Identifying Luteolin as a Potential Drug for Treating Lung Adenocarcinoma with COVID-19 Affection based on Integration Analysis of Pharmacology and Transcriptome
- Authors: Peng P.1, Li N.2, Zhang N.1, Fu X.1, Peng S.1, Zhao Y.2, Ai B.1
-
Affiliations:
- Department of thoracic surgery, Tongji Hospital
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd
- Issue: Vol 31, No 33 (2024)
- Pages: 5432-5447
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645056
- DOI: https://doi.org/10.2174/0929867331666230908090326
- ID: 645056
Cite item
Full Text
Abstract
Background:Lung adenocarcinoma (LUAD) is a major type of lung cancer worldwide, and under the pandemic coronavirus disease 2019 (COVID-19), its cancer burden is enlarged. This study aimed to explore potential drug targets and potential drugs for developing effective treatments for patients with both lung cancer and COVID-19.
Methods:The interaction network of molecule compounds-target genes was constructed based on Traditional Chinese Medicines (TCMs) and gene expression data from public databases. The potential effectiveness of drugs was analyzed by molecular docking and molecular dynamics simulation. Western blot, transfection assay, Immunohistochemistry (IHC) staining, and flow cytometry were performed to investigate the function of HSP90AA1 in LUAD cells.
Result:Eight target genes (GSK3B, HMOX1, HSP90AA1, ICAM1, MAPK1, PLAU, RELA and TNFSF15.) were identified, and two of them (HSP90AA1 and RELA) were significantly associated with LUAD prognosis. Luteolin was discovered to bind with HSP90AA1. Moreover, in vitro cell experiments demonstrated that HSP90AA1 had higher expression in A549 cells, promoted cell viability and suppressed apoptosis in A549 cells and H1299 cells.
Conclusion:HSP90AA1 was a target gene for further designing effective drugs for LUAD patients. Luteolin was a potential drug for treating patients with both LUAD and COVID-19.
About the authors
Ping Peng
Department of thoracic surgery, Tongji Hospital
Email: info@benthamscience.net
Na Li
Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd
Email: info@benthamscience.net
Ni Zhang
Department of thoracic surgery, Tongji Hospital
Email: info@benthamscience.net
Xiangning Fu
Department of thoracic surgery, Tongji Hospital
Email: info@benthamscience.net
Shu Peng
Department of thoracic surgery, Tongji Hospital
Email: info@benthamscience.net
Yujie Zhao
Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd
Email: info@benthamscience.net
Bo Ai
Department of thoracic surgery, Tongji Hospital
Author for correspondence.
Email: info@benthamscience.net
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res., 2016, 5(3), 288-300. doi: 10.21037/tlcr.2016.06.07 PMID: 27413711
- Cao, M.; Chen, W. Epidemiology of lung cancer in China. Thorac. Cancer, 2019, 10(1), 3-7. doi: 10.1111/1759-7714.12916 PMID: 30485694
- Pan, J.; Yang, H.; Zhu, L.; Lou, Y.; Jin, B. Qingfei Jiedu decoction inhibits PD-L1 expression in lung adenocarcinoma based on network pharmacology analysis, molecular docking and experimental verification. Front. Pharmacol., 2022, 13, 897966. doi: 10.3389/fphar.2022.897966 PMID: 36091822
- Geng, X.; Chi, W.; Lin, X.; Niu, Z.; Jiang, Q.; Sui, Y.; Jiang, J. Determining the mechanism of action of the Qishan formula against lung adenocarcinoma by integration of network pharmacology, molecular docking, and proteomics. Medicine (Baltimore), 2023, 102(13), e33384. doi: 10.1097/MD.0000000000033384 PMID: 37000102
- Zhang, D.; Zhang, T.; Zhang, Y.; Li, Z.; Li, H.; Zhang, Y.; Liu, C.; Han, Z.; Li, J.; Zhu, J. Screening the components of Saussurea involucrata for novel targets for the treatment of NSCLC using network pharmacology. BMC Complement. Med. Ther, 2022, 22(1), 53. doi: 10.1186/s12906-021-03501-0 PMID: 35227278
- Calabrò, L.; Peters, S.; Soria, J.C.; Di Giacomo, A.M.; Barlesi, F.; Covre, A.; Altomonte, M.; Vegni, V.; Gridelli, C.; Reck, M.; Rizvi, N.; Maio, M. Challenges in lung cancer therapy during the COVID-19 pandemic. Lancet Respir. Med., 2020, 8(6), 542-544. doi: 10.1016/S2213-2600(20)30170-3 PMID: 32278368
- Van Haren, R.M.; Delman, A.M.; Turner, K.M.; Waits, B.; Hemingway, M.; Shah, S.A.; Starnes, S.L. Impact of the COVID-19 pandemic on lung cancer screening program and subsequent lung cancer. J. Am. Coll. Surg., 2021, 232(4), 600-605. doi: 10.1016/j.jamcollsurg.2020.12.002 PMID: 33346080
- Luo, J.; Rizvi, H.; Preeshagul, I.R.; Egger, J.V.; Hoyos, D.; Bandlamudi, C.; McCarthy, C.G.; Falcon, C.J.; Schoenfeld, A.J.; Arbour, K.C.; Chaft, J.E.; Daly, R.M.; Drilon, A.; Eng, J.; Iqbal, A.; Lai, W.V.; Li, B.T.; Lito, P.; Namakydoust, A.; Ng, K.; Offin, M.; Paik, P.K.; Riely, G.J.; Rudin, C.M.; Yu, H.A.; Zauderer, M.G.; Donoghue, M.T.A.; Łuksza, M.; Greenbaum, B.D.; Kris, M.G.; Hellmann, M.D. COVID-19 in patients with lung cancer. Ann. Oncol., 2020, 31(10), 1386-1396. doi: 10.1016/j.annonc.2020.06.007 PMID: 32561401
- Guckenberger, M.; Belka, C.; Bezjak, A.; Bradley, J.; Daly, M.E.; DeRuysscher, D.; Dziadziuszko, R.; Faivre-Finn, C.; Flentje, M.; Gore, E.; Higgins, K.A.; Iyengar, P.; Kavanagh, B.D.; Kumar, S.; Le Pechoux, C.; Lievens, Y.; Lindberg, K.; McDonald, F.; Ramella, S.; Rengan, R.; Ricardi, U.; Rimner, A.; Rodrigues, G.B.; Schild, S.E.; Senan, S.; Simone, C.B., II; Slotman, B.J.; Stuschke, M.; Videtic, G.; Widder, J.; Yom, S.S.; Palma, D. Practice recommendations for lung cancer radiotherapy during the COVID-19 pandemic: An ESTRO-ASTRO consensus statement. Radiother. Oncol., 2020, 146, 223-229. doi: 10.1016/j.radonc.2020.04.001 PMID: 32342863
- Varet, H.; Brillet-Guéguen, L.; Coppée, J.Y.; Dillies, M.A. SARTools: A DESeq2- and EdgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data. PLoS One, 2016, 11(6), e0157022. doi: 10.1371/journal.pone.0157022 PMID: 27280887
- Su, G.; Morris, J. H.; Demchak, B.; Bader, G. D. Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics, 2014, 47, 11-24.
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287. doi: 10.1089/omi.2011.0118 PMID: 22455463
- Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612. doi: 10.1038/ncomms3612 PMID: 24113773
- Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.; Sautès-Fridman, C.; Fridman, W.H.; de Reyniès, A. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol., 2016, 17(1), 218. doi: 10.1186/s13059-016-1070-5 PMID: 27765066
- Barbie, D.A.; Tamayo, P.; Boehm, J.S.; Kim, S.Y.; Moody, S.E.; Dunn, I.F.; Schinzel, A.C.; Sandy, P.; Meylan, E.; Scholl, C.; Fröhling, S.; Chan, E.M.; Sos, M.L.; Michel, K.; Mermel, C.; Silver, S.J.; Weir, B.A.; Reiling, J.H.; Sheng, Q.; Gupta, P.B.; Wadlow, R.C.; Le, H.; Hoersch, S.; Wittner, B.S.; Ramaswamy, S.; Livingston, D.M.; Sabatini, D.M.; Meyerson, M.; Thomas, R.K.; Lander, E.S.; Mesirov, J.P.; Root, D.E.; Gilliland, D.G.; Jacks, T.; Hahn, W.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462(7269), 108-112. doi: 10.1038/nature08460 PMID: 19847166
- Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol., 2018, 1711, 243-259. doi: 10.1007/978-1-4939-7493-1_12 PMID: 29344893
- Huang Z.; Liu J.; Zhang C.; & Yang X.;Lipofectamine 2000 at transfection dose promotes EphA2 transcription in an HDAC4-dependent manner to reduce its cytotoxicity. Heliyon,2022, 8(12):e12118.
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Antechamber: An accessory software package for molecular mechanical calculations. J. Am. Chem. Soc., 2001, 222, U403.
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174. doi: 10.1002/jcc.20035 PMID: 15116359
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 2015, 11(8), 3696-3713. doi: 10.1021/acs.jctc.5b00255 PMID: 26574453
- Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A, 2001, 105(43), 9954-9960. doi: 10.1021/jp003020w
- Sousa da Silva, A.W.; Vranken, W.F. ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res. Notes, 2012, 5(1), 367. doi: 10.1186/1756-0500-5-367 PMID: 22824207
- Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2013, 3(2), 198-210. doi: 10.1002/wcms.1121
- Sagui, C.; Darden, T.A. Molecular dynamics simulations of biomolecules: Long-range electrostatic effects. Annu. Rev. Biophys. Biomol. Struct., 1999, 28(1), 155-179. doi: 10.1146/annurev.biophys.28.1.155 PMID: 10410799
- Wang, L.; Ma, Q.; Yao, R.; Liu, J. Current status and development of anti-PD-1/PD-L1 immunotherapy for lung cancer. Int. Immunopharmacol., 2020, 79, 106088. doi: 10.1016/j.intimp.2019.106088 PMID: 31896512
- Hellmann, M.D.; Ciuleanu, T.E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P.; Borghaei, H.; Ramalingam, S.S.; Brahmer, J.; Reck, M.; OByrne, K.J.; Geese, W.J.; Green, G.; Chang, H.; Szustakowski, J.; Bhagavatheeswaran, P.; Healey, D.; Fu, Y.; Nathan, F.; Paz-Ares, L. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med., 2018, 378(22), 2093-2104. doi: 10.1056/NEJMoa1801946 PMID: 29658845
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; Sakai, H.; Albert, I.; Vergnenegre, A.; Peters, S.; Syrigos, K.; Barlesi, F.; Reck, M.; Borghaei, H.; Brahmer, J.R.; OByrne, K.J.; Geese, W.J.; Bhagavatheeswaran, P.; Rabindran, S.K.; Kasinathan, R.S.; Nathan, F.E.; Ramalingam, S.S. Nivolumab plus ipilimumab in advanced nonsmall-cell lung cancer. N. Engl. J. Med., 2019, 381(21), 2020-2031. doi: 10.1056/NEJMoa1910231 PMID: 31562796
- Zhang, L.; Zhu, F.; Xie, L.; Wang, C.; Wang, J.; Chen, R.; Jia, P.; Guan, H.Q.; Peng, L.; Chen, Y.; Peng, P.; Zhang, P.; Chu, Q.; Shen, Q.; Wang, Y.; Xu, S.Y.; Zhao, J.P.; Zhou, M. Clinical characteristics of COVID-19-infected cancer patients: A retrospective case study in three hospitals within Wuhan, China. Ann. Oncol., 2020, 31(7), 894-901. doi: 10.1016/j.annonc.2020.03.296 PMID: 32224151
- Liang, W.; Guan, W.; Chen, R.; Wang, W.; Li, J.; Xu, K.; Li, C.; Ai, Q.; Lu, W.; Liang, H.; Li, S.; He, J. Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. Lancet Oncol., 2020, 21(3), 335-337. doi: 10.1016/S1470-2045(20)30096-6 PMID: 32066541
- Shah, A.C.; Badawy, S.M. Telemedicine in pediatrics: Systematic review of randomized controlled trials. JMIR Pediatr. Parent., 2021, 4(1), e22696. doi: 10.2196/22696 PMID: 33556030
- Chen, L.H.; Liao, C.Y.; Lai, L.C.; Tsai, M.H.; Chuang, E.Y. Semaphorin 6A attenuates the migration capability of lung cancer cells via the NRF2/HMOX1 Axis. Sci. Rep., 2019, 9(1), 13302. doi: 10.1038/s41598-019-49874-8 PMID: 31527696
- Dong, Z.; Yang, P.; Qiu, X.; Liang, S.; Guan, B.; Yang, H.; Li, F.; Sun, L.; Liu, H.; Zou, G.; Zhao, K. KCNQ1OT1 facilitates progression of non-small-cell lung carcinoma via modulating miRNA-27b-3p/HSP90AA1 axis. J. Cell. Physiol., 2019, 234(7), 11304-11314. doi: 10.1002/jcp.27788 PMID: 30471108
- Kotteas, E.A.; Boulas, P.; Gkiozos, I.; Tsagkouli, S.; Tsoukalas, G.; Syrigos, K.N. The intercellular cell adhesion molecule-1 (icam-1) in lung cancer: Implications for disease progression and prognosis. Anticancer Res., 2014, 34(9), 4665-4672. PMID: 25202042
- Wang, M.; Liao, Q.; Zou, P. PRKCZ-AS1 promotes the tumorigenesis of lung adenocarcinoma via sponging miR-766-5p to modulate MAPK1. Cancer Biol. Ther., 2020, 21(4), 364-371. doi: 10.1080/15384047.2019.1702402 PMID: 31939714
- Ai, C.; Zhang, J.; Lian, S.; Ma, J.; Győrffy, B.; Qian, Z.; Han, Y.; Feng, Q. FOXM1 functions collaboratively with PLAU to promote gastric cancer progression. J. Cancer, 2020, 11(4), 788-794. doi: 10.7150/jca.37323 PMID: 31949481
- Bassères, D.S.; Ebbs, A.; Levantini, E.; Baldwin, A.S. Requirement of the NF-kappaB subunit p65/RelA for K-Ras-induced lung tumorigenesis. Cancer Res., 2010, 70(9), 3537-3546. doi: 10.1158/0008-5472.CAN-09-4290 PMID: 20406971
- Zhao, C.C.; Han, Q.J.; Ying, H.Y.; Gu, X.X.; Yang, N.; Li, L.Y.; Zhang, Q.Z. TNFSF15 facilitates differentiation and polarization of macrophages toward M1 phenotype to inhibit tumor growth. OncoImmunology, 2022, 11(1), 2032918. doi: 10.1080/2162402X.2022.2032918 PMID: 35127254
- Eustace, B.K.; Sakurai, T.; Stewart, J.K.; Yimlamai, D.; Unger, C.; Zehetmeier, C.; Lain, B.; Torella, C.; Henning, S.W.; Beste, G.; Scroggins, B.T.; Neckers, L.; Ilag, L.L.; Jay, D.G. Functional proteomic screens reveal an essential extracellular role for hsp90α in cancer cell invasiveness. Nat. Cell Biol., 2004, 6(6), 507-514. doi: 10.1038/ncb1131 PMID: 15146192
- McCready, J.; Sims, J.D.; Chan, D.; Jay, D.G. Secretion of extracellular hsp90α via exosomes increases cancer cell motility: A role for plasminogen activation. BMC Cancer, 2010, 10(1), 294. doi: 10.1186/1471-2407-10-294 PMID: 20553606
- Chen, W.S.; Chen, C.C.; Chen, L.L.; Lee, C.C.; Huang, T.S. Secreted heat shock protein 90α (HSP90α) induces nuclear factor-κB-mediated TCF12 protein expression to down-regulate E-cadherin and to enhance colorectal cancer cell migration and invasion. J. Biol. Chem., 2013, 288(13), 9001-9010. doi: 10.1074/jbc.M112.437897 PMID: 23386606
- Hou, Q.; Chen, S.; An, Q.; Li, B.; Fu, Y.; Luo, Y. Extracellular Hsp90α promotes tumor lymphangiogenesis and lymph node metastasis in breast cancer. Int. J. Mol. Sci., 2021, 22(14), 7747. doi: 10.3390/ijms22147747
- Shi, Y.; Liu, X.; Lou, J.; Han, X.; Zhang, L.; Wang, Q.; Li, B.; Dong, M.; Zhang, Y. Plasma levels of heat shock protein 90 alpha associated with lung cancer development and treatment responses. Clin. Cancer Res., 2014, 20(23), 6016-6022. doi: 10.1158/1078-0432.CCR-14-0174 PMID: 25316816
- Wang, Y.; Seyed Barghi, S.M.; Yang, Y.; Akhavan-Sigari, R. Value of HSP90α in lung cancer diagnosis and recurrence prediction: A cohort study. Oncol. Res. Treat., 2021, 44(11), 583-589. doi: 10.1159/000519277 PMID: 34547748
- Ju, W.; Wang, X.; Shi, H.; Chen, W.; Belinsky, S.A.; Lin, Y. A critical role of luteolin-induced reactive oxygen species in blockage of tumor necrosis factor-activated nuclear factor-kappaB pathway and sensitization of apoptosis in lung cancer cells. Mol. Pharmacol., 2007, 71(5), 1381-1388. doi: 10.1124/mol.106.032185 PMID: 17296806
- Yan, J.; Wang, Q.; Zheng, X.; Sun, H.; Zhou, Y.; Li, D.; Lin, Y.; Wang, X. Luteolin enhances TNF-related apoptosis-inducing ligands anticancer activity in a lung cancer xenograft mouse model. Biochem. Biophys. Res. Commun., 2012, 417(2), 842-846. doi: 10.1016/j.bbrc.2011.12.055 PMID: 22206675
- Chen, K.C.; Chen, C.Y.; Lin, C.J.; Yang, T.Y.; Chen, T.H.; Wu, L.C.; Wu, C.C. Luteolin attenuates TGF-β1-induced epithelialmesenchymal transition of lung cancer cells by interfering in the PI3K/AktNF-κBSnail pathway. Life Sci., 2013, 93(24), 924-933. doi: 10.1016/j.lfs.2013.10.004 PMID: 24140887
- Ruan, J.; Zhang, L.; Yan, L.; Liu, Y.; Yue, Z.; Chen, L.; Wang, A.Y.; Chen, W.; Zheng, S.; Wang, S.; Lu, Y. Inhibition of hypoxia-induced epithelial mesenchymal transition by luteolin in non-small cell lung cancer cells. Mol. Med. Rep., 2012, 6(1), 232-238. PMID: 22552526
- Theoharides, T.C. COVID-19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin. Biofactors, 2020, 46(3), 306-308. doi: 10.1002/biof.1633 PMID: 32339387
- Shawan, M.M.A.K.; Halder, S.K.; Hasan, M.A. Luteolin and abyssinone II as potential inhibitors of SARS-CoV-2: An in silico molecular modeling approach in battling the COVID-19 outbreak. Bull. Natl. Res. Cent., 2021, 45(1), 27. doi: 10.1186/s42269-020-00479-6 PMID: 33495684
- Theoharides, T.C.; Cholevas, C.; Polyzoidis, K.; Politis, A. Long-COVID syndrome-associated brain fog and chemofog: Luteolin to the rescue. Biofactors, 2021, 47(2), 232-241. doi: 10.1002/biof.1726 PMID: 33847020
- Cao, X.; Wang, B. Targeted PD-L1 PLGA/liposomes-mediated luteolin therapy for effective liver cancer cell treatment. J. Biomater. Appl., 2021, 36(5), 843-850. doi: 10.1177/08853282211017701 PMID: 34000859
- Tu, D.G.; Lin, W.T.; Yu, C.C.; Lee, S.S.; Peng, C.Y.; Lin, T.; Yu, C.H. Chemotherapeutic effects of luteolin on radio-sensitivity enhancement and interleukin-6/signal transducer and activator of transcription 3 signaling repression of oral cancer stem cells. J. Formos. Med. Assoc., 2016, 115(12), 1032-1038. doi: 10.1016/j.jfma.2016.08.009 PMID: 27742160
Supplementary files
