Radiotherapy-associated Sensorineural Hearing Loss in Pediatric Oncology Patients

  • Authors: Aslam M.1, Ahmad H.2, Malik H.2, Uinarni H.3, Karim Y.4, Akhmedov Y.5, Abdelbasset W.6, Awadh S.7, Abid M.8, Mustafa Y.9, Farhood B.10, Sahebkar A.11
  • Affiliations:
    1. Department of Emergency Medicine, Rawalpindi Medical University
    2. Department of Medicine, Rawalpindi Medical University
    3. Department of Anatomy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia,
    4. Al-Nisour University College, Al-Manara College for Medical Sciences
    5. Department of Pediatric Surgery, Samarkand State Medical Institute
    6. Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University
    7. Department of Anesthesia, Al-Mustaqbal University
    8. Department of Anesthesia, College of Health & medical Technology, Al-Ayen University
    9. Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul
    10. Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences
    11. Biotechnology Research Center, Pharmaceutical Technology Institute,, Mashhad University of Medical Sciences
  • Issue: Vol 31, No 33 (2024)
  • Pages: 5351-5369
  • Section: Anti-Infectives and Infectious Diseases
  • URL: https://hum-ecol.ru/0929-8673/article/view/645052
  • DOI: https://doi.org/10.2174/0929867330666230515112245
  • ID: 645052

Cite item

Full Text

Abstract

:During the radiotherapeutic treatment of pediatric oncology patients, they would be at a latent risk of developing ionizing radiation-induced ototoxicity when the cochlea or auditory nerve is located within the radiation field. Sensorineural hearing loss (SNHL) is an irreversible late complication of radiotherapy, and its incidence depends on various factors such as the patient’s hearing sensitivity, total radiation dose to the cochlea, radiotherapy fractionation regimen, age and chemoradiation. Importantly, this complication exhibits serious challenges to adult survivors of childhood cancer, as it has been linked to impairments in academic achievement, psychosocial development, independent living skills, and employment in the survivor population. Therefore, early detection and proper management can alleviate academic, speech, language, social, and psychological morbidity arising from hearing deficits. In the present review, we have addressed issues such as underlying mechanisms of radiation-induced SNHL, audiometric findings of pediatric cancer patients treated with radiotherapy, and management and protection measures against radiation-induced ototoxicity.

About the authors

Muhammad Aslam

Department of Emergency Medicine, Rawalpindi Medical University

Email: info@benthamscience.net

Hassaan Ahmad

Department of Medicine, Rawalpindi Medical University

Email: info@benthamscience.net

Hamza Malik

Department of Medicine, Rawalpindi Medical University

Email: info@benthamscience.net

Herlina Uinarni

Department of Anatomy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia,

Email: info@benthamscience.net

Yasir Karim

Al-Nisour University College, Al-Manara College for Medical Sciences

Email: info@benthamscience.net

Yusuf Akhmedov

Department of Pediatric Surgery, Samarkand State Medical Institute

Email: info@benthamscience.net

Walid Abdelbasset

Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University

Email: info@benthamscience.net

Sura Awadh

Department of Anesthesia, Al-Mustaqbal University

Email: info@benthamscience.net

Mohammed Abid

Department of Anesthesia, College of Health & medical Technology, Al-Ayen University

Email: info@benthamscience.net

Yasser Mustafa

Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul

Email: info@benthamscience.net

Bagher Farhood

Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Amirhosein Sahebkar

Biotechnology Research Center, Pharmaceutical Technology Institute,, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Mortezaee, K.; Narmani, A.; Salehi, M.; Bagheri, H.; Farhood, B.; Haghi-Aminjan, H.; Najafi, M. Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci., 2021, 269, 119020. doi: 10.1016/j.lfs.2021.119020 PMID: 33450258
  2. Abdi Goushbolagh, N.; Farhood, B.; Astani, A.; Nikfarjam, A.; Kalantari, M.; Zare, M.H. Quantitative cytotoxicity, cellular uptake and radioprotection effect of cerium oxide nanoparticles in MRC-5 normal cells and MCF-7 cancerous cells. Bionanoscience, 2018, 8(3), 769-777. doi: 10.1007/s12668-018-0538-z
  3. Abdi Goushbolagh, N.; Keshavarz, M.; Zare, M.H.; Bahreyni-Toosi, M.H.; Kargar, M.; Farhood, B. Photosensitizer effects of MWCNTs-COOH particles on CT26 fibroblastic cells exposed to laser irradiation. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1326-1334. doi: 10.1080/21691401.2019.1593997 PMID: 30964347
  4. Ford, E.C.; Terezakis, S. How safe is safe? Risk in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 2010, 78(2), 321-322. doi: 10.1016/j.ijrobp.2010.04.047 PMID: 20832662
  5. Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199. doi: 10.7150/ijms.3635 PMID: 22408567
  6. Mortezaee, K.; Parwaie, W.; Motevaseli, E.; Mirtavoos-Mahyari, H.; Musa, A.E.; Shabeeb, D.; Esmaely, F.; Najafi, M.; Farhood, B. Targets for improving tumor response to radiotherapy. Int. Immunopharmacol., 2019, 76, 105847. doi: 10.1016/j.intimp.2019.105847 PMID: 31466051
  7. Farhood, B; Geraily, G; Abtahi, SMM A systematic review of clinical applications of polymer gel dosimeters in radiotherapy. Appl Radiat Isot., 2019, 143, 47-59. doi: 10.1016/j.apradiso.2018.08.018
  8. Farhood, B.; Mortezaee, K.; Haghi-Aminjan, H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. A systematic review of radiation-induced testicular toxicities following radiotherapy for prostate cancer. J. Cell. Physiol., 2019, 234(9), 14828-14837. doi: 10.1002/jcp.28283 PMID: 30740683
  9. Bagheri, H.; Rabie Mahdavi, S.; Shekarchi, B.; Manouchehri, F.; Farhood, B. Measurement of the contralateral breast photon and thermal neutron doses in breast cancer radiotherapy: A comparison between physical and dynamic wedges. Radiat. Prot. Dosimetry, 2018, 178(1), 73-81. doi: 10.1093/rpd/ncx076 PMID: 28591863
  10. Mauch, P.; Constine, L.; Greenberger, J.; Knospe, W.; Sullivan, J.; Liesveld, J.L.; Deeg, H.J. Hematopoietic stem cell compartment: Acute and late effects of radiation therapy and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys., 1995, 31(5), 1319-1339. doi: 10.1016/0360-3016(94)00430-S PMID: 7713791
  11. Motallebzadeh, E.; Tameh, A.A.; Zavareh, S.A.T.; Farhood, B.; Aliasgharzedeh, A.; Mohseni, M. Neuroprotective effect of melatonin on radiation-induced oxidative stress and apoptosis in the brainstem of rats. J. Cell. Physiol., 2020, 235(11), 8791-8798. doi: 10.1002/jcp.29722 PMID: 32324264
  12. Straub, J.M.; New, J.; Hamilton, C.D.; Lominska, C.; Shnayder, Y.; Thomas, S.M. Radiation-induced fibrosis: Mechanisms and implications for therapy. J. Cancer Res. Clin. Oncol., 2015, 141(11), 1985-1994. doi: 10.1007/s00432-015-1974-6 PMID: 25910988
  13. Pan, C.C.; Eisbruch, A.; Lee, J.S.; Snorrason, R.M.; Ten Haken, R.K.; Kileny, P.R. Prospective study of inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int. J. Radiat. Oncol. Biol. Phys., 2005, 61(5), 1393-1402. doi: 10.1016/j.ijrobp.2004.08.019 PMID: 15817342
  14. Hua, C.; Bass, J.K.; Khan, R.; Kun, L.E.; Merchant, T.E. Hearing loss after radiotherapy for pediatric brain tumors: effect of cochlear dose. Int. J. Radiat. Oncol. Biol. Phys., 2008, 72(3), 892-899. doi: 10.1016/j.ijrobp.2008.01.050 PMID: 18395355
  15. Mujica-Mota, M.; Waissbluth, S.; Daniel, S.J. Characteristics of radiation-induced sensorineural hearing loss in head and neck cancer: A systematic review. Head Neck, 2013, 35(11), 1662-1668. doi: 10.1002/hed.23201 PMID: 23280686
  16. Bohne, B.A.; Marks, J.; Glasgow, G.P. Delayed effects of ionizing radiation on the ear. Laryngoscope, 1985, 95(7), 818-828. doi: 10.1288/00005537-198507000-00014 PMID: 4010422
  17. Gurney, J.G.; Tersak, J.M.; Ness, K.K.; Landier, W.; Matthay, K.K.; Schmidt, M.L. Hearing loss, quality of life, and academic problems in long-term neuroblastoma survivors: A report from the Children’s Oncology Group. Pediatrics, 2007, 120(5), e1229-e1236. doi: 10.1542/peds.2007-0178 PMID: 17974716
  18. Brinkman, T.M.; Bass, J.K.; Li, Z.; Ness, K.K.; Gajjar, A.; Pappo, A.S.; Armstrong, G.T.; Merchant, T.E.; Srivastava, D.K.; Robison, L.L.; Hudson, M.M.; Gurney, J.G. Treatment-induced hearing loss and adult social outcomes in survivors of childhood CNS and non-CNS solid tumors: Results from the St. Jude Lifetime Cohort Study. Cancer, 2015, 121(22), 4053-4061. doi: 10.1002/cncr.29604 PMID: 26287566
  19. Contrera, K.J.; Sung, Y.K.; Betz, J.; Li, L.; Lin, F.R. Change in loneliness after intervention with cochlear implants or hearing aids. Laryngoscope, 2017, 127(8), 1885-1889. doi: 10.1002/lary.26424 PMID: 28059448
  20. Stelmachowicz, P.G.; Pittman, A.L.; Hoover, B.M.; Lewis, D.E.; Moeller, M.P. The importance of high-frequency audibility in the speech and language development of children with hearing loss. Arch. Otolaryngol. Head Neck Surg., 2004, 130(5), 556-562. doi: 10.1001/archotol.130.5.556 PMID: 15148176
  21. Bass, J.K.; Hua, C.H.; Huang, J.; Onar-Thomas, A.; Ness, K.K.; Jones, S.; White, S.; Bhagat, S.P.; Chang, K.W.; Merchant, T.E. Hearing loss in patients who received cranial radiation therapy for childhood cancer. J. Clin. Oncol., 2016, 34(11), 1248-1255. doi: 10.1200/JCO.2015.63.6738 PMID: 26811531
  22. Pollom, EL; Deng, L; Pai, RK; Brown, JM; Giaccia, A; Loo, BW, Jr Gastrointestinal toxicities with combined antiangiogenic and stereotactic body radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 2015, 92(3), 568-576. doi: 10.1016/j.ijrobp.2015.02.016
  23. Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Saffar, H.; Motevaseli, E.; Rezapoor, S.; Nouruzi, F.; Shabeeb, D.; Eleojo Musa, A.; Ashabi, G.; Mohseni, M.; Moradi, H.; Najafi, M. Radiation-induced dual oxidase upregulation in rat heart tissues: Protective effect of melatonin. Medicina, 2019, 55(7), 317. doi: 10.3390/medicina55070317 PMID: 31252673
  24. Yahyapour, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Farhood, B.; Nouruzi, F.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin Protects against radiation-induced heart injury and attenuates the upregulation of dual oxidase genes following rat’s chest irradiation. Int. J. Mol. Cell. Med., 2018, 7(3), 193-202. PMID: 31565651
  25. Aliasgharzadeh, A.; Farhood, B.; Amini, P.; Saffar, H.; Motevaseli, E.; Rezapoor, S.; Nouruzi, F.; Shabeeb, D.H.; Eleojo Musa, A.; Mohseni, M.; Moradi, H.; Najafi, M. Melatonin attenuates upregulation of Duox1 and Duox2 and protects against lung injury following chest irradiation in rats. Cell J., 2019, 21(3), 236-242. PMID: 31210428
  26. Sheikhzadeh, P.D.; Khezerloo, D.; Mortezazadeh, T.; Farhood, B.; Seyfizadeh, N.; Pezhman, L. The effect of date palm seed extract as a new potential radioprotector in gamma-irradiated mice. J. Cancer Res. Ther., 2019, 15(3), 517-521. doi: 10.4103/jcrt.JCRT_1341_16 PMID: 31169213
  27. Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Rezaeyan, A.; Tavassoli, A.; Motevaseli, E.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Mitigation of radiation-induced lung pneumonitis and fibrosis using metformin and melatonin: A histopathological study. Medicina, 2019, 55(8), 417. doi: 10.3390/medicina55080417 PMID: 31366142
  28. Amini, P.; Nodooshan, S.J.; Ashrafizadeh, M.; Eftekhari, S.M.; Aryafar, T.; Khalafi, L.; Musa, A.E.; Mahdavi, S.R.; Najafi, M.; Farhood, B. Resveratrol induces apoptosis and attenuates proliferation of MCF-7 cells in combination with radiation and hyperthermia. Curr. Mol. Med., 2021, 21(2), 142-150. doi: 10.2174/18755666MTA2pODE0z PMID: 32436827
  29. Farhood, B.; Hassanzadeh, G.; Amini, P.; Shabeeb, D.; Musa, A.E.; Khodamoradi, E.; Mohseni, M.; Aliasgharzadeh, A.; Moradi, H.; Najafi, M. Mitigation of radiation-induced gastrointestinal system injury using resveratrol or alpha-lipoic acid: A pilot histopathological study. Antiinflamm. Antiallergy Agents Med. Chem., 2020, 19(4), 413-424. doi: 10.2174/1871523018666191111124028 PMID: 31713500
  30. Nodooshan, S.J.; Amini, P.; Ashrafizadeh, M.; Tavakoli, S.; Aryafar, T.; Khalafi, L.; Musa, A.E.; Mahdavi, S.R.; Najafi, M.; Ahmadi, A.; Farhood, B. Suberosin attenuates the proliferation of MCF-7 breast cancer cells in combination with radiotherapy or hyperthermia. Curr. Drug Res. Rev., 2021, 13(2), 148-153. doi: 10.2174/2589977512666201228104528 PMID: 33371865
  31. Jamesdaniel, S. Oxidative Stress and Hearing Loss. In: Inflammatory Mechanisms in Mediating Hearing Loss; Springer, 2018; pp. 15-30. doi: 10.1007/978-3-319-92507-3_2
  32. Hu, L.F.; Lan, H.R.; Li, X.M.; Jin, K.T. A systematic review of the potential chemoprotective effects of resveratrol on doxorubicin-induced cardiotoxicity: Focus on the antioxidant, antiapoptotic, and anti-inflammatory activities. Oxid. Med. Cell. Longev., 2021, 2021, 1-19. doi: 10.1155/2021/2951697 PMID: 34471463
  33. Xavier, J; Farias, CP; Soares, MSP Ayahuasca prevents oxidative stress in a rat model of depression elicited by unpredictable chronic mild stress. Arch. Clin. Psychiatry, 2021, 48, 90-98.
  34. Barjaktarovic, Z.; Schmaltz, D.; Shyla, A.; Azimzadeh, O.; Schulz, S.; Haagen, J.; Dörr, W.; Sarioglu, H.; Schäfer, A.; Atkinson, M.J.; Zischka, H.; Tapio, S. Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS One, 2011, 6(12), e27811. doi: 10.1371/journal.pone.0027811 PMID: 22174747
  35. Kim, G.J.; Fiskum, G.M.; Morgan, W.F. A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability. Cancer Res., 2006, 66(21), 10377-10383. doi: 10.1158/0008-5472.CAN-05-3036 PMID: 17079457
  36. Vaiserman, A.M.; Lushchak, O.V.; Koliada, A.K. Anti-aging pharmacology: Promises and pitfalls. Ageing Res. Rev., 2016, 31, 9-35. doi: 10.1016/j.arr.2016.08.004 PMID: 27524412
  37. Sharma, R.; Vallis, K. Basics of Radiation Therapy. , 2008.
  38. Pyun, J.H.; Kang, S.U.; Hwang, H.S.; Oh, Y.T.; Kang, S.H.; Lim, Y.A.; Choo, O.S.; Kim, C.H. Epicatechin inhibits radiation-induced auditory cell death by suppression of reactive oxygen species generation. Neuroscience, 2011, 199, 410-420. doi: 10.1016/j.neuroscience.2011.09.012 PMID: 21946009
  39. Low, WK; Tan, MG; Sun, L; Chua, AW; Goh, LK; Wang, DY Dose-dependant radiation-induced apoptosis in a cochlear cell-line. Apoptosis., 2006, 11(12), 2127-2136. doi: 10.1007/s10495-006-0285-4
  40. Yahyapour, R; Motevaseli, E; Rezaeyan, A; Abdollahi, H; Farhood, B; Cheki, M Reduction-oxidation (redox) system in radiation-induced normal tissue injury: Molecular mechanisms and implications in radiation therapeutics. Clin Transl Oncol, 2018, 20(8), 975-988.
  41. Said, R.S.; Mohamed, H.A.; Kassem, D.H. Alpha-lipoic acid effectively attenuates ionizing radiation-mediated testicular dysfunction in rats: Crosstalk of NF-ĸB, TGF-β, and PPAR-ϒ pathways. Toxicology, 2020, 442, 152536. doi: 10.1016/j.tox.2020.152536 PMID: 32649955
  42. El-Dein, E.; Anees, L.M.; Aly, S.M.E. Effects of α-lipoic acid on γ-radiation and lindane-induced heart toxicity in rats. Pak. J. Zool., 2016, 48(5)
  43. Sheikholeslami, S.; Khodaverdian, S.; Dorri-Giv, M.; Mohammad Hosseini, S.; Souri, S.; Abedi-Firouzjah, R.; Zamani, H.; Dastranj, L.; Farhood, B. The radioprotective effects of alpha-lipoic acid on radiotherapy-induced toxicities: A systematic review. Int. Immunopharmacol., 2021, 96, 107741. doi: 10.1016/j.intimp.2021.107741 PMID: 33989970
  44. Sha, S.H.; Taylor, R.; Forge, A.; Schacht, J. Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. Hear. Res., 2001, 155(1-2), 1-8. doi: 10.1016/S0378-5955(01)00224-6 PMID: 11335071
  45. Winther, F.Ø. X-ray irradiation of the inner ear of the guinea pig. An electron microscopic study of the degenerating outer hair cells of the organ of Corti. Acta Otolaryngol., 1970, 69(1-6), 61-76. doi: 10.3109/00016487009123336 PMID: 5446609
  46. Choi, K.M.; Kang, C.M.; Cho, E.; Kang, S.; Lee, S.; Um, H.D. Ionizing radiation-induced micronucleus formation is mediated by reactive oxygen species that are produced in a manner dependent on mitochondria, Nox1, and JNK. Oncol. Rep., 2007, 17(5), 1183-1188. doi: 10.3892/or.17.5.1183 PMID: 17390063
  47. Yamamori, T.; Yasui, H.; Yamazumi, M.; Wada, Y.; Nakamura, Y.; Nakamura, H.; Inanami, O. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic. Biol. Med., 2012, 53(2), 260-270. doi: 10.1016/j.freeradbiomed.2012.04.033 PMID: 22580337
  48. Hajnóczky, G.; Csordás, G.; Das, S.; Garcia-Perez, C.; Saotome, M.; Sinha Roy, S.; Yi, M. Mitochondrial calcium signalling and cell death: Approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium, 2006, 40(5-6), 553-560. doi: 10.1016/j.ceca.2006.08.016 PMID: 17074387
  49. Murphy, M.P. Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum. Cell Metab., 2013, 18(2), 145-146. doi: 10.1016/j.cmet.2013.07.006 PMID: 23931748
  50. Lee, I.T.; Yang, C.M. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem. Pharmacol., 2012, 84(5), 581-590. doi: 10.1016/j.bcp.2012.05.005 PMID: 22587816
  51. Ushio-Fukai, M. Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid. Redox Signal., 2009, 11(6), 1289-1299. doi: 10.1089/ars.2008.2333 PMID: 18999986
  52. Mortezaee, K.; Goradel, N.H.; Amini, P.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. NADPH oxidase as a target for modulation of radiation response; implications to carcinogenesis and radiotherapy. Curr. Mol. Pharmacol., 2019, 12(1), 50-60. doi: 10.2174/1874467211666181010154709 PMID: 30318012
  53. Azmoonfar, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Yahyapour, R.; farhood, B.; Nouruzi, F.; Khodamoradi, E.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin protects against radiation-induced pneumonitis and fibrosis and attenuates upregulation of dual oxidase genes expression. Adv. Pharm. Bull., 2018, 8(4), 697-704. doi: 10.15171/apb.2018.078 PMID: 30607342
  54. Bánfi, B.; Malgrange, B.; Knisz, J.; Steger, K.; Dubois-Dauphin, M.; Krause, K.H. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J. Biol. Chem., 2004, 279(44), 46065-46072. doi: 10.1074/jbc.M403046200 PMID: 15326186
  55. Juarez, J.C.; Manuia, M.; Burnett, M.E.; Betancourt, O.; Boivin, B.; Shaw, D.E.; Tonks, N.K.; Mazar, A.P.; Doñate, F. Superoxide dismutase 1 (SOD1) is essential for H2O2 -mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl. Acad. Sci., 2008, 105(20), 7147-7152. doi: 10.1073/pnas.0709451105 PMID: 18480265
  56. Najafi, M.; Hooshangi Shayesteh, M.R.; Mortezaee, K.; Farhood, B.; Haghi-Aminjan, H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci., 2020, 241, 117173. doi: 10.1016/j.lfs.2019.117173 PMID: 31843530
  57. Najafi, M.; Mortezaee, K.; Rahimifard, M.; Farhood, B.; Haghi-Aminjan, H. The role of curcumin/curcuminoids during gastric cancer chemotherapy: A systematic review of non-clinical study. Life Sci., 2020, 257, 118051. doi: 10.1016/j.lfs.2020.118051 PMID: 32634426
  58. Gondo, H.K. The effect of spirulina on apoptosis through the caspase-3 pathway in a Preeclamptic Wistar rat model. J. Nat. Sci. Biol. Med., 2021, 12(3), 280-284.
  59. Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Potes, Y.; Shabeeb, D.; Musa, A.E. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sci., 2019, 228, 228-241. doi: 10.1016/j.lfs.2019.05.009 PMID: 31077716
  60. Tan, P.X.; Du, S.S.; Ren, C.; Yao, Q.W.; Yuan, Y.W. Radiation-induced Cochlea hair cell death: mechanisms and protection. APJCP, 2013, 14(10), 5631-5635. PMID: 24289554
  61. Chao, C.; Saito, S.; Anderson, C.W.; Appella, E.; Xu, Y. Phosphorylation of murine p53 at Ser-18 regulates the p53 responses to DNA damage. Proc. Natl. Acad. Sci., 2000, 97(22), 11936-11941. doi: 10.1073/pnas.220252297 PMID: 11035798
  62. Hu, B.H.; Henderson, D.; Nicotera, T.M. Extremely rapid induction of outer hair cell apoptosis in the chinchilla cochlea following exposure to impulse noise. Hear. Res., 2006, 211(1-2), 16-25. doi: 10.1016/j.heares.2005.08.006 PMID: 16219436
  63. Cheng, A.G.; Cunningham, L.L.; Rubel, E.W. Mechanisms of hair cell death and protection. Curr. Opin. Otolaryngol. Head Neck Surg., 2005, 13(6), 343-348. doi: 10.1097/01.moo.0000186799.45377.63 PMID: 16282762
  64. Marchenko, N.D.; Zaika, A.; Moll, U.M. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem., 2000, 275(21), 16202-16212. doi: 10.1074/jbc.275.21.16202 PMID: 10821866
  65. Devarajan, P.; Savoca, M.; Castaneda, M.P.; Park, M.S.; Esteban-Cruciani, N.; Kalinec, G.; Kalinec, F. Cisplatin-induced apoptosis in auditory cells: role of death receptor and mitochondrial pathways. Hear. Res., 2002, 174(1-2), 45-54. doi: 10.1016/S0378-5955(02)00634-2 PMID: 12433395
  66. Tabuchi, K.; Nishimura, B.; Nakamagoe, M.; Hayashi, K.; Nakayama, M.; Hara, A. Ototoxicity: Mechanisms of cochlear impairment and its prevention. Curr. Med. Chem., 2011, 18(31), 4866-4871. doi: 10.2174/092986711797535254 PMID: 21919841
  67. Khan, S.; Adhikari, J.S.; Rizvi, M.A.; Chaudhury, N.K. Radioprotective potential of melatonin against 60Co γ-ray-induced testicular injury in male C57BL/6 mice. J. Biomed. Sci., 2015, 22(1), 61. doi: 10.1186/s12929-015-0156-9 PMID: 26205951
  68. Herceg, Z.; Wang, Z.Q. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat. Res., 2001, 477(1-2), 97-110. doi: 10.1016/S0027-5107(01)00111-7 PMID: 11376691
  69. Haimovitz-Friedman, A.; Kolesnick, R.N.; Fuks, Z. Ceramide signaling in apoptosis. Br. Med. Bull., 1997, 53(3), 539-553. doi: 10.1093/oxfordjournals.bmb.a011629 PMID: 9374036
  70. Peña, L.A.; Fuks, Z.; Koksnick, R. Stress-induced apoptosis and the sphingomyelin pathway. Biochem. Pharmacol., 1997, 53(5), 615-621. doi: 10.1016/S0006-2952(96)00834-9 PMID: 9113079
  71. Yabu, T.; Shiba, H.; Shibasaki, Y.; Nakanishi, T.; Imamura, S.; Touhata, K.; Yamashita, M. Stress-induced ceramide generation and apoptosis via the phosphorylation and activation of nSMase1 by JNK signaling. Cell Death Differ., 2015, 22(2), 258-273. doi: 10.1038/cdd.2014.128 PMID: 25168245
  72. Hadi, L.A.; Di Vito, C.; Marfia, G.; Navone, S.E.; Campanella, R.; Riboni, L. The role and function of sphingolipids in glioblastoma multiforme. Bioactive Sphingolipids in Cancer Biology and Therapy; Springer, 2015, pp. 259-293. doi: 10.1007/978-3-319-20750-6_12
  73. Ueda, N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int. J. Mol. Sci., 2015, 16(12), 5076-5124. doi: 10.3390/ijms16035076 PMID: 25751724
  74. Lin, X.; Fuks, Z.; Kolesnick, R. Ceramide mediates radiation-induced death of endothelium. Crit. Care Med., 2000, 28(S4), N87-N93. doi: 10.1097/00003246-200004001-00010 PMID: 10807320
  75. Kolesnick, R.; Fuks, Z. Radiation and ceramide-induced apoptosis. Oncogene, 2003, 22(37), 5897-5906. doi: 10.1038/sj.onc.1206702 PMID: 12947396
  76. Mujica-Mota, M.A.; Lehnert, S.; Devic, S.; Gasbarrino, K.; Daniel, S.J. Mechanisms of radiation-induced sensorineural hearing loss and radioprotection. Hear. Res., 2014, 312, 60-68. doi: 10.1016/j.heares.2014.03.003 PMID: 24650954
  77. Schwartz, I.; Kim, C-S.; Shin, S-O. Ultrastructural changes in the cochlea of the guinea pig after fast neutron irradiation. Otolaryngol. Head Neck Surg., 1994, 110(4), 419-427. doi: 10.1177/019459989411000412 PMID: 8170687
  78. Shi, W.; Hou, X.; Bao, X.; Hou, W.; Jiang, X.; Ma, L.; Jiang, X.; Dong, L. Mechanism and protection of radiotherapy induced sensorineural hearing loss for head and neck cancer. BioMed Res. Int., 2021, 2021, 1-10. doi: 10.1155/2021/3548706 PMID: 34970625
  79. Burotto, M.; Chiou, V.L.; Lee, J.M.; Kohn, E.C. The MAPK pathway across different malignancies: A new perspective. Cancer, 2014, 120(22), 3446-3456. doi: 10.1002/cncr.28864 PMID: 24948110
  80. Johnson, G.L.; Stuhlmiller, T.J.; Angus, S.P.; Zawistowski, J.S.; Graves, L.M. Molecular pathways: adaptive kinome reprogramming in response to targeted inhibition of the BRAF-MEK-ERK pathway in cancer. Clin. Cancer Res., 2014, 20(10), 2516-2522. doi: 10.1158/1078-0432.CCR-13-1081 PMID: 24664307
  81. Brown, L.; Benchimol, S. The involvement of MAPK signaling pathways in determining the cellular response to p53 activation: Cell cycle arrest or apoptosis. J. Biol. Chem., 2006, 281(7), 3832-3840. doi: 10.1074/jbc.M507951200 PMID: 16330547
  82. Murai, N.; Kirkegaard, M.; Järlebark, L.; Risling, M.; Suneson, A.; Ulfendahl, M. Activation of JNK in the inner ear following impulse noise exposure. J. Neurotrauma, 2008, 25(1), 72-77. doi: 10.1089/neu.2007.0346 PMID: 18355160
  83. Sabapathy, K. Role of the JNK pathway in human diseases. Prog. Mol. Biol. Transl. Sci., 2012, 106, 145-169. doi: 10.1016/B978-0-12-396456-4.00013-4 PMID: 22340717
  84. Wang, J.; Ruel, J.; Ladrech, S.; Bonny, C.; van de Water, T.R.; Puel, J.L. Inhibition of the c-Jun N-terminal kinase-mediated mitochondrial cell death pathway restores auditory function in sound-exposed animals. Mol. Pharmacol., 2007, 71(3), 654-666. doi: 10.1124/mol.106.028936 PMID: 17132689
  85. Chauhan, D.; Li, G.; Hideshima, T.; Podar, K.; Mitsiades, C.; Mitsiades, N.; Munshi, N.; Kharbanda, S.; Anderson, K.C. JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J. Biol. Chem., 2003, 278(20), 17593-17596. doi: 10.1074/jbc.C300076200 PMID: 12665525
  86. Shin, Y.S.; Hwang, H.S.; Kang, S.U.; Chang, J.W.; Oh, Y.T.; Kim, C.H. Inhibition of p38 mitogen-activated protein kinase ameliorates radiation-induced ototoxicity in zebrafish and cochlea-derived cell lines. Neurotoxicology, 2014, 40, 111-122. doi: 10.1016/j.neuro.2013.12.006 PMID: 24374476
  87. Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(12), 2977-2992. doi: 10.1016/j.bbamcr.2016.09.012 PMID: 27646922
  88. Haghi-Aminjan, H.; Farhood, B.; Rahimifard, M.; Didari, T.; Baeeri, M.; Hassani, S.; Hosseini, R.; Abdollahi, M. The protective role of melatonin in chemotherapy-induced nephrotoxicity: a systematic review of non-clinical studies. Expert Opin. Drug Metab. Toxicol., 2018, 14(9), 937-950. doi: 10.1080/17425255.2018.1513492 PMID: 30118646
  89. Al-Saikhan, F.I. Anti-inflammatory potentials of Fibraurea tinctoria leaves extract in experimental rats or animals. J. Pharm. Res. Int., 2020, 32(8), 79-83. doi: 10.9734/jpri/2020/v32i830474
  90. Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell. Physiol., 2019, 234(5), 5728-5740. doi: 10.1002/jcp.27442 PMID: 30317564
  91. Jeong, B.K.; Song, J.H.; Jeong, H.; Choi, H.S.; Jung, J.H.; Hahm, J.R.; Woo, S.H.; Jung, M.H.; Choi, B.H.; Kim, J.H.; Kang, K.M. Effect of alpha-lipoic acid on radiation-induced small intestine injury in mice. Oncotarget, 2016, 7(12), 15105-15117. doi: 10.18632/oncotarget.7874 PMID: 26943777
  92. Yahyapour, R.; Amini, P.; Rezapour, S.; Cheki, M.; Rezaeyan, A.; Farhood, B.; Shabeeb, D.; Musa, A.E.; Fallah, H.; Najafi, M. Radiation-induced inflammation and autoimmune diseases. Mil. Med. Res., 2018, 5(1), 9. doi: 10.1186/s40779-018-0156-7 PMID: 29554942
  93. Multhoff, G.; Molls, M.; Radons, J. Chronic inflammation in cancer development. Front. Immunol., 2012, 2, 98. doi: 10.3389/fimmu.2011.00098 PMID: 22566887
  94. Waetzig, V.; Czeloth, K.; Hidding, U.; Mielke, K.; Kanzow, M.; Brecht, S.; Goetz, M.; Lucius, R.; Herdegen, T.; Hanisch, U.K. c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia, 2005, 50(3), 235-246. doi: 10.1002/glia.20173 PMID: 15739188
  95. Lee, Y.B.; Schrader, J.W.; Kim, S.U. p38 map kinase regulates tnf-α production in human astrocytes and microglia by multiple mechanisms. Cytokine, 2000, 12(7), 874-880. doi: 10.1006/cyto.2000.0688 PMID: 10880231
  96. Zhang, W.; Dai, M.; Fridberger, A.; Hassan, A.; DeGagne, J.; Neng, L.; Zhang, F.; He, W.; Ren, T.; Trune, D.; Auer, M.; Shi, X. Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluid–blood barrier. Proc. Natl. Acad. Sci., 2012, 109(26), 10388-10393. doi: 10.1073/pnas.1205210109 PMID: 22689949
  97. Shi, X. Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res., 2010, 342(1), 21-30. doi: 10.1007/s00441-010-1040-2 PMID: 20838812
  98. Wright, H.L.; Moots, R.J.; Bucknall, R.C.; Edwards, S.W. Neutrophil function in inflammation and inflammatory diseases. Rheumatology, 2010, 49(9), 1618-1631. doi: 10.1093/rheumatology/keq045 PMID: 20338884
  99. Vanhoutte, P.M.; Shimokawa, H.; Feletou, M.; Tang, E.H.C. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol., 2017, 219(1), 22-96. doi: 10.1111/apha.12646 PMID: 26706498
  100. Tousoulis, D.; Kampoli, A.M.; Tentolouris Nikolaos Papageorgiou, C.; Stefanadis, C.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol., 2012, 10(1), 4-18. doi: 10.2174/157016112798829760 PMID: 22112350
  101. Kerr, R.; Stirling, D.; Ludlam, C.A. Interleukin 6 and Haemostasis. Br. J. Haematol., 2001, 115(1), 3-12. doi: 10.1046/j.1365-2141.2001.03061.x PMID: 11722403
  102. Hellweg, C.E. The Nuclear Factor κB pathway: A link to the immune system in the radiation response. Cancer Lett., 2015, 368(2), 275-289. doi: 10.1016/j.canlet.2015.02.019 PMID: 25688671
  103. Min, A.K.; Kim, M.K.; Seo, H.Y.; Kim, H.S.; Jang, B.K.; Hwang, J.S.; Choi, H.S.; Lee, K.U.; Park, K.G.; Lee, I.K. Alpha-lipoic acid inhibits hepatic PAI-1 expression and fibrosis by inhibiting the TGF-β signaling pathway. Biochem. Biophys. Res. Commun., 2010, 393(3), 536-541. doi: 10.1016/j.bbrc.2010.02.050 PMID: 20153726
  104. Shih, R.H.; Wang, C.Y.; Yang, C.M. NF-kappaB signaling pathways in neurological inflammation: A mini review. Front. Mol. Neurosci., 2015, 8, 77. doi: 10.3389/fnmol.2015.00077 PMID: 26733801
  105. Smith, D.I.; lawrence, M.; Hawkins, J.E., Jr Effects of noise and quinine on the vessels of the stria vascularis: An image analysis study. Am. J. Otolaryngol., 1985, 6(4), 280-289. doi: 10.1016/S0196-0709(85)80056-9 PMID: 3898894
  106. Jereczek-Fossa, B.A.; Zarowski, A.; Milani, F.; Orecchia, R. Radiotherapy-induced ear toxicity. Cancer Treat. Rev., 2003, 29(5), 417-430. doi: 10.1016/S0305-7372(03)00066-5 PMID: 12972360
  107. Gamble, J.E.; Peterson, E.A.; Chandler, J.R. Radiation effects on the inner ear. Arch Otolaryngol, 1968, 88(2), 156-161. doi: 10.1001/archotol.1968.00770010158008
  108. Landier, W. Ototoxicity and cancer therapy. Cancer, 2016, 122(11), 1647-1658. doi: 10.1002/cncr.29779 PMID: 26859792
  109. Common Terminology Criteria for Adverse Events (CTCAE). Available from: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm
  110. Brock, P.R.; Bellman, S.C.; Yeomans, E.C.; Pinkerton, C.R.; Pritchard, J. Cisplatin ototoxicity in children: A practical grading system. Med. Pediatr. Oncol., 1991, 19(4), 295-300. doi: 10.1002/mpo.2950190415 PMID: 2056973
  111. Audiologic management of individuals receiving cochleotoxic drug therapy; American Speech-Language-Hearing Association, 1994.
  112. Chang, K.W.; Chinosornvatana, N. Practical grading system for evaluating cisplatin ototoxicity in children. J. Clin. Oncol., 2010, 28(10), 1788-1795. doi: 10.1200/JCO.2009.24.4228 PMID: 20194861
  113. Brock, P.R.; Knight, K.R.; Freyer, D.R.; Campbell, K.C.M.; Steyger, P.S.; Blakley, B.W.; Rassekh, S.R.; Chang, K.W.; Fligor, B.J.; Rajput, K.; Sullivan, M.; Neuwelt, E.A. Platinum-induced ototoxicity in children: a consensus review on mechanisms, predisposition, and protection, including a new International Society of Pediatric Oncology Boston ototoxicity scale. J. Clin. Oncol., 2012, 30(19), 2408-2417. doi: 10.1200/JCO.2011.39.1110 PMID: 22547603
  114. Huang, E.; Teh, B.S.; Strother, D.R.; Davis, Q.G.; Chiu, J.K.; Lu, H.H.; Carpenter, L.S.; Mai, W.Y.; Chintagumpala, M.M.; South, M.; Grant, W.H., III; Butler, E.B.; Woo, S.Y. Intensity-modulated radiation therapy for pediatric medulloblastoma: early report on the reduction of ototoxicity. Int. J. Radiat. Oncol. Biol. Phys., 2002, 52(3), 599-605. doi: 10.1016/S0360-3016(01)02641-4 PMID: 11849779
  115. BIAP recommendation No. 02/1 bis: Audiometric classification of hearing impairments, 1996. Available from: http://www.biap.org/biapanglais/rec021eng.htm
  116. Bhandare, N.; Antonelli, P.J.; Morris, C.G.; Malayapa, R.S.; Mendenhall, W.M. Ototoxicity after radiotherapy for head and neck tumors. Int. J. Radiat. Oncol. Biol. Phys., 2007, 67(2), 469-479. doi: 10.1016/j.ijrobp.2006.09.017 PMID: 17236969
  117. Merchant, T.E.; Gould, C.J.; Xiong, X.; Robbins, N.; Zhu, J.; Pritchard, D.L.; Khan, R.; Heideman, R.L.; Krasin, M.J.; Kun, L.E. Early neuro-otologic effects of three-dimensional irradiation in children with primary brain tumors. Int. J. Radiat. Oncol. Biol. Phys., 2004, 58(4), 1194-1207. doi: 10.1016/j.ijrobp.2003.07.008 PMID: 15001264
  118. Emami, B.; Lyman, J.; Brown, A.; Cola, L.; Goitein, M.; Munzenrider, J.E.; Shank, B.; Solin, L.J.; Wesson, M. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys., 1991, 21(1), 109-122. doi: 10.1016/0360-3016(91)90171-Y PMID: 2032882
  119. Marks, L.B.; Yorke, E.D.; Jackson, A.; Ten Haken, R.K.; Constine, L.S.; Eisbruch, A.; Bentzen, S.M.; Nam, J.; Deasy, J.O. Use of normal tissue complication probability models in the clinic. Int. J. Radiat. Oncol. Biol. Phys., 2010, 76(S3), S10-S19. doi: 10.1016/j.ijrobp.2009.07.1754 PMID: 20171502
  120. Honoré, H.B.; Bentzen, S.M.; Møller, K.; Grau, C. Sensori-neural hearing loss after radiotherapy for nasopharyngeal carcinoma: individualized risk estimation. Radiother. Oncol., 2002, 65(1), 9-16. doi: 10.1016/S0167-8140(02)00173-1 PMID: 12413669
  121. Cacciotti, C.; Fleming, A.; Ramaswamy, V. Advances in the molecular classification of pediatric brain tumors: a guide to the galaxy. J. Pathol., 2020, 251(3), 249-261. doi: 10.1002/path.5457 PMID: 32391583
  122. Gondi, V.; Yock, T.I.; Mehta, M.P. Proton therapy for paediatric CNS tumours — improving treatment-related outcomes. Nat. Rev. Neurol., 2016, 12(6), 334-345. doi: 10.1038/nrneurol.2016.70 PMID: 27197578
  123. Bouffet, E.; Bernard, J.L.; Frappaz, D.; Gentet, J.C.; Roche, H.; Tron, P.; Carrie, C.; Raybaud, C.; Joannard, A.; Lapras, C.; Choux, M.; Carton, M.; Aimard, L.; Philip, T.; Brunat-Mentigny, M. M4 protocol for cerebellar medulloblastoma: Supratentorial radiotherapy may not be avoided. Int. J. Radiat. Oncol. Biol. Phys., 1992, 24(1), 79-85. doi: 10.1016/0360-3016(92)91025-I PMID: 1512166
  124. Fossati, P.; Ricardi, U.; Orecchia, R. Pediatric medulloblastoma: Toxicity of current treatment and potential role of protontherapy. Cancer Treat. Rev., 2009, 35(1), 79-96. doi: 10.1016/j.ctrv.2008.09.002 PMID: 18976866
  125. Breen, S.L.; Kehagioglou, P.; Usher, C.; Plowman, P.N. A comparison of conventional, conformal and intensity-modulated coplanar radiotherapy plans for posterior fossa treatment. Br. J. Radiol., 2004, 77(921), 768-774. doi: 10.1259/bjr/67922606 PMID: 15447964
  126. Gupta, T.; Mohanty, S.; Kannan, S.; Jalali, R. Prospective longitudinal assessment of sensorineural hearing loss with hyperfractionated radiation therapy alone in patients with average-risk medulloblastoma. Neurooncol. Pract., 2014, 1(3), 86-93. doi: 10.1093/nop/npu017 PMID: 31386031
  127. Paulino, A.C.; Lobo, M.; Teh, B.S.; Okcu, M.F.; South, M.; Butler, E.B.; Su, J.; Chintagumpala, M. Ototoxicity after intensity-modulated radiation therapy and cisplatin-based chemotherapy in children with medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys., 2010, 78(5), 1445-1450. doi: 10.1016/j.ijrobp.2009.09.031 PMID: 20231075
  128. Vieira, W.A.; Weltman, E.; Chen, M.J.; da Silva, N.S.; Cappellano, A.M.; Pereira, L.D.; Gonçalves, M.I.R.; Ferrigno, R.; Hanriot, R.M.; Nadalin, W.; Odone Filho, V.; Petrilli, A.S. Ototoxicity evaluation in medulloblastoma patients treated with involved field boost using intensity-modulated radiation therapy (IMRT): a retrospective review. Radiat. Oncol., 2014, 9(1), 158. doi: 10.1186/1748-717X-9-158 PMID: 25041714
  129. Scobioala, S.; Parfitt, R.; Matulat, P.; Kittel, C.; Ebrahimi, F.; Wolters, H.; am Zehnhoff-Dinnesen, A.; Eich, H.T. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Strahlenther. Onkol., 2017, 193(11), 910-920. doi: 10.1007/s00066-017-1205-y PMID: 28887665
  130. Paulino, A.C.; Mahajan, A.; Ye, R.; Grosshans, D.R.; Fatih Okcu, M.; Su, J.; McAleer, M.F.; McGovern, S.; Mangona, V.A.; Chintagumpala, M. Ototoxicity and cochlear sparing in children with medulloblastoma: Proton vs. photon radiotherapy. Radiother. Oncol., 2018, 128(1), 128-132. doi: 10.1016/j.radonc.2018.01.002 PMID: 29373195
  131. Polkinghorn, W.R.; Dunkel, I.J.; Souweidane, M.M.; Khakoo, Y.; Lyden, D.C.; Gilheeney, S.W.; Becher, O.J.; Budnick, A.S.; Wolden, S.L. Disease control and ototoxicity using intensity-modulated radiation therapy tumor-bed boost for medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys., 2011, 81(3), e15-e20. doi: 10.1016/j.ijrobp.2010.11.081 PMID: 21481547
  132. Merchant, T.E.; Hua, C.; Shukla, H.; Ying, X.; Nill, S.; Oelfke, U. Proton versus photon radiotherapy for common pediatric brain tumors: Comparison of models of dose characteristics and their relationship to cognitive function. Pediatr. Blood Cancer, 2008, 51(1), 110-117. doi: 10.1002/pbc.21530 PMID: 18306274
  133. Lee, C.T.; Bilton, S.D.; Famiglietti, R.M.; Riley, B.A.; Mahajan, A.; Chang, E.L.; Maor, M.H.; Woo, S.Y.; Cox, J.D.; Smith, A.R. Treatment planning with protons for pediatric retinoblastoma, medulloblastoma, and pelvic sarcoma: How do protons compare with other conformal techniques? Int. J. Radiat. Oncol. Biol. Phys., 2005, 63(2), 362-372. doi: 10.1016/j.ijrobp.2005.01.060 PMID: 16168831
  134. St Clair, W.H.; Adams, J.A.; Bues, M.; Fullerton, B.C.; La Shell, S.; Kooy, H.M.; Loeffler, J.S.; Tarbell, N.J. Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys., 2004, 58(3), 727-734. doi: 10.1016/S0360-3016(03)01574-8 PMID: 14967427
  135. Eaton, B.R.; Esiashvili, N.; Kim, S.; Weyman, E.A.; Thornton, L.T.; Mazewski, C.; MacDonald, T.; Ebb, D.; MacDonald, S.M.; Tarbell, N.J.; Yock, T.I. Clinical outcomes among children with standard-risk medulloblastoma treated with proton and photon radiation therapy: A comparison of disease control and overall survival. Int. J. Radiat. Oncol. Biol. Phys., 2016, 94(1), 133-138. doi: 10.1016/j.ijrobp.2015.09.014 PMID: 26700707
  136. Moeller, B.J.; Chintagumpala, M.; Philip, J.J.; Grosshans, D.R.; McAleer, M.F.; Woo, S.Y.; Gidley, P.W.; Vats, T.S.; Mahajan, A. Low early ototoxicity rates for pediatric medulloblastoma patients treated with proton radiotherapy. Radiat. Oncol., 2011, 6(1), 58. doi: 10.1186/1748-717X-6-58 PMID: 21635776
  137. Jimenez, R.B.; Sethi, R.; Depauw, N.; Pulsifer, M.B.; Adams, J.; McBride, S.M.; Ebb, D.; Fullerton, B.C.; Tarbell, N.J.; Yock, T.I.; MacDonald, S.M. Proton radiation therapy for pediatric medulloblastoma and supratentorial primitive neuroectodermal tumors: outcomes for very young children treated with upfront chemotherapy. Int. J. Radiat. Oncol. Biol. Phys., 2013, 87(1), 120-126. doi: 10.1016/j.ijrobp.2013.05.017 PMID: 23790826
  138. Yock, T.I.; Yeap, B.Y.; Ebb, D.H.; Weyman, E.; Eaton, B.R.; Sherry, N.A.; Jones, R.M.; MacDonald, S.M.; Pulsifer, M.B.; Lavally, B.; Abrams, A.N.; Huang, M.S.; Marcus, K.J.; Tarbell, N.J. Long-term toxic effects of proton radiotherapy for paediatric medulloblastoma: A phase 2 single-arm study. Lancet Oncol., 2016, 17(3), 287-298. doi: 10.1016/S1470-2045(15)00167-9 PMID: 26830377
  139. Fortin, D.; Tsang, D.; Ng, A.; Laperriere, N.; Hodgson, D.C. Monte Carlo-driven predictions of neurocognitive and hearing impairments following proton and photon radiotherapy for pediatric brain-tumor patients. J. Neurooncol., 2017, 135(3), 521-528. doi: 10.1007/s11060-017-2597-3 PMID: 28825228
  140. Jazmati, D.; Steinmeier, T.; Ahamd Khalil, D.; Frisch, S.; Peters, S.; Schulze, S.S. Feasibility of proton beam therapy for infants with brain tumours: Experiences from the prospective kiproreg registry study. J Clin Oncol, 2021, 33(7), e295-e304.
  141. Bass, J.K.; Huang, J.; Hua, C.H.; Bhagat, S.P.; Mendel, L.L.; Onar-Thomas, A.; Indelicato, D.J.; Merchant, T.E. Auditory outcomes in patients who received proton radiotherapy for craniopharyngioma. Am. J. Audiol., 2018, 27(3), 306-315. doi: 10.1044/2018_AJA-18-0026 PMID: 30073327
  142. MacDonald, S.M.; Sethi, R.; Lavally, B.; Yeap, B.Y.; Marcus, K.J.; Caruso, P.; Pulsifer, M.; Huang, M.; Ebb, D.; Tarbell, N.J.; Yock, T.I. Proton radiotherapy for pediatric central nervous system ependymoma: Clinical outcomes for 70 patients. Neuro-oncol., 2013, 15(11), 1552-1559. doi: 10.1093/neuonc/not121 PMID: 24101739
  143. Indelicato, D.J.; Bradley, J.A.; Rotondo, R.L.; Nanda, R.H.; Logie, N.; Sandler, E.S.; Aldana, P.R.; Ranalli, N.J.; Beier, A.D.; Morris, C.G.; Mendenhall, N.P. Outcomes following proton therapy for pediatric ependymoma. Acta Oncol., 2018, 57(5), 644-648. doi: 10.1080/0284186X.2017.1413248 PMID: 29239262
  144. Indelicato, D.J.; Ioakeim-Ioannidou, M.; Bradley, J.A.; Mailhot-Vega, R.B.; Morris, C.G.; Tarbell, N.J.; Yock, T.; MacDonald, S.M. Proton therapy for pediatric ependymoma: Mature results from a bicentric study. Int. J. Radiat. Oncol. Biol. Phys., 2021, 110(3), 815-820. doi: 10.1016/j.ijrobp.2021.01.027 PMID: 33508372
  145. Borsanyi, S.J.; Blanchard, C.L. Ionizing radiation and the ear. JAMA, 1962, 181(11), 958-961. doi: 10.1001/jama.1962.03050370026006 PMID: 13871468
  146. Qiu, W.Z.; Peng, X.S.; Xia, H.Q.; Huang, P.Y.; Guo, X.; Cao, K.J. A retrospective study comparing the outcomes and toxicities of intensity-modulated radiotherapy versus two-dimensional conventional radiotherapy for the treatment of children and adolescent nasopharyngeal carcinoma. J. Cancer Res. Clin. Oncol., 2017, 143(8), 1563-1572. doi: 10.1007/s00432-017-2401-y PMID: 28342002
  147. Lu, S.; Wei, J.; Sun, F.; Xiao, W.; Cai, R.; Zhen, Z.; Zhu, J.; Wang, J.; Huang, J.; Lu, L.; Sun, X.; Gao, Y. Late sequelae of childhood and adolescent nasopharyngeal carcinoma survivors after radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 2019, 103(1), 45-51. doi: 10.1016/j.ijrobp.2018.09.015 PMID: 30244159
  148. Uezono, H.; Indelicato, D.J.; Rotondo, R.L.; Sandler, E.S.; Katzenstein, H.M.; Dagan, R.; Mendenhall, W.M.; Mailhot Vega, R.; Brennan, B.M.; Bradley, J.A. Proton therapy following induction chemotherapy for pediatric and adolescent nasopharyngeal carcinoma. Pediatr. Blood Cancer, 2019, 66(12), e27990. doi: 10.1002/pbc.27990 PMID: 31524334
  149. Lockney, N.A.; Friedman, D.N.; Wexler, L.H.; Sklar, C.A.; Casey, D.L.; Wolden, S.L. Late toxicities of intensity-modulated radiation therapy for head and neck rhabdomyosarcoma. Pediatr. Blood Cancer, 2016, 63(9), 1608-1614. doi: 10.1002/pbc.26061 PMID: 27195454
  150. Schoot, RA; Theunissen, EA; Slater, O; Lopez-Yurda, M; Zuur, CL; Gaze, MN Hearing loss in survivors of childhood head and neck rhabdomyosarcoma: A long-term follow-up study. Clin Otolaryngol., 2016, 41(3), 276-283. doi: 10.1111/coa.12527
  151. Jacob, J.T.; Carlson, M.L.; Schiefer, T.K.; Pollock, B.E.; Driscoll, C.L.; Link, M.J. Significance of cochlear dose in the radiosurgical treatment of vestibular schwannoma: Controversies and unanswered questions. Neurosurgery, 2014, 74(5), 466-474. doi: 10.1227/NEU.0000000000000299 PMID: 24476904
  152. Nader, M.E.; Gidley, P. Challenges of hearing rehabilitation after radiation and chemotherapy. J. Neurol. Surg. B Skull Base, 2019, 80(2), 214-224. doi: 10.1055/s-0039-1677865 PMID: 30931231
  153. Lamaj, E.; Vu, E.; van Timmeren, J.E.; Leonardi, C.; Marc, L.; Pytko, I.; Guckenberger, M.; Balermpas, P. Cochlea sparing optimized radiotherapy for nasopharyngeal carcinoma. Radiat. Oncol., 2021, 16(1), 64. doi: 10.1186/s13014-021-01796-4 PMID: 33794949
  154. Cheraghi, S.; Mahdavi, S.R.; Rezaeyan, A.; Nikoofar, A.; Bakhshandeh, M.; Farahani, S. Comparison of radiation and chemoradiation-induced sensorineural hearing loss in head and neck cancer patients. J. Cancer Res. Ther., 2020, 16(3), 539-545. doi: 10.4103/jcrt.JCRT_891_16 PMID: 32719264
  155. Yang, Q; Cao, SM; Guo, L; Hua, YJ; Huang, PY; Zhang, XL Induction chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: Long-term results of a phase III multicentre randomised controlled trial. Eur. J. Cancer, 2019, 119, 87-96. doi: 10.1016/j.ejca.2019.07.007
  156. Kortmann, R.D.; Kühl, J.; Timmermann, B.; Mittler, U.; Urban, C.; Budach, V.; Richter, E.; Willich, N.; Flentje, M.; Berthold, F.; Slavc, I.; Wolff, J.; Meisner, C.; Wiestler, O.; Sörensen, N.; Warmuth-Metz, M.; Bamberg, M. Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: Results of the German prospective randomized trial hit ’91. Int. J. Radiat. Oncol. Biol. Phys., 2000, 46(2), 269-279. doi: 10.1016/S0360-3016(99)00369-7 PMID: 10661332
  157. Petsuksiri, J.; Sermsree, A.; Thephamongkhol, K.; Keskool, P.; Thongyai, K.; Chansilpa, Y.; Pattaranutaporn, P. Sensorineural hearing loss after concurrent chemoradiotherapy in nasopharyngeal cancer patients. Radiat. Oncol., 2011, 6(1), 19. doi: 10.1186/1748-717X-6-19 PMID: 21333025
  158. Altas, E.; Ertekin, M.V.; Kuduban, O.; Gundogdu, C.; Demirci, E.; Sutbeyaz, Y. Effects of piracetam supplementation on cochlear damage occurring in guinea pigs exposed to irradiation. Biol. Pharm. Bull., 2006, 29(7), 1460-1465. doi: 10.1248/bpb.29.1460 PMID: 16819189
  159. Altas, E.; Ertekin, M.V.; Gundogdu, C.; Demirci, E. L-carnitine reduces cochlear damage induced by gamma irradiation in Guinea pigs. Ann. Clin. Lab. Sci., 2006, 36(3), 312-318. PMID: 16951273
  160. Low, W.K.; Sun, L.; Tan, M.G.K.; Chua, A.W.C.; Wang, D.Y. L-N-Acetylcysteine protects against radiation-induced apoptosis in a cochlear cell line. Acta Otolaryngol., 2008, 128(4), 440-445. doi: 10.1080/00016480701762490 PMID: 18368580
  161. Lessa, R.M.; Oliveira, J.A.A.; Rossato, M.; Ghilardi Netto, T. Analysis of the cytoprotective effect of amifostine on the irradiated inner ear of guinea pigs: An experimental study. Rev. Bras. Otorrinolaringol., 2009, 75(5), 694-700. doi: 10.1590/S1808-86942009000500014 PMID: 19893938
  162. Karaer, I.; Simsek, G.; Gul, M.; Bahar, L.; Gürocak, S.; Parlakpinar, H.; Nuransoy, A. Melatonin protects inner ear against radiation damage in rats. Laryngoscope, 2015, 125(10), E345-E349. doi: 10.1002/lary.25376 PMID: 25994110
  163. Chen, T.; Luo, Y.; Li, Q.; Yang, C.; Yuan, Y.; Peng, J.; Ban, M.; Liang, Y.; Zhang, W. Melatonin reduces radiation damage in inner ear. J. Radiat. Res., 2021, 62(2), 217-225. doi: 10.1093/jrr/rraa137 PMID: 33454767
  164. Crowson, M.G.; Hertzano, R.; Tucci, D.L. Emerging therapies for sensorineural hearing loss. Otol. Neurotol., 2017, 38(6), 792-803. doi: 10.1097/MAO.0000000000001427
  165. Chang, W.W.T.; Yeung, K.N.K.; Luk, B.P.K.; Leung, K.K.Y.; Sung, J.K.K.; Tong, M.C.F. Cochlear implantation in postirradiated ears: A case-control comparative study. Laryngoscope Investig. Otolaryngol., 2020, 5(6), 1163-1167. doi: 10.1002/lio2.486 PMID: 33364408
  166. Dinh, C.T.; Chen, S.; Dinh, J.; Goncalves, S.; Bas, E.; Padgett, K.; Johnson, P.; Elsayyad, N.; Telischi, F.; Van De Water, T. Effects of intratympanic dexamethasone on high-dose radiation ototoxicity in vivo. Otol. Neurotol., 2017, 38(2), 180-186. doi: 10.1097/MAO.0000000000001289

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers