Identification of Necroptosis-related Molecular Subtypes and Construction of Necroptosis-related Gene Signature for Glioblastoma Multiforme
- Authors: Li Z.1, Jin Y.2, Que T.1, Zhang X.1, Yi G.1, Zheng H.1, Yuan X.1, Wang X.1, Xu H.1, Nan J.1, Chen C.1, Wu Y.3, Huang G.1
-
Affiliations:
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University
- Issue: Vol 31, No 33 (2024)
- Pages: 5417-5431
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645055
- DOI: https://doi.org/10.2174/0929867331666230804104329
- ID: 645055
Cite item
Full Text
Abstract
Background:Necroptosis is a highly regulated and genetically controlled process, and therefore, attention has been paid to the exact effects of this disorder on a variety of diseases, including cancer. An in-depth understanding of the key regulatory factors and molecular events that trigger necroptosis can not only identify patients at risk of cancer development but can also help to develop new treatment strategies.
Aims:This study aimed to increase understanding of the complex role of necroptosis in glioblastoma multiforme (GBM) and provide a new perspective and reference for accurate prediction of clinical outcomes and gene-targeted therapy in patients with GBM. The objective of this study was to analyze the gene expression profile of necroptosis regulatory factors in glioblastoma multiforme (GBM) and establish a necroptosis regulatory factor-based GBM classification and prognostic gene signature to recognize the multifaceted impact of necroptosis on GBM.
Methods:The necroptosis score of the glioblastoma multiforme (GBM) sample in TCGA was calculated by ssGSEA, and the correlation between each gene and the necroptosis score was calculated. Based on necroptosis score-related genes, unsupervised consensus clustering was employed to classify patients. The prognosis, tumor microenvironment (TME), genomic changes, biological signal pathways and gene expression differences among clusters were analyzed. The gene signature of GBM was constructed by Cox and LASSO regression analysis of differentially expressed genes (DEGs).
Result:Based on 34 necroptosis score-related genes, GBM was divided into two clusters with different overall survival (OS) and TME. A necroptosis-related gene signature (NRGS) containing 8 genes was developed, which could stratify the risk of GBM in both the training set and verification set and had good prognostic value. NRGS and age were both independent prognostic indicators of GBM, and a nomogram developed by the integration of both of them showed a better predictive effect than traditional clinical features.
Conclusion:In this study, patients from public data sets were divided into two clusters and the unique TME and molecular characteristics of each cluster were described. Furthermore, an NRGS was constructed to effectively and independently predict the survival outcome of GBM, which provides some insights for the implementation of personalized precision medicine in clinical practice.
About the authors
Zhiyong Li
Department of Neurosurgery, Nanfang Hospital, Southern Medical University
Email: info@benthamscience.net
Yinghui Jin
Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University
Email: info@benthamscience.net
Tianshi Que
Department of Neurosurgery, Nanfang Hospital, Southern Medical University
Email: info@benthamscience.net
Xi-An Zhang
Department of Neurosurgery, Nanfang Hospital, Southern Medical University
Email: info@benthamscience.net
Guozhong Yi
Department of Neurosurgery, Nanfang Hospital, Southern Medical University
Email: info@benthamscience.net
Haojie Zheng
Department of Neurosurgery, Nanfang Hospital, Southern Medical University
Email: info@benthamscience.net
Xi Yuan
Department of Neurosurgery, Nanfang Hospital, Southern Medical University
Email: info@benthamscience.net
Xiaoyan Wang
Department of Neurosurgery, Nanfang Hospital, Southern Medical University
Email: info@benthamscience.net
Haiyan Xu
Department of Neurosurgery, Nanfang Hospital, Southern Medical University
Email: info@benthamscience.net
Jing Nan
Department of Neurosurgery, Nanfang Hospital, Southern Medical University
Email: info@benthamscience.net
Chao Chen
Department of Neurosurgery, Nanfang Hospital, Southern Medical University
Email: info@benthamscience.net
Yuankui Wu
Department of Medical Imaging, Nanfang Hospital, Southern Medical University
Author for correspondence.
Email: info@benthamscience.net
Guanglong Huang
Department of Neurosurgery, Nanfang Hospital, Southern Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Stoyanov, G.S.; Dzhenkov, D.; Ghenev, P.; Iliev, B.; Enchev, Y.; Tonchev, A.B. Cell biology of glioblastoma multiforme: From basic science to diagnosis and treatment. Med. Oncol., 2018, 35(3), 27. doi: 10.1007/s12032-018-1083-x PMID: 29387965
- Vitovcova, B.; Skarkova, V.; Rudolf, K.; Rudolf, E. Biology of glioblastoma multiformeexploration of mitotic catastrophe as a potential treatment modality. Int. J. Mol. Sci., 2020, 21(15), 5324. doi: 10.3390/ijms21155324 PMID: 32727112
- Batash, R.; Asna, N.; Schaffer, P.; Francis, N.; Schaffer, M. Glioblastoma multiforme, diagnosis and treatment; recent literature review. Curr. Med. Chem., 2017, 24(27), 3002-3009. PMID: 28521700
- Erthal, L.C.S.; Gobbo, O.L.; Ruiz-Hernandez, E. Biocompatible copolymer formulations to treat glioblastoma multiforme. Acta Biomater., 2021, 121, 89-102. doi: 10.1016/j.actbio.2020.11.030 PMID: 33227487
- Pearson, J.R.D.; Cuzzubbo, S.; McArthur, S.; Durrant, L.G.; Adhikaree, J.; Tinsley, C.J.; Pockley, A.G.; McArdle, S.E.B. Immune escape in glioblastoma multiforme and the adaptation of immunotherapies for treatment. Front. Immunol., 2020, 11, 582106. doi: 10.3389/fimmu.2020.582106 PMID: 33178210
- Carlsson, S.K.; Brothers, S.P.; Wahlestedt, C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol. Med., 2014, 6(11), 1359-1370. doi: 10.15252/emmm.201302627 PMID: 25312641
- Tong, X.; Tang, R.; Xiao, M.; Xu, J.; Wang, W.; Zhang, B.; Liu, J.; Yu, X.; Shi, S. Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J. Hematol. Oncol., 2022, 15(1), 174. doi: 10.1186/s13045-022-01392-3 PMID: 36482419
- Shan, B.; Pan, H.; Najafov, A.; Yuan, J. Necroptosis in development and diseases. Genes Dev., 2018, 32(5-6), 327-340. doi: 10.1101/gad.312561.118 PMID: 29593066
- Zhang, G.; Wang, J.; Zhao, Z.; Xin, T.; Fan, X.; Shen, Q.; Raheem, A.; Lee, C.R.; Jiang, H.; Ding, J. Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis., 2022, 13(7), 637. doi: 10.1038/s41419-022-05066-3 PMID: 35869043
- Wang, T.; Jin, Y.; Yang, W.; Zhang, L.; Jin, X.; Liu, X.; He, Y.; Li, X. Necroptosis in cancer: An angel or a demon? Tumour Biol., 2017, 39(6) doi: 10.1177/1010428317711539 PMID: 28651499
- Gong, Y.; Fan, Z.; Luo, G.; Yang, C.; Huang, Q.; Fan, K.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; Liu, C. The role of necroptosis in cancer biology and therapy. Mol. Cancer, 2019, 18(1), 100. doi: 10.1186/s12943-019-1029-8 PMID: 31122251
- Lalaoui, N.; Brumatti, G. Relevance of necroptosis in cancer. Immunol. Cell Biol., 2017, 95(2), 137-145. doi: 10.1038/icb.2016.120 PMID: 27922620
- Ru, B.; Wong, C.N.; Tong, Y.; Zhong, J.Y.; Zhong, S.S.W.; Wu, W.C.; Chu, K.C.; Wong, C.Y.; Lau, C.Y.; Chen, I.; Chan, N.W.; Zhang, J. TISIDB: An integrated repository portal for tumorimmune system interactions. Bioinformatics, 2019, 35(20), 4200-4202. doi: 10.1093/bioinformatics/btz210 PMID: 30903160
- Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.; Sautès-Fridman, C.; Fridman, W.H.; de Reyniès, A. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol., 2016, 17(1), 218. doi: 10.1186/s13059-016-1070-5 PMID: 27765066
- Geeleher, P.; Cox, N.; Huang, R.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One, 2014, 9(9), e107468. doi: 10.1371/journal.pone.0107468 PMID: 25229481
- Subramanian, A.; Kuehn, H.; Gould, J.; Tamayo, P.; Mesirov, J.P. GSEA-P : A desktop application for Gene Set Enrichment Analysis. Bioinformatics, 2007, 23(23), 3251-3253. doi: 10.1093/bioinformatics/btm369 PMID: 17644558
- Sprooten, J.; De Wijngaert, P.; Vanmeerbeek, I.; Martin, S.; Vangheluwe, P.; Schlenner, S.; Krysko, D.V.; Parys, J.B.; Bultynck, G.; Vandenabeele, P.; Garg, A.D. Necroptosis in immuno-oncology and cancer immunotherapy. Cells, 2020, 9(8), 1823. doi: 10.3390/cells9081823 PMID: 32752206
- Nutt, C.L.; Mani, D.R.; Betensky, R.A.; Tamayo, P.; Cairncross, J.G.; Ladd, C.; Pohl, U.; Hartmann, C.; McLaughlin, M.E.; Batchelor, T.T.; Black, P.M.; von Deimling, A.; Pomeroy, S.L.; Golub, T.R.; Louis, D.N. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res., 2003, 63(7), 1602-1607. PMID: 12670911
- Aldape, K.; Zadeh, G.; Mansouri, S.; Reifenberger, G.; von Deimling, A. Glioblastoma: Pathology, molecular mechanisms and markers. Acta Neuropathol., 2015, 129(6), 829-848. doi: 10.1007/s00401-015-1432-1 PMID: 25943888
- Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; Alexe, G.; Lawrence, M.; OKelly, M.; Tamayo, P.; Weir, B.A.; Gabriel, S.; Winckler, W.; Gupta, S.; Jakkula, L.; Feiler, H.S.; Hodgson, J.G.; James, C.D.; Sarkaria, J.N.; Brennan, C.; Kahn, A.; Spellman, P.T.; Wilson, R.K.; Speed, T.P.; Gray, J.W.; Meyerson, M.; Getz, G.; Perou, C.M.; Hayes, D.N. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17(1), 98-110. doi: 10.1016/j.ccr.2009.12.020 PMID: 20129251
- Garofano, L.; Migliozzi, S.; Oh, Y.T.; DAngelo, F.; Najac, R.D.; Ko, A.; Frangaj, B.; Caruso, F.P.; Yu, K.; Yuan, J.; Zhao, W.; Di Stefano, A.L.; Bielle, F.; Jiang, T.; Sims, P.; Suvà, M.L.; Tang, F.; Su, X.D.; Ceccarelli, M.; Sanson, M.; Lasorella, A.; Iavarone, A. Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. Nat. Can., 2021, 2(2), 141-156. doi: 10.1038/s43018-020-00159-4 PMID: 33681822
- Dapash, M.; Hou, D.; Castro, B.; Lee-Chang, C.; Lesniak, M.S. The interplay between glioblastoma and its microenvironment. Cells, 2021, 10(9), 2257. doi: 10.3390/cells10092257 PMID: 34571905
- Yan, J.; Wan, P.; Choksi, S.; Liu, Z.G. Necroptosis and tumor progression. Trends Cancer, 2022, 8(1), 21-27. doi: 10.1016/j.trecan.2021.09.003 PMID: 34627742
- Aaes, T.L.; Kaczmarek, A.; Delvaeye, T.; De Craene, B.; De Koker, S.; Heyndrickx, L.; Delrue, I.; Taminau, J.; Wiernicki, B.; De Groote, P.; Garg, A.D.; Leybaert, L.; Grooten, J.; Bertrand, M.J.M.; Agostinis, P.; Berx, G.; Declercq, W.; Vandenabeele, P.; Krysko, D.V. Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity. Cell Rep., 2016, 15(2), 274-287. doi: 10.1016/j.celrep.2016.03.037 PMID: 27050509
- Chen, Z.; Hambardzumyan, D. Immune microenvironment in glioblastoma subtypes. Front. Immunol., 2018, 9, 1004. doi: 10.3389/fimmu.2018.01004 PMID: 29867979
- Yaltirik, C.K.; Yilmaz, S.G.; Ozdogan, S.; Bilgin, E.Y.; Barut, Z.; Ture, U.; Isbir, T. Determination of IDH1, IDH2, MGMT, TERT and ATRX gene mutations in glial tumors. In Vivo, 2022, 36(4), 1694-1702. doi: 10.21873/invivo.12881 PMID: 35738587
- Crespo, I.; Vital, A.L.; Gonzalez-Tablas, M.; Patino, M.C.; Otero, A.; Lopes, M.C.; de Oliveira, C.; Domingues, P.; Orfao, A.; Tabernero, M.D. Molecular and genomic alterations in glioblastoma multiforme. Am. J. Pathol., 2015, 185(7), 1820-1833. doi: 10.1016/j.ajpath.2015.02.023 PMID: 25976245
- Koschmann, C.; Lowenstein, P.R.; Castro, M.G. ATRX mutations and glioblastoma: Impaired DNA damage repair, alternative lengthening of telomeres, and genetic instability. Mol. Cell. Oncol., 2016, 3(3), e1167158. doi: 10.1080/23723556.2016.1167158 PMID: 27314101
- Wong, Q.H.W.; Li, K.K.W.; Wang, W.W.; Malta, T.M.; Noushmehr, H.; Grabovska, Y.; Jones, C.; Chan, A.K.Y.; Kwan, J.S.H.; Huang, Q.J.Q.; Wong, G.C.H.; Li, W.C.; Liu, X.Z.; Chen, H.; Chan, D.T.M.; Mao, Y.; Zhang, Z.Y.; Shi, Z.F.; Ng, H.K. Molecular landscape of IDH-mutant primary astrocytoma Grade IV/glioblastomas. Mod. Pathol., 2021, 34(7), 1245-1260. doi: 10.1038/s41379-021-00778-x PMID: 33692446
- Yu, W.; Ma, Y.; Hou, W.; Wang, F.; Cheng, W.; Qiu, F.; Wu, P.; Zhang, G. Identification of immune-related lncRNA prognostic signature and mSubtypes for glioblastoma. Front. Immunol., 2021, 12, 706936. doi: 10.3389/fimmu.2021.706936 PMID: 34899682
- Vizcaíno, M.A.; Shah, S.; Eberhart, C.G.; Rodriguez, F.J. Clinicopathologic implications of NF1 gene alterations in diffuse gliomas. Hum. Pathol., 2015, 46(9), 1323-1330. doi: 10.1016/j.humpath.2015.05.014 PMID: 26190195
- Senhaji, N.; Squalli Houssaini, A.; Lamrabet, S.; Louati, S.; Bennis, S. Molecular and circulating biomarkers in patients with glioblastoma. Int. J. Mol. Sci., 2022, 23(13), 7474. doi: 10.3390/ijms23137474 PMID: 35806478
- Yang, Y.; Lv, W.; Xu, S.; Shi, F.; Shan, A.; Wang, J. Molecular and clinical characterization of LIGHT/TNFSF14 expression at tLevel via 998 samples with brain glioma. Front. Mol. Biosci., 2021, 8, 567327. doi: 10.3389/fmolb.2021.567327 PMID: 34513918
- Cao, J.Y.; Guo, Q.; Guan, G.F.; Zhu, C.; Zou, C.Y.; Zhang, L.Y.; Cheng, W.; Wang, G.; Cheng, P.; Wu, A.H.; Li, G.Y. Elevated lymphocyte specific protein 1 expression is involved in the regulation of leukocyte migration and immunosuppressive microenvironment in glioblastoma. Aging (Albany NY), 2020, 12(2), 1656-1684. doi: 10.18632/aging.102706 PMID: 32003759
- Jahani-Asl, A.; Yin, H.; Soleimani, V.D.; Haque, T.; Luchman, H.A.; Chang, N.C.; Sincennes, M.C.; Puram, S.V.; Scott, A.M.; Lorimer, I.A.J.; Perkins, T.J.; Ligon, K.L.; Weiss, S.; Rudnicki, M.A.; Bonni, A. Control of glioblastoma tumorigenesis by feed-forward cytokine signaling. Nat. Neurosci., 2016, 19(6), 798-806. doi: 10.1038/nn.4295 PMID: 27110918
- Oliva, C.R.; Halloran, B.; Hjelmeland, A.B.; Vazquez, A.; Bailey, S.M.; Sarkaria, J.N.; Griguer, C.E. IGFBP6 controls the expansion of chemoresistant glioblastoma through paracrine IGF2/IGF-1R signaling. Cell Commun. Signal., 2018, 16(1), 61. doi: 10.1186/s12964-018-0273-7 PMID: 30231881
- Wang, Y.; Hou, Y.; Zhang, W.; Alvarez, A.A.; Bai, Y.; Hu, B.; Cheng, S.Y.; Yang, K.; Li, Y.; Feng, H. Lipolytic inhibitor G0S2 modulates glioma stem-like cell radiation response. J. Exp. Clin. Cancer Res., 2019, 38(1), 147. doi: 10.1186/s13046-019-1151-x PMID: 30953555
Supplementary files
