Non-oxidative Modified Low-density Lipoproteins: The Underappreciated Risk Factors for Atherosclerosis
- Authors: Zhao Y.1, Xu Q.1, He N.1, Jiang M.1, Chen Y.1, Ren Z.1, Tang Z.1, Wu C.1, Liu L.1
-
Affiliations:
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China
- Issue: Vol 31, No 34 (2024)
- Pages: 5598-5611
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645065
- DOI: https://doi.org/10.2174/0929867331666230807154019
- ID: 645065
Cite item
Full Text
Abstract
:Atherosclerosis, the pathological basis of most cardiovascular diseases, is a main risk factor causing about 20 million deaths each year worldwide. Oxidized low-density lipoprotein is recognized as the most important and independent risk factor in initiating and promoting atherosclerosis. Numerous antioxidants are extensively used in clinical practice, but they have no significant effect on reducing the morbidity and mortality of cardiovascular diseases. This finding suggests that researchers should pay more attention to the important role of non-oxidative modified low-density lipoprotein in atherosclerosis with a focus on oxidized low-density lipoprotein. This review briefly summarizes several important non-oxidative modified low-density lipoproteins associated with atherosclerosis, introduces the pathways through which these non-oxidative modified low-density lipoproteins induce the development of atherosclerosis in vivo, and discusses the mechanism of atherogenesis induced by these non-oxidative modified low-density lipoproteins. New therapeutic strategies and potential drug targets are provided for the prevention and treatment of atherosclerotic cardiovascular diseases.
About the authors
Yimeng Zhao
Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China
Email: info@benthamscience.net
Qian Xu
Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China
Email: info@benthamscience.net
Naiqi He
Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China
Email: info@benthamscience.net
Mulin Jiang
Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China
Email: info@benthamscience.net
Yingzhuo Chen
Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China
Email: info@benthamscience.net
Zhong Ren
Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China
Email: info@benthamscience.net
Zhihan Tang
Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China
Email: info@benthamscience.net
Chunyan Wu
Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China
Email: info@benthamscience.net
Lushan Liu
Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China
Author for correspondence.
Email: info@benthamscience.net
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.; Catapano, A.L.; Chugh, S.S.; Cooper, L.T.; Coresh, J.; Criqui, M.; DeCleene, N.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Solà, J.; Fowkes, G.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.; Koroshetz, W.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Temesgen, A.M.; Mokdad, A.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Moraes de Oliveira, G.; Otto, C.; Owolabi, M.; Pratt, M.; Rajagopalan, S.; Reitsma, M.; Ribeiro, A.L.P.; Rigotti, N.; Rodgers, A.; Sable, C.; Shakil, S.; Sliwa-Hahnle, K.; Stark, B.; Sundström, J.; Timpel, P.; Tleyjeh, I.M.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.; Murray, C.; Fuster, V.; Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.R.; Catapano, A.L.; Chugh, S.; Cooper, L.T.; Coresh, J.; Criqui, M.H.; DeCleene, N.K.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Sola, J.; Fowkes, F.G.R.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.J.; Koroshetz, W.J.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Misganaw, A.T.; Mokdad, A.H.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Oliveira, G.M.M.; Otto, C.M.; Owolabi, M.O.; Pratt, M.; Rajagopalan, S.; Reitsma, M.B.; Ribeiro, A.L.P.; Rigotti, N.A.; Rodgers, A.; Sable, C.A.; Shakil, S.S.; Sliwa, K.; Stark, B.A.; Sundström, J.; Timpel, P.; Tleyjeh, I.I.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.J.; Abbasi-Kangevari, M.; Abdi, A.; Abedi, A.; Aboyans, V.; Abrha, W.A.; Abu-Gharbieh, E.; Abushouk, A.I.; Acharya, D.; Adair, T.; Adebayo, O.M.; Ademi, Z.; Advani, S.M.; Afshari, K.; Afshin, A.; Agarwal, G.; Agasthi, P.; Ahmad, S.; Ahmadi, S.; Ahmed, M.B.; Aji, B.; Akalu, Y.; Akande-Sholabi, W.; Aklilu, A.; Akunna, C.J.; Alahdab, F.; Al-Eyadhy, A.; Alhabib, K.F.; Alif, S.M.; Alipour, V.; Aljunid, S.M.; Alla, F.; Almasi-Hashiani, A.; Almustanyir, S.; Al-Raddadi, R.M.; Amegah, A.K.; Amini, S.; Aminorroaya, A.; Amu, H.; Amugsi, D.A.; Ancuceanu, R.; Anderlini, D.; Andrei, T.; Andrei, C.L.; Ansari-Moghaddam, A.; Anteneh, Z.A.; Antonazzo, I.C.; Antony, B.; Anwer, R.; Appiah, L.T.; Arabloo, J.; Ärnlöv, J.; Artanti, K.D.; Ataro, Z.; Ausloos, M.; Avila-Burgos, L.; Awan, A.T.; Awoke, M.A.; Ayele, H.T.; Ayza, M.A.; Azari, S.; B, D.B.; Baheiraei, N.; Baig, A.A.; Bakhtiari, A.; Banach, M.; Banik, P.C.; Baptista, E.A.; Barboza, M.A.; Barua, L.; Basu, S.; Bedi, N.; Béjot, Y.; Bennett, D.A.; Bensenor, I.M.; Berman, A.E.; Bezabih, Y.M.; Bhagavathula, A.S.; Bhaskar, S.; Bhattacharyya, K.; Bijani, A.; Bikbov, B.; Birhanu, M.M.; Boloor, A.; Brant, L.C.; Brenner, H.; Briko, N.I.; Butt, Z.A.; Caetano dos Santos, F.L.; Cahill, L.E.; Cahuana-Hurtado, L.; Cámera, L.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, J.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Cerin, E.; Charan, J.; Chattu, V.K.; Chen, S.; Chin, K.L.; Choi, J-Y.J.; Chu, D-T.; Chung, S-C.; Cirillo, M.; Coffey, S.; Conti, S.; Costa, V.M.; Cundiff, D.K.; Dadras, O.; Dagnew, B.; Dai, X.; Damasceno, A.A.M.; Dandona, L.; Dandona, R.; Davletov, K.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Neve, J-W.; Denova-Gutiérrez, E.; Derbew Molla, M.; Derseh, B.T.; Desai, R.; Deuschl, G.; Dharmaratne, S.D.; Dhimal, M.; Dhungana, R.R.; Dianatinasab, M.; Diaz, D.; Djalalinia, S.; Dokova, K.; Douiri, A.; Duncan, B.B.; Duraes, A.R.; Eagan, A.W.; Ebtehaj, S.; Eftekhari, A.; Eftekharzadeh, S.; Ekholuenetale, M.; El Nahas, N.; Elgendy, I.Y.; Elhadi, M.; El-Jaafary, S.I.; Esteghamati, S.; Etisso, A.E.; Eyawo, O.; Fadhil, I.; Faraon, E.J.A.; Faris, P.S.; Farwati, M.; Farzadfar, F.; Fernandes, E.; Fernandez Prendes, C.; Ferrara, P.; Filip, I.; Fischer, F.; Flood, D.; Fukumoto, T.; Gad, M.M.; Gaidhane, S.; Ganji, M.; Garg, J.; Gebre, A.K.; Gebregiorgis, B.G.; Gebregzabiher, K.Z.; Gebremeskel, G.G.; Getacher, L.; Obsa, A.G.; Ghajar, A.; Ghashghaee, A.; Ghith, N.; Giampaoli, S.; Gilani, S.A.; Gill, P.S.; Gillum, R.F.; Glushkova, E.V.; Gnedovskaya, E.V.; Golechha, M.; Gonfa, K.B.; Goudarzian, A.H.; Goulart, A.C.; Guadamuz, J.S.; Guha, A.; Guo, Y.; Gupta, R.; Hachinski, V.; Hafezi-Nejad, N.; Haile, T.G.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hargono, A.; Hartono, R.K.; Hashemian, M.; Hashi, A.; Hassan, S.; Hassen, H.Y.; Havmoeller, R.J.; Hay, S.I.; Hayat, K.; Heidari, G.; Herteliu, C.; Holla, R.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Huang, J.; Humayun, A.; Iavicoli, I.; Ibeneme, C.U.; Ibitoye, S.E.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Iqbal, U.; Irvani, S.S.N.; Islam, S.M.S.; Islam, R.M.; Iso, H.; Iwagami, M.; Jain, V.; Javaheri, T.; Jayapal, S.K.; Jayaram, S.; Jayawardena, R.; Jeemon, P.; Jha, R.P.; Jonas, J.B.; Jonnagaddala, J.; Joukar, F.; Jozwiak, J.J.; Jürisson, M.; Kabir, A.; Kahlon, T.; Kalani, R.; Kalhor, R.; Kamath, A.; Kamel, I.; Kandel, H.; Kandel, A.; Karch, A.; Kasa, A.S.; Katoto, P.D.M.C.; Kayode, G.A.; Khader, Y.S.; Khammarnia, M.; Khan, M.S.; Khan, M.N.; Khan, M.; Khan, E.A.; Khatab, K.; Kibria, G.M.A.; Kim, Y.J.; Kim, G.R.; Kimokoti, R.W.; Kisa, S.; Kisa, A.; Kivimäki, M.; Kolte, D.; Koolivand, A.; Korshunov, V.A.; Koulmane Laxminarayana, S.L.; Koyanagi, A.; Krishan, K.; Krishnamoorthy, V.; Kuate Defo, B.; Kucuk Bicer, B.; Kulkarni, V.; Kumar, G.A.; Kumar, N.; Kurmi, O.P.; Kusuma, D.; Kwan, G.F.; La Vecchia, C.; Lacey, B.; Lallukka, T.; Lan, Q.; Lasrado, S.; Lassi, Z.S.; Lauriola, P.; Lawrence, W.R.; Laxmaiah, A.; LeGrand, K.E.; Li, M-C.; Li, B.; Li, S.; Lim, S.S.; Lim, L-L.; Lin, H.; Lin, Z.; Lin, R-T.; Liu, X.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Lugo, A.; M, N.K.; Madotto, F.; Mahmoudi, M.; Majeed, A.; Malekzadeh, R.; Malik, A.A.; Mamun, A.A.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; Martini, S.; Mathur, M.R.; Mazzaglia, G.; Mehata, S.; Mehndiratta, M.M.; Meier, T.; Menezes, R.G.; Meretoja, A.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Michalek, I.M.; Miller, T.R.; Mirrakhimov, E.M.; Mirzaei, H.; Moazen, B.; Moghadaszadeh, M.; Mohammad, Y.; Mohammad, D.K.; Mohammed, S.; Mohammed, M.A.; Mokhayeri, Y.; Molokhia, M.; Montasir, A.A.; Moradi, G.; Moradzadeh, R.; Moraga, P.; Morawska, L.; Moreno Velásquez, I.; Morze, J.; Mubarik, S.; Muruet, W.; Musa, K.I.; Nagarajan, A.J.; Nalini, M.; Nangia, V.; Naqvi, A.A.; Narasimha Swamy, S.; Nascimento, B.R.; Nayak, V.C.; Nazari, J.; Nazarzadeh, M.; Negoi, R.I.; Neupane Kandel, S.; Nguyen, H.L.T.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nouthe, B.E.; Nowak, C.; Odukoya, O.O.; Ogbo, F.A.; Olagunju, A.T.; Orru, H.; Ortiz, A.; Ostroff, S.M.; Padubidri, J.R.; Palladino, R.; Pana, A.; Panda-Jonas, S.; Parekh, U.; Park, E-C.; Parvizi, M.; Pashazadeh Kan, F.; Patel, U.K.; Pathak, M.; Paudel, R.; Pepito, V.C.F.; Perianayagam, A.; Perico, N.; Pham, H.Q.; Pilgrim, T.; Piradov, M.A.; Pishgar, F.; Podder, V.; Polibin, R.V.; Pourshams, A.; Pribadi, D.R.A.; Rabiee, N.; Rabiee, M.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Ur Rahman, M.H.; Rahman, M.A.; Rahmani, A.M.; Rakovac, I.; Ram, P.; Ramalingam, S.; Rana, J.; Ranasinghe, P.; Rao, S.J.; Rathi, P.; Rawal, L.; Rawasia, W.F.; Rawassizadeh, R.; Remuzzi, G.; Renzaho, A.M.N.; Rezapour, A.; Riahi, S.M.; Roberts-Thomson, R.L.; Roever, L.; Rohloff, P.; Romoli, M.; Roshandel, G.; Rwegerera, G.M.; Saadatagah, S.; Saber-Ayad, M.M.; Sabour, S.; Sacco, S.; Sadeghi, M.; Saeedi Moghaddam, S.; Safari, S.; Sahebkar, A.; Salehi, S.; Salimzadeh, H.; Samaei, M.; Samy, A.M.; Santos, I.S.; Santric-Milicevic, M.M.; Sarrafzadegan, N.; Sarveazad, A.; Sathish, T.; Sawhney, M.; Saylan, M.; Schmidt, M.I.; Schutte, A.E.; Senthilkumaran, S.; Sepanlou, S.G.; Sha, F.; Shahabi, S.; Shahid, I.; Shaikh, M.A.; Shamali, M.; Shamsizadeh, M.; Shawon, M.S.R.; Sheikh, A.; Shigematsu, M.; Shin, M-J.; Shin, J.I.; Shiri, R.; Shiue, I.; Shuval, K.; Siabani, S.; Siddiqi, T.J.; Silva, D.A.S.; Singh, J.A.; Mtech, A.S.; Skryabin, V.Y.; Skryabina, A.A.; Soheili, A.; Spurlock, E.E.; Stockfelt, L.; Stortecky, S.; Stranges, S.; Suliankatchi Abdulkader, R.; Tadbiri, H.; Tadesse, E.G.; Tadesse, D.B.; Tajdini, M.; Tariqujjaman, M.; Teklehaimanot, B.F.; Temsah, M-H.; Tesema, A.K.; Thakur, B.; Thankappan, K.R.; Thapar, R.; Thrift, A.G.; Timalsina, B.; Tonelli, M.; Touvier, M.; Tovani-Palone, M.R.; Tripathi, A.; Tripathy, J.P.; Truelsen, T.C.; Tsegay, G.M.; Tsegaye, G.W.; Tsilimparis, N.; Tusa, B.S.; Tyrovolas, S.; Umapathi, K.K.; Unim, B.; Unnikrishnan, B.; Usman, M.S.; Vaduganathan, M.; Valdez, P.R.; Vasankari, T.J.; Velazquez, D.Z.; Venketasubramanian, N.; Vu, G.T.; Vujcic, I.S.; Waheed, Y.; Wang, Y.; Wang, F.; Wei, J.; Weintraub, R.G.; Weldemariam, A.H.; Westerman, R.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Wubishet, B.L.; Xu, G.; Yadollahpour, A.; Yamagishi, K.; Yan, L.L.; Yandrapalli, S.; Yano, Y.; Yatsuya, H.; Yeheyis, T.Y.; Yeshaw, Y.; Yilgwan, C.S.; Yonemoto, N.; Yu, C.; Yusefzadeh, H.; Zachariah, G.; Zaman, S.B.; Zaman, M.S.; Zamanian, M.; Zand, R.; Zandifar, A.; Zarghi, A.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, Z-J.; Zhang, Y.; Zhang, W.; Zhong, C.; Zou, Z.; Zuniga, Y.M.H.; Murray, C.J.L.; Fuster, V. Global burden of cardiovascular diseases and risk factors, 19902019. J. Am. Coll. Cardiol., 2020, 76(25), 2982-3021. doi: 10.1016/j.jacc.2020.11.010 PMID: 33309175
- Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis from experimental insights to the clinic. Nat. Rev. Drug Discov., 2021, 20(8), 589-610. doi: 10.1038/s41573-021-00198-1 PMID: 33976384
- Borén, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; Nordestgaard, B.G.; Watts, G.F.; Bruckert, E.; Fazio, S.; Ference, B.A.; Graham, I.; Horton, J.D.; Landmesser, U.; Laufs, U.; Masana, L.; Pasterkamp, G.; Raal, F.J.; Ray, K.K.; Schunkert, H.; Taskinen, M.R.; van de Sluis, B.; Wiklund, O.; Tokgozoglu, L.; Catapano, A.L.; Ginsberg, H.N. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J., 2020, 41(24), 2313-2330. doi: 10.1093/eurheartj/ehz962 PMID: 32052833
- Gleissner, C.A.; Leitinger, N.; Ley, K.; Effects of native and modified low-density lipoproteins on monocyte recruitment in atherosclerosis. Hypertension (Dallas, Tex. 1979), 2007, 50(2), 276-283.
- Ketelhuth, D.F.; Rios, F.J.; Wang, Y.; Liu, H.; Johansson, M.E.; Fredrikson, G.N.; Hedin, U.; Gidlund, M.; Nilsson, J.; Hansson, G.K.; Yan, Z.Q. Identification of a danger-associated peptide from apolipoprotein B100 (ApoBDS-1) that triggers innate proatherogenic responses. Circulation, 2011, 124(22), 2433-2443.
- Esterbauer, H.; Gebicki, J.; Puhl, H.; Jürgens, G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic. Biol. Med., 1992, 13(4), 341-390. doi: 10.1016/0891-5849(92)90181-F PMID: 1398217
- Itabe, H.; Obama, T.; Kato, R. The dynamics of oxidized LDL during atherogenesis. J. Lipids, 2011, 2011, 1-9. doi: 10.1155/2011/418313 PMID: 21660303
- Binder, C.J.; Papac-Milicevic, N.; Witztum, J.L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol., 2016, 16(8), 485-497. doi: 10.1038/nri.2016.63 PMID: 27346802
- Yoshida, H.; Kisugi, R. Mechanisms of LDL oxidation. Clin. Chim. Acta, 2010, 411(23-24), 1875-1882. doi: 10.1016/j.cca.2010.08.038 PMID: 20816951
- Oka, K.; Yasuhara, M.; Suzumura, K.; Tanaka, K.; Sawamura, T. Antioxidants suppress plasma levels of lectinlike oxidized low-density lipoprotein receptor-ligands and reduce atherosclerosis in watanabe heritable hyperlipidemic rabbits. J. Cardiovasc. Pharmacol., 2006, 48(4), 177-183. doi: 10.1097/01.fjc.0000245989.89771.1b PMID: 17086097
- Jenkins, D.J.A.; Kitts, D.; Giovannucci, E.L.; Sahye-Pudaruth, S.; Paquette, M.; Blanco Mejia, S.; Patel, D.; Kavanagh, M.; Tsirakis, T.; Kendall, C.W.C.; Pichika, S.C.; Sievenpiper, J.L. Selenium, antioxidants, cardiovascular disease, and all-cause mortality: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr., 2020, 112(6), 1642-1652. doi: 10.1093/ajcn/nqaa245 PMID: 33053149
- Summerhill, V.I.; Grechko, A.V.; Yet, S.F.; Sobenin, I.A.; Orekhov, A.N. The atherogenic role of circulating modified lipids in atherosclerosis. Int. J. Mol. Sci., 2019, 20(14), 3561. doi: 10.3390/ijms20143561 PMID: 31330845
- Obama, T.; Itabe, H. Neutrophils as a novel target of modified low-density lipoproteins and an accelerator of cardiovascular diseases. Int. J. Mol. Sci., 2020, 21(21), 8312. doi: 10.3390/ijms21218312 PMID: 33167592
- Lorey, M.B.; Öörni, K.; Kovanen, P.T. Modified lipoproteins induce arterial wall inflammation during atherogenesis. Front. Cardiovasc. Med., 2022, 9, 841545. doi: 10.3389/fcvm.2022.841545 PMID: 35310965
- Berliner, J.A.; Navab, M.; Fogelman, A.M.; Frank, J.S.; Demer, L.L.; Edwards, P.A.; Watson, A.D.; Lusis, A.J. Atherosclerosis: Basic mechanisms. Circulation, 1995, 91(9), 2488-2496. doi: 10.1161/01.CIR.91.9.2488 PMID: 7729036
- Beckmann, J.S.; Ye, Y.Z.; Anderson, P.G.; Chen, J.; Accavitti, M.A.; Tarpey, M.M.; White, C.R. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol. Chem. Hoppe Seyler, 1994, 375(2), 81-88. doi: 10.1515/bchm3.1994.375.2.81 PMID: 8192861
- Wang, F.; Yuan, Q.; Chen, F.; Pang, J.; Pan, C.; Xu, F.; Chen, Y. Fundamental mechanisms of the cell death caused by nitrosative stress. Front. Cell Dev. Biol., 2021, 9, 742483. doi: 10.3389/fcell.2021.742483 PMID: 34616744
- Frati, G.; Schirone, L.; Chimenti, I.; Yee, D.; Biondi-Zoccai, G.; Volpe, M.; Sciarretta, S. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc. Res., 2017, 113(4), 378-388. doi: 10.1093/cvr/cvx011 PMID: 28395009
- Yu, L.; Li, Z.; Dong, X.; Xue, X.; Liu, Y.; Xu, S.; Zhang, J.; Han, J.; Yang, Y.; Wang, H. Polydatin protects diabetic heart against ischemia-reperfusion injury via Notch1/Hes1-mediated activation of Pten/Akt signaling. Oxid. Med. Cell. Longev., 2018, 2018, 1-18. doi: 10.1155/2018/2750695 PMID: 29636838
- Zhang, C.; Yang, J.B.; Quan, W.; Feng, Y.D.; Feng, J.Y.; Cheng, L.S.; Li, X.Q.; Zhang, H.N.; Chen, W.S. Activation ofparaventricular melatonin receptor 2 mediates melatonin-conferred cardioprotection against myocardial ischemia/reperfusion injury. J. Cardiovasc. Pharmacol., 2020, 76(2), 197-206. doi: 10.1097/FJC.0000000000000851 PMID: 32433359
- Pei, H.; Song, X.; Peng, C.; Tan, Y.; Li, Y.; Li, X.; Ma, S.; Wang, Q.; Huang, R.; Yang, D.; Li, D.; Gao, E.; Yang, Y. TNF-α inhibitor protects against myocardial ischemia/reperfusion injury via Notch1-mediated suppression of oxidative/nitrative stress. Free Radic. Biol. Med., 2015, 82, 114-121. doi: 10.1016/j.freeradbiomed.2015.02.002 PMID: 25680284
- Thomson, L.; Tenopoulou, M.; Lightfoot, R.; Tsika, E.; Parastatidis, I.; Martinez, M.; Greco, T.M.; Doulias, P.T.; Wu, Y.; Tang, W.H.W.; Hazen, S.L.; Ischiropoulos, H. Immunoglobulins against tyrosine-nitrated epitopes in coronary artery disease. Circulation, 2012, 126(20), 2392-2401. doi: 10.1161/CIRCULATIONAHA.112.103796 PMID: 23081989
- Shishehbor, M.H.; Aviles, R.J.; Brennan, M.L.; Fu, X.; Goormastic, M.; Pearce, G.L.; Gokce, N.; Keaney, J.F., Jr; Penn, M.S.; Sprecher, D.L.; Vita, J.A.; Hazen, S.L. Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA, 2003, 289(13), 1675-1680. doi: 10.1001/jama.289.13.1675 PMID: 12672736
- Parastatidis, I.; Thomson, L.; Burke, A.; Chernysh, I.; Nagaswami, C.; Visser, J.; Stamer, S.; Liebler, D.C.; Koliakos, G.; Heijnen, H.F.G.; FitzGerald, G.A.; Weisel, J.W.; Ischiropoulos, H. Fibrinogen beta-chain tyrosine nitration is a prothrombotic risk factor. J. Biol. Chem., 2008, 283(49), 33846-33853. doi: 10.1074/jbc.M805522200 PMID: 18818200
- Martinez, M.; Cuker, A.; Mills, A.; Lightfoot, R.; Fan, Y.; Wilson Tang, W.H.; Hazen, S.L.; Ischiropoulos, H. Nitrated fibrinogen is a biomarker of oxidative stress in venous thromboembolism. Free Radic. Biol. Med., 2012, 53(2), 230-236. doi: 10.1016/j.freeradbiomed.2012.05.004 PMID: 22580301
- Torres-Rasgado, E.; Fouret, G.; Carbonneau, M.A.; Leger, C.L. Peroxynitrite mild nitration of albumin and LDLalbumin complex naturally present in plasma and tyrosine nitration ratealbumin impairs LDL nitration. Free Radic. Res., 2007, 41(3), 367-375. doi: 10.1080/10715760601064706 PMID: 17364966
- Leeuwenburgh, C.; Hardy, M.M.; Hazen, S.L.; Wagner, P.; Oh-ishi, S.; Steinbrecher, U.P.; Heinecke, J.W. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J. Biol. Chem., 1997, 272(3), 1433-1436. doi: 10.1074/jbc.272.3.1433 PMID: 8999808
- Griffiths, H.R.; Aldred, S.; Dale, C.; Nakano, E.; Kitas, G.D.; Grant, M.G.; Nugent, D.; Taiwo, F.A.; Li, L.; Powers, H.J. Homocysteine from endothelial cells promotes LDL nitration and scavenger receptor uptake. Free Radic. Biol. Med., 2006, 40(3), 488-500. doi: 10.1016/j.freeradbiomed.2005.08.039 PMID: 16443164
- Bakillah, A.; Tedla, F.; Ayoub, I.; John, D.; Norin, A.J.; Hussain, M.M.; Brown, C. Plasma nitration of high-density and low-density lipoproteins in chronic kidney disease patients receiving kidney transplants. Mediators Inflamm., 2015, 2015, 1-11. doi: 10.1155/2015/352356 PMID: 26648662
- Hsiai, T.; Hwang, J.; Barr, M.; Correa, A.; Hamilton, R.; Alavi, M.; Rouhanizadeh, M.; Cadenas, E.; Hazen, S. Hemodynamics influences vascular peroxynitrite formation: Implication for low-density lipoprotein apo-B-100 nitration. Free Radic. Biol. Med., 2007, 42(4), 519-529. doi: 10.1016/j.freeradbiomed.2006.11.017 PMID: 17275684
- Ischiropoulos, H.; Al-Mehdi, A.B. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett., 1995, 364(3), 279-282. doi: 10.1016/0014-5793(95)00307-U PMID: 7758583
- Velsor, L.; Ballinger, C.A.; Patel, J.; Postlethwait, E.M. Influence of epithelial lining fluid lipids on NO2-induced membrane oxidation and nitration. Free Radic. Biol. Med., 2003, 34(6), 720-733. doi: 10.1016/S0891-5849(02)01370-9 PMID: 12633749
- Campolo, N.; Issoglio, F.M.; Estrin, D.A.; Bartesaghi, S.; Radi, R. 3-Nitrotyrosine and related derivatives in proteins: precursors, radical intermediates and impact in function. Essays Biochem., 2020, 64(1), 111-133. doi: 10.1042/EBC20190052 PMID: 32016371
- Alvarez, B.; Radi, R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids, 2003, 25(3-4), 295-311. doi: 10.1007/s00726-003-0018-8 PMID: 14661092
- Herold, S. Nitrotyrosine, dityrosine, and nitrotryptophan formation from metmyoglobin, hydrogen peroxide, and nitrite. Free Radic. Biol. Med., 2004, 36(5), 565-579. doi: 10.1016/j.freeradbiomed.2003.10.014 PMID: 14980701
- Khan, A.A.; Alsahli, M.A.; Rahmani, A.H.; Myeloperoxidase as an active disease biomarker: Recent biochemical and pathological perspectives. Med. Sci. (Basel, Switzerland), 2018, 6(2), 33.
- Ferrer-Sueta, G.; Campolo, N.; Trujillo, M.; Bartesaghi, S.; Carballal, S.; Romero, N.; Alvarez, B.; Radi, R. Biochemistry of peroxynitrite and protein tyrosine nitration. Chem. Rev., 2018, 118(3), 1338-1408. doi: 10.1021/acs.chemrev.7b00568 PMID: 29400454
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev., 2016, 2016, 1-44. doi: 10.1155/2016/1245049 PMID: 27478531
- Feng, J.; Chen, X.; Shen, J. Reactive nitrogen species as therapeutic targets for autophagy: implication for ischemic stroke. Expert Opin. Ther. Targets, 2017, 21(3), 305-317. doi: 10.1080/14728222.2017.1281250 PMID: 28081644
- Ma, L.L.; Ma, X.; Kong, F.J.; Guo, J.J.; Shi, H.T.; Zhu, J.B.; Zou, Y.Z.; Ge, J.B. Mammalian target of rapamycin inhibition attenuates myocardial ischaemia-reperfusion injury in hypertrophic heart. J. Cell. Mol. Med., 2018, 22(3), 1708-1719. doi: 10.1111/jcmm.13451 PMID: 29314656
- Pi, S.; Mao, L.; Chen, J.; Shi, H.; Liu, Y.; Guo, X.; Li, Y.; Zhou, L.; He, H.; Yu, C.; Liu, J.; Dang, Y.; Xia, Y.; He, Q.; Jin, H.; Li, Y.; Hu, Y.; Miao, Y.; Yue, Z.; Hu, B. The P2RY12 receptor promotes VSMC-derived foam cell formation by inhibiting autophagy in advanced atherosclerosis. Autophagy, 2021, 17(4), 980-1000. doi: 10.1080/15548627.2020.1741202 PMID: 32160082
- Shao, B.; Han, B.; Zeng, Y.; Su, D.; Liu, C. The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol. Sin., 2016, 37(2), 150-156. doi: 10.1038/aps.2015.87 PMID: 26750103
- Luo, Y.; Lu, S.; Gao, Y.; Yang, K.; Wu, D.; Xu, X.; Sun, G.; Sun, X. Araloside C attenuates atherosclerosis by modulating macrophage polarization via Sirt1-mediated autophagy. Aging (Albany NY), 2020, 12(2), 1704-1724. doi: 10.18632/aging.102708 PMID: 31986489
- Meng, Q.; Li, Y.; Ji, T.; Chao, Y.; Li, J.; Fu, Y.; Wang, S.; Chen, Q.; Chen, W.; Huang, F.; Wang, Y.; Zhang, Q.; Wang, X.; Bian, H. Estrogen prevent atherosclerosis by attenuating endothelial cell pyroptosis via activation of estrogen receptor α-mediated autophagy. J. Adv. Res., 2021, 28, 149-164. doi: 10.1016/j.jare.2020.08.010 PMID: 33364052
- Mastrogiovanni, M.; Trostchansky, A.; Rubbo, H. Fatty acid nitration in human low-density lipoprotein. Arch. Biochem. Biophys., 2020, 679, 108190. doi: 10.1016/j.abb.2019.108190 PMID: 31738891
- Hamilton, R.T.; Asatryan, L.; Nilsen, J.T.; Isas, J.M.; Gallaher, T.K.; Sawamura, T.; Hsiai, T.K. LDL protein nitration: Implication for LDL protein unfolding. Arch. Biochem. Biophys., 2008, 479(1), 1-14. doi: 10.1016/j.abb.2008.07.026 PMID: 18713619
- Kowalczyk, P.; Sulejczak, D.; Kleczkowska, P.; Bukowska-Ośko, I.; Kucia, M.; Popiel, M.; Wietrak, E.; Kramkowski, K.; Wrzosek, K.; Kaczyńska, K. Mitochondrial oxidative stress-A causative factor and therapeutic target in many diseases. Int. J. Mol. Sci., 2021, 22(24), 13384. doi: 10.3390/ijms222413384 PMID: 34948180
- Jaisson, S.; Pietrement, C.; Gillery, P. Protein carbamylation: Chemistry, pathophysiological involvement, and biomarkers. Adv. Clin. Chem., 2018, 84, 1-38. doi: 10.1016/bs.acc.2017.12.001 PMID: 29478512
- Wu, C.Y.; Yang, H.Y.; Luo, S.F.; Lai, J.H. From rheumatoid factor to anti-citrullinated protein antibodies and anti-carbamylated protein antibodies for diagnosis and prognosis prediction in patients with rheumatoid arthritis. Int. J. Mol. Sci., 2021, 22(2), 686. doi: 10.3390/ijms22020686 PMID: 33445768
- Gillery, P.; Jaisson, S. Usefulness of non-enzymatic post-translational modification derived products (PTMDPs) as biomarkers of chronic diseases. J. Proteomics, 2013, 92, 228-238. doi: 10.1016/j.jprot.2013.02.015 PMID: 23459210
- Kalim, S.; Berg, A.H.; Karumanchi, S.A.; Thadhani, R.; Allegretti, A.S.; Nigwekar, S.; Zhao, S.; Srivastava, A.; Raj, D.; Deo, R.; Frydrych, A.; Chen, J.; Sondheimer, J.; Shafi, T.; Weir, M.; Lash, J.P.; Appel, L.J.; Feldman, H.I.; Go, A.S.; He, J.; Nelson, R.G.; Rahman, M.; Rao, P.S.; Shah, V.O.; Townsend, R.R.; Unruh, M.L. Protein carbamylation and chronic kidney disease progression in the chronic renal insufficiency cohort study. Nephrol. Dial. Transplant., 2021, 37(1), 139-147. doi: 10.1093/ndt/gfaa347 PMID: 33661286
- Berg, A.H.; Drechsler, C.; Wenger, J.; Buccafusca, R.; Hod, T.; Kalim, S.; Ramma, W.; Parikh, S.M.; Steen, H.; Friedman, D.J.; Danziger, J.; Wanner, C.; Thadhani, R.; Karumanchi, S.A. Carbamylation of serum albumin as a risk factor for mortality in patients with kidney failure. Sci. Transl. Med., 2013, 5(175), 175ra29. doi: 10.1126/scitranslmed.3005218 PMID: 23467560
- Vallianou, N.G.; Mitesh, S.; Gkogkou, A.; Geladari, E. Chronic kidney disease and cardiovascular disease: is there any relationship? Curr. Cardiol. Rev., 2018, 15(1), 55-63. doi: 10.2174/1573403X14666180711124825 PMID: 29992892
- Yanai, H.; Adachi, H.; Hakoshima, M.; Katsuyama, H. molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int. J. Mol. Sci., 2021, 22(17), 9221. doi: 10.3390/ijms22179221 PMID: 34502127
- Querfeld, U.; Mak, R.H.; Pries, A.R., Microvascular disease in chronic kidney disease: the base of the iceberg in cardiovascular comorbidity. Clini. Sci. (London, England : 1979), 2020, 134(12), 1333-1356.
- Kalim, S.; Karumanchi, S.A.; Thadhani, R.I.; Berg, A.H. Protein carbamylation in kidney disease: pathogenesis and clinical implications. Am. J. Kidney Dis., 2014, 64(5), 793-803. doi: 10.1053/j.ajkd.2014.04.034 PMID: 25037561
- Delanghe, S.; Delanghe, J.R.; Speeckaert, R.; Van Biesen, W.; Speeckaert, M.M. Mechanisms and consequences of carbamoylation. Nat. Rev. Nephrol., 2017, 13(9), 580-593. doi: 10.1038/nrneph.2017.103 PMID: 28757635
- Apostolov, E.O.; Ray, D.; Savenka, A.V.; Shah, S.V.; Basnakian, A.G. Chronic uremia stimulates LDL carbamylation and atherosclerosis. J. Am. Soc. Nephrol., 2010, 21(11), 1852-1857. doi: 10.1681/ASN.2010040365 PMID: 20947625
- Apostolov, E.O.; Basnakian, A.G.; Ok, E.; Shah, S.V. Carbamylated low-density lipoprotein: nontraditional risk factor for cardiovascular events in patients with chronic kidney disease. J. renal nutr., 2012, 22(1), 134-138.
- Tan, K.C.B.; Cheung, C.L.; Lee, A.C.H.; Lam, J.K.Y.; Wong, Y.; Shiu, S.W.M. Carbamylated lipoproteins and progression of diabetic kidney disease. Clin. J. Am. Soc. Nephrol., 2020, 15(3), 359-366. doi: 10.2215/CJN.11710919 PMID: 32075807
- Simsek, B.; Çakatay, U. Could ornithine supplementation be beneficial to prevent the formation of pro-atherogenic carbamylated low-density lipoprotein (c-LDL) particles? Med. Hypotheses, 2019, 126, 20-22. doi: 10.1016/j.mehy.2019.03.004 PMID: 31010493
- Wang, Z.; Nicholls, S.J.; Rodriguez, E.R.; Kummu, O.; Hörkkö, S.; Barnard, J.; Reynolds, W.F.; Topol, E.J.; DiDonato, J.A.; Hazen, S.L. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat. Med., 2007, 13(10), 1176-1184. doi: 10.1038/nm1637 PMID: 17828273
- Verbrugge, F.H.; Tang, W.H.W.; Hazen, S.L. Protein carbamylation and cardiovascular disease. Kidney Int., 2015, 88(3), 474-478. doi: 10.1038/ki.2015.166 PMID: 26061545
- Jaisson, S.; Pietrement, C.; Gillery, P. Carbamylation-derived products: bioactive compounds and potential biomarkers in chronic renal failure and atherosclerosis. Clin. Chem., 2011, 57(11), 1499-1505. doi: 10.1373/clinchem.2011.163188 PMID: 21768218
- Mehta, J.L.; Basnakian, A.G. Interaction of carbamylated LDL with LOX-1 in the induction of endothelial dysfunction and atherosclerosis. Eur. Heart J., 2014, 35(43), 2996-2997. doi: 10.1093/eurheartj/ehu122 PMID: 24694664
- Speer, T.; Owala, F.O.; Holy, E.W.; Zewinger, S.; Frenzel, F.L.; Stähli, B.E.; Razavi, M.; Triem, S.; Cvija, H.; Rohrer, L.; Seiler, S.; Heine, G.H.; Jankowski, V.; Jankowski, J.; Camici, G.G.; Akhmedov, A.; Fliser, D.; Lüscher, T.F.; Tanner, F.C. Carbamylated low-density lipoprotein induces endothelial dysfunction. Eur. Heart J., 2014, 35(43), 3021-3032. doi: 10.1093/eurheartj/ehu111 PMID: 24658767
- Apostolov, E.O.; Shah, S.V.; Ok, E.; Basnakian, A.G. Carbamylated low-density lipoprotein induces monocyte adhesion to endothelial cells through intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. Arterioscler. Thromb. Vasc. Biol., 2007, 27(4), 826-832. doi: 10.1161/01.ATV.0000258795.75121.8a PMID: 17255534
- Apostolov, E.O.; Shah, S.V.; Ray, D.; Basnakian, A.G. Scavenger receptors of endothelial cells mediate the uptake and cellular proatherogenic effects of carbamylated LDL. Arterioscler. Thromb. Vasc. Biol., 2009, 29(10), 1622-1630. doi: 10.1161/ATVBAHA.109.189795 PMID: 19696406
- Stankova, T.; Delcheva, G.; Maneva, A.; Vladeva, S. Serum levels of carbamylated ldl and soluble lectin-like oxidized low-density lipoprotein receptor-1 are associated with coronary artery disease in patients with metabolic syndrome. Medicina (Kaunas), 2019, 55(8), 493. doi: 10.3390/medicina55080493 PMID: 31443320
- Ha, E.; Bang, J.H.; Son, J.N.; Cho, H.C.; Mun, K.C. Carbamylated albumin stimulates microRNA-146, which is increased in human renal cell carcinoma. Mol. Med. Rep., 2010, 3(2), 275-279. PMID: 21472233
- Fortpied, J.; Maliekal, P.; Vertommen, D.; Van Schaftingen, E. Magnesium-dependent phosphatase-1 is a protein-fructosamine-6-phosphatase potentially involved in glycation repair. J. Biol. Chem., 2006, 281(27), 18378-18385. doi: 10.1074/jbc.M513208200 PMID: 16670083
- Uribarri, J.; Cai, W.; Peppa, M.; Goodman, S.; Ferrucci, L.; Striker, G.; Vlassara, H. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J. Gerontol. A Biol. Sci. Med. Sci., 2007, 62(4), 427-433. doi: 10.1093/gerona/62.4.427 PMID: 17452738
- Del Turco, S.; Basta, G. An update on advanced glycation endproducts and atherosclerosis. Biofactors, 2012, 38(4), 266-274. doi: 10.1002/biof.1018 PMID: 22488968
- Ahmad, S.; Khan, H.; Siddiqui, Z.; Khan, M.Y.; Rehman, S.; Shahab, U.; Godovikova, T.; Silnikov, V.; Moinuddin AGEs, RAGEs and s-RAGE; friend or foe for cancer. Semin. Cancer Biol., 2018, 49, 44-55. doi: 10.1016/j.semcancer.2017.07.001 PMID: 28712719
- Siddiqui, K.; George, T.P.; Nawaz, S.S.; Yaslam, M.; Almogbel, E.; Al-Rubeaan, K. Significance of glycated LDL in different stages of diabetic nephropathy. Diabetes Metab. Syndr., 2019, 13(1), 548-552. doi: 10.1016/j.dsx.2018.11.023 PMID: 30641763
- Mahdavifard, S.; Nakhjavani, M. Preventive effect of eucalyptol on the formation of aorta lesions in the diabetic-atherosclerotic rat. Int. J. Prev. Med., 2021, 12, 45. PMID: 34211676
- Al Saudi, R.M.; Kasabri, V.; Naffa, R.; Bulatova, N.; Bustanji, Y. Glycated LDL-C and glycated HDL-C in association with adiposity, blood and atherogenicity indices in metabolic syndrome patients with and without prediabetes. Ther. Adv. Endocrinol. Metab., 2018, 9(10), 311-323. doi: 10.1177/2042018818788198 PMID: 30327717
- Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005, 54(6), 1615-1625. doi: 10.2337/diabetes.54.6.1615 PMID: 15919781
- Yamagishi, S. Glycation. Jpn. J. Clin. Med., 2010, 68(5), 809-813.
- Kanauchi, M.; Tsujimoto, N.; Hashimoto, T. Advanced glycation end products in nondiabetic patients with coronary artery disease. Diabetes Care, 2001, 24(9), 1620-1623. doi: 10.2337/diacare.24.9.1620 PMID: 11522709
- Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic. Res., 2013, 47(sup1)(Suppl. 1), 3-27. doi: 10.3109/10715762.2013.815348 PMID: 23767955
- Shen, C.; Li, Q.; Zhang, Y.C.; Ma, G.; Feng, Y.; Zhu, Q.; Dai, Q.; Chen, Z.; Yao, Y.; Chen, L.; Jiang, Y.; Liu, N. Advanced glycation endproducts increase EPC apoptosis and decrease nitric oxide release via MAPK pathways. Biomed pharmacother., 2010, 64(1), 35-43.
- Cepas, V.; Collino, M.; Mayo, J.C.; Sainz, R.M.; Redox signaling and advanced glycation endproducts (AGEs) in diet-related diseases. Antioxidants (Basel, Switzerland), 2020, 9(2) ,142.
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070. doi: 10.1161/CIRCRESAHA.110.223545 PMID: 21030723
- Hunt, K.J.; Baker, N.; Cleary, P.; Backlund, J.Y.; Lyons, T.; Jenkins, A.; Virella, G.; Lopes-Virella, M.F. Oxidized LDL and AGE-LDL in circulating immune complexes strongly predict progression of carotid artery IMT in type 1 diabetes. Atherosclerosis, 2013, 231(2), 315-322. doi: 10.1016/j.atherosclerosis.2013.09.027 PMID: 24267245
- Lopes-Virella, M.F.; Hunt, K.J.; Baker, N.L.; Lachin, J.; Nathan, D.M.; Virella, G. Levels of oxidized LDL and advanced glycation end products-modified LDL in circulating immune complexes are strongly associated with increased levels of carotid intima-media thickness and its progression in type 1 diabetes. Diabetes, 2011, 60(2), 582-589. doi: 10.2337/db10-0915 PMID: 20980456
- Alique, M.; Luna, C.; Carracedo, J.; Ramírez, R. LDL biochemical modifications: a link between atherosclerosis and aging. Food Nutr. Res., 2015, 59(1), 29240. doi: 10.3402/fnr.v59.29240 PMID: 26637360
- Younis, N.; Sharma, R.; Soran, H.; Charlton-Menys, V.; Elseweidy, M.; Durrington, P.N. Glycation as an atherogenic modification of LDL. Curr. Opin. Lipidol., 2008, 19(4), 378-384. doi: 10.1097/MOL.0b013e328306a057 PMID: 18607185
Supplementary files
