in cultured cell lines. Virology, 2008, 374(2), 292-303. doi: 10.1016/j.virol.2007.12.016 PMID: 18242658
  137. Zhang, C.; Deng, Z.; Pan, X.; Uehara, T.; Suzuki, M.; Xie, M. Effects of methylation status of CpG sites within the HPV16 long control region on HPV16-positive head and neck cancer cells. PLoS One, 2015, 10(10), e0141245. doi: 10.1371/journal.pone.0141245 PMID: 26509736
  138. Stich, M.; Ganss, L.; Puschhof, J.; Prigge, E.S.; Reuschenbach, M.; Guiterrez, A.; Vinokurova, S.; von Knebel Doeberitz, M. 5-aza-2′-deoxycytidine (DAC) treatment downregulates the HPV E6 and E7 oncogene expression and blocks neoplastic growth of HPV-associated cancer cells. Oncotarget, 2017, 8(32), 52104-52117. doi: 10.18632/oncotarget.10631 PMID: 28881717
  139. Jung, H.M.; Phillips, B.L.; Chan, E.K.L. miR-375 activates p21 and suppresses telomerase activity by coordinately regulating HPV E6/E7, E6AP, CIP2A, and 14-3-3ζ. Mol. Cancer, 2014, 13(1), 80. doi: 10.1186/1476-4598-13-80 PMID: 24708873
  140. Morel, A.; Baguet, A.; Perrard, J.; Demeret, C.; Jacquin, E.; Guenat, D.; Mougin, C.; Prétet, J.L. 5azadC treatment upregulates miR-375 level and represses HPV16 E6 expression. Oncotarget, 2017, 8(28), 46163-46176. doi: 10.18632/oncotarget.17575 PMID: 28521287
  141. Perrard, J.; Morel, A.; Meznad, K.; Paget-Bailly, P.; Dalstein, V.; Guenat, D.; Mourareau, C.; Clavel, C.; Fauconnet, S.; Baguet, A.; Mougin, C.; Pretet, J.L. DNA demethylation agent 5azadC downregulates HPV16 E6 expression in cervical cancer cell lines independently of TBX2 expression. Oncol. Lett., 2020, 19(1), 1074-1081. PMID: 31897221
  142. Debus, J. Decitabine Treatment in HPV-Induced Anogenital and Head and Neck Cancer Patients after Radiotherapy or as Novel Late Salvage (DERANO). NCT04252248, 2020.
  143. Burtness, B. 5-Azacytidine and/or Nivolumab in Resectable HPV-Associated HNSCC. NCT05317000, 2022.
  144. He, H.; Liu, X.; Wang, D.; Wang, Y.; Liu, L.; Zhou, H.; Luo, X.; Wang, N.; Ji, B.; Luo, Y.; Zhang, T. SAHA inhibits the transcription initiation of HPV18 E6/E7 genes in HeLa cervical cancer cells. Gene, 2014, 553(2), 98-104. doi: 10.1016/j.gene.2014.10.007 PMID: 25300249
  145. Finzer, P.; Krueger, A.; Stöhr, M.; Brenner, D.; Soto, U.; Kuntzen, C.; Krammer, P.H.; Rösl, F. HDAC inhibitors trigger apoptosis in HPV-positive cells by inducing the E2F–p73 pathway. Oncogene, 2004, 23(28), 4807-4817. doi: 10.1038/sj.onc.1207620 PMID: 15077164
  146. Messa, L.; Celegato, M.; Bertagnin, C.; Mercorelli, B.; Nannetti, G.; Palù, G.; Loregian, A. A quantitative LumiFluo assay to test inhibitory compounds blocking p53 degradation induced by human papillomavirus oncoprotein E6 in living cells. Sci. Rep., 2018, 8(1), 6020. doi: 10.1038/s41598-018-24470-4 PMID: 29662081
  147. Sheaffer, A.K.; Lee, M.S.; Qi, H.; Chaniewski, S.; Zheng, X.; Farr, G.A. A small molecule inhibitor selectively induces apoptosis in cells transformed by high risk human papilloma viruses. PloS one, 2016, 11(6), e0155909. doi: 10.1371/journal.pone.0155909
  148. Han, F.; Li, Y.; Lu, Q.; Ma, L.; Wang, H.; Jiang, J.; Li, Z.; Li, Y. 3-(2-Chloropropyl amide)-4-methoxy-N-phenylbenzamide inhibits expression of HPV oncogenes in human cervical cancer cell. Virol. J., 2017, 14(1), 145. doi: 10.1186/s12985-017-0806-5 PMID: 28754129
  149. Willems, E.; Dedobbeleer, M.; Digregorio, M.; Lombard, A.; Lumapat, P.N.; Rogister, B. The functional diversity of Aurora kinases: a comprehensive review. Cell Div., 2018, 13(1), 7. doi: 10.1186/s13008-018-0040-6 PMID: 30250494
  150. Vader, G.; Lens, S.M.A. The Aurora kinase family in cell division and cancer. Biochimica et Biophysica Acta (BBA). Rev. Can., 2008, 1786(1), 60-72.
