Molecular Subtypes and Prognostic Models for Predicting Prognosis of Lung Adenocarcinoma based on MiRNA-related Genes


Cite item

Full Text

Abstract

Background:MicroRNAs (miRNAs) are crucial in cancer development and progression, and therapies targeting miRNAs demonstrate great therapeutic promise.

Aim:We sought to predict the prognosis and therapeutic response of lung adenocarcinoma (LUAD) by classifying molecular subtypes and constructing a prognostic model based on miRNA-related genes.

Methods:This study was based on miRNA-mRNA action pairs and ceRNA networks in the Cancer Genome Atlas (TCGA) database. Three molecular subtypes were determined based on 64 miRNA-associated target genes identified in the ceRNA network. The S3 subtype had the best prognosis, and the S2 subtype had the worst prognosis. The S2 subtype had a higher tumor mutational load (TMB) and a lower immune score. The S2 subtype was more suitable for immunotherapy and sensitive to chemotherapy. The least absolute shrinkage and selection operator (LASSO) algorithm was performed to determine eight miRNA-associated target genes for the construction of prognostic models.

Result:High-risk patients had a poorer prognosis, lower immune score, and lower response to immunotherapy. Robustness was confirmed in the Gene-Expression Omnibus (GEO) database cohort (GSE31210, GSE50081, and GSE37745 datasets). Overall, our study deepened the understanding of the mechanism of miRNA-related target genes in LUAD and provided new ideas for classification.

Conclusion:Such miRNA-associated target gene characterization could be useful for prognostic prediction and contribute to therapeutic decision-making in LUAD.

About the authors

Yuxi Wei

Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College

Email: info@benthamscience.net

Wei Zhong

Department of Respiratory and Critical Care Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College

Email: info@benthamscience.net

Yalan Bi

Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University

Email: info@benthamscience.net

Xiaoyan Liu

Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical Collegeng Union Medical College

Email: info@benthamscience.net

Qing Zhou

Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College

Email: info@benthamscience.net

Jia Liu

Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College

Email: info@benthamscience.net

Mengzhao Wang

Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College

Email: info@benthamscience.net

Hong Zhang

Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College

Author for correspondence.
Email: info@benthamscience.net

Minjiang Chen

Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Thandra, K. C.; Barsouk, A.; Saginala, K.; Aluru, J. S.; Barsouk, A. Epidemiology of lung cancer. Contemp Oncol., 2021, 25(1), 45-52.
  3. Myers, D.J.; Wallen, J.M. Lung adenocarcinoma.StatPearls; StatPearls Publishing, 2022.
  4. Saito, M.; Suzuki, H.; Kono, K.; Takenoshita, S.; Kohno, T. Treatment of lung adenocarcinoma by molecular-targeted therapy and immunotherapy. Surg. Today, 2018, 48(1), 1-8. doi: 10.1007/s00595-017-1497-7 PMID: 28280984
  5. Cesana, M.; Daley, G.Q. Deciphering the rules of ceRNA networks. Proc. Natl. Acad. Sci., 2013, 110(18), 7112-7113. doi: 10.1073/pnas.1305322110 PMID: 23620514
  6. Hill, M.; Tran, N. miRNA interplay: Mechanisms and consequences in cancer. Dis. Model. Mech., 2021, 14(4), dmm047662. doi: 10.1242/dmm.047662 PMID: 33973623
  7. Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol., 2019, 234(5), 5451-5465. doi: 10.1002/jcp.27486 PMID: 30471116
  8. Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory mechanism of MicroRNA expression in cancer. Int. J. Mol. Sci., 2020, 21(5), 1723. doi: 10.3390/ijms21051723 PMID: 32138313
  9. He, B.; Zhao, Z.; Cai, Q.; Zhang, Y.; Zhang, P.; Shi, S.; Xie, H.; Peng, X.; Yin, W.; Tao, Y.; Wang, X. miRNA-based biomarkers, therapies, and resistance in Cancer. Int. J. Biol. Sci., 2020, 16(14), 2628-2647. doi: 10.7150/ijbs.47203 PMID: 32792861
  10. Yoon, A.J.; Wang, S.; Kutler, D.I.; Carvajal, R.D.; Philipone, E.; Wang, T.; Peters, S.M.; LaRoche, D.; Hernandez, B.Y.; McDowell, B.D.; Stewart, C.R.; Momen-Heravi, F.; Santella, R.M. MicroRNA-based risk scoring system to identify early-stage oral squamous cell carcinoma patients at high-risk for cancer-specific mortality. Head Neck, 2020, 42(8), 1699-1712. doi: 10.1002/hed.26089 PMID: 31981257
  11. Si, W.; Shen, J.; Zheng, H.; Fan, W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin. Epigenetics, 2019, 11(1), 25. doi: 10.1186/s13148-018-0587-8 PMID: 30744689
  12. Baldassari, F.; Zerbinati, C.; Galasso, M.; Corrà, F.; Minotti, L.; Agnoletto, C.; Previati, M.; Croce, C.M.; Volinia, S. Screen for MicroRNA and drug interactions in breast cancer cell lines points to miR-126 as a modulator of CDK4/6 and PIK3CA inhibitors. Front. Genet., 2018, 9, 174. doi: 10.3389/fgene.2018.00174 PMID: 29868122
  13. Tu, M.J.; Ho, P.Y.; Zhang, Q.Y.; Jian, C.; Qiu, J.X.; Kim, E.J.; Bold, R.J.; Gonzalez, F.J.; Bi, H.; Yu, A.M. Bioengineered miRNA-1291 prodrug therapy in pancreatic cancer cells and patient-derived xenograft mouse models. Cancer Lett., 2019, 442, 82-90. doi: 10.1016/j.canlet.2018.10.038 PMID: 30389433
  14. Gautier, L.; Cope, L.; Bolstad, B.M.; Irizarry, R.A. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 2004, 20(3), 307-315. doi: 10.1093/bioinformatics/btg405 PMID: 14960456
  15. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47-e47. doi: 10.1093/nar/gkv007 PMID: 25605792
  16. Krek, A.; Grün, D.; Poy, M.N.; Wolf, R.; Rosenberg, L.; Epstein, E.J.; MacMenamin, P.; da Piedade, I.; Gunsalus, K.C.; Stoffel, M.; Rajewsky, N. Combinatorial microRNA target predictions. Nat. Genet., 2005, 37(5), 495-500. doi: 10.1038/ng1536 PMID: 15806104
  17. Enright, A.J.; John, B.; Gaul, U.; Tuschl, T.; Sander, C.; Marks, D.S. MicroRNA targets in drosophila. Genome Biol., 2003, 5(1), R1. doi: 10.1186/gb-2003-5-1-r1 PMID: 14709173
  18. John, B.; Enright, A.J.; Aravin, A.; Tuschl, T.; Sander, C.; Marks, D.S. Human microRNA targets. PLoS Biol., 2004, 2(11), e363. doi: 10.1371/journal.pbio.0020363 PMID: 15502875
  19. Kiriakidou, M.; Nelson, P.T.; Kouranov, A.; Fitziev, P.; Bouyioukos, C.; Mourelatos, Z.; Hatzigeorgiou, A. A combined computational-experimental approach predicts human microRNA targets. Genes Dev., 2004, 18(10), 1165-1178. doi: 10.1101/gad.1184704 PMID: 15131085
  20. Bandyopadhyay, S.; Mitra, R. TargetMiner: MicroRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics, 2009, 25(20), 2625-2631. doi: 10.1093/bioinformatics/btp503 PMID: 19692556
  21. Huang, H.Y.; Lin, Y.C.; Li, J.; Huang, K.Y.; Shrestha, S.; Hong, H.C.; Tang, Y.; Chen, Y.G.; Jin, C.N.; Yu, Y.; Xu, J.T.; Li, Y.M.; Cai, X.X.; Zhou, Z.Y.; Chen, X.H.; Pei, Y.Y.; Hu, L.; Su, J.J.; Cui, S.D.; Wang, F.; Xie, Y.Y.; Ding, S.Y.; Luo, M.F.; Chou, C.H.; Chang, N.W.; Chen, K.W.; Cheng, Y.H.; Wan, X.H.; Hsu, W.L.; Lee, T.Y.; Wei, F.X.; Huang, H.D. miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res., 2020, 48(D1), D148-D154. PMID: 31647101
  22. Vejnar, C. E.; Blum, M.; Zdobnov, E. M. MiRmap web: Comprehensive microRNA target prediction online. Nucleic Acids Res, 2013, 41(Web Server issue), W165-W168.
  23. Chen, Y.; Wang, X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res., 2020, 48(D1), D127-D131. doi: 10.1093/nar/gkz757 PMID: 31504780
  24. Miranda, K.C.; Huynh, T.; Tay, Y.; Ang, Y.S.; Tam, W.L.; Thomson, A.M.; Lim, B.; Rigoutsos, I. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell, 2006, 126(6), 1203-1217. doi: 10.1016/j.cell.2006.07.031 PMID: 16990141
  25. Jeggari, A.; Marks, D.S.; Larsson, E. miRcode: A map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics, 2012, 28(15), 2062-2063. doi: 10.1093/bioinformatics/bts344 PMID: 22718787
  26. Kertesz, M.; Iovino, N.; Unnerstall, U.; Gaul, U.; Segal, E. The role of site accessibility in microRNA target recognition. Nat. Genet., 2007, 39(10), 1278-1284. doi: 10.1038/ng2135 PMID: 17893677
  27. Long, D.; Lee, R.; Williams, P.; Chan, C.Y.; Ambros, V.; Ding, Y. Potent effect of target structure on microRNA function. Nat. Struct. Mol. Biol., 2007, 14(4), 287-294. doi: 10.1038/nsmb1226 PMID: 17401373
  28. Zhao, Y.; Samal, E.; Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 2005, 436(7048), 214-220. doi: 10.1038/nature03817 PMID: 15951802
  29. Lewis, B.P.; Shih, I.; Jones-Rhoades, M.W.; Bartel, D.P.; Burge, C.B. Prediction of mammalian microRNA targets. Cell, 2003, 115(7), 787-798. doi: 10.1016/S0092-8674(03)01018-3 PMID: 14697198
  30. Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res., 2014, 42(D1), D92-D97. doi: 10.1093/nar/gkt1248 PMID: 24297251
  31. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
  32. Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res., 2019, 47(W1), W199-W205. doi: 10.1093/nar/gkz401 PMID: 31114916
  33. Wilkerson, M.; Waltman, P.; Wilkerson, M. M. Package ‘ConsensusClusterPlus’. 2013. Available from: https://bioconductor.riken.jp/packages/2.14/bioc/html/ConsensusClusterPlus.html
  34. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287. doi: 10.1089/omi.2011.0118 PMID: 22455463
  35. Hastie, T.; Qian, J.; Tay, K. An Introduction to glmnet. CRAN R Repositary, 2021. Available from: https://cran.r-project.org/web/packages/glmnet/vignettes/glmnet.pdf
  36. Blanche, P. Time-dependent ROC curve analysis in medical research: Current methods and applications. BMC Med Res Methodol, 2015, 17(53). Available from: https://cran.r-project.org/web/packages/glmnet/vignettes/glmnet.pdf
  37. Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; Jhunjhunwala, S.; Banchereau, R.; Yang, Y.; Guan, Y.; Chalouni, C.; Ziai, J.; Şenbabaoğlu, Y.; Santoro, S.; Sheinson, D.; Hung, J.; Giltnane, J.M.; Pierce, A.A.; Mesh, K.; Lianoglou, S.; Riegler, J.; Carano, R.A.D.; Eriksson, P.; Höglund, M.; Somarriba, L.; Halligan, D.L.; van der Heijden, M.S.; Loriot, Y.; Rosenberg, J.E.; Fong, L.; Mellman, I.; Chen, D.S.; Green, M.; Derleth, C.; Fine, G.D.; Hegde, P.S.; Bourgon, R.; Powles, T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 2018, 554(7693), 544-548. doi: 10.1038/nature25501 PMID: 29443960
  38. Kassambara, A. ggcorrplot: Visualization of a Correlation Matrix using ggplot2 (0.1. 3). 2019. Available from: https://github.com/kassambara/ggcorrplot
  39. Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; Dawson, N.A.; van der Heijden, M.S.; Dreicer, R.; Srinivas, S.; Retz, M.M.; Joseph, R.W.; Drakaki, A.; Vaishampayan, U.N.; Sridhar, S.S.; Quinn, D.I.; Durán, I.; Shaffer, D.R.; Eigl, B.J.; Grivas, P.D.; Yu, E.Y.; Li, S.; Kadel, E.E., III; Boyd, Z.; Bourgon, R.; Hegde, P.S.; Mariathasan, S.; Thåström, A.; Abidoye, O.O.; Fine, G.D.; Bajorin, D.F. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet, 2017, 389(10064), 67-76. doi: 10.1016/S0140-6736(16)32455-2 PMID: 27939400
  40. Geeleher, P.; Cox, N.; Huang, R.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One, 2014, 9(9), e107468. doi: 10.1371/journal.pone.0107468 PMID: 25229481
  41. Riaz, N.; Havel, J. J.; Makarov, V.; Desrichard, A.; Urba, W. J.; Sims, J. S.; Hodi, F. S.; Martín-Algarra, S.; Mandal, R.; Sharfman, W. H. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell, 2017, 171(4), 934-949. doi: 10.1016/j.cell.2017.09.028
  42. Hugo, W.; Zaretsky, J.M.; Sun, L.; Song, C.; Moreno, B.H.; Hu-Lieskovan, S.; Berent-Maoz, B.; Pang, J.; Chmielowski, B.; Cherry, G.; Seja, E.; Lomeli, S.; Kong, X.; Kelley, M.C.; Sosman, J.A.; Johnson, D.B.; Ribas, A.; Lo, R.S. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell, 2016, 165(1), 35-44. doi: 10.1016/j.cell.2016.02.065 PMID: 26997480
  43. Kim, J.Y.; Choi, J.K.; Jung, H. Genome-wide methylation patterns predict clinical benefit of immunotherapy in lung cancer. Clin. Epigenetics, 2020, 12(1), 119. doi: 10.1186/s13148-020-00907-4 PMID: 32762727
  44. Sherafatian, M.; Arjmand, F. Decision tree-based classifiers for lung cancer diagnosis and subtyping using TCGA miRNA expression data. Oncol. Lett., 2019, 18(2), 2125-2131. doi: 10.3892/ol.2019.10462 PMID: 31423286
  45. Sui, J.; Yang, R.S.; Xu, S.Y.; Zhang, Y.Q.; Li, C.Y.; Yang, S.; Yin, L.H.; Pu, Y.P.; Liang, G.Y. Comprehensive analysis of aberrantly expressed microRNA profiles reveals potential biomarkers of human lung adenocarcinoma progression. Oncol. Rep., 2017, 38(4), 2453-2463. doi: 10.3892/or.2017.5880 PMID: 28791371
  46. Yao, Y.; Zhang, T.; Qi, L.; Liu, R.; Liu, G.; Wang, J.; Song, Q.; Sun, C. Comprehensive analysis of prognostic biomarkers in lung adenocarcinoma based on aberrant lncRNA–miRNA–mRNA networks and Cox regression models. Biosci. Rep., 2020, 40(1), BSR20191554. doi: 10.1042/BSR20191554 PMID: 31950990
  47. Tiwari, A.; Mukherjee, B.; Dixit, M. MicroRNA key to angiogenesis regulation: MiRNA biology and therapy. Curr. Cancer Drug Targets, 2018, 18(3), 266-277. doi: 10.2174/1568009617666170630142725 PMID: 28669338
  48. Yang, W.; Yin, Y.; Bi, L.; Wang, Y.; Yao, J.; Xu, L.; Jiao, L. MiR-182-5p promotes the metastasis and epithelial-mesenchymal transition in non-small cell lung cancer by targeting EPAS1. J. Cancer, 2021, 12(23), 7120-7129. doi: 10.7150/jca.60419 PMID: 34729113
  49. Nai, A.; Ma, F.; He, Z.; Zeng, S.; Bashir, S.; Song, J.; Xu, M. Development and validation of a 7-gene inflammatory signature forecasts prognosis and diverse immune landscape in lung adenocarcinoma. Front. Mol. Biosci., 2022, 9, 822739. doi: 10.3389/fmolb.2022.822739 PMID: 35372503
  50. Reddy, D.; Kumavath, R.; Tan, T.Z.; Ampasala, D.R.; Kumar, A.P. Peruvoside targets apoptosis and autophagy through MAPK Wnt/β-catenin and PI3K/AKT/mTOR signaling pathways in human cancers. Life Sci., 2020, 241, 117147. doi: 10.1016/j.lfs.2019.117147 PMID: 31830480
  51. Chen, D.; Qiu, Y.; Gao, Z.; Wu, Y.X.; Wan, B.; Liu, G.; Chen, J.; Zhou, Q.; Yu, R.; Pang, Q. Sodium propionate attenuates the lipopolysaccharide-induced epithelial–mesenchymal transition via the PI3K/Akt/mTOR signaling pathway. J. Agric. Food Chem., 2020, 68(24), 6554-6563. doi: 10.1021/acs.jafc.0c01302 PMID: 32452677
  52. Freudenstein, D.; Litchfield, C.; Caramia, F.; Wright, G.; Solomon, B.J.; Ball, D.; Keam, S.P.; Neeson, P.; Haupt, Y.; Haupt, S. TP53 status, patient sex, and the immune response as determinants of lung cancer patient survival. Cancers , 2020, 12(6), 1535. doi: 10.3390/cancers12061535 PMID: 32545367
  53. Lin, X.; Wang, L.; Xie, X.; Qin, Y.; Xie, Z.; Ouyang, M.; Zhou, C. Prognostic biomarker TP53 mutations for immune checkpoint blockade therapy and its association with tumor microenvironment of lung adenocarcinoma. Front. Mol. Biosci., 2020, 7, 602328. doi: 10.3389/fmolb.2020.602328 PMID: 33330629
  54. Sun, H.; Liu, S.Y.; Zhou, J.Y.; Xu, J.T.; Zhang, H.K.; Yan, H.H.; Huan, J.J.; Dai, P.P.; Xu, C.R.; Su, J.; Guan, Y.F.; Yi, X.; Yu, R.S.; Zhong, W.Z.; Wu, Y.L. Specific TP53 subtype as biomarker for immune checkpoint inhibitors in lung adenocarcinoma. EBioMedicine, 2020, 60, 102990. doi: 10.1016/j.ebiom.2020.102990 PMID: 32927274
  55. Zhang, L.; Jiang, B.; Lan, Z.; Yang, C.; Yao, Y.; Lin, J.; Wei, Q. Immune infiltration landscape on prognosis and therapeutic response and relevant epigenetic and transcriptomic mechanisms in lung adenocarcinoma. Front. Immunol., 2022, 13, 983570. doi: 10.3389/fimmu.2022.983570 PMID: 36275753
  56. Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; Sakai, H.; Albert, I.; Vergnenegre, A.; Peters, S.; Syrigos, K.; Barlesi, F.; Reck, M.; Borghaei, H.; Brahmer, J.R.; O’Byrne, K.J.; Geese, W.J.; Bhagavatheeswaran, P.; Rabindran, S.K.; Kasinathan, R.S.; Nathan, F.E.; Ramalingam, S.S. Nivolumab plus ipilimumab in advanced non–small-cell lung cancer. N. Engl. J. Med., 2019, 381(21), 2020-2031. doi: 10.1056/NEJMoa1910231 PMID: 31562796
  57. Xu, X.; Wang, K.; Vera, O.; Verma, A.; Jasani, N.; Bok, I.; Elemento, O.; Du, D.; Yu, X.; Karreth, F.A. Gain of chromosome 1q perturbs a competitive endogenous RNA network to promote melanoma metastasis. Cancer Res., 2022, 82(17), 3016-3031. doi: 10.1158/0008-5472.CAN-22-0283 PMID: 36052492
  58. Kikutake, C.; Yoshihara, M.; Sato, T.; Saito, D.; Suyama, M. Intratumor heterogeneity of HMCN1 mutant alleles associated with poor prognosis in patients with breast cancer. Oncotarget, 2018, 9(70), 33337-33347. doi: 10.18632/oncotarget.26071 PMID: 30279964
  59. Liu, H.T.; Liu, S.; Liu, L.; Ma, R.R.; Gao, P. EGR1-mediated transcription of lncRNA-HNF1A-AS1 promotes cell-cycle progression in gastric cancer. Cancer Res., 2018, 78(20), 5877-5890. doi: 10.1158/0008-5472.CAN-18-1011 PMID: 30185552
  60. Ricciuti, B.; Wang, X.; Alessi, J.V.; Rizvi, H.; Mahadevan, N.R.; Li, Y.Y.; Polio, A.; Lindsay, J.; Umeton, R.; Sinha, R.; Vokes, N.I.; Recondo, G.; Lamberti, G.; Lawrence, M.; Vaz, V.R.; Leonardi, G.C.; Plodkowski, A.J.; Gupta, H.; Cherniack, A.D.; Tolstorukov, M.Y.; Sharma, B.; Felt, K.D.; Gainor, J.F.; Ravi, A.; Getz, G.; Schalper, K.A.; Henick, B.; Forde, P.; Anagnostou, V.; Jänne, P.A.; Van Allen, E.M.; Nishino, M.; Sholl, L.M.; Christiani, D.C.; Lin, X.; Rodig, S.J.; Hellmann, M.D.; Awad, M.M. Association of high tumor mutation burden in non–small cell lung cancers with increased immune infiltration and improved clinical outcomes of PD-L1 blockade across PD-L1 expression levels. JAMA Oncol., 2022, 8(8), 1160-1168. doi: 10.1001/jamaoncol.2022.1981 PMID: 35708671
  61. Zarrei, M.; MacDonald, J.R.; Merico, D.; Scherer, S.W. A copy number variation map of the human genome. Nat. Rev. Genet., 2015, 16(3), 172-183. doi: 10.1038/nrg3871 PMID: 25645873
  62. Chen, W.; Zhang, J.; Fu, H.; Hou, X.; Su, Q.; He, Y.; Yang, D. KLF5 is activated by gene amplification in gastric cancer and is essential for gastric cell proliferation. Cells, 2021, 10(5), 1002. doi: 10.3390/cells10051002 PMID: 33923166
  63. Xu, X.; Yu, Y.; Zong, K.; Lv, P.; Gu, Y. Up-regulation of IGF2BP2 by multiple mechanisms in pancreatic cancer promotes cancer proliferation by activating the PI3K/Akt signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 497. doi: 10.1186/s13046-019-1470-y PMID: 31852504
  64. Chen, G.; Wang, Q.; Wang, K. MicroRNA-218-5p affects lung adenocarcinoma progression through targeting endoplasmic reticulum oxidoreductase 1 alpha. Bioengineered, 2022, 13(4), 10061-10070. doi: 10.1080/21655979.2022.2063537 PMID: 35441565
  65. Roy, S.K.; Shrivastava, A.; Srivastav, S.; Shankar, S.; Srivastava, R.K. SATB2 is a novel biomarker and therapeutic target for cancer. J. Cell. Mol. Med., 2020, 24(19), 11064-11069. doi: 10.1111/jcmm.15755 PMID: 32885593
  66. Chen, Q.Y.; Des Marais, T.; Costa, M. Deregulation of SATB2 in carcinogenesis with emphasis on miRNA-mediated control. Carcinogenesis, 2019, 40(3), 393-402. doi: 10.1093/carcin/bgz020 PMID: 30916759
  67. Müller, S.; Glaß, M.; Singh, A.K.; Haase, J.; Bley, N.; Fuchs, T.; Lederer, M.; Dahl, A.; Huang, H.; Chen, J.; Posern, G.; Hüttelmaier, S. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res., 2019, 47(1), 375-390. doi: 10.1093/nar/gky1012 PMID: 30371874
  68. Müller, S.; Bley, N.; Glaß, M.; Busch, B.; Rousseau, V.; Misiak, D.; Fuchs, T.; Lederer, M.; Hüttelmaier, S. IGF2BP1 enhances an aggressive tumor cell phenotype by impairing miRNA-directed downregulation of oncogenic factors. Nucleic Acids Res., 2018, 46(12), 6285-6303. doi: 10.1093/nar/gky229 PMID: 29660014
  69. Dastjerdi, S.; Haghparast, A.; Amroabadi, J.M.; Dolatabadi, N.F.; Mirzaei, S.; Zamani, A.; Hashemi, M.; Mahdevar, M.; Ghaedi, K. Elevated CDK5R1 expression associated with poor prognosis, proliferation, and drug resistance in colorectal and breast malignancies: CDK5R1 as an oncogene in cancers. Chem. Biol. Interact., 2022, 368, 110190. doi: 10.1016/j.cbi.2022.110190 PMID: 36162454
  70. Song, D.; Zhao, L.; Zhao, G.; Hao, Q.; Wu, J.; Ren, H.; Zhang, B. Identification and validation of eight lysosomes-related genes signatures and correlation with immune cell infiltration in lung adenocarcinoma. SSRN, , 4318397. doi: 10.2139/ssrn.4318397
  71. Geng, Y.; Guan, R.; Hong, W.; Huang, B.; Liu, P.; Guo, X.; Hu, S.; Yu, M.; Hou, B. Identification of m6A-related genes and m6A RNA methylation regulators in pancreatic cancer and their association with survival. Ann. Transl. Med., 2020, 8(6), 387. doi: 10.21037/atm.2020.03.98 PMID: 32355831
  72. Deng, L.; Petrek, H.; Tu, M.J.; Batra, N.; Yu, A.X.; Yu, A.M. Bioengineered miR-124-3p prodrug selectively alters the proteome of human carcinoma cells to control multiple cellular components and lung metastasis in vivo. Acta Pharm. Sin. B, 2021, 11(12), 3950-3965. doi: 10.1016/j.apsb.2021.07.027 PMID: 35024318
  73. Chen, Y.; Shen, L.; Chen, B.; Han, X.; Yu, Y.; Yuan, X.; Zhong, L. The predictive prognostic values of CBFA2T3, STX3, DENR, EGLN1, FUT4, and PCDH7 in lung cancer. Ann. Transl. Med., 2021, 9(10), 843. doi: 10.21037/atm-21-1392 PMID: 34164477
  74. Sun, J.; Zhao, T.; Zhao, D.; Qi, X.; Bao, X.; Shi, R.; Su, C. Development and validation of a hypoxia-related gene signature to predict overall survival in early-stage lung adenocarcinoma patients. Ther. Adv. Med. Oncol., 2020, 12 doi: 10.1177/1758835920937904 PMID: 32655701
  75. Woo, S.Y.; Lee, S.Y.; Yu, S.L.; Park, S.J.; Kang, D.; Kim, J.S.; Jeong, I.B.; Kwon, S.J.; Hwang, W.J.; Park, C.R.; Son, J.W. MicroRNA-7-5p′s role in the O-GlcNAcylation and cancer metabolism. Noncoding RNA Res., 2020, 5(4), 201-207. doi: 10.1016/j.ncrna.2020.11.003 PMID: 33251387

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers