Radiotherapy-associated Sensorineural Hearing Loss in Pediatric Oncology Patients
- Authors: Aslam M.1, Ahmad H.2, Malik H.2, Uinarni H.3, Karim Y.4, Akhmedov Y.5, Abdelbasset W.6, Awadh S.7, Abid M.8, Mustafa Y.9, Farhood B.10, Sahebkar A.11
-
Affiliations:
- Department of Emergency Medicine, Rawalpindi Medical University
- Department of Medicine, Rawalpindi Medical University
- Department of Anatomy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia,
- Al-Nisour University College, Al-Manara College for Medical Sciences
- Department of Pediatric Surgery, Samarkand State Medical Institute
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University
- Department of Anesthesia, Al-Mustaqbal University
- Department of Anesthesia, College of Health & medical Technology, Al-Ayen University
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences
- Biotechnology Research Center, Pharmaceutical Technology Institute,, Mashhad University of Medical Sciences
- Issue: Vol 31, No 33 (2024)
- Pages: 5351-5369
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645052
- DOI: https://doi.org/10.2174/0929867330666230515112245
- ID: 645052
Cite item
Full Text
Abstract
:During the radiotherapeutic treatment of pediatric oncology patients, they would be at a latent risk of developing ionizing radiation-induced ototoxicity when the cochlea or auditory nerve is located within the radiation field. Sensorineural hearing loss (SNHL) is an irreversible late complication of radiotherapy, and its incidence depends on various factors such as the patients hearing sensitivity, total radiation dose to the cochlea, radiotherapy fractionation regimen, age and chemoradiation. Importantly, this complication exhibits serious challenges to adult survivors of childhood cancer, as it has been linked to impairments in academic achievement, psychosocial development, independent living skills, and employment in the survivor population. Therefore, early detection and proper management can alleviate academic, speech, language, social, and psychological morbidity arising from hearing deficits. In the present review, we have addressed issues such as underlying mechanisms of radiation-induced SNHL, audiometric findings of pediatric cancer patients treated with radiotherapy, and management and protection measures against radiation-induced ototoxicity.
About the authors
Muhammad Aslam
Department of Emergency Medicine, Rawalpindi Medical University
Email: info@benthamscience.net
Hassaan Ahmad
Department of Medicine, Rawalpindi Medical University
Email: info@benthamscience.net
Hamza Malik
Department of Medicine, Rawalpindi Medical University
Email: info@benthamscience.net
Herlina Uinarni
Department of Anatomy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia,
Email: info@benthamscience.net
Yasir Karim
Al-Nisour University College, Al-Manara College for Medical Sciences
Email: info@benthamscience.net
Yusuf Akhmedov
Department of Pediatric Surgery, Samarkand State Medical Institute
Email: info@benthamscience.net
Walid Abdelbasset
Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University
Email: info@benthamscience.net
Sura Awadh
Department of Anesthesia, Al-Mustaqbal University
Email: info@benthamscience.net
Mohammed Abid
Department of Anesthesia, College of Health & medical Technology, Al-Ayen University
Email: info@benthamscience.net
Yasser Mustafa
Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul
Email: info@benthamscience.net
Bagher Farhood
Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Amirhosein Sahebkar
Biotechnology Research Center, Pharmaceutical Technology Institute,, Mashhad University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Mortezaee, K.; Narmani, A.; Salehi, M.; Bagheri, H.; Farhood, B.; Haghi-Aminjan, H.; Najafi, M. Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci., 2021, 269, 119020. doi: 10.1016/j.lfs.2021.119020 PMID: 33450258
- Abdi Goushbolagh, N.; Farhood, B.; Astani, A.; Nikfarjam, A.; Kalantari, M.; Zare, M.H. Quantitative cytotoxicity, cellular uptake and radioprotection effect of cerium oxide nanoparticles in MRC-5 normal cells and MCF-7 cancerous cells. Bionanoscience, 2018, 8(3), 769-777. doi: 10.1007/s12668-018-0538-z
- Abdi Goushbolagh, N.; Keshavarz, M.; Zare, M.H.; Bahreyni-Toosi, M.H.; Kargar, M.; Farhood, B. Photosensitizer effects of MWCNTs-COOH particles on CT26 fibroblastic cells exposed to laser irradiation. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1326-1334. doi: 10.1080/21691401.2019.1593997 PMID: 30964347
- Ford, E.C.; Terezakis, S. How safe is safe? Risk in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 2010, 78(2), 321-322. doi: 10.1016/j.ijrobp.2010.04.047 PMID: 20832662
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199. doi: 10.7150/ijms.3635 PMID: 22408567
- Mortezaee, K.; Parwaie, W.; Motevaseli, E.; Mirtavoos-Mahyari, H.; Musa, A.E.; Shabeeb, D.; Esmaely, F.; Najafi, M.; Farhood, B. Targets for improving tumor response to radiotherapy. Int. Immunopharmacol., 2019, 76, 105847. doi: 10.1016/j.intimp.2019.105847 PMID: 31466051
- Farhood, B; Geraily, G; Abtahi, SMM A systematic review of clinical applications of polymer gel dosimeters in radiotherapy. Appl Radiat Isot., 2019, 143, 47-59. doi: 10.1016/j.apradiso.2018.08.018
- Farhood, B.; Mortezaee, K.; Haghi-Aminjan, H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. A systematic review of radiation-induced testicular toxicities following radiotherapy for prostate cancer. J. Cell. Physiol., 2019, 234(9), 14828-14837. doi: 10.1002/jcp.28283 PMID: 30740683
- Bagheri, H.; Rabie Mahdavi, S.; Shekarchi, B.; Manouchehri, F.; Farhood, B. Measurement of the contralateral breast photon and thermal neutron doses in breast cancer radiotherapy: A comparison between physical and dynamic wedges. Radiat. Prot. Dosimetry, 2018, 178(1), 73-81. doi: 10.1093/rpd/ncx076 PMID: 28591863
- Mauch, P.; Constine, L.; Greenberger, J.; Knospe, W.; Sullivan, J.; Liesveld, J.L.; Deeg, H.J. Hematopoietic stem cell compartment: Acute and late effects of radiation therapy and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys., 1995, 31(5), 1319-1339. doi: 10.1016/0360-3016(94)00430-S PMID: 7713791
- Motallebzadeh, E.; Tameh, A.A.; Zavareh, S.A.T.; Farhood, B.; Aliasgharzedeh, A.; Mohseni, M. Neuroprotective effect of melatonin on radiation-induced oxidative stress and apoptosis in the brainstem of rats. J. Cell. Physiol., 2020, 235(11), 8791-8798. doi: 10.1002/jcp.29722 PMID: 32324264
- Straub, J.M.; New, J.; Hamilton, C.D.; Lominska, C.; Shnayder, Y.; Thomas, S.M. Radiation-induced fibrosis: Mechanisms and implications for therapy. J. Cancer Res. Clin. Oncol., 2015, 141(11), 1985-1994. doi: 10.1007/s00432-015-1974-6 PMID: 25910988
- Pan, C.C.; Eisbruch, A.; Lee, J.S.; Snorrason, R.M.; Ten Haken, R.K.; Kileny, P.R. Prospective study of inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int. J. Radiat. Oncol. Biol. Phys., 2005, 61(5), 1393-1402. doi: 10.1016/j.ijrobp.2004.08.019 PMID: 15817342
- Hua, C.; Bass, J.K.; Khan, R.; Kun, L.E.; Merchant, T.E. Hearing loss after radiotherapy for pediatric brain tumors: effect of cochlear dose. Int. J. Radiat. Oncol. Biol. Phys., 2008, 72(3), 892-899. doi: 10.1016/j.ijrobp.2008.01.050 PMID: 18395355
- Mujica-Mota, M.; Waissbluth, S.; Daniel, S.J. Characteristics of radiation-induced sensorineural hearing loss in head and neck cancer: A systematic review. Head Neck, 2013, 35(11), 1662-1668. doi: 10.1002/hed.23201 PMID: 23280686
- Bohne, B.A.; Marks, J.; Glasgow, G.P. Delayed effects of ionizing radiation on the ear. Laryngoscope, 1985, 95(7), 818-828. doi: 10.1288/00005537-198507000-00014 PMID: 4010422
- Gurney, J.G.; Tersak, J.M.; Ness, K.K.; Landier, W.; Matthay, K.K.; Schmidt, M.L. Hearing loss, quality of life, and academic problems in long-term neuroblastoma survivors: A report from the Childrens Oncology Group. Pediatrics, 2007, 120(5), e1229-e1236. doi: 10.1542/peds.2007-0178 PMID: 17974716
- Brinkman, T.M.; Bass, J.K.; Li, Z.; Ness, K.K.; Gajjar, A.; Pappo, A.S.; Armstrong, G.T.; Merchant, T.E.; Srivastava, D.K.; Robison, L.L.; Hudson, M.M.; Gurney, J.G. Treatment-induced hearing loss and adult social outcomes in survivors of childhood CNS and non-CNS solid tumors: Results from the St. Jude Lifetime Cohort Study. Cancer, 2015, 121(22), 4053-4061. doi: 10.1002/cncr.29604 PMID: 26287566
- Contrera, K.J.; Sung, Y.K.; Betz, J.; Li, L.; Lin, F.R. Change in loneliness after intervention with cochlear implants or hearing aids. Laryngoscope, 2017, 127(8), 1885-1889. doi: 10.1002/lary.26424 PMID: 28059448
- Stelmachowicz, P.G.; Pittman, A.L.; Hoover, B.M.; Lewis, D.E.; Moeller, M.P. The importance of high-frequency audibility in the speech and language development of children with hearing loss. Arch. Otolaryngol. Head Neck Surg., 2004, 130(5), 556-562. doi: 10.1001/archotol.130.5.556 PMID: 15148176
- Bass, J.K.; Hua, C.H.; Huang, J.; Onar-Thomas, A.; Ness, K.K.; Jones, S.; White, S.; Bhagat, S.P.; Chang, K.W.; Merchant, T.E. Hearing loss in patients who received cranial radiation therapy for childhood cancer. J. Clin. Oncol., 2016, 34(11), 1248-1255. doi: 10.1200/JCO.2015.63.6738 PMID: 26811531
- Pollom, EL; Deng, L; Pai, RK; Brown, JM; Giaccia, A; Loo, BW, Jr Gastrointestinal toxicities with combined antiangiogenic and stereotactic body radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 2015, 92(3), 568-576. doi: 10.1016/j.ijrobp.2015.02.016
- Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Saffar, H.; Motevaseli, E.; Rezapoor, S.; Nouruzi, F.; Shabeeb, D.; Eleojo Musa, A.; Ashabi, G.; Mohseni, M.; Moradi, H.; Najafi, M. Radiation-induced dual oxidase upregulation in rat heart tissues: Protective effect of melatonin. Medicina, 2019, 55(7), 317. doi: 10.3390/medicina55070317 PMID: 31252673
- Yahyapour, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Farhood, B.; Nouruzi, F.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin Protects against radiation-induced heart injury and attenuates the upregulation of dual oxidase genes following rats chest irradiation. Int. J. Mol. Cell. Med., 2018, 7(3), 193-202. PMID: 31565651
- Aliasgharzadeh, A.; Farhood, B.; Amini, P.; Saffar, H.; Motevaseli, E.; Rezapoor, S.; Nouruzi, F.; Shabeeb, D.H.; Eleojo Musa, A.; Mohseni, M.; Moradi, H.; Najafi, M. Melatonin attenuates upregulation of Duox1 and Duox2 and protects against lung injury following chest irradiation in rats. Cell J., 2019, 21(3), 236-242. PMID: 31210428
- Sheikhzadeh, P.D.; Khezerloo, D.; Mortezazadeh, T.; Farhood, B.; Seyfizadeh, N.; Pezhman, L. The effect of date palm seed extract as a new potential radioprotector in gamma-irradiated mice. J. Cancer Res. Ther., 2019, 15(3), 517-521. doi: 10.4103/jcrt.JCRT_1341_16 PMID: 31169213
- Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Rezaeyan, A.; Tavassoli, A.; Motevaseli, E.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Mitigation of radiation-induced lung pneumonitis and fibrosis using metformin and melatonin: A histopathological study. Medicina, 2019, 55(8), 417. doi: 10.3390/medicina55080417 PMID: 31366142
- Amini, P.; Nodooshan, S.J.; Ashrafizadeh, M.; Eftekhari, S.M.; Aryafar, T.; Khalafi, L.; Musa, A.E.; Mahdavi, S.R.; Najafi, M.; Farhood, B. Resveratrol induces apoptosis and attenuates proliferation of MCF-7 cells in combination with radiation and hyperthermia. Curr. Mol. Med., 2021, 21(2), 142-150. doi: 10.2174/18755666MTA2pODE0z PMID: 32436827
- Farhood, B.; Hassanzadeh, G.; Amini, P.; Shabeeb, D.; Musa, A.E.; Khodamoradi, E.; Mohseni, M.; Aliasgharzadeh, A.; Moradi, H.; Najafi, M. Mitigation of radiation-induced gastrointestinal system injury using resveratrol or alpha-lipoic acid: A pilot histopathological study. Antiinflamm. Antiallergy Agents Med. Chem., 2020, 19(4), 413-424. doi: 10.2174/1871523018666191111124028 PMID: 31713500
- Nodooshan, S.J.; Amini, P.; Ashrafizadeh, M.; Tavakoli, S.; Aryafar, T.; Khalafi, L.; Musa, A.E.; Mahdavi, S.R.; Najafi, M.; Ahmadi, A.; Farhood, B. Suberosin attenuates the proliferation of MCF-7 breast cancer cells in combination with radiotherapy or hyperthermia. Curr. Drug Res. Rev., 2021, 13(2), 148-153. doi: 10.2174/2589977512666201228104528 PMID: 33371865
- Jamesdaniel, S. Oxidative Stress and Hearing Loss. In: Inflammatory Mechanisms in Mediating Hearing Loss; Springer, 2018; pp. 15-30. doi: 10.1007/978-3-319-92507-3_2
- Hu, L.F.; Lan, H.R.; Li, X.M.; Jin, K.T. A systematic review of the potential chemoprotective effects of resveratrol on doxorubicin-induced cardiotoxicity: Focus on the antioxidant, antiapoptotic, and anti-inflammatory activities. Oxid. Med. Cell. Longev., 2021, 2021, 1-19. doi: 10.1155/2021/2951697 PMID: 34471463
- Xavier, J; Farias, CP; Soares, MSP Ayahuasca prevents oxidative stress in a rat model of depression elicited by unpredictable chronic mild stress. Arch. Clin. Psychiatry, 2021, 48, 90-98.
- Barjaktarovic, Z.; Schmaltz, D.; Shyla, A.; Azimzadeh, O.; Schulz, S.; Haagen, J.; Dörr, W.; Sarioglu, H.; Schäfer, A.; Atkinson, M.J.; Zischka, H.; Tapio, S. Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS One, 2011, 6(12), e27811. doi: 10.1371/journal.pone.0027811 PMID: 22174747
- Kim, G.J.; Fiskum, G.M.; Morgan, W.F. A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability. Cancer Res., 2006, 66(21), 10377-10383. doi: 10.1158/0008-5472.CAN-05-3036 PMID: 17079457
- Vaiserman, A.M.; Lushchak, O.V.; Koliada, A.K. Anti-aging pharmacology: Promises and pitfalls. Ageing Res. Rev., 2016, 31, 9-35. doi: 10.1016/j.arr.2016.08.004 PMID: 27524412
- Sharma, R.; Vallis, K. Basics of Radiation Therapy. , 2008.
- Pyun, J.H.; Kang, S.U.; Hwang, H.S.; Oh, Y.T.; Kang, S.H.; Lim, Y.A.; Choo, O.S.; Kim, C.H. Epicatechin inhibits radiation-induced auditory cell death by suppression of reactive oxygen species generation. Neuroscience, 2011, 199, 410-420. doi: 10.1016/j.neuroscience.2011.09.012 PMID: 21946009
- Low, WK; Tan, MG; Sun, L; Chua, AW; Goh, LK; Wang, DY Dose-dependant radiation-induced apoptosis in a cochlear cell-line. Apoptosis., 2006, 11(12), 2127-2136. doi: 10.1007/s10495-006-0285-4
- Yahyapour, R; Motevaseli, E; Rezaeyan, A; Abdollahi, H; Farhood, B; Cheki, M Reduction-oxidation (redox) system in radiation-induced normal tissue injury: Molecular mechanisms and implications in radiation therapeutics. Clin Transl Oncol, 2018, 20(8), 975-988.
- Said, R.S.; Mohamed, H.A.; Kassem, D.H. Alpha-lipoic acid effectively attenuates ionizing radiation-mediated testicular dysfunction in rats: Crosstalk of NF-ĸB, TGF-β, and PPAR-ϒ pathways. Toxicology, 2020, 442, 152536. doi: 10.1016/j.tox.2020.152536 PMID: 32649955
- El-Dein, E.; Anees, L.M.; Aly, S.M.E. Effects of α-lipoic acid on γ-radiation and lindane-induced heart toxicity in rats. Pak. J. Zool., 2016, 48(5)
- Sheikholeslami, S.; Khodaverdian, S.; Dorri-Giv, M.; Mohammad Hosseini, S.; Souri, S.; Abedi-Firouzjah, R.; Zamani, H.; Dastranj, L.; Farhood, B. The radioprotective effects of alpha-lipoic acid on radiotherapy-induced toxicities: A systematic review. Int. Immunopharmacol., 2021, 96, 107741. doi: 10.1016/j.intimp.2021.107741 PMID: 33989970
- Sha, S.H.; Taylor, R.; Forge, A.; Schacht, J. Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. Hear. Res., 2001, 155(1-2), 1-8. doi: 10.1016/S0378-5955(01)00224-6 PMID: 11335071
- Winther, F.Ø. X-ray irradiation of the inner ear of the guinea pig. An electron microscopic study of the degenerating outer hair cells of the organ of Corti. Acta Otolaryngol., 1970, 69(1-6), 61-76. doi: 10.3109/00016487009123336 PMID: 5446609
- Choi, K.M.; Kang, C.M.; Cho, E.; Kang, S.; Lee, S.; Um, H.D. Ionizing radiation-induced micronucleus formation is mediated by reactive oxygen species that are produced in a manner dependent on mitochondria, Nox1, and JNK. Oncol. Rep., 2007, 17(5), 1183-1188. doi: 10.3892/or.17.5.1183 PMID: 17390063
- Yamamori, T.; Yasui, H.; Yamazumi, M.; Wada, Y.; Nakamura, Y.; Nakamura, H.; Inanami, O. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic. Biol. Med., 2012, 53(2), 260-270. doi: 10.1016/j.freeradbiomed.2012.04.033 PMID: 22580337
- Hajnóczky, G.; Csordás, G.; Das, S.; Garcia-Perez, C.; Saotome, M.; Sinha Roy, S.; Yi, M. Mitochondrial calcium signalling and cell death: Approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium, 2006, 40(5-6), 553-560. doi: 10.1016/j.ceca.2006.08.016 PMID: 17074387
- Murphy, M.P. Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum. Cell Metab., 2013, 18(2), 145-146. doi: 10.1016/j.cmet.2013.07.006 PMID: 23931748
- Lee, I.T.; Yang, C.M. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem. Pharmacol., 2012, 84(5), 581-590. doi: 10.1016/j.bcp.2012.05.005 PMID: 22587816
- Ushio-Fukai, M. Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid. Redox Signal., 2009, 11(6), 1289-1299. doi: 10.1089/ars.2008.2333 PMID: 18999986
- Mortezaee, K.; Goradel, N.H.; Amini, P.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. NADPH oxidase as a target for modulation of radiation response; implications to carcinogenesis and radiotherapy. Curr. Mol. Pharmacol., 2019, 12(1), 50-60. doi: 10.2174/1874467211666181010154709 PMID: 30318012
- Azmoonfar, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Yahyapour, R.; farhood, B.; Nouruzi, F.; Khodamoradi, E.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin protects against radiation-induced pneumonitis and fibrosis and attenuates upregulation of dual oxidase genes expression. Adv. Pharm. Bull., 2018, 8(4), 697-704. doi: 10.15171/apb.2018.078 PMID: 30607342
- Bánfi, B.; Malgrange, B.; Knisz, J.; Steger, K.; Dubois-Dauphin, M.; Krause, K.H. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J. Biol. Chem., 2004, 279(44), 46065-46072. doi: 10.1074/jbc.M403046200 PMID: 15326186
- Juarez, J.C.; Manuia, M.; Burnett, M.E.; Betancourt, O.; Boivin, B.; Shaw, D.E.; Tonks, N.K.; Mazar, A.P.; Doñate, F. Superoxide dismutase 1 (SOD1) is essential for H2O2 -mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl. Acad. Sci., 2008, 105(20), 7147-7152. doi: 10.1073/pnas.0709451105 PMID: 18480265
- Najafi, M.; Hooshangi Shayesteh, M.R.; Mortezaee, K.; Farhood, B.; Haghi-Aminjan, H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci., 2020, 241, 117173. doi: 10.1016/j.lfs.2019.117173 PMID: 31843530
- Najafi, M.; Mortezaee, K.; Rahimifard, M.; Farhood, B.; Haghi-Aminjan, H. The role of curcumin/curcuminoids during gastric cancer chemotherapy: A systematic review of non-clinical study. Life Sci., 2020, 257, 118051. doi: 10.1016/j.lfs.2020.118051 PMID: 32634426
- Gondo, H.K. The effect of spirulina on apoptosis through the caspase-3 pathway in a Preeclamptic Wistar rat model. J. Nat. Sci. Biol. Med., 2021, 12(3), 280-284.
- Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Potes, Y.; Shabeeb, D.; Musa, A.E. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sci., 2019, 228, 228-241. doi: 10.1016/j.lfs.2019.05.009 PMID: 31077716
- Tan, P.X.; Du, S.S.; Ren, C.; Yao, Q.W.; Yuan, Y.W. Radiation-induced Cochlea hair cell death: mechanisms and protection. APJCP, 2013, 14(10), 5631-5635. PMID: 24289554
- Chao, C.; Saito, S.; Anderson, C.W.; Appella, E.; Xu, Y. Phosphorylation of murine p53 at Ser-18 regulates the p53 responses to DNA damage. Proc. Natl. Acad. Sci., 2000, 97(22), 11936-11941. doi: 10.1073/pnas.220252297 PMID: 11035798
- Hu, B.H.; Henderson, D.; Nicotera, T.M. Extremely rapid induction of outer hair cell apoptosis in the chinchilla cochlea following exposure to impulse noise. Hear. Res., 2006, 211(1-2), 16-25. doi: 10.1016/j.heares.2005.08.006 PMID: 16219436
- Cheng, A.G.; Cunningham, L.L.; Rubel, E.W. Mechanisms of hair cell death and protection. Curr. Opin. Otolaryngol. Head Neck Surg., 2005, 13(6), 343-348. doi: 10.1097/01.moo.0000186799.45377.63 PMID: 16282762
- Marchenko, N.D.; Zaika, A.; Moll, U.M. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem., 2000, 275(21), 16202-16212. doi: 10.1074/jbc.275.21.16202 PMID: 10821866
- Devarajan, P.; Savoca, M.; Castaneda, M.P.; Park, M.S.; Esteban-Cruciani, N.; Kalinec, G.; Kalinec, F. Cisplatin-induced apoptosis in auditory cells: role of death receptor and mitochondrial pathways. Hear. Res., 2002, 174(1-2), 45-54. doi: 10.1016/S0378-5955(02)00634-2 PMID: 12433395
- Tabuchi, K.; Nishimura, B.; Nakamagoe, M.; Hayashi, K.; Nakayama, M.; Hara, A. Ototoxicity: Mechanisms of cochlear impairment and its prevention. Curr. Med. Chem., 2011, 18(31), 4866-4871. doi: 10.2174/092986711797535254 PMID: 21919841
- Khan, S.; Adhikari, J.S.; Rizvi, M.A.; Chaudhury, N.K. Radioprotective potential of melatonin against 60Co γ-ray-induced testicular injury in male C57BL/6 mice. J. Biomed. Sci., 2015, 22(1), 61. doi: 10.1186/s12929-015-0156-9 PMID: 26205951
- Herceg, Z.; Wang, Z.Q. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat. Res., 2001, 477(1-2), 97-110. doi: 10.1016/S0027-5107(01)00111-7 PMID: 11376691
- Haimovitz-Friedman, A.; Kolesnick, R.N.; Fuks, Z. Ceramide signaling in apoptosis. Br. Med. Bull., 1997, 53(3), 539-553. doi: 10.1093/oxfordjournals.bmb.a011629 PMID: 9374036
- Peña, L.A.; Fuks, Z.; Koksnick, R. Stress-induced apoptosis and the sphingomyelin pathway. Biochem. Pharmacol., 1997, 53(5), 615-621. doi: 10.1016/S0006-2952(96)00834-9 PMID: 9113079
- Yabu, T.; Shiba, H.; Shibasaki, Y.; Nakanishi, T.; Imamura, S.; Touhata, K.; Yamashita, M. Stress-induced ceramide generation and apoptosis via the phosphorylation and activation of nSMase1 by JNK signaling. Cell Death Differ., 2015, 22(2), 258-273. doi: 10.1038/cdd.2014.128 PMID: 25168245
- Hadi, L.A.; Di Vito, C.; Marfia, G.; Navone, S.E.; Campanella, R.; Riboni, L. The role and function of sphingolipids in glioblastoma multiforme. Bioactive Sphingolipids in Cancer Biology and Therapy; Springer, 2015, pp. 259-293. doi: 10.1007/978-3-319-20750-6_12
- Ueda, N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int. J. Mol. Sci., 2015, 16(12), 5076-5124. doi: 10.3390/ijms16035076 PMID: 25751724
- Lin, X.; Fuks, Z.; Kolesnick, R. Ceramide mediates radiation-induced death of endothelium. Crit. Care Med., 2000, 28(S4), N87-N93. doi: 10.1097/00003246-200004001-00010 PMID: 10807320
- Kolesnick, R.; Fuks, Z. Radiation and ceramide-induced apoptosis. Oncogene, 2003, 22(37), 5897-5906. doi: 10.1038/sj.onc.1206702 PMID: 12947396
- Mujica-Mota, M.A.; Lehnert, S.; Devic, S.; Gasbarrino, K.; Daniel, S.J. Mechanisms of radiation-induced sensorineural hearing loss and radioprotection. Hear. Res., 2014, 312, 60-68. doi: 10.1016/j.heares.2014.03.003 PMID: 24650954
- Schwartz, I.; Kim, C-S.; Shin, S-O. Ultrastructural changes in the cochlea of the guinea pig after fast neutron irradiation. Otolaryngol. Head Neck Surg., 1994, 110(4), 419-427. doi: 10.1177/019459989411000412 PMID: 8170687
- Shi, W.; Hou, X.; Bao, X.; Hou, W.; Jiang, X.; Ma, L.; Jiang, X.; Dong, L. Mechanism and protection of radiotherapy induced sensorineural hearing loss for head and neck cancer. BioMed Res. Int., 2021, 2021, 1-10. doi: 10.1155/2021/3548706 PMID: 34970625
- Burotto, M.; Chiou, V.L.; Lee, J.M.; Kohn, E.C. The MAPK pathway across different malignancies: A new perspective. Cancer, 2014, 120(22), 3446-3456. doi: 10.1002/cncr.28864 PMID: 24948110
- Johnson, G.L.; Stuhlmiller, T.J.; Angus, S.P.; Zawistowski, J.S.; Graves, L.M. Molecular pathways: adaptive kinome reprogramming in response to targeted inhibition of the BRAF-MEK-ERK pathway in cancer. Clin. Cancer Res., 2014, 20(10), 2516-2522. doi: 10.1158/1078-0432.CCR-13-1081 PMID: 24664307
- Brown, L.; Benchimol, S. The involvement of MAPK signaling pathways in determining the cellular response to p53 activation: Cell cycle arrest or apoptosis. J. Biol. Chem., 2006, 281(7), 3832-3840. doi: 10.1074/jbc.M507951200 PMID: 16330547
- Murai, N.; Kirkegaard, M.; Järlebark, L.; Risling, M.; Suneson, A.; Ulfendahl, M. Activation of JNK in the inner ear following impulse noise exposure. J. Neurotrauma, 2008, 25(1), 72-77. doi: 10.1089/neu.2007.0346 PMID: 18355160
- Sabapathy, K. Role of the JNK pathway in human diseases. Prog. Mol. Biol. Transl. Sci., 2012, 106, 145-169. doi: 10.1016/B978-0-12-396456-4.00013-4 PMID: 22340717
- Wang, J.; Ruel, J.; Ladrech, S.; Bonny, C.; van de Water, T.R.; Puel, J.L. Inhibition of the c-Jun N-terminal kinase-mediated mitochondrial cell death pathway restores auditory function in sound-exposed animals. Mol. Pharmacol., 2007, 71(3), 654-666. doi: 10.1124/mol.106.028936 PMID: 17132689
- Chauhan, D.; Li, G.; Hideshima, T.; Podar, K.; Mitsiades, C.; Mitsiades, N.; Munshi, N.; Kharbanda, S.; Anderson, K.C. JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J. Biol. Chem., 2003, 278(20), 17593-17596. doi: 10.1074/jbc.C300076200 PMID: 12665525
- Shin, Y.S.; Hwang, H.S.; Kang, S.U.; Chang, J.W.; Oh, Y.T.; Kim, C.H. Inhibition of p38 mitogen-activated protein kinase ameliorates radiation-induced ototoxicity in zebrafish and cochlea-derived cell lines. Neurotoxicology, 2014, 40, 111-122. doi: 10.1016/j.neuro.2013.12.006 PMID: 24374476
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(12), 2977-2992. doi: 10.1016/j.bbamcr.2016.09.012 PMID: 27646922
- Haghi-Aminjan, H.; Farhood, B.; Rahimifard, M.; Didari, T.; Baeeri, M.; Hassani, S.; Hosseini, R.; Abdollahi, M. The protective role of melatonin in chemotherapy-induced nephrotoxicity: a systematic review of non-clinical studies. Expert Opin. Drug Metab. Toxicol., 2018, 14(9), 937-950. doi: 10.1080/17425255.2018.1513492 PMID: 30118646
- Al-Saikhan, F.I. Anti-inflammatory potentials of Fibraurea tinctoria leaves extract in experimental rats or animals. J. Pharm. Res. Int., 2020, 32(8), 79-83. doi: 10.9734/jpri/2020/v32i830474
- Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell. Physiol., 2019, 234(5), 5728-5740. doi: 10.1002/jcp.27442 PMID: 30317564
- Jeong, B.K.; Song, J.H.; Jeong, H.; Choi, H.S.; Jung, J.H.; Hahm, J.R.; Woo, S.H.; Jung, M.H.; Choi, B.H.; Kim, J.H.; Kang, K.M. Effect of alpha-lipoic acid on radiation-induced small intestine injury in mice. Oncotarget, 2016, 7(12), 15105-15117. doi: 10.18632/oncotarget.7874 PMID: 26943777
- Yahyapour, R.; Amini, P.; Rezapour, S.; Cheki, M.; Rezaeyan, A.; Farhood, B.; Shabeeb, D.; Musa, A.E.; Fallah, H.; Najafi, M. Radiation-induced inflammation and autoimmune diseases. Mil. Med. Res., 2018, 5(1), 9. doi: 10.1186/s40779-018-0156-7 PMID: 29554942
- Multhoff, G.; Molls, M.; Radons, J. Chronic inflammation in cancer development. Front. Immunol., 2012, 2, 98. doi: 10.3389/fimmu.2011.00098 PMID: 22566887
- Waetzig, V.; Czeloth, K.; Hidding, U.; Mielke, K.; Kanzow, M.; Brecht, S.; Goetz, M.; Lucius, R.; Herdegen, T.; Hanisch, U.K. c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia, 2005, 50(3), 235-246. doi: 10.1002/glia.20173 PMID: 15739188
- Lee, Y.B.; Schrader, J.W.; Kim, S.U. p38 map kinase regulates tnf-α production in human astrocytes and microglia by multiple mechanisms. Cytokine, 2000, 12(7), 874-880. doi: 10.1006/cyto.2000.0688 PMID: 10880231
- Zhang, W.; Dai, M.; Fridberger, A.; Hassan, A.; DeGagne, J.; Neng, L.; Zhang, F.; He, W.; Ren, T.; Trune, D.; Auer, M.; Shi, X. Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluidblood barrier. Proc. Natl. Acad. Sci., 2012, 109(26), 10388-10393. doi: 10.1073/pnas.1205210109 PMID: 22689949
- Shi, X. Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res., 2010, 342(1), 21-30. doi: 10.1007/s00441-010-1040-2 PMID: 20838812
- Wright, H.L.; Moots, R.J.; Bucknall, R.C.; Edwards, S.W. Neutrophil function in inflammation and inflammatory diseases. Rheumatology, 2010, 49(9), 1618-1631. doi: 10.1093/rheumatology/keq045 PMID: 20338884
- Vanhoutte, P.M.; Shimokawa, H.; Feletou, M.; Tang, E.H.C. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol., 2017, 219(1), 22-96. doi: 10.1111/apha.12646 PMID: 26706498
- Tousoulis, D.; Kampoli, A.M.; Tentolouris Nikolaos Papageorgiou, C.; Stefanadis, C.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol., 2012, 10(1), 4-18. doi: 10.2174/157016112798829760 PMID: 22112350
- Kerr, R.; Stirling, D.; Ludlam, C.A. Interleukin 6 and Haemostasis. Br. J. Haematol., 2001, 115(1), 3-12. doi: 10.1046/j.1365-2141.2001.03061.x PMID: 11722403
- Hellweg, C.E. The Nuclear Factor κB pathway: A link to the immune system in the radiation response. Cancer Lett., 2015, 368(2), 275-289. doi: 10.1016/j.canlet.2015.02.019 PMID: 25688671
- Min, A.K.; Kim, M.K.; Seo, H.Y.; Kim, H.S.; Jang, B.K.; Hwang, J.S.; Choi, H.S.; Lee, K.U.; Park, K.G.; Lee, I.K. Alpha-lipoic acid inhibits hepatic PAI-1 expression and fibrosis by inhibiting the TGF-β signaling pathway. Biochem. Biophys. Res. Commun., 2010, 393(3), 536-541. doi: 10.1016/j.bbrc.2010.02.050 PMID: 20153726
- Shih, R.H.; Wang, C.Y.; Yang, C.M. NF-kappaB signaling pathways in neurological inflammation: A mini review. Front. Mol. Neurosci., 2015, 8, 77. doi: 10.3389/fnmol.2015.00077 PMID: 26733801
- Smith, D.I.; lawrence, M.; Hawkins, J.E., Jr Effects of noise and quinine on the vessels of the stria vascularis: An image analysis study. Am. J. Otolaryngol., 1985, 6(4), 280-289. doi: 10.1016/S0196-0709(85)80056-9 PMID: 3898894
- Jereczek-Fossa, B.A.; Zarowski, A.; Milani, F.; Orecchia, R. Radiotherapy-induced ear toxicity. Cancer Treat. Rev., 2003, 29(5), 417-430. doi: 10.1016/S0305-7372(03)00066-5 PMID: 12972360
- Gamble, J.E.; Peterson, E.A.; Chandler, J.R. Radiation effects on the inner ear. Arch Otolaryngol, 1968, 88(2), 156-161. doi: 10.1001/archotol.1968.00770010158008
- Landier, W. Ototoxicity and cancer therapy. Cancer, 2016, 122(11), 1647-1658. doi: 10.1002/cncr.29779 PMID: 26859792
- Common Terminology Criteria for Adverse Events (CTCAE). Available from: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm
- Brock, P.R.; Bellman, S.C.; Yeomans, E.C.; Pinkerton, C.R.; Pritchard, J. Cisplatin ototoxicity in children: A practical grading system. Med. Pediatr. Oncol., 1991, 19(4), 295-300. doi: 10.1002/mpo.2950190415 PMID: 2056973
- Audiologic management of individuals receiving cochleotoxic drug therapy; American Speech-Language-Hearing Association, 1994.
- Chang, K.W.; Chinosornvatana, N. Practical grading system for evaluating cisplatin ototoxicity in children. J. Clin. Oncol., 2010, 28(10), 1788-1795. doi: 10.1200/JCO.2009.24.4228 PMID: 20194861
- Brock, P.R.; Knight, K.R.; Freyer, D.R.; Campbell, K.C.M.; Steyger, P.S.; Blakley, B.W.; Rassekh, S.R.; Chang, K.W.; Fligor, B.J.; Rajput, K.; Sullivan, M.; Neuwelt, E.A. Platinum-induced ototoxicity in children: a consensus review on mechanisms, predisposition, and protection, including a new International Society of Pediatric Oncology Boston ototoxicity scale. J. Clin. Oncol., 2012, 30(19), 2408-2417. doi: 10.1200/JCO.2011.39.1110 PMID: 22547603
- Huang, E.; Teh, B.S.; Strother, D.R.; Davis, Q.G.; Chiu, J.K.; Lu, H.H.; Carpenter, L.S.; Mai, W.Y.; Chintagumpala, M.M.; South, M.; Grant, W.H., III; Butler, E.B.; Woo, S.Y. Intensity-modulated radiation therapy for pediatric medulloblastoma: early report on the reduction of ototoxicity. Int. J. Radiat. Oncol. Biol. Phys., 2002, 52(3), 599-605. doi: 10.1016/S0360-3016(01)02641-4 PMID: 11849779
- BIAP recommendation No. 02/1 bis: Audiometric classification of hearing impairments, 1996. Available from: http://www.biap.org/biapanglais/rec021eng.htm
- Bhandare, N.; Antonelli, P.J.; Morris, C.G.; Malayapa, R.S.; Mendenhall, W.M. Ototoxicity after radiotherapy for head and neck tumors. Int. J. Radiat. Oncol. Biol. Phys., 2007, 67(2), 469-479. doi: 10.1016/j.ijrobp.2006.09.017 PMID: 17236969
- Merchant, T.E.; Gould, C.J.; Xiong, X.; Robbins, N.; Zhu, J.; Pritchard, D.L.; Khan, R.; Heideman, R.L.; Krasin, M.J.; Kun, L.E. Early neuro-otologic effects of three-dimensional irradiation in children with primary brain tumors. Int. J. Radiat. Oncol. Biol. Phys., 2004, 58(4), 1194-1207. doi: 10.1016/j.ijrobp.2003.07.008 PMID: 15001264
- Emami, B.; Lyman, J.; Brown, A.; Cola, L.; Goitein, M.; Munzenrider, J.E.; Shank, B.; Solin, L.J.; Wesson, M. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys., 1991, 21(1), 109-122. doi: 10.1016/0360-3016(91)90171-Y PMID: 2032882
- Marks, L.B.; Yorke, E.D.; Jackson, A.; Ten Haken, R.K.; Constine, L.S.; Eisbruch, A.; Bentzen, S.M.; Nam, J.; Deasy, J.O. Use of normal tissue complication probability models in the clinic. Int. J. Radiat. Oncol. Biol. Phys., 2010, 76(S3), S10-S19. doi: 10.1016/j.ijrobp.2009.07.1754 PMID: 20171502
- Honoré, H.B.; Bentzen, S.M.; Møller, K.; Grau, C. Sensori-neural hearing loss after radiotherapy for nasopharyngeal carcinoma: individualized risk estimation. Radiother. Oncol., 2002, 65(1), 9-16. doi: 10.1016/S0167-8140(02)00173-1 PMID: 12413669
- Cacciotti, C.; Fleming, A.; Ramaswamy, V. Advances in the molecular classification of pediatric brain tumors: a guide to the galaxy. J. Pathol., 2020, 251(3), 249-261. doi: 10.1002/path.5457 PMID: 32391583
- Gondi, V.; Yock, T.I.; Mehta, M.P. Proton therapy for paediatric CNS tumours improving treatment-related outcomes. Nat. Rev. Neurol., 2016, 12(6), 334-345. doi: 10.1038/nrneurol.2016.70 PMID: 27197578
- Bouffet, E.; Bernard, J.L.; Frappaz, D.; Gentet, J.C.; Roche, H.; Tron, P.; Carrie, C.; Raybaud, C.; Joannard, A.; Lapras, C.; Choux, M.; Carton, M.; Aimard, L.; Philip, T.; Brunat-Mentigny, M. M4 protocol for cerebellar medulloblastoma: Supratentorial radiotherapy may not be avoided. Int. J. Radiat. Oncol. Biol. Phys., 1992, 24(1), 79-85. doi: 10.1016/0360-3016(92)91025-I PMID: 1512166
- Fossati, P.; Ricardi, U.; Orecchia, R. Pediatric medulloblastoma: Toxicity of current treatment and potential role of protontherapy. Cancer Treat. Rev., 2009, 35(1), 79-96. doi: 10.1016/j.ctrv.2008.09.002 PMID: 18976866
- Breen, S.L.; Kehagioglou, P.; Usher, C.; Plowman, P.N. A comparison of conventional, conformal and intensity-modulated coplanar radiotherapy plans for posterior fossa treatment. Br. J. Radiol., 2004, 77(921), 768-774. doi: 10.1259/bjr/67922606 PMID: 15447964
- Gupta, T.; Mohanty, S.; Kannan, S.; Jalali, R. Prospective longitudinal assessment of sensorineural hearing loss with hyperfractionated radiation therapy alone in patients with average-risk medulloblastoma. Neurooncol. Pract., 2014, 1(3), 86-93. doi: 10.1093/nop/npu017 PMID: 31386031
- Paulino, A.C.; Lobo, M.; Teh, B.S.; Okcu, M.F.; South, M.; Butler, E.B.; Su, J.; Chintagumpala, M. Ototoxicity after intensity-modulated radiation therapy and cisplatin-based chemotherapy in children with medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys., 2010, 78(5), 1445-1450. doi: 10.1016/j.ijrobp.2009.09.031 PMID: 20231075
- Vieira, W.A.; Weltman, E.; Chen, M.J.; da Silva, N.S.; Cappellano, A.M.; Pereira, L.D.; Gonçalves, M.I.R.; Ferrigno, R.; Hanriot, R.M.; Nadalin, W.; Odone Filho, V.; Petrilli, A.S. Ototoxicity evaluation in medulloblastoma patients treated with involved field boost using intensity-modulated radiation therapy (IMRT): a retrospective review. Radiat. Oncol., 2014, 9(1), 158. doi: 10.1186/1748-717X-9-158 PMID: 25041714
- Scobioala, S.; Parfitt, R.; Matulat, P.; Kittel, C.; Ebrahimi, F.; Wolters, H.; am Zehnhoff-Dinnesen, A.; Eich, H.T. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Strahlenther. Onkol., 2017, 193(11), 910-920. doi: 10.1007/s00066-017-1205-y PMID: 28887665
- Paulino, A.C.; Mahajan, A.; Ye, R.; Grosshans, D.R.; Fatih Okcu, M.; Su, J.; McAleer, M.F.; McGovern, S.; Mangona, V.A.; Chintagumpala, M. Ototoxicity and cochlear sparing in children with medulloblastoma: Proton vs. photon radiotherapy. Radiother. Oncol., 2018, 128(1), 128-132. doi: 10.1016/j.radonc.2018.01.002 PMID: 29373195
- Polkinghorn, W.R.; Dunkel, I.J.; Souweidane, M.M.; Khakoo, Y.; Lyden, D.C.; Gilheeney, S.W.; Becher, O.J.; Budnick, A.S.; Wolden, S.L. Disease control and ototoxicity using intensity-modulated radiation therapy tumor-bed boost for medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys., 2011, 81(3), e15-e20. doi: 10.1016/j.ijrobp.2010.11.081 PMID: 21481547
- Merchant, T.E.; Hua, C.; Shukla, H.; Ying, X.; Nill, S.; Oelfke, U. Proton versus photon radiotherapy for common pediatric brain tumors: Comparison of models of dose characteristics and their relationship to cognitive function. Pediatr. Blood Cancer, 2008, 51(1), 110-117. doi: 10.1002/pbc.21530 PMID: 18306274
- Lee, C.T.; Bilton, S.D.; Famiglietti, R.M.; Riley, B.A.; Mahajan, A.; Chang, E.L.; Maor, M.H.; Woo, S.Y.; Cox, J.D.; Smith, A.R. Treatment planning with protons for pediatric retinoblastoma, medulloblastoma, and pelvic sarcoma: How do protons compare with other conformal techniques? Int. J. Radiat. Oncol. Biol. Phys., 2005, 63(2), 362-372. doi: 10.1016/j.ijrobp.2005.01.060 PMID: 16168831
- St Clair, W.H.; Adams, J.A.; Bues, M.; Fullerton, B.C.; La Shell, S.; Kooy, H.M.; Loeffler, J.S.; Tarbell, N.J. Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys., 2004, 58(3), 727-734. doi: 10.1016/S0360-3016(03)01574-8 PMID: 14967427
- Eaton, B.R.; Esiashvili, N.; Kim, S.; Weyman, E.A.; Thornton, L.T.; Mazewski, C.; MacDonald, T.; Ebb, D.; MacDonald, S.M.; Tarbell, N.J.; Yock, T.I. Clinical outcomes among children with standard-risk medulloblastoma treated with proton and photon radiation therapy: A comparison of disease control and overall survival. Int. J. Radiat. Oncol. Biol. Phys., 2016, 94(1), 133-138. doi: 10.1016/j.ijrobp.2015.09.014 PMID: 26700707
- Moeller, B.J.; Chintagumpala, M.; Philip, J.J.; Grosshans, D.R.; McAleer, M.F.; Woo, S.Y.; Gidley, P.W.; Vats, T.S.; Mahajan, A. Low early ototoxicity rates for pediatric medulloblastoma patients treated with proton radiotherapy. Radiat. Oncol., 2011, 6(1), 58. doi: 10.1186/1748-717X-6-58 PMID: 21635776
- Jimenez, R.B.; Sethi, R.; Depauw, N.; Pulsifer, M.B.; Adams, J.; McBride, S.M.; Ebb, D.; Fullerton, B.C.; Tarbell, N.J.; Yock, T.I.; MacDonald, S.M. Proton radiation therapy for pediatric medulloblastoma and supratentorial primitive neuroectodermal tumors: outcomes for very young children treated with upfront chemotherapy. Int. J. Radiat. Oncol. Biol. Phys., 2013, 87(1), 120-126. doi: 10.1016/j.ijrobp.2013.05.017 PMID: 23790826
- Yock, T.I.; Yeap, B.Y.; Ebb, D.H.; Weyman, E.; Eaton, B.R.; Sherry, N.A.; Jones, R.M.; MacDonald, S.M.; Pulsifer, M.B.; Lavally, B.; Abrams, A.N.; Huang, M.S.; Marcus, K.J.; Tarbell, N.J. Long-term toxic effects of proton radiotherapy for paediatric medulloblastoma: A phase 2 single-arm study. Lancet Oncol., 2016, 17(3), 287-298. doi: 10.1016/S1470-2045(15)00167-9 PMID: 26830377
- Fortin, D.; Tsang, D.; Ng, A.; Laperriere, N.; Hodgson, D.C. Monte Carlo-driven predictions of neurocognitive and hearing impairments following proton and photon radiotherapy for pediatric brain-tumor patients. J. Neurooncol., 2017, 135(3), 521-528. doi: 10.1007/s11060-017-2597-3 PMID: 28825228
- Jazmati, D.; Steinmeier, T.; Ahamd Khalil, D.; Frisch, S.; Peters, S.; Schulze, S.S. Feasibility of proton beam therapy for infants with brain tumours: Experiences from the prospective kiproreg registry study. J Clin Oncol, 2021, 33(7), e295-e304.
- Bass, J.K.; Huang, J.; Hua, C.H.; Bhagat, S.P.; Mendel, L.L.; Onar-Thomas, A.; Indelicato, D.J.; Merchant, T.E. Auditory outcomes in patients who received proton radiotherapy for craniopharyngioma. Am. J. Audiol., 2018, 27(3), 306-315. doi: 10.1044/2018_AJA-18-0026 PMID: 30073327
- MacDonald, S.M.; Sethi, R.; Lavally, B.; Yeap, B.Y.; Marcus, K.J.; Caruso, P.; Pulsifer, M.; Huang, M.; Ebb, D.; Tarbell, N.J.; Yock, T.I. Proton radiotherapy for pediatric central nervous system ependymoma: Clinical outcomes for 70 patients. Neuro-oncol., 2013, 15(11), 1552-1559. doi: 10.1093/neuonc/not121 PMID: 24101739
- Indelicato, D.J.; Bradley, J.A.; Rotondo, R.L.; Nanda, R.H.; Logie, N.; Sandler, E.S.; Aldana, P.R.; Ranalli, N.J.; Beier, A.D.; Morris, C.G.; Mendenhall, N.P. Outcomes following proton therapy for pediatric ependymoma. Acta Oncol., 2018, 57(5), 644-648. doi: 10.1080/0284186X.2017.1413248 PMID: 29239262
- Indelicato, D.J.; Ioakeim-Ioannidou, M.; Bradley, J.A.; Mailhot-Vega, R.B.; Morris, C.G.; Tarbell, N.J.; Yock, T.; MacDonald, S.M. Proton therapy for pediatric ependymoma: Mature results from a bicentric study. Int. J. Radiat. Oncol. Biol. Phys., 2021, 110(3), 815-820. doi: 10.1016/j.ijrobp.2021.01.027 PMID: 33508372
- Borsanyi, S.J.; Blanchard, C.L. Ionizing radiation and the ear. JAMA, 1962, 181(11), 958-961. doi: 10.1001/jama.1962.03050370026006 PMID: 13871468
- Qiu, W.Z.; Peng, X.S.; Xia, H.Q.; Huang, P.Y.; Guo, X.; Cao, K.J. A retrospective study comparing the outcomes and toxicities of intensity-modulated radiotherapy versus two-dimensional conventional radiotherapy for the treatment of children and adolescent nasopharyngeal carcinoma. J. Cancer Res. Clin. Oncol., 2017, 143(8), 1563-1572. doi: 10.1007/s00432-017-2401-y PMID: 28342002
- Lu, S.; Wei, J.; Sun, F.; Xiao, W.; Cai, R.; Zhen, Z.; Zhu, J.; Wang, J.; Huang, J.; Lu, L.; Sun, X.; Gao, Y. Late sequelae of childhood and adolescent nasopharyngeal carcinoma survivors after radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 2019, 103(1), 45-51. doi: 10.1016/j.ijrobp.2018.09.015 PMID: 30244159
- Uezono, H.; Indelicato, D.J.; Rotondo, R.L.; Sandler, E.S.; Katzenstein, H.M.; Dagan, R.; Mendenhall, W.M.; Mailhot Vega, R.; Brennan, B.M.; Bradley, J.A. Proton therapy following induction chemotherapy for pediatric and adolescent nasopharyngeal carcinoma. Pediatr. Blood Cancer, 2019, 66(12), e27990. doi: 10.1002/pbc.27990 PMID: 31524334
- Lockney, N.A.; Friedman, D.N.; Wexler, L.H.; Sklar, C.A.; Casey, D.L.; Wolden, S.L. Late toxicities of intensity-modulated radiation therapy for head and neck rhabdomyosarcoma. Pediatr. Blood Cancer, 2016, 63(9), 1608-1614. doi: 10.1002/pbc.26061 PMID: 27195454
- Schoot, RA; Theunissen, EA; Slater, O; Lopez-Yurda, M; Zuur, CL; Gaze, MN Hearing loss in survivors of childhood head and neck rhabdomyosarcoma: A long-term follow-up study. Clin Otolaryngol., 2016, 41(3), 276-283. doi: 10.1111/coa.12527
- Jacob, J.T.; Carlson, M.L.; Schiefer, T.K.; Pollock, B.E.; Driscoll, C.L.; Link, M.J. Significance of cochlear dose in the radiosurgical treatment of vestibular schwannoma: Controversies and unanswered questions. Neurosurgery, 2014, 74(5), 466-474. doi: 10.1227/NEU.0000000000000299 PMID: 24476904
- Nader, M.E.; Gidley, P. Challenges of hearing rehabilitation after radiation and chemotherapy. J. Neurol. Surg. B Skull Base, 2019, 80(2), 214-224. doi: 10.1055/s-0039-1677865 PMID: 30931231
- Lamaj, E.; Vu, E.; van Timmeren, J.E.; Leonardi, C.; Marc, L.; Pytko, I.; Guckenberger, M.; Balermpas, P. Cochlea sparing optimized radiotherapy for nasopharyngeal carcinoma. Radiat. Oncol., 2021, 16(1), 64. doi: 10.1186/s13014-021-01796-4 PMID: 33794949
- Cheraghi, S.; Mahdavi, S.R.; Rezaeyan, A.; Nikoofar, A.; Bakhshandeh, M.; Farahani, S. Comparison of radiation and chemoradiation-induced sensorineural hearing loss in head and neck cancer patients. J. Cancer Res. Ther., 2020, 16(3), 539-545. doi: 10.4103/jcrt.JCRT_891_16 PMID: 32719264
- Yang, Q; Cao, SM; Guo, L; Hua, YJ; Huang, PY; Zhang, XL Induction chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: Long-term results of a phase III multicentre randomised controlled trial. Eur. J. Cancer, 2019, 119, 87-96. doi: 10.1016/j.ejca.2019.07.007
- Kortmann, R.D.; Kühl, J.; Timmermann, B.; Mittler, U.; Urban, C.; Budach, V.; Richter, E.; Willich, N.; Flentje, M.; Berthold, F.; Slavc, I.; Wolff, J.; Meisner, C.; Wiestler, O.; Sörensen, N.; Warmuth-Metz, M.; Bamberg, M. Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: Results of the German prospective randomized trial hit 91. Int. J. Radiat. Oncol. Biol. Phys., 2000, 46(2), 269-279. doi: 10.1016/S0360-3016(99)00369-7 PMID: 10661332
- Petsuksiri, J.; Sermsree, A.; Thephamongkhol, K.; Keskool, P.; Thongyai, K.; Chansilpa, Y.; Pattaranutaporn, P. Sensorineural hearing loss after concurrent chemoradiotherapy in nasopharyngeal cancer patients. Radiat. Oncol., 2011, 6(1), 19. doi: 10.1186/1748-717X-6-19 PMID: 21333025
- Altas, E.; Ertekin, M.V.; Kuduban, O.; Gundogdu, C.; Demirci, E.; Sutbeyaz, Y. Effects of piracetam supplementation on cochlear damage occurring in guinea pigs exposed to irradiation. Biol. Pharm. Bull., 2006, 29(7), 1460-1465. doi: 10.1248/bpb.29.1460 PMID: 16819189
- Altas, E.; Ertekin, M.V.; Gundogdu, C.; Demirci, E. L-carnitine reduces cochlear damage induced by gamma irradiation in Guinea pigs. Ann. Clin. Lab. Sci., 2006, 36(3), 312-318. PMID: 16951273
- Low, W.K.; Sun, L.; Tan, M.G.K.; Chua, A.W.C.; Wang, D.Y. L-N-Acetylcysteine protects against radiation-induced apoptosis in a cochlear cell line. Acta Otolaryngol., 2008, 128(4), 440-445. doi: 10.1080/00016480701762490 PMID: 18368580
- Lessa, R.M.; Oliveira, J.A.A.; Rossato, M.; Ghilardi Netto, T. Analysis of the cytoprotective effect of amifostine on the irradiated inner ear of guinea pigs: An experimental study. Rev. Bras. Otorrinolaringol., 2009, 75(5), 694-700. doi: 10.1590/S1808-86942009000500014 PMID: 19893938
- Karaer, I.; Simsek, G.; Gul, M.; Bahar, L.; Gürocak, S.; Parlakpinar, H.; Nuransoy, A. Melatonin protects inner ear against radiation damage in rats. Laryngoscope, 2015, 125(10), E345-E349. doi: 10.1002/lary.25376 PMID: 25994110
- Chen, T.; Luo, Y.; Li, Q.; Yang, C.; Yuan, Y.; Peng, J.; Ban, M.; Liang, Y.; Zhang, W. Melatonin reduces radiation damage in inner ear. J. Radiat. Res., 2021, 62(2), 217-225. doi: 10.1093/jrr/rraa137 PMID: 33454767
- Crowson, M.G.; Hertzano, R.; Tucci, D.L. Emerging therapies for sensorineural hearing loss. Otol. Neurotol., 2017, 38(6), 792-803. doi: 10.1097/MAO.0000000000001427
- Chang, W.W.T.; Yeung, K.N.K.; Luk, B.P.K.; Leung, K.K.Y.; Sung, J.K.K.; Tong, M.C.F. Cochlear implantation in postirradiated ears: A case-control comparative study. Laryngoscope Investig. Otolaryngol., 2020, 5(6), 1163-1167. doi: 10.1002/lio2.486 PMID: 33364408
- Dinh, C.T.; Chen, S.; Dinh, J.; Goncalves, S.; Bas, E.; Padgett, K.; Johnson, P.; Elsayyad, N.; Telischi, F.; Van De Water, T. Effects of intratympanic dexamethasone on high-dose radiation ototoxicity in vivo. Otol. Neurotol., 2017, 38(2), 180-186. doi: 10.1097/MAO.0000000000001289
Supplementary files