  151. Gabrielli, B.; Bokhari, F.; Ranall, M.V.; Oo, Z.Y.; Stevenson, A.J.; Wang, W.; Murrell, M.; Shaikh, M.; Fallaha, S.; Clarke, D.; Kelly, M.; Sedelies, K.; Christensen, M.; McKee, S.; Leggatt, G.; Leo, P.; Skalamera, D.; Soyer, H.P.; Gonda, T.J.; McMillan, N.A.J. Aurora A is critical for survival in HPV-transformed cervical cancer. Mol. Cancer Ther., 2015, 14(12), 2753-2761. doi: 10.1158/1535-7163.MCT-15-0506 PMID: 26516156
  152. Alisertib and TAK-228 in Participants with Human Papilloma Virus (HPV) Associated Malignancies NCT02812056, 2016.
  153. Martin, D.; Fallaha, S.; Proctor, M.; Stevenson, A.; Perrin, L.; McMillan, N.; Gabrielli, B. Inhibition of aurora A and aurora B is required for the sensitivity of HPV-driven cervical cancers to aurora kinase inhibitors. Mol. Cancer Ther., 2017, 16(9), 1934-1941. doi: 10.1158/1535-7163.MCT-17-0159 PMID: 28522591
  154. Shaikh, M.H.; Idris, A.; Johnson, N.W.; Fallaha, S.; Clarke, D.T.W.; Martin, D.; Morgan, I.M.; Gabrielli, B.; McMillan, N.A.J. Aurora kinases are a novel therapeutic target for HPV-positive head and neck cancers. Oral Oncol., 2018, 86, 105-112. doi: 10.1016/j.oraloncology.2018.09.006 PMID: 30409290
  155. Yumol, J.; Gabrielli, B.; Tayyar, Y.; McMillan, N.A.; Idris, A. Smart drug combinations for cervical cancer: dual targeting of Bcl-2 family of proteins and aurora kinases. Am. J. Cancer Res., 2020, 10(10), 3406-3414. PMID: 33163279
  156. Banerjee, N.S.; Moore, D.; Parker, C.J.; Broker, T.R.; Chow, L.T. Targeting DNA damage response as a strategy to treat HPV infections. Int. J. Mol. Sci., 2019, 20(21), 5455. doi: 10.3390/ijms20215455 PMID: 31683862
  157. Bazzaro, M.; Anchoori, R.K.; Mudiam, M.K.R.; Issaenko, O.; Kumar, S.; Karanam, B.; Lin, Z.; Isaksson Vogel, R.; Gavioli, R.; Destro, F.; Ferretti, V.; Roden, R.B.S.; Khan, S.R. α,β-Unsaturated carbonyl system of chalcone-based derivatives is responsible for broad inhibition of proteasomal activity and preferential killing of human papilloma virus (HPV) positive cervical cancer cells. J. Med. Chem., 2011, 54(2), 449-456. doi: 10.1021/jm100589p PMID: 21186794
  158. Anchoori, R.K.; Karanam, B.; Peng, S.; Wang, J.W.; Jiang, R.; Tanno, T.; Orlowski, R.Z.; Matsui, W.; Zhao, M.; Rudek, M.A.; Hung, C.; Chen, X.; Walters, K.J.; Roden, R.B.S. A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell, 2013, 24(6), 791-805. doi: 10.1016/j.ccr.2013.11.001 PMID: 24332045
  159. Ren, B.; Ablise, M.; Yang, X.; Liao, B.; Yang, Z. Synthesis and biological evaluation of α-methyl-chalcone for anti-cervical cancer activity. Med. Chem. Res., 2017, 26(9), 1871-1883. doi: 10.1007/s00044-017-1891-0
  160. Li, C.; Johnson, D.E. Liberation of functional p53 by proteasome inhibition in human papilloma virus-positive head and neck squamous cell carcinoma cells promotes apoptosis and cell cycle arrest. Cell Cycle, 2013, 12(6), 923-934. doi: 10.4161/cc.23882 PMID: 23421999
  161. Kim, J.E.E.E.U.N.; Lee, J.I.I.N.; Jin, D.H.; Lee, W.J.; Park, G.B.; Kim, S.; Kim, Y.S.; Wu, T.C.; Hur, D.Y.; Kim, D. Sequential treatment of HPV E6 and E7-expressing TC-1 cells with bortezomib and celecoxib promotes apoptosis through p-p38 MAPK-mediated downregulation of cyclin D1 and CDK2. Oncol. Rep., 2014, 31(5), 2429-2437. doi: 10.3892/or.2014.3082 PMID: 24627094
  162. Study of Celebrex (Celecoxib) in Patients with Recurrent Respiratory Papillomatosis. NCT00571701, 2017.
  163. Palefsky, J. Biology of HPV in HIV Infection. Adv. Dent. Res., 2006, 19(1), 99-105. doi: 10.1177/154407370601900120 PMID: 16672559
  164. Hampson, L.; Kitchener, H.C.; Hampson, I.N. Specific HIV protease inhibitors inhibit the ability of HPV16 E6 to degrade p53 and selectively kill E6-dependent cervical carcinoma cells in vitro. Antivir. Ther., 2006, 11(6), 813-826. doi: 10.1177/135965350601100607 PMID: 17310826
  165. Kim, D.H.; Jarvis, R.M.; Xu, Y.; Oliver, A.W.; Allwood, J.W.; Hampson, L.; Hampson, I.N.; Goodacre, R. Combining metabolic fingerprinting and footprinting to understand the phenotypic response of HPV16 E6 expressing cervical carcinoma cells exposed to the HIV anti-viral drug lopinavir. Analyst (Lond.), 2010, 135(6), 1235-1244. doi: 10.1039/b923046g PMID: 20390218
  166. Kim, D.H.; Jarvis, R.M.; Allwood, J.W.; Batman, G.; Moore, R.E.; Marsden-Edwards, E.; Hampson, L.; Hampson, I.N.; Goodacre, R. Raman chemical mapping reveals site of action of HIV protease inhibitors in HPV16 E6 expressing cervical carcinoma cells. Anal. Bioanal. Chem., 2010, 398(7-8), 3051-3061. doi: 10.1007/s00216-010-4283-6 PMID: 20957472
  167. Batman, G.; Oliver, A.W.; Zehbe, I.; Richard, C.; Hampson, L.; Hampson, I.N. Lopinavir up-regulates expression of the antiviral protein ribonuclease L in human papillomavirus-positive cervical carcinoma cells. Antivir. Ther., 2011, 16(4), 515-525. doi: 10.3851/IMP1786 PMID: 21685539
  168. Brennan-Laun, S.E.; Ezelle, H.J.; Li, X.L.; Hassel, B.A. RNase-L control of cellular mRNAs: roles in biologic functions and mechanisms of substrate targeting. J. Interferon Cytokine Res., 2014, 34(4), 275-288. doi: 10.1089/jir.2013.0147 PMID: 24697205
  169. Zehbe, I.; Richard, C.; Lee, K.F.; Campbell, M.; Hampson, L.; Hampson, I.N. Lopinavir shows greater specificity than zinc finger ejecting compounds as a potential treatment for human papillomavirus-related lesions. Antiviral Res., 2011, 91(2), 161-166. doi: 10.1016/j.antiviral.2011.05.016 PMID: 21669231
  170. Park, S.; Auyeung, A.; Lee, D.L.; Lambert, P.F.; Carchman, E.H.; Sherer, N.M. HIV-1 protease inhibitors slow HPV16-driven cell proliferation through targeted depletion of viral E6 and E7 oncoproteins. Cancers (Basel), 2021, 13(5), 949. doi: 10.3390/cancers13050949 PMID: 33668328
  171. Bandiera, E.; Todeschini, P.; Romani, C.; Zanotti, L.; Erba, E.; Colmegna, B.; Bignotti, E.; Santin, A.D.; Sartori, E.; Odicino, F.E.; Pecorelli, S.; Tassi, R.A.; Ravaggi, A. The HIV-protease inhibitor saquinavir reduces proliferation, invasion and clonogenicity in cervical cancer cell lines. Oncol. Lett., 2016, 12(4), 2493-2500. doi: 10.3892/ol.2016.5008 PMID: 27698818
  172. Davis, M-A.; Delaney, J.R.; Patel, C.B.; Storgard, R.; Stupack, D.G. Nelfinavir is effective against human cervical cancer cells in vivo: a potential treatment modality in resource-limited settings. Drug Des. Devel. Ther., 2016, 10, 1837-1846. PMID: 27330277
  173. Xia, C.; Chen, R.; Chen, J.; Qi, Q.; Pan, Y.; Du, L.; Xiao, G.; Jiang, S. Combining metformin and nelfinavir exhibits synergistic effects against the growth of human cervical cancer cells and xenograft in nude mice. Sci. Rep., 2017, 7(1), 43373. doi: 10.1038/srep43373 PMID: 28252027
  174. Xia, C.; He, Z.; Liang, S.; Chen, R.; Xu, W.; Yang, J.; Xiao, G.; Jiang, S. Metformin combined with nelfinavir induces SIRT3/mROS-dependent autophagy in human cervical cancer cells and xenograft in nude mice. Eur. J. Pharmacol., 2019, 848, 62-69. doi: 10.1016/j.ejphar.2019.01.045 PMID: 30695683
  175. Xia, C.; Yang, F.; He, Z.; Cai, Y. iTRAQ-based quantitative proteomic analysis of the inhibition of cervical cancer cell invasion and migration by metformin. Biomed. Pharmacother., 2020, 123, 109762. doi: 10.1016/j.biopha.2019.109762 PMID: 31864213
  176. Xia, C.; Liu, C.; He, Z.; Cai, Y.; Chen, J. Metformin inhibits cervical cancer cell proliferation by modulating PI3K/Akt-induced major histocompatibility complex class I-related chain A gene expression. J. Exp. Clin. Cancer Res., 2020, 39(1), 127. doi: 10.1186/s13046-020-01627-6 PMID: 32631421
  177. Chen, Y.H.; Yang, S.F.; Yang, C.K.; Tsai, H.D.; Chen, T.H.; Chou, M.C.; Hsiao, Y.H. Metformin induces apoptosis and inhibits migration by activating the AMPK/p53 axis and suppressing PI3K/AKT signaling in human cervical cancer cells. Mol. Med. Rep., 2020, 23(1), 88. doi: 10.3892/mmr.2020.11725 PMID: 33236135
  178. Hoppe-Seyler, K.; Herrmann, A.L.; Däschle, A.; Kuhn, B.J.; Strobel, T.D.; Lohrey, C.; Bulkescher, J.; Krijgsveld, J.; Hoppe-Seyler, F. Effects of metformin on the virus/host cell crosstalk in human papillomavirus‐positive cancer cells. Int. J. Cancer, 2021, 149(5), 1137-1149. doi: 10.1002/ijc.33594 PMID: 33844847
  179. Donalisio, M.; Massari, S.; Argenziano, M.; Manfroni, G.; Cagno, V.; Civra, A.; Sabatini, S.; Cecchetti, V.; Loregian, A.; Cavalli, R.; Lembo, D.; Tabarrini, O. Ethyl 1,8-naphthyridone-3-carboxylates downregulate human papillomavirus-16 E6 and E7 oncogene expression. J. Med. Chem., 2014, 57(13), 5649-5663. doi: 10.1021/jm500340h PMID: 24905115
  180. Cardone, G.; Moyer, A.L.; Cheng, N.; Thompson, C.D.; Dvoretzky, I.; Lowy, D.R.; Schiller, J.T.; Steven, A.C.; Buck, C.B.; Trus, B.L. Maturation of the human papillomavirus 16 capsid. MBio, 2014, 5(4), e01104-e01114. doi: 10.1128/mBio.01104-14 PMID: 25096873
  181. de Villiers, E.M.; Fauquet, C.; Broker, T.R.; Bernard, H.U.; zur Hausen, H. Classification of papillomaviruses. Virology, 2004, 324(1), 17-27. doi: 10.1016/j.virol.2004.03.033 PMID: 15183049
  182. Buck, C.B.; Day, P.M.; Trus, B.L. The papillomavirus major capsid protein L1. Virology, 2013, 445(1-2), 169-174. doi: 10.1016/j.virol.2013.05.038 PMID: 23800545
  183. Wang, J.W.; Roden, R.B.S. L2, the minor capsid protein of papillomavirus. Virology, 2013, 445(1-2), 175-186. doi: 10.1016/j.virol.2013.04.017 PMID: 23689062
  184. Zheng, D.D.; Fu, D.Y.; Wu, Y.; Sun, Y.L.; Tan, L.L.; Zhou, T.; Ma, S.Q.; Zha, X.; Yang, Y.W. Efficient inhibition of human papillomavirus 16 L1 pentamer formation by a carboxylatopillarene and a p-sulfonatocalixarene. Chem. Commun. (Camb.), 2014, 50(24), 3201-3203. doi: 10.1039/c3cc49789e PMID: 24522285
  185. Fu, D.Y.; Lu, T.; Liu, Y.X.; Li, F.; Ogden, M.I.; Wang, Y.; Wu, Y.; Mocerino, M. Enantioselective inhibition of human papillomavirus L1 pentamer formation by chiral‐proline modified calix4arenes: Targeting the protein interface. ChemistrySelect, 2016, 1(19), 6243-6249. doi: 10.1002/slct.201601467
  186. Goh, C.Y.; Fu, D.Y.; Duncan, C.L.; Tinker, A.; Li, F.; Mocerino, M.; Ogden, M.I.; Wu, Y. The inhibitory properties of acidic functionalised calix4arenes on human papillomavirus pentamer formation. Supramol. Chem., 2020, 32(5), 345-353. doi: 10.1080/10610278.2020.1779930
  187. Selinka, H.C.; Florin, L.; Patel, H.D.; Freitag, K.; Schmidtke, M.; Makarov, V.A.; Sapp, M. Inhibition of transfer to secondary receptors by heparan sulfate-binding drug or antibody induces noninfectious uptake of human papillomavirus. J. Virol., 2007, 81(20), 10970-10980. doi: 10.1128/JVI.00998-07 PMID: 17686860
  188. Surviladze, Z.; Dziduszko, A.; Ozbun, M.A. Essential roles for soluble virion-associated heparan sulfonated proteoglycans and growth factors in human papillomavirus infections. PLoS Pathog., 2012, 8(2), e1002519. doi: 10.1371/journal.ppat.1002519 PMID: 22346752
  189. Müller, K.H.; Spoden, G.A.; Scheffer, K.D.; Brunnhöfer, R.; De Brabander, J.K.; Maier, M.E.; Florin, L.; Muller, C.P. Inhibition by cellular vacuolar ATPase impairs human papillomavirus uncoating and infection. Antimicrob. Agents Chemother., 2014, 58(5), 2905-2911. doi: 10.1128/AAC.02284-13 PMID: 24614368
  190. Karanam, B.; Peng, S.; Li, T.; Buck, C.; Day, P.M.; Roden, R.B.S. Papillomavirus infection requires gamma secretase. J. Virol., 2010, 84(20), 10661-10670. doi: 10.1128/JVI.01081-10 PMID: 20702627
  191. Huang, H.S.; Buck, C.B.; Lambert, P.F. Inhibition of gamma secretase blocks HPV infection. Virology, 2010, 407(2), 391-396. doi: 10.1016/j.virol.2010.09.002 PMID: 20875908
  192. Kwak, K.; Jiang, R.; Wang, J.W.; Jagu, S.; Kirnbauer, R.; Roden, R.B.S. Impact of inhibitors and L2 antibodies upon the infectivity of diverse alpha and beta human papillomavirus types. PLoS One, 2014, 9(5), e97232. doi: 10.1371/journal.pone.0097232 PMID: 24816794
  193. Richards, R.M.; Lowy, D.R.; Schiller, J.T.; Day, P.M. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc. Natl. Acad. Sci. USA, 2006, 103(5), 1522-1527. doi: 10.1073/pnas.0508815103 PMID: 16432208
  194. Huang, H.S.; Pyeon, D.; Pearce, S.M.; Lank, S.M.; Griffin, L.M.; Ahlquist, P.; Lambert, P.F. Novel antivirals inhibit early steps in HPV infection. Antiviral Res., 2012, 93(2), 280-287. doi: 10.1016/j.antiviral.2011.12.007 PMID: 22197636
  195. Walhart, T.; Isaacson-Wechsler, E.; Ang, K.H.; Arkin, M.; Tugizov, S.; Palefsky, J.M. A cell-based Renilla luminescence reporter plasmid assay for high-throughput screening to identify novel FDA-approved drug inhibitors of HPV-16 infection. SLAS Discov., 2020, 25(1), 79-86. doi: 10.1177/2472555219860771 PMID: 31361520

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers