CircRNAs as a Novel Class of Potential Diagnostic Biomarkers in Bipolar Disorders
- Authors: Asemi R.1, Ebrahimi A.2, Hamblin M.3, Mirzaei H.4, Asemi Z.4
-
Affiliations:
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences
- Department of Health Psychology, School of Medicine, Isfahan University of Medical Sciences
- Laser Research Centre, Faculty of Health Science, University of Johannesburg
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences
- Issue: Vol 31, No 34 (2024)
- Pages: 5567-5575
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645063
- DOI: https://doi.org/10.2174/0929867331666230713143322
- ID: 645063
Cite item
Full Text
Abstract
:Bipolar disorder (BD) is a severe mood disorder with uncertain causes and debilitating signs and symptoms. Gene expression is crucial to the pathophysiology of BD and could be influenced by genetic or epigenetic factors, by either direct modification of mRNA templates or by regulation of post-transcriptional translation. Recent evidence has shown that several critical processes in psychiatric diseases, such as neuronal activity or plasticity, synaptic transmission, and neuronal depolarization, have all been linked to circular RNAs (circRNAs). The circRNA profile of neuronal cells, which may be easily ascertained by a liquid biopsy, may shed light on the molecular pathophysiology of psychiatric disorders, including BD. This approach could aid in future development in diagnosis and treatment. In this review, we provide an in-depth understanding of the roles of circRNAs in the pathophysiology of BD and offer new insight into their potential as emerging diagnostic tools and therapeutic targets.
About the authors
Reza Asemi
Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences
Email: info@benthamscience.net
Amrollah Ebrahimi
Department of Health Psychology, School of Medicine, Isfahan University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Michael Hamblin
Laser Research Centre, Faculty of Health Science, University of Johannesburg
Email: info@benthamscience.net
Hamed Mirzaei
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences
Email: info@benthamscience.net
Zatollah Asemi
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- McIntyre, R.S.; Berk, M.; Brietzke, E.; Goldstein, B.I.; López-Jaramillo, C.; Kessing, L.V.; Malhi, G.S.; Nierenberg, A.A.; Rosenblat, J.D.; Majeed, A.; Vieta, E.; Vinberg, M.; Young, A.H.; Mansur, R.B. Bipolar disorders. Lancet, 2020, 396(10265), 1841-1856. doi: 10.1016/S0140-6736(20)31544-0 PMID: 33278937
- Shao, L.; Vawter, M.P. Shared gene expression alterations in schizophrenia and bipolar disorder. Biol. Psychiatry, 2008, 64(2), 89-97. doi: 10.1016/j.biopsych.2007.11.010 PMID: 18191109
- Craddock, N.; Sklar, P. Genetics of bipolar disorder. Lancet, 2013, 381(9878), 1654-1662. doi: 10.1016/S0140-6736(13)60855-7 PMID: 23663951
- Psychiatric GWAS Consortium Bipolar Disorder Working Group.. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet., 2011, 43(10), 977-983. doi: 10.1038/ng.943 PMID: 21926972
- Stahl, E.A.; Breen, G.; Forstner, A.J.; McQuillin, A.; Ripke, S.; Trubetskoy, V.; Mattheisen, M.; Wang, Y.; Coleman, J.R.I.; Gaspar, H.A.; de Leeuw, C.A.; Steinberg, S.; Pavlides, J.M.W.; Trzaskowski, M.; Byrne, E.M.; Pers, T.H.; Holmans, P.A.; Richards, A.L.; Abbott, L.; Agerbo, E.; Akil, H.; Albani, D.; Alliey-Rodriguez, N.; Als, T.D.; Anjorin, A.; Antilla, V.; Awasthi, S.; Badner, J.A.; Bækvad-Hansen, M.; Barchas, J.D.; Bass, N.; Bauer, M.; Belliveau, R.; Bergen, S.E.; Pedersen, C.B.; Bøen, E.; Boks, M.P.; Boocock, J.; Budde, M.; Bunney, W.; Burmeister, M.; Bybjerg-Grauholm, J.; Byerley, W.; Casas, M.; Cerrato, F.; Cervantes, P.; Chambert, K.; Charney, A.W.; Chen, D.; Churchhouse, C.; Clarke, T.K.; Coryell, W.; Craig, D.W.; Cruceanu, C.; Curtis, D.; Czerski, P.M.; Dale, A.M.; de Jong, S.; Degenhardt, F.; Del-Favero, J.; DePaulo, J.R.; Djurovic, S.; Dobbyn, A.L.; Dumont, A.; Elvsåshagen, T.; Escott-Price, V.; Fan, C.C.; Fischer, S.B.; Flickinger, M.; Foroud, T.M.; Forty, L.; Frank, J.; Fraser, C.; Freimer, N.B.; Frisén, L.; Gade, K.; Gage, D.; Garnham, J.; Giambartolomei, C.; Pedersen, M.G.; Goldstein, J.; Gordon, S.D.; Gordon-Smith, K.; Green, E.K.; Green, M.J.; Greenwood, T.A.; Grove, J.; Guan, W.; Guzman-Parra, J.; Hamshere, M.L.; Hautzinger, M.; Heilbronner, U.; Herms, S.; Hipolito, M.; Hoffmann, P.; Holland, D.; Huckins, L.; Jamain, S.; Johnson, J.S.; Juréus, A.; Kandaswamy, R.; Karlsson, R.; Kennedy, J.L.; Kittel-Schneider, S.; Knowles, J.A.; Kogevinas, M.; Koller, A.C.; Kupka, R.; Lavebratt, C.; Lawrence, J.; Lawson, W.B.; Leber, M.; Lee, P.H.; Levy, S.E.; Li, J.Z.; Liu, C.; Lucae, S.; Maaser, A.; MacIntyre, D.J.; Mahon, P.B.; Maier, W.; Martinsson, L.; McCarroll, S.; McGuffin, P.; McInnis, M.G.; McKay, J.D.; Medeiros, H.; Medland, S.E.; Meng, F.; Milani, L.; Montgomery, G.W.; Morris, D.W.; Mühleisen, T.W.; Mullins, N.; Nguyen, H.; Nievergelt, C.M.; Adolfsson, A.N.; Nwulia, E.A.; ODonovan, C.; Loohuis, L.M.O.; Ori, A.P.S.; Oruc, L.; Ösby, U.; Perlis, R.H.; Perry, A.; Pfennig, A.; Potash, J.B.; Purcell, S.M.; Regeer, E.J.; Reif, A.; Reinbold, C.S.; Rice, J.P.; Rivas, F.; Rivera, M.; Roussos, P.; Ruderfer, D.M.; Ryu, E.; Sánchez-Mora, C.; Schatzberg, A.F.; Scheftner, W.A.; Schork, N.J.; Shannon Weickert, C.; Shehktman, T.; Shilling, P.D.; Sigurdsson, E.; Slaney, C.; Smeland, O.B.; Sobell, J.L.; Søholm Hansen, C.; Spijker, A.T.; St Clair, D.; Steffens, M.; Strauss, J.S.; Streit, F.; Strohmaier, J.; Szelinger, S.; Thompson, R.C.; Thorgeirsson, T.E.; Treutlein, J.; Vedder, H.; Wang, W.; Watson, S.J.; Weickert, T.W.; Witt, S.H.; Xi, S.; Xu, W.; Young, A.H.; Zandi, P.; Zhang, P.; Zöllner, S.; Adolfsson, R.; Agartz, I.; Alda, M.; Backlund, L.; Baune, B.T.; Bellivier, F.; Berrettini, W.H.; Biernacka, J.M.; Blackwood, D.H.R.; Boehnke, M.; Børglum, A.D.; Corvin, A.; Craddock, N.; Daly, M.J.; Dannlowski, U.; Esko, T.; Etain, B.; Frye, M.; Fullerton, J.M.; Gershon, E.S.; Gill, M.; Goes, F.; Grigoroiu-Serbanescu, M.; Hauser, J.; Hougaard, D.M.; Hultman, C.M.; Jones, I.; Jones, L.A.; Kahn, R.S.; Kirov, G.; Landén, M.; Leboyer, M.; Lewis, C.M.; Li, Q.S.; Lissowska, J.; Martin, N.G.; Mayoral, F.; McElroy, S.L.; McIntosh, A.M.; McMahon, F.J.; Melle, I.; Metspalu, A.; Mitchell, P.B.; Morken, G.; Mors, O.; Mortensen, P.B.; Müller-Myhsok, B.; Myers, R.M.; Neale, B.M.; Nimgaonkar, V.; Nordentoft, M.; Nöthen, M.M.; ODonovan, M.C.; Oedegaard, K.J.; Owen, M.J.; Paciga, S.A.; Pato, C.; Pato, M.T.; Posthuma, D.; Ramos-Quiroga, J.A.; Ribasés, M.; Rietschel, M.; Rouleau, G.A.; Schalling, M.; Schofield, P.R.; Schulze, T.G.; Serretti, A.; Smoller, J.W.; Stefansson, H.; Stefansson, K.; Stordal, E.; Sullivan, P.F.; Turecki, G.; Vaaler, A.E.; Vieta, E.; Vincent, J.B.; Werge, T.; Nurnberger, J.I.; Wray, N.R.; Di Florio, A.; Edenberg, H.J.; Cichon, S.; Ophoff, R.A.; Scott, L.J.; Andreassen, O.A.; Kelsoe, J.; Sklar, P. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet., 2019, 51(5), 793-803. doi: 10.1038/s41588-019-0397-8 PMID: 31043756
- Cruceanu, C.; Ambalavanan, A.; Spiegelman, D.; Gauthier, J.; Lafrenière, R.G.; Dion, P.A.; Alda, M.; Turecki, G.; Rouleau, G.A. Family-based exome-sequencing approach identifies rare susceptibility variants for lithium-responsive bipolar disorder. Genome, 2013, 56(10), 634-640. doi: 10.1139/gen-2013-0081 PMID: 24237345
- Goes, F.S.; Pirooznia, M.; Parla, J.S.; Kramer, M.; Ghiban, E.; Mavruk, S.; Chen, Y.C.; Monson, E.T.; Willour, V.L.; Karchin, R.; Flickinger, M.; Locke, A.E.; Levy, S.E.; Scott, L.J.; Boehnke, M.; Stahl, E.; Moran, J.L.; Hultman, C.M.; Landén, M.; Purcell, S.M.; Sklar, P.; Zandi, P.P.; McCombie, W.R.; Potash, J.B. Exome sequencing of familial bipolar disorder. JAMA Psychiatry, 2016, 73(6), 590-597. doi: 10.1001/jamapsychiatry.2016.0251 PMID: 27120077
- Middleton, F.A.; Pato, C.N.; Gentile, K.L.; McGann, L.; Brown, A.M.; Trauzzi, M. Gene expression analysis of peripheral blood leukocytes from discordant sib-pairs with schizophrenia and bipolar disorder reveals points of convergence between genetic and functional genomic approaches. Am. J. Med. Genet. B Neuropsychiatr. Genet., 2005, 136B(1), 12-25. doi: 10.1002/ajmg.b.30171 PMID: 15892139
- Cardamone, G.; Paraboschi, E.M.; Soldà, G.; Liberatore, G.; Rimoldi, V.; Cibella, J.; Airi, F.; Tisato, V.; Cantoni, C.; Gallia, F.; Gemmati, D.; Piccio, L.; Duga, S.; Nobile-Orazio, E.; Asselta, R. The circular RNA landscape in multiple sclerosis: Disease-specific associated variants and exon methylation shape circular RNA expression profile. Mult. Scler. Relat. Disord., 2023, 69, 104426. doi: 10.1016/j.msard.2022.104426 PMID: 36446168
- Mahmoudi, E.; Green, M.J.; Cairns, M.J. Dysregulation of circRNA expression in the peripheral blood of individuals with schizophrenia and bipolar disorder. J. Mol. Med., 2021, 99(7), 981-991. doi: 10.1007/s00109-021-02070-6 PMID: 33782720
- Ren, Z.; Chu, C.; Pang, Y.; Cai, H.; Jia, L. A circular RNA blood panel that differentiates Alzheimers disease from other dementia types. Biomark. Res., 2022, 10(1), 63. doi: 10.1186/s40364-022-00405-0 PMID: 35982472
- Dorostgou, Z.; Yadegar, N.; Dorostgou, Z.; Khorvash, F.; Vakili, O. Novel insights into the role of circular RNAS in Parkinson disease: An emerging renaissance in the management of neurodegenerative diseases. J. Neurosci. Res., 2022, 100(9), 1775-1790. doi: 10.1002/jnr.25094 PMID: 35642104
- Mao, Q.; Tian, L.; Wei, J.; Zhou, X.; Cheng, H.; Zhu, X.; Li, X.; Gao, Z.; Zhang, X.; Liang, L. Transcriptome analysis of microRNAs, circRNAs, and mRNAs in the dorsal root ganglia of paclitaxel-induced mice with neuropathic pain. Front. Mol. Neurosci., 2022, 15, 990260. doi: 10.3389/fnmol.2022.990260 PMID: 36117915
- Özerdem, A.; Ceylan, D.; Can, G. Neurobiology of risk for bipolar disorder. Curr. Treat. Options Psychiatry, 2016, 3(4), 315-329. doi: 10.1007/s40501-016-0093-6 PMID: 27867834
- Ashwal-Fluss, R.; Meyer, M.; Pamudurti, N.R.; Ivanov, A.; Bartok, O.; Hanan, M.; Evantal, N.; Memczak, S.; Rajewsky, N.; Kadener, S. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell, 2014, 56(1), 55-66. doi: 10.1016/j.molcel.2014.08.019 PMID: 25242144
- Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; Zhu, P.; Chang, Z.; Wu, Q.; Zhao, Y.; Jia, Y.; Xu, P.; Liu, H.; Shan, G. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol., 2015, 22(3), 256-264. doi: 10.1038/nsmb.2959 PMID: 25664725
- Zhang, X.O.; Wang, H.B.; Zhang, Y.; Lu, X.; Chen, L.L.; Yang, L. Complementary sequence-mediated exon circularization. Cell, 2014, 159(1), 134-147. doi: 10.1016/j.cell.2014.09.001 PMID: 25242744
- Starke, S.; Jost, I.; Rossbach, O.; Schneider, T.; Schreiner, S.; Hung, L.H.; Bindereif, A. Exon circularization requires canonical splice signals. Cell Rep., 2015, 10(1), 103-111. doi: 10.1016/j.celrep.2014.12.002 PMID: 25543144
- Bachmayr-Heyda, A.; Reiner, A.T.; Auer, K.; Sukhbaatar, N.; Aust, S.; Bachleitner-Hofmann, T.; Mesteri, I.; Grunt, T.W.; Zeillinger, R.; Pils, D. Correlation of circular RNA abundance with proliferation exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis and normal human tissues. Sci. Rep., 2015, 5(1), 8057. doi: 10.1038/srep08057 PMID: 25624062
- Li, Y.; Zheng, Q.; Bao, C.; Li, S.; Guo, W.; Zhao, J.; Chen, D.; Gu, J.; He, X.; Huang, S. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res., 2015, 25(8), 981-984. doi: 10.1038/cr.2015.82 PMID: 26138677
- Lukiw, W.J. Circular RNA (circRNA) in Alzheimers disease (AD). Front. Genet., 2013, 4, 307. doi: 10.3389/fgene.2013.00307 PMID: 24427167
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; Loewer, A.; Ziebold, U.; Landthaler, M.; Kocks, C.; le Noble, F.; Rajewsky, N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441), 333-338. doi: 10.1038/nature11928 PMID: 23446348
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441), 384-388. doi: 10.1038/nature11993 PMID: 23446346
- Guo, J.U.; Agarwal, V.; Guo, H.; Bartel, D.P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol., 2014, 15(7), 409. doi: 10.1186/s13059-014-0409-z PMID: 25070500
- Han, D.; Li, J.; Wang, H.; Su, X.; Hou, J.; Gu, Y.; Qian, C.; Lin, Y.; Liu, X.; Huang, M.; Li, N.; Zhou, W.; Yu, Y.; Cao, X. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology, 2017, 66(4), 1151-1164. doi: 10.1002/hep.29270 PMID: 28520103
- Du, W.W.; Yang, W.; Liu, E.; Yang, Z.; Dhaliwal, P.; Yang, B.B. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res., 2016, 44(6), 2846-2858. doi: 10.1093/nar/gkw027 PMID: 26861625
- You, X.; Vlatkovic, I.; Babic, A.; Will, T.; Epstein, I.; Tushev, G.; Akbalik, G.; Wang, M.; Glock, C.; Quedenau, C.; Wang, X.; Hou, J.; Liu, H.; Sun, W.; Sambandan, S.; Chen, T.; Schuman, E.M.; Chen, W. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat. Neurosci., 2015, 18(4), 603-610. doi: 10.1038/nn.3975 PMID: 25714049
- Conn, S.J.; Pillman, K.A.; Toubia, J.; Conn, V.M.; Salmanidis, M.; Phillips, C.A.; Roslan, S.; Schreiber, A.W.; Gregory, P.A.; Goodall, G.J. The RNA binding protein quaking regulates formation of circRNAs. Cell, 2015, 160(6), 1125-1134. doi: 10.1016/j.cell.2015.02.014 PMID: 25768908
- Yang, Y.; Fan, X.; Mao, M.; Song, X.; Wu, P.; Zhang, Y.; Jin, Y.; Yang, Y.; Chen, L.L.; Wang, Y.; Wong, C.C.L.; Xiao, X.; Wang, Z. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res., 2017, 27(5), 626-641. doi: 10.1038/cr.2017.31 PMID: 28281539
- Legnini, I.; Di Timoteo, G.; Rossi, F.; Morlando, M.; Briganti, F.; Sthandier, O.; Fatica, A.; Santini, T.; Andronache, A.; Wade, M.; Laneve, P.; Rajewsky, N.; Bozzoni, I. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell, 2017, 66(1), 22-37.e9. doi: 10.1016/j.molcel.2017.02.017 PMID: 28344082
- Rybak-Wolf, A.; Stottmeister, C.; Glaar, P.; Jens, M.; Pino, N.; Giusti, S.; Hanan, M.; Behm, M.; Bartok, O.; Ashwal-Fluss, R.; Herzog, M.; Schreyer, L.; Papavasileiou, P.; Ivanov, A.; Öhman, M.; Refojo, D.; Kadener, S.; Rajewsky, N. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell, 2015, 58(5), 870-885. doi: 10.1016/j.molcel.2015.03.027 PMID: 25921068
- Sekar, S.; Liang, W.S. Circular RNA expression and function in the brain. Noncoding RNA Res., 2019, 4(1), 23-29. doi: 10.1016/j.ncrna.2019.01.001 PMID: 30891534
- Hanan, M.; Soreq, H.; Kadener, S. CircRNAs in the brain. RNA Biol., 2017, 14(8), 1028-1034. doi: 10.1080/15476286.2016.1255398 PMID: 27892769
- Luykx, J.J.; Giuliani, F.; Giuliani, G.; Veldink, J. Coding and non-coding RNA abnormalities in bipolar disorder. Genes, 2019, 10(11), 946. doi: 10.3390/genes10110946 PMID: 31752442
- Dines, M.; Lamprecht, R. The role of ephs and ephrins in memory formation. Int. J. Neuropsychopharmacol., 2016, 19(4), pyv106. doi: 10.1093/ijnp/pyv106 PMID: 26371183
- Dines, M.; Lamprecht, R. EphrinA4 mimetic peptide targeted to EphA binding site impairs the formation of long-term fear memory in lateral amygdala. Transl. Psychiatry, 2014, 4(9), e450. doi: 10.1038/tp.2014.76 PMID: 25268254
- Attwood, B.K.; Bourgognon, J.M.; Patel, S.; Mucha, M.; Schiavon, E.; Skrzypiec, A.E.; Young, K.W.; Shiosaka, S.; Korostynski, M.; Piechota, M.; Przewlocki, R.; Pawlak, R. Neuropsin cleaves EphB2 in the amygdala to control anxiety. Nature, 2011, 473(7347), 372-375. doi: 10.1038/nature09938 PMID: 21508957
- Shi, Y.; Song, R.; Wang, Z.; Zhang, H.; Zhu, J.; Yue, Y.; Zhao, Y.; Zhang, Z. Potential clinical value of circular RNAs as peripheral biomarkers for the diagnosis and treatment of major depressive disorder. EBioMedicine, 2021, 66, 103337. doi: 10.1016/j.ebiom.2021.103337 PMID: 33862583
- Zimmerman, A.J.; Hafez, A.K.; Amoah, S.K.; Rodriguez, B.A.; DellOrco, M.; Lozano, E.; Hartley, B.J.; Alural, B.; Lalonde, J.; Chander, P.; Webster, M.J.; Perlis, R.H.; Brennand, K.J.; Haggarty, S.J.; Weick, J.; Perrone-Bizzozero, N.; Brigman, J.L.; Mellios, N. A psychiatric disease-related circular RNA controls synaptic gene expression and cognition. Mol. Psychiatry, 2020, 25(11), 2712-2727. doi: 10.1038/s41380-020-0653-4 PMID: 31988434
- Yang, L.; Han, B.; Zhang, Z.; Wang, S.; Bai, Y.; Zhang, Y.; Tang, Y.; Du, L.; Xu, L.; Wu, F.; Zuo, L.; Chen, X.; Lin, Y.; Liu, K.; Ye, Q.; Chen, B.; Li, B.; Tang, T.; Wang, Y.; Shen, L.; Wang, G.; Ju, M.; Yuan, M.; Jiang, W.; Zhang, J.H.; Hu, G.; Wang, J.; Yao, H. Extracellular vesiclemediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models. Circulation, 2020, 142(6), 556-574. doi: 10.1161/CIRCULATIONAHA.120.045765 PMID: 32441115
- Pan, R.Y.; Liu, P.; Zhou, H.T.; Sun, W.X.; Song, J.; Shu, J.; Cui, G.J.; Yang, Z.J.; Jia, E.Z. Circular RNAs promote TRPM3 expression by inhibiting hsa-miR-130a-3p in coronary artery disease patients. Oncotarget, 2017, 8(36), 60280-60290. doi: 10.18632/oncotarget.19941 PMID: 28947970
- Haque, S.; Harries, L. Circular RNAs (circRNAs) in Health and Disease. Genes, 2017, 8(12), 353. doi: 10.3390/genes8120353 PMID: 29182528
- Gardiner, E.; Beveridge, N.J.; Wu, J.Q.; Carr, V.; Scott, R.J.; Tooney, P.A.; Cairns, M.J. Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Mol. Psychiatry, 2012, 17(8), 827-840. doi: 10.1038/mp.2011.78 PMID: 21727898
- Lin, R.; Lopez, J.P.; Cruceanu, C.; Pierotti, C.; Fiori, L.M.; Squassina, A.; Chillotti, C.; Dieterich, C.; Mellios, N.; Turecki, G. Circular RNA circCCNT2 is upregulated in the anterior cingulate cortex of individuals with bipolar disorder. Transl. Psychiatry, 2021, 11(1), 629. doi: 10.1038/s41398-021-01746-4 PMID: 34893581
- Cruceanu, C.; Tan, P.P.C.; Rogic, S.; Lopez, J.P.; Torres-Platas, S.G.; Gigek, C.O.; Alda, M.; Rouleau, G.A.; Pavlidis, P.; Turecki, G. Transcriptome sequencing of the anterior cingulate in bipolar disorder: Dysregulation of G protein-coupled receptors. Am. J. Psychiatry, 2015, 172(11), 1131-1140. doi: 10.1176/appi.ajp.2015.14101279 PMID: 26238605
- Liu, Y.; Guo, J.; Shen, K.; Wang, R.; Chen, C.; Liao, Z.; Zhou, J. Paclitaxel suppresses hepatocellular carcinoma tumorigenesis through regulating Circ-BIRC6/miR-877-5p/YWHAZ axis. OncoTargets Ther., 2020, 13, 9377-9388. doi: 10.2147/OTT.S261700 PMID: 33061425
- Yu, Y.; Bian, L.; Liu, R.; Wang, Y.; Xiao, X. Circular RNA hsa_circ_0061395 accelerates hepatocellular carcinoma progression via regulation of the miR-877-5p/PIK3R3 axis. Cancer Cell Int., 2021, 21(1), 10. doi: 10.1186/s12935-020-01695-w PMID: 33407443
- Fu, Y.; He, W.; Zhou, C.; Fu, X.; Wan, Q.; He, L.; Wei, B. Bioinformatics analysis of circRNA expression and construction of "circRNA-miRNA-mRNA" competing endogenous RNAs networks in bipolar disorder patients. Front. Genet., 2021, 12, 718976. doi: 10.3389/fgene.2021.718976 PMID: 34422020
Supplementary files
