Role of S100 and YKL40 on Intraventricular Cerebral Hemorrhages in the Preterm Infant and the Neuroprotective Role of miR-138- siRNAs-HIF-1a and miR-21-siRNAs-HVCN1 in Neonatal Mice with Nerve Injury


Cite item

Full Text

Abstract

Background:Epilepsy and intraventricular-cerebral hemorrhage is a common complication irreversible in preterm infants. Inflammation leads to an increase in intracellular calcium, acidosis, and oxygen usage, and finally, may damage brain cells. Increases in HIF-1a and HVCN1 can reduce the complications of oxygen consumption and acidosis in infants with intraventricular hemorrhage (IVH). On the other hand, decreases in S100B can shield nerve cells from apoptosis and epilepsy by reducing brain damage.

Objective:In this research, we investigated how miR-138-siRNAs-HIF-1a and miR-21- siRNAs-HVCN1 affect apoptosis in hypoxic mice.

Methods:On the first and third days after delivery, the YKL40, HIF-1a, HVCN1, and S100b genes were compared between two groups of preterm infants with and without maternal inflammation. Afterward, the miRNAs were transfected into cell lines to monitor variations in YKL40, HIF-1a, HVCN1, and S100b gene expression and nerve cell apoptosis. We changed the expression of S100b, HVCN1, and HIF-1a genes by using specific siRNAs injected into mice. Using real-time PCR, Western blotting, flow cytometry (FCM), and immunofluorescence, and changes in gene expression were evaluated (IHC).

Results:HVCN1 gene expression showed a strong negative correlation with epilepsy in both groups of infants (P(<0.001). Significant correlations between epilepsy and the expression levels of the S100b, YKL40, and HIF-1a genes were found (P(<0.001). According to FCM, after transfecting miRNA-431 and miRNA-34a into cell lines, the apoptosis index (A.I.) were 41.6 3.3 and 34.5 5.2%, respectively, while the A.I. were 9.6 2.7 and 7.1 4.2% after transfecting miRNA-21 and miRNA-138. MiR-138-siRNAs-HIF-1a and miR-21-siRNAs-HVCN1 were simultaneously injected into hypoxic mice, and IHC double-labeling revealed that this reduced apoptosis and seizures compared to the hypoxic group.

Results:HVCN1 gene expression showed a strong negative correlation with epilepsy in both groups of infants (P(<0.001). Significant correlations between epilepsy and the expression levels of the S100b, YKL40, and HIF-1a genes were found (P(<0.001). According to FCM, after transfecting miRNA-431 and miRNA-34a into cell lines, the apoptosis index (A.I.) were 41.6 3.3 and 34.5 5.2%, respectively, while the A.I. were 9.6 2.7 and 7.1 4.2% after transfecting miRNA-21 and miRNA-138. MiR-138-siRNAs-HIF-1a and miR-21-siRNAs-HVCN1 were simultaneously injected into hypoxic mice, and IHC double-labeling revealed that this reduced apoptosis and seizures compared to the hypoxic group.

Conclusion:Our findings demonstrate that miR-138-siRNAs-HIF-1a and miR-21-siRNAs- HVCN1 injections prevent cerebral ischemia-induced brain damage in hypoxia mice by increasing HVCN1 and HIF-1a and decreasing S100b, which in turn lessens apoptosis and epilepsy in hypoxic mice.

About the authors

Roghayeh Ijabi

Faculty of Reproductive Health, Golestan University of Medical Sciences

Email: info@benthamscience.net

Zachary Kaminsky

Department of Cellular and Molecular Medicine, Faculty of Medicine, Royal’s Institute of Mental Health Research, University of Ottawa

Email: info@benthamscience.net

Parisa Roozehdar

Department of Medical Veterinary, Azad University

Email: info@benthamscience.net

Janat Ijabi

Department of Hematology, School of Allied Health, Iran University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Hemen Moradi-Sardareh

Department of Basic Sciences, Asadabad School of Medical Sciences

Email: info@benthamscience.net

Najmeh Tehranian

Department of Midwifery & Reproductive Health, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway

Email: info@benthamscience.net

References

  1. Kusters, C.D.J.; Chen, M.L.; Follett, P.L.; Dammann, O. "Intraventricular" hemorrhage and cystic periventricular leukomalacia in preterm infants: How are they related? J. Child Neurol., 2009, 24(9), 1158-1170. doi: 10.1177/0883073809338064 PMID: 19745088
  2. Ijabi, R.; Roozehdar, P.; Afrisham, R.; Moradi-Sardareh, H.; Kaviani, S.; Ijabi, J.; Sahebkar, A. Association of GRP78, HIF-1α and BAG3 expression with the severity of chronic lymphocytic leukemia. Anticancer. Agents Med. Chem., 2020, 20(4), 429-436. doi: 10.2174/1871520619666191211101357
  3. Ijabi, J.; Afrisham, R.; Moradi-Sardareh, H.; Roozehdar, P.; Seifi, F.; Ijabi, R. The correlation of SKA2 with cortisol, IL-1β and anxiety in pregnant women with the risk of preterm delivery. Psychiatry Investig., 2020, 17(5), 387-394. doi: 10.30773/pi.2019.0127 PMID: 32375462
  4. Ijabi, J.; Afrisham, R.; Moradi-Sardareh, H.; Roozehdar, P.; Seifi, F.; Sahebkar, A.; Ijabi, R. The Shift of HbF to HbA under influence of SKA2 gene; A possible link between cortisol and hematopoietic maturation in term and preterm newborns. Endocr. Metab. Immune. Disord. Drug Targets, 2021, 21(3), 485-494. doi: 10.2174/1871530320666200504091354
  5. Strober, J.B.; Bienkowski, R.S.; Maytal, J. The incidence of acute and remote seizures in children with intraventricular hemorrhage. Clin. Pediatr., 1997, 36(11), 643-647. doi: 10.1177/000992289703601105 PMID: 9391738
  6. Wu, T.; Wang, Y.; Xiong, T.; Huang, S.; Tian, T.; Tang, J.; Mu, D. Risk factors for the deterioration of periventricular–intraventricular hemorrhage in preterm infants. Sci. Rep., 2020, 10(1), 13609. doi: 10.1038/s41598-020-70603-z PMID: 32788671
  7. Stark, M.J.; Hodyl, N.A.; Belegar V, K.K.; Andersen, C.C. Intrauterine inflammation, cerebral oxygen consumption and susceptibility to early brain injury in very preterm newborns. Arch. Dis. Child. Fetal Neonatal Ed., 2016, 101(2), F137-F142. doi: 10.1136/archdischild-2014-306945 PMID: 26265677
  8. Krüger, B.; Krick, S.; Dhillon, N.; Lerner, S.M.; Ames, S.; Bromberg, J.S.; Lin, M.; Walsh, L.; Vella, J.; Fischereder, M.; Krämer, B.K.; Colvin, R.B.; Heeger, P.S.; Murphy, B.T.; Schröppel, B. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc. Natl. Acad. Sci., 2009, 106(9), 3390-3395. doi: 10.1073/pnas.0810169106 PMID: 19218437
  9. Haanen, C.; Vermes, I. Apoptosis and inflammation. Mediators Inflamm., 1995, 4(1), 5-15. doi: 10.1155/S0962935195000020 PMID: 18475609
  10. Kjaergaard, A.D.; Bojesen, S.E.; Johansen, J.S.; Nordestgaard, B.G. Elevated plasma YKL-40 levels and ischemic stroke in the general population. Ann. Neurol., 2010, 68(5), 672-680. doi: 10.1002/ana.22220 PMID: 21031582
  11. Tian, S.; Wang, G.; Yang, Y. Mechanism of YKL-40 regulating apoptosis of rabbit osteoarthritis chondrocytes via PI3K/Akt signaling pathway. Chin. J. Tissue Eng. Res., 2020, 24(32), 5108.
  12. Ouyang, W.; Li, J.; Shi, X.; Costa, M.; Huang, C. Essential role of PI-3K, ERKs and calcium signal pathways in nickel-induced VEGF expression. Mol. Cell. Biochem., 2005, 279(1-2), 35-43. doi: 10.1007/s11010-005-8214-3 PMID: 16283513
  13. Viard, P.; Butcher, A.J.; Halet, G.; Davies, A.; Nürnberg, B.; Heblich, F.; Dolphin, A.C. PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nat. Neurosci., 2004, 7(9), 939-946. doi: 10.1038/nn1300 PMID: 15311280
  14. Castets, F.; Griffin, W.S.T.; Marks, A.; Van Eldik, L.J. Transcriptional regulation of the human S100β gene. Brain Res. Mol. Brain Res., 1997, 46(1-2), 208-216. doi: 10.1016/S0169-328X(96)00298-7 PMID: 9191095
  15. Rezaei, O.; Pakdaman, H.; Gharehgozli, K.; Simani, L.; Vahedian-Azimi, A.; Asaadi, S.; Sahraei, Z.; Hajiesmaeili, M. S100 B: A new concept in neurocritical care. Iran. J. Neurol., 2017, 16(2), 83-89. PMID: 28761630
  16. Lu, Y.L.; Wang, R.; Huang, H.T.; Qin, H.M.; Liu, C.H.; Xiang, Y.; Wang, C.F.; Luo, H.C.; Wang, J.L.; Lan, Y.; Wei, Y.S. Association of S100B polymorphisms and serum S100B with risk of ischemic stroke in a Chinese population. Sci. Rep., 2018, 8(1), 971. doi: 10.1038/s41598-018-19156-w PMID: 29343763
  17. Perera, C.; McNeil, H.P.; Geczy, C.L. S100 Calgranulins in inflammatory arthritis. Immunol. Cell Biol., 2010, 88(1), 41-49. doi: 10.1038/icb.2009.88 PMID: 19935766
  18. Foell, D.; Wittkowski, H.; Vogl, T.; Roth, J. S100 proteins expressed in phagocytes: A novel group of damage-associated molecular pattern molecules. J. Leukoc. Biol., 2007, 81(1), 28-37. doi: 10.1189/jlb.0306170 PMID: 16943388
  19. Egberts, F.; Kotthoff, E.M.; Gerdes, S.; Egberts, J.H.; Weichenthal, M.; Hauschild, A. Comparative study of YKL-40, S-100B and LDH as monitoring tools for Stage IV melanoma. Eur. J. Cancer, 2012, 48(5), 695-702. doi: 10.1016/j.ejca.2011.08.007 PMID: 21917447
  20. Tharp, B.R. Neonatal seizures and syndromes. Epilepsia, 2002, 43(S3), 2-10. doi: 10.1046/j.1528-1157.43.s.3.11.x PMID: 12060001
  21. Mikkonen, K.; Pekkala, N.; Pokka, T.; Romner, B.; Uhari, M.; Rantala, H. S100B proteins in febrile seizures. Seizure, 2012, 21(2), 144-146. doi: 10.1016/j.seizure.2011.10.006 PMID: 22130006
  22. Schulte, S.; Schiffer, T.; Sperlich, B.; Knicker, A.; Podlog, L.W.; Strüder, H.K. The impact of increased blood lactate on serum S100B and prolactin concentrations in male adult athletes. Eur. J. Appl. Physiol., 2013, 113(3), 811-817. doi: 10.1007/s00421-012-2503-9 PMID: 23053124
  23. Wagerle, L.C.; Mishra, O.P. Mechanism of CO2 response in cerebral arteries of the newborn pig: role of phospholipase, cyclooxygenase, and lipoxygenase pathways. Circ. Res., 1988, 62(5), 1019-1026. doi: 10.1161/01.RES.62.5.1019 PMID: 3129206
  24. Yoon, S.; Zuccarello, M.; Rapoport, R.M. pCO2 and pH regulation of cerebral blood flow. Front. Physiol., 2012, 3, 365. doi: 10.3389/fphys.2012.00365 PMID: 23049512
  25. Ding, H.G.; Li, X.S.; Liu, X.Q.; Wang, K.R.; Li, Y.; Wen, M.Y.; Zeng, H. Hypercapnia intensifies cerebral hypoxia via increasing cerebral oxygen extraction ratio: implication in neuroinflammation in hypoxemic adult rats. Research Square, 2019. doi: 10.21203/rs.2.17155/v1
  26. Li, Y.; Ritzel, R.M.; He, J.; Cao, T.; Sabirzhanov, B.; Li, H.; Liu, S.; Wu, L.J.; Wu, J. The voltage-gated proton channel Hv1 plays a detrimental role in contusion spinal cord injury via extracellular acidosis-mediated neuroinflammation. Brain Behav. Immun., 2021, 91, 267-283. doi: 10.1016/j.bbi.2020.10.005 PMID: 33039662
  27. Amalia, L.; Sadeli, H.A.; Parwati, I.; Rizal, A.; Panigoro, R. Hypoxia-inducible factor-1α in acute ischemic stroke: Neuroprotection for better clinical outcome. Heliyon, 2020, 6(6), e04286. doi: 10.1016/j.heliyon.2020.e04286 PMID: 32637689
  28. Asuaje, A.; Smaldini, P.; Martín, P.; Enrique, N.; Orlowski, A.; Aiello, E.A.; Gonzalez León, C.; Docena, G.; Milesi, V. The inhibition of voltage-gated H+ channel (HVCN1) induces acidification of leukemic Jurkat T cells promoting cell death by apoptosis. Pflugers Arch., 2017, 469(2), 251-261. doi: 10.1007/s00424-016-1928-0 PMID: 28013412
  29. Hong, L.; Kim, I.H.; Tombola, F. Molecular determinants of Hv1 proton channel inhibition by guanidine derivatives. Proc. Natl. Acad. Sci., 2014, 111(27), 9971-9976. doi: 10.1073/pnas.1324012111 PMID: 24912149
  30. Martins, R.O. Relationship of S100B protein with neonatal hypoxia., 2005.
  31. Ziello, J.E.; Jovin, I.S.; Huang, Y. Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J. Biol. Med., 2007, 80(2), 51-60. PMID: 18160990
  32. Navaratna, D.; Guo, S.; Arai, K.; Lo, E.H. Mechanisms and targets for angiogenic therapy after stroke. Cell Adhes. Migr., 2009, 3(2), 216-223. doi: 10.4161/cam.3.2.8396 PMID: 19363301
  33. Janbandhu, V. Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction. Cell Stem Cell, 2022, 29(2), 281-297.e12.
  34. Arnould, T.; Michiels, C.; Alexandre, I.; Remacle, J. Effect of hypoxia upon intracellular calcium concentration of human endothelial cells. J. Cell. Physiol., 1992, 152(1), 215-221. doi: 10.1002/jcp.1041520127 PMID: 1618920
  35. Hui, A.S.; Bauer, A.L.; Striet, J.B.; Schnell, P.O.; Czyzyk-Krzeska, M.F. Calcium signaling stimulates translation of HIF‐α during hypoxia. FASEB J., 2006, 20(3), 466-475. doi: 10.1096/fj.05-5086com PMID: 16507764
  36. Azimi, I. The interplay between HIF-1 and calcium signalling in cancer. Int. J. Biochem. Cell Biol., 2018, 97, 73-77. doi: 10.1016/j.biocel.2018.02.001 PMID: 29407528
  37. Ahn, G.O.; Seita, J.; Hong, B.J.; Kim, Y.E.; Bok, S.; Lee, C.J.; Kim, K.S.; Lee, J.C.; Leeper, N.J.; Cooke, J.P.; Kim, H.J.; Kim, I.H.; Weissman, I.L.; Brown, J.M. Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8. Proc. Natl. Acad. Sci., 2014, 111(7), 2698-2703. doi: 10.1073/pnas.1320243111 PMID: 24497508
  38. Sorci, G.; Riuzzi, F.; Agneletti, A.L.; Marchetti, C.; Donato, R. S100B causes apoptosis in a myoblast cell line in a RAGE-independent manner. J. Cell. Physiol., 2004, 199(2), 274-283. doi: 10.1002/jcp.10462 PMID: 15040010
  39. Deng, Y.; Chen, D.; Gao, F.; Lv, H.; Zhang, G.; Sun, X.; Liu, L.; Mo, D.; Ma, N.; Song, L.; Huo, X.; Yan, T.; Zhang, J.; Miao, Z. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J. Biol. Eng., 2019, 13(1), 71. doi: 10.1186/s13036-019-0193-0 PMID: 31485266
  40. Amin, N.; Chen, S.; Ren, Q.; Tan, X.; Botchway, B.O.A.; Hu, Z.; Chen, F.; Ye, S.; Du, X.; Chen, Z.; Fang, M. Hypoxia inducible factor-1α attenuates ischemic brain damage by modulating inflammatory response and glial activity. Cells, 2021, 10(6), 1359. doi: 10.3390/cells10061359 PMID: 34205911
  41. Most, P.; Lerchenmüller, C.; Rengo, G.; Mahlmann, A.; Ritterhoff, J.; Rohde, D.; Goodman, C.; Busch, C.J.; Laube, F.; Heissenberg, J.; Pleger, S.T.; Weiss, N.; Katus, H.A.; Koch, W.J.; Peppel, K. S100A1 deficiency impairs postischemic angiogenesis via compromised proangiogenic endothelial cell function and nitric oxide synthase regulation. Circ. Res., 2013, 112(1), 66-78. doi: 10.1161/CIRCRESAHA.112.275156 PMID: 23048072
  42. Rippe, C.; Blimline, M.; Magerko, K.A.; Lawson, B.R.; LaRocca, T.J.; Donato, A.J.; Seals, D.R. MicroRNA changes in human arterial endothelial cells with senescence: Relation to apoptosis, eNOS and inflammation. Exp. Gerontol., 2012, 47(1), 45-51. doi: 10.1016/j.exger.2011.10.004 PMID: 22037549
  43. Zheng, Q.; Zhao, Y.; Guo, J.; Zhao, S.; Song, L.; Fei, C.; Zhang, Z.; Li, X.; Chang, C. Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome. Leuk. Res., 2017, 58, 55-62. doi: 10.1016/j.leukres.2017.04.005 PMID: 28460338
  44. Sun, R.; Meng, X.; Pu, Y.; Sun, F.; Man, Z.; Zhang, J.; Yin, L.; Pu, Y. Overexpression of HIF-1a could partially protect K562 cells from 1,4-benzoquinone induced toxicity by inhibiting ROS, apoptosis and enhancing glycolysis. Toxicol. In Vitro, 2019, 55, 18-23. doi: 10.1016/j.tiv.2018.11.005 PMID: 30448556
  45. Hou, G.; Chen, H.; Yin, Y.; Pan, Y.; Zhang, X.; Jia, F. MEL ameliorates post-sah cerebral vasospasm by affecting the expression of eNOS and HIF1α via H19/miR-138/eNOS/NO and H19/miR-675/HIF1α. Mol. Ther. Nucleic Acids, 2020, 19, 523-532. doi: 10.1016/j.omtn.2019.12.002 PMID: 31927306
  46. Wu, H.; Wang, J.; Ma, H.; Xiao, Z.; Dong, X. MicroRNA-21 inhibits mitochondria-mediated apoptosis in keloid. Oncotarget, 2017, 8(54), 92914-92925. doi: 10.18632/oncotarget.21656 PMID: 29190966
  47. La Sala, L.; Mrakic-Sposta, S.; Micheloni, S.; Prattichizzo, F.; Ceriello, A. Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability. Cardiovasc. Diabetol., 2018, 17(1), 105. doi: 10.1186/s12933-018-0748-2 PMID: 30037352
  48. Peng, J.; Yi, M.H.; Jeong, H.; McEwan, P.P.; Zheng, J.; Wu, G.; Ganatra, S.; Ren, Y.; Richardson, J.R.; Oh, S.B.; Wu, L.J. The voltage-gated proton channel Hv1 promotes microglia-astrocyte communication and neuropathic pain after peripheral nerve injury. Mol. Brain, 2021, 14(1), 99. doi: 10.1186/s13041-021-00812-8 PMID: 34183051
  49. Stefanini, M. Molecular mechanisms underlying the development of Atrial Fibrillation; University of Oxford, 2018.
  50. Ma, J.; Gao, X.; Li, Y.; DeCoursey, T.E.; Shull, G.E.; Wang, H.S. The HVCN1 voltage‐gated proton channel contributes to pH regulation in canine ventricular myocytes. J. Physiol., 2022, 600(9), 2089-2103. doi: 10.1113/JP282126 PMID: 35244217
  51. Wu, L-J.; Zheng, J.; Murugan, M.; Wang, L. Microglial voltage-gated proton channel Hv1 in spinal cord injury. Neural Regen. Res., 2022, 17(6), 1183-1189. doi: 10.4103/1673-5374.327325 PMID: 34782552
  52. Tu, Y.; Chen, D.; Pan, T.; Chen, Z.; Xu, J.; Jin, L.; Sheng, L.; Jin, X.; Wang, X.; Lan, X.; Ge, Y.; Sun, H.; Chen, Y. Inhibition of miR-431-5p attenuated liver apoptosis through KLF15/p53 signal pathway in S100 induced autoimmune hepatitis mice. Life Sci., 2021, 280, 119698. doi: 10.1016/j.lfs.2021.119698 PMID: 34111466
  53. Han, X.R.; Wen, X.; Wang, Y.J.; Wang, S.; Shen, M.; Zhang, Z.F.; Fan, S.H.; Shan, Q.; Wang, L.; Li, M.Q. Retracted: Protective effects of microRNA‐431 against cerebral ischemia‐reperfusion injury in rats by targeting the Rho/Rho‐kinase signaling pathway; Wiley Online Library, 2018.
  54. Zhao, Y.; Bhattacharjee, S.; Jones, B.M.; Dua, P.; Alexandrov, P.N.; Hill, J.M.; Lukiw, W.J. Regulation of TREM2 expression by an NF-кB-sensitive miRNA-34a. Neuroreport, 2013, 24(6), 318-323. doi: 10.1097/WNR.0b013e32835fb6b0 PMID: 23462268
  55. Sekerdag, E.; Solaroglu, I.; Gursoy-Ozdemir, Y. Cell death mechanisms in stroke and novel molecular and cellular treatment options. Curr. Neuropharmacol., 2018, 16(9), 1396-1415. doi: 10.2174/1570159X16666180302115544 PMID: 29512465
  56. Northington, F.J.; Chavez-Valdez, R.; Martin, L.J. Neuronal cell death in neonatal hypoxia-ischemia. Ann. Neurol., 2011, 69(5), 743-758. doi: 10.1002/ana.22419 PMID: 21520238
  57. Jie, L.; Guohui, J.; Chen, Y.; Chen, L.; Li, Z.; Wang, Z.; Wang, X. Altered expression of hypoxia-Inducible factor-1α participates in the epileptogenesis in animal models. Synapse, 2014, 68(9), 402-409. doi: 10.1002/syn.21752 PMID: 24889205
  58. Gervois, P.; Lambrichts, I. The emerging role of triggering receptor expressed on myeloid cells 2 as a target for immunomodulation in ischemic stroke. Front. Immunol., 2019, 10, 1668. doi: 10.3389/fimmu.2019.01668 PMID: 31379859
  59. Wang, Y.C.; Lin, S.; Yang, Q.W. Toll-like receptors in cerebral ischemic inflammatory injury. J. Neuroinflammation, 2011, 8(1), 134. doi: 10.1186/1742-2094-8-134 PMID: 21982558
  60. Llorens, F.; Thüne, K.; Tahir, W.; Kanata, E.; Diaz-Lucena, D.; Xanthopoulos, K.; Kovatsi, E.; Pleschka, C.; Garcia-Esparcia, P.; Schmitz, M.; Ozbay, D.; Correia, S.; Correia, .; Milosevic, I.; Andréoletti, O.; Fernández-Borges, N.; Vorberg, I.M.; Glatzel, M.; Sklaviadis, T.; Torres, J.M.; Krasemann, S.; Sánchez-Valle, R.; Ferrer, I.; Zerr, I. YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol. Neurodegener., 2017, 12(1), 83. doi: 10.1186/s13024-017-0226-4 PMID: 29126445
  61. Park, K.R.; Yun, H.M.; Yoo, K.; Ham, Y.W.; Han, S.B.; Hong, J.T. Chitinase 3 like 1 suppresses the stability and activity of p53 to promote lung tumorigenesis. Cell Commun. Signal., 2020, 18(1), 5. doi: 10.1186/s12964-019-0503-7 PMID: 32127023
  62. Francescone, R.A.; Scully, S.; Faibish, M.; Taylor, S.L.; Oh, D.; Moral, L.; Yan, W.; Bentley, B.; Shao, R. Role of YKL-40 in the angiogenesis, radioresistance, and progression of glioblastoma. J. Biol. Chem., 2011, 286(17), 15332-15343. doi: 10.1074/jbc.M110.212514 PMID: 21385870
  63. Shao, R.; Hamel, K.; Petersen, L.; Cao, Q.J.; Arenas, R.B.; Bigelow, C.; Bentley, B.; Yan, W. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene, 2009, 28(50), 4456-4468. doi: 10.1038/onc.2009.292 PMID: 19767768
  64. Vezzani, A.; French, J.; Bartfai, T.; Baram, T.Z. The role of inflammation in epilepsy. Nat. Rev. Neurol., 2011, 7(1), 31-40. doi: 10.1038/nrneurol.2010.178 PMID: 21135885
  65. Selçuk, O.; Yayla, V.; Çabalar, M.; Güzel, V.; Uysal, S.; Gedikbaşi, A. The relationship of serum S100B levels with infarction size and clinical outcome in acute ischemic stroke patients. Noro Psikiyatri Arsivi, 2014, 51(4), 395-400. doi: 10.5152/npa.2014.7213 PMID: 28360660
  66. Tsoporis, J.N.; Mohammadzadeh, F.; Parker, T.G. Intracellular and extracellular effects of S100B in the cardiovascular response to disease. Cardiovasc. Psychiatry Neurol., 2010, 2010, 1-6. doi: 10.1155/2010/206073 PMID: 20672023
  67. Tubaro, C.; Arcuri, C.; Giambanco, I.; Donato, R. S100B in myoblasts regulates the transition from activation to quiescence and from quiescence to activation and reduces apoptosis. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813(5), 1092-1104. doi: 10.1016/j.bbamcr.2010.11.015 PMID: 21130124
  68. Donato, R.; Cannon, B.R.; Sorci, G.; Riuzzi, F.; Hsu, K.; Weber, D.J.; Geczy, C.L. Functions of S100 proteins. Curr. Mol. Med., 2013, 13(1), 24-57. doi: 10.2174/156652413804486214 PMID: 22834835
  69. Liang, K.G.; Mu, R.Z.; Liu, Y.; Jiang, D.; Jia, T.T.; Huang, Y.J. Increased serum S100B levels in patients with epilepsy: A systematic review and meta-analysis study. Front. Neurosci., 2019, 13, 456. doi: 10.3389/fnins.2019.00456 PMID: 31156363
  70. Piazza, O.; Leggiero, E.; De Benedictis, G.; Pastore, L.; Salvatore, F.; Tufano, R.; De Robertis, E. S100B induces the release of pro-inflammatory cytokines in alveolar type I-like cells. Int. J. Immunopathol. Pharmacol., 2013, 26(2), 383-391. doi: 10.1177/039463201302600211 PMID: 23755753
  71. Rossol, M.; Pierer, M.; Raulien, N.; Quandt, D.; Meusch, U.; Rothe, K.; Schubert, K.; Schöneberg, T.; Schaefer, M.; Krügel, U.; Smajilovic, S.; Bräuner-Osborne, H.; Baerwald, C.; Wagner, U. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat. Commun., 2012, 3(1), 1329. doi: 10.1038/ncomms2339 PMID: 23271661
  72. Zimmer, D.B.; Weber, D.J. The calcium-dependent interaction of S100B with its protein targets. Cardiovasc. Psychiatry Neurol., 2010, 2010, 1-17. doi: 10.1155/2010/728052 PMID: 20827422
  73. Jiang, P.; Liu, R.; Zheng, Y.; Liu, X.; Chang, L.; Xiong, S.; Chu, Y. MiR-34a inhibits lipopolysaccharide-induced inflammatory response through targeting Notch1 in murine macrophages. Exp. Cell Res., 2012, 318(10), 1175-1184. doi: 10.1016/j.yexcr.2012.03.018 PMID: 22483937
  74. Yu, M.H.; Hung, T.W.; Wang, C.C.; Wu, S.W.; Yang, T.W.; Yang, C.Y.; Tseng, T.H.; Wang, C.J. Neochlorogenic acid attenuates hepatic lipid accumulation and inflammation via regulating miR-34a in vitro. Int. J. Mol. Sci., 2021, 22(23), 13163. doi: 10.3390/ijms222313163 PMID: 34884968
  75. Bu, P.; Wang, L.; Chen, K.Y.; Srinivasan, T.; Murthy, P.K.L.; Tung, K.L.; Varanko, A.K.; Chen, H.J.; Ai, Y.; King, S.; Lipkin, S.M.; Shen, X. A miR-34a-numb feedforward loop triggered by inflammation regulates asymmetric stem cell division in intestine and colon cancer. Cell Stem Cell, 2016, 18(2), 189-202. doi: 10.1016/j.stem.2016.01.006 PMID: 26849305
  76. Heo, J.S.; Lim, J.Y.; Yoon, D.W.; Pyo, S.; Kim, J. Exosome and melatonin additively attenuates inflammation by transferring miR-34a, miR-124, and miR-135b. BioMed Res. Int., 2020, 2020, 1-9. doi: 10.1155/2020/1621394 PMID: 33299858
  77. Eyo, U.B.; Murugan, M.; Wu, L.J. Microglia-neuron communication in epilepsy. Glia, 2017, 65(1), 5-18. doi: 10.1002/glia.23006 PMID: 27189853
  78. Murugan, M.; Zheng, J.; Wu, G.; Mogilevsky, R.; Zheng, X.; Hu, P.; Wu, J.; Wu, L.J. The voltage-gated proton channel Hv1 contributes to neuronal injury and motor deficits in a mouse model of spinal cord injury. Mol. Brain, 2020, 13(1), 143. doi: 10.1186/s13041-020-00682-6 PMID: 33081841
  79. Kawai, T.; Tatsumi, S.; Kihara, S.; Sakimura, K.; Okamura, Y. Mechanistic insight into the suppression of microglial ROS production by voltage-gated proton channels (VSOP/Hv1). Channels., 2018, 12(1), 1-8. doi: 10.1080/19336950.2017.1385684 PMID: 28961043
  80. Teixeira, J.; Basit, F.; Swarts, H.G.; Forkink, M.; Oliveira, P.J.; Willems, P.H.G.M.; Koopman, W.J.H. Extracellular acidification induces ROS- and mPTP-mediated death in HEK293 cells. Redox Biol., 2018, 15, 394-404. doi: 10.1016/j.redox.2017.12.018 PMID: 29331741
  81. Wang, Q.J.; Cai, X.B.; Liu, M.H.; Hu, H.; Tan, X.J.; Jing, X.B. Apoptosis induced by emodin is associated with alterations of intracellular acidification and reactive oxygen species in EC-109 cellsThis paper is one of a selection of papers published in this special issue entitled "Second International Symposium on Recent Advances in Basic, Clinical, and Social Medicine" and has undergone the Journal’s usual peer review process. Biochem. Cell Biol., 2010, 88(4), 767-774. doi: 10.1139/O10-020 PMID: 20651850
  82. Coe, D.; Poobalasingam, T.; Fu, H.; Bonacina, F.; Wang, G.; Morales, V.; Moregola, A.; Mitro, N.; Cheung, K.C.P.; Ward, E.J.; Nadkarni, S.; Aksentijevic, D.; Bianchi, K.; Norata, G.D.; Capasso, M.; Marelli-Berg, F.M. Loss of voltage-gated hydrogen channel 1 expression reveals heterogeneous metabolic adaptation to intracellular acidification by T cells. JCI Insight, 2022, 7(10), e147814. doi: 10.1172/jci.insight.147814 PMID: 35472029
  83. La Sala, L.; Mrakic-Sposta, S.; Tagliabue, E.; Prattichizzo, F.; Micheloni, S.; Sangalli, E.; Specchia, C.; Uccellatore, A.C.; Lupini, S.; Spinetti, G.; de Candia, P.; Ceriello, A. Circulating microRNA-21 is an early predictor of ROS-mediated damage in subjects with high risk of developing diabetes and in drug-naïve T2D. Cardiovasc. Diabetol., 2019, 18(1), 18. doi: 10.1186/s12933-019-0824-2 PMID: 30803440
  84. La Sala, L.; Tagliabue, E.; Mrakic-Sposta, S.; Uccellatore, A.C.; Senesi, P.; Terruzzi, I.; Trabucchi, E.; Rossi-Bernardi, L.; Luzi, L.; Rossi-Bernardi, L.; Luzi, L. Lower miR-21/ROS/HNE levels associate with lower glycemia after habit-intervention: DIAPASON study 1-year later. Cardiovasc. Diabetol., 2022, 21(1), 35. doi: 10.1186/s12933-022-01465-0 PMID: 35246121
  85. Jiang, Y.; Chen, X.; Tian, W.; Yin, X.; Wang, J.; Yang, H. The role of TGF-β1–miR-21–ROS pathway in bystander responses induced by irradiated non-small-cell lung cancer cells. Br. J. Cancer, 2014, 111(4), 772-780. doi: 10.1038/bjc.2014.368 PMID: 24992582
  86. Dong, J.; Zhao, Y.P.; Zhou, L.; Zhang, T.P.; Chen, G. Bcl-2 upregulation induced by miR-21 via a direct interaction is associated with apoptosis and chemoresistance in MIA PaCa-2 pancreatic cancer cells. Arch. Med. Res., 2011, 42(1), 8-14. doi: 10.1016/j.arcmed.2011.01.006 PMID: 21376256
  87. Bautista-Sánchez, D.; Arriaga-Canon, C.; Pedroza-Torres, A.; De La Rosa-Velázquez, I.A.; González-Barrios, R.; Contreras-Espinosa, L.; Montiel-Manríquez, R.; Castro-Hernández, C.; Fragoso-Ontiveros, V.; Álvarez-Gómez, R.M.; Herrera, L.A. The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol. Ther. Nucleic Acids, 2020, 20, 409-420. doi: 10.1016/j.omtn.2020.03.003 PMID: 32244168
  88. Shi, L.; Chen, J.; Yang, J.; Pan, T.; Zhang, S.; Wang, Z. MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res., 2010, 1352, 255-264. doi: 10.1016/j.brainres.2010.07.009 PMID: 20633539
  89. Xu, L.; Wu, Z.; Chen, Y.; Zhu, Q.; Hamidi, S.; Navab, R. MicroRNA-21 (miR-21) regulates cellular proliferation, invasion, migration, and apoptosis by targeting PTEN, RECK and Bcl-2 in lung squamous carcinoma, Gejiu City, China. PLoS One, 2014, 9(8), e103698. doi: 10.1371/journal.pone.0103698 PMID: 25084400
  90. Bojarczuk, K.; Wienand, K.; Ryan, J.A.; Chen, L.; Villalobos-Ortiz, M.; Mandato, E.; Stachura, J.; Letai, A.; Lawton, L.N.; Chapuy, B.; Shipp, M.A. Targeted inhibition of PI3Kα/δ is synergistic with BCL-2 blockade in genetically defined subtypes of DLBCL. Blood, 2019, 133(1), 70-80. doi: 10.1182/blood-2018-08-872465 PMID: 30322870
  91. Roffe, C.; Nevatte, T.; Crome, P.; Gray, R.; Sim, J.; Pountain, S.; Handy, L.; Handy, P. The Stroke Oxygen Study (SO2S) - a multi-center study to assess whether routine oxygen treatment in the first 72 hours after a stroke improves long-term outcome: study protocol for a randomized controlled trial. Trials, 2014, 15(1), 99. doi: 10.1186/1745-6215-15-99 PMID: 24684940
  92. Shi, H. Hypoxia inducible factor 1 as a therapeutic target in ischemic stroke. Curr. Med. Chem., 2009, 16(34), 4593-4600. doi: 10.2174/092986709789760779 PMID: 19903149
  93. Hellwig-Bürgel, T. HIF-1 and neuroinflammation. In: Encyclopedia of Neuroscience; Binder, M.D.; Hirokawa, N.; Windhorst, U., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2009; pp. 1836-1839. doi: 10.1007/978-3-540-29678-2_2202
  94. Zhao, C.; Hong, L.; Galpin, J.D.; Riahi, S.; Lim, V.T.; Webster, P.D.; Tobias, D.J.; Ahern, C.A.; Tombola, F. HIFs: New arginine mimic inhibitors of the Hv1 channel with improved VSD–ligand interactions. J. Gen. Physiol., 2021, 153(9), e202012832. doi: 10.1085/jgp.202012832 PMID: 34228044
  95. Sen, A.; Ren, S.; Lerchenmüller, C.; Sun, J.; Weiss, N.; Most, P.; Peppel, K. MicroRNA-138 regulates hypoxia-induced endothelial cell dysfunction by targeting S100A1. PLoS One, 2013, 8(11), e78684. doi: 10.1371/journal.pone.0078684 PMID: 24244340

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers