The Protective Effects of Curcumin against Renal Toxicity
- Authors: Zhai J.1, Chen Z.1, Zhu Q.1, Guo Z.1, Wang N.1, Zhang C.2, Deng H.1, Wang S.3, Yang G.1
-
Affiliations:
- Department of Food Nutrition and Safety, Dalian Medical University
- Department of Food Nutrition and Safety, Department of Food Nutrition and Safety
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University
- Issue: Vol 31, No 35 (2024)
- Pages: 5661-5669
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645070
- DOI: https://doi.org/10.2174/0109298673271161231121061148
- ID: 645070
Cite item
Full Text
Abstract
:Curcumin is a naturally polyphenolic compound used for hepatoprotective, thrombosuppressive, neuroprotective, cardioprotective, antineoplastic, antiproliferative, hypoglycemic, and antiarthritic effects. Kidney disease is a major public health problem associated with severe clinical complications worldwide. The protective effects of curcumin against nephrotoxicity have been evaluated in several experimental models. In this review, we discussed how curcumin exerts its protective effect against renal toxicity and also illustrated the mechanisms of action such as anti-inflammatory, antioxidant, regulating cell death, and anti-fibrotic. This provides new perspectives and directions for the clinical guidance and molecular mechanisms for the treatment of renal diseases by curcumin.
Keywords
About the authors
Jianan Zhai
Department of Food Nutrition and Safety, Dalian Medical University
Email: info@benthamscience.net
Zhengguo Chen
Department of Food Nutrition and Safety, Dalian Medical University
Email: info@benthamscience.net
Qi Zhu
Department of Food Nutrition and Safety, Dalian Medical University
Email: info@benthamscience.net
Zhifang Guo
Department of Food Nutrition and Safety, Dalian Medical University
Email: info@benthamscience.net
Ningning Wang
Department of Food Nutrition and Safety, Dalian Medical University
Email: info@benthamscience.net
Cong Zhang
Department of Food Nutrition and Safety, Department of Food Nutrition and Safety
Email: info@benthamscience.net
Haoyuan Deng
Department of Food Nutrition and Safety, Dalian Medical University
Email: info@benthamscience.net
Shaopeng Wang
Department of Cardiology, the First Affiliated Hospital of Dalian Medical University
Author for correspondence.
Email: info@benthamscience.net
Guang Yang
Department of Food Nutrition and Safety, Dalian Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Yaribeygi, H.; Maleki, M.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Renoprotective roles of curcumin. Adv. Exp. Med. Biol., 2021, 1328, 531-544. doi: 10.1007/978-3-030-73234-9_38 PMID: 34981504
- Rahman, M.A.; Akter, S.; Dorotea, D.; Mazumder, A.; Uddin, M.N.; Hannan, M.A.; Hossen, M.J.; Ahmed, M.S.; Kim, W.; Kim, B.; Uddin, M.J. Renoprotective potentials of small molecule natural products targeting mitochondrial dysfunction. Front. Pharmacol., 2022, 13, 925993. doi: 10.3389/fphar.2022.925993 PMID: 35910356
- Marx, D.; Metzger, J.; Pejchinovski, M.; Gil, R.B.; Frantzi, M.; Latosinska, A.; Belczacka, I.; Heinzmann, S.S.; Husi, H.; Zoidakis, J.; Klingele, M.; Herget-Rosenthal, S. Proteomics and metabolomics for AKI diagnosis. Semin. Nephrol., 2018, 38(1), 63-87. doi: 10.1016/j.semnephrol.2017.09.007 PMID: 29291763
- Chen, H.; Busse, L.W. Novel therapies for acute kidney injury. Kidney Int. Rep., 2017, 2(5), 785-799. doi: 10.1016/j.ekir.2017.06.020 PMID: 29270486
- Kumar, S. Cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int., 2018, 93(1), 27-40. doi: 10.1016/j.kint.2017.07.030 PMID: 29291820
- Lin, Q.; Li, S.; Jiang, N.; Shao, X.; Zhang, M.; Jin, H.; Zhang, Z.; Shen, J.; Zhou, Y.; Zhou, W.; Gu, L.; Lu, R.; Ni, Z. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol., 2019, 26, 101254. doi: 10.1016/j.redox.2019.101254 PMID: 31229841
- Peerapornratana, S.; Manrique-Caballero, C.L.; Gómez, H.; Kellum, J.A. Acute kidney injury from sepsis: Current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int., 2019, 96(5), 1083-1099. doi: 10.1016/j.kint.2019.05.026 PMID: 31443997
- Yu, H.; Jin, F.; Liu, D.; Shu, G.; Wang, X.; Qi, J.; Sun, M.; Yang, P.; Jiang, S.; Ying, X.; Du, Y. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics, 2020, 10(5), 2342-2357. doi: 10.7150/thno.40395 PMID: 32104507
- Coca, S.G.; Singanamala, S.; Parikh, C.R. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int., 2012, 81(5), 442-448. doi: 10.1038/ki.2011.379 PMID: 22113526
- Castañeda, R.; Cáceres, A.; Cruz, S.M.; Aceituno, J.A.; Marroquín, E.S.; Barrios Sosa, A.C.; Strangman, W.K.; Williamson, R.T. Nephroprotective plant species used in traditional Mayan medicine for renal-associated diseases. J. Ethnopharmacol., 2023, 301, 115755. doi: 10.1016/j.jep.2022.115755 PMID: 36181985
- Ranasinghe, R.; Mathai, M.; Zulli, A. Cytoprotective remedies for ameliorating nephrotoxicity induced by renal oxidative stress. Life Sci., 2023, 318, 121466. doi: 10.1016/j.lfs.2023.121466 PMID: 36773693
- Prasad, S.; Tyagi, A.K.; Aggarwal, B.B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Res. Treat., 2014, 46(1), 2-18. doi: 10.4143/crt.2014.46.1.2 PMID: 24520218
- Dao, T.T.; Sehgal, P.; Tung, T.T.; Møller, J.V.; Nielsen, J.; Palmgren, M.; Christensen, S.B.; Fuglsang, A.T. Demethoxycurcumin is a potent inhibitor of p-type ATPases from diverse kingdoms of life. PLoS One, 2016, 11(9), e0163260. doi: 10.1371/journal.pone.0163260 PMID: 27644036
- Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895. doi: 10.1080/10408398.2015.1077195 PMID: 26528921
- Soleimani, V.; Sahebkar, A.; Hosseinzadeh, H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother. Res., 2018, 32(6), 985-995. doi: 10.1002/ptr.6054 PMID: 29480523
- Abd El-Hack, M.E.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; Noreldin, A.; Taha, A.E.; El-Tarabily, K.A. Curcumin, the active substance of turmeric its effects on health and ways to improve its bioavailability. J. Sci. Food Agric., 2021, 101(14), 5747-5762. doi: 10.1002/jsfa.11372 PMID: 34143894
- Wang, M.E.; Chen, Y.C.; Chen, I.S.; Hsieh, S.C.; Chen, S.S.; Chiu, C.H. Curcumin protects against thioacetamide-induced hepatic fibrosis by attenuating the inflammatory response and inducing apoptosis of damaged hepatocytes. J. Nutr. Biochem., 2012, 23(10), 1352-1366. doi: 10.1016/j.jnutbio.2011.08.004 PMID: 22221674
- Murillo, B.O.; Fuentes, P.A.R.; Ramírez, E.J.; Martínez, G.S.; Ramos, R.E.; de Alba, M.L.A. Recovery of bone and muscle mass in patients with chronic kidney disease and iron overload on hemodialysis and taking combined supplementation with curcumin and resveratrol. Clin. Interv. Aging, 2019, 14, 2055-2062. doi: 10.2147/CIA.S223805 PMID: 31819387
- Pivari, F.; Mingione, A.; Piazzini, G.; Ceccarani, C.; Ottaviano, E.; Brasacchio, C.; Dei Cas, M.; Vischi, M.; Cozzolino, M.G.; Fogagnolo, P.; Riva, A.; Petrangolini, G.; Barrea, L.; Di Renzo, L.; Borghi, E.; Signorelli, P.; Paroni, R.; Soldati, L. Curcumin supplementation (Meriva®) modulates inflammation, lipid peroxidation and gut microbiota composition in chronic kidney disease. Nutrients, 2022, 14(1), 231. doi: 10.3390/nu14010231 PMID: 35011106
- Trujillo, J.; Chirino, Y.I.; Molina-Jijón, E.; Andérica-Romero, A.C.; Tapia, E.; Pedraza-Chaverrí, J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol., 2013, 1(1), 448-456. doi: 10.1016/j.redox.2013.09.003 PMID: 24191240
- Zhang, F.; Wu, R.; Liu, Y.; Dai, S.; Xue, X.; Li, Y.; Gong, X. Nephroprotective and nephrotoxic effects of Rhubarb and their molecular mechanisms. Biomed. Pharmacother., 2023, 160, 114297. doi: 10.1016/j.biopha.2023.114297 PMID: 36716659
- Kimura, T.; Isaka, Y.; Yoshimori, T. Autophagy and kidney inflammation. Autophagy, 2017, 13(6), 997-1003. doi: 10.1080/15548627.2017.1309485 PMID: 28441075
- Xu, G.; Gu, Y.; Yan, N.; Li, Y.; Sun, L.; Li, B. Curcumin functions as an anti-inflammatory and antioxidant agent on arsenic-induced hepatic and kidney injury by inhibiting MAPKs/NF-κB and activating Nrf2 pathways. Environ. Toxicol., 2021, 36(11), 2161-2173. doi: 10.1002/tox.23330 PMID: 34272803
- Hashmp, S.F.; Sattar, M.Z.A.; Rathore, H.A.; Ahmadi, A.; Johns, E.J. A critical review on pharmacological significance of hydrogen sulfide (H2S) on NF-κB concentration and ICAM-1 expression in renal ischemia reperfusion injury. Acta Pol. Pharm., 2017, 74(3), 747-752. PMID: 29513943
- Peng, J.; Ren, X.; Lan, T.; Chen, Y.; Shao, Z.; Yang, C. Renoprotective effects of ursolic acid on ischemia/reperfusion-induced acute kidney injury through oxidative stress, inflammation and the inhibition of STAT3 and NF-κB activities. Mol. Med. Rep., 2016, 14(4), 3397-3402. doi: 10.3892/mmr.2016.5654 PMID: 27573738
- Zhang, J.; Tang, L.; Li, G.S.; Wang, J. The anti-inflammatory effects of curcumin on renal ischemia-reperfusion injury in rats. Ren. Fail., 2018, 40(1), 680-686. doi: 10.1080/0886022X.2018.1544565 PMID: 30741618
- Bonavia, A.; Singbartl, K. A review of the role of immune cells in acute kidney injury. Pediatr. Nephrol., 2018, 33(10), 1629-1639. doi: 10.1007/s00467-017-3774-5 PMID: 28801723
- Tan, R.Z.; Liu, J.; Zhang, Y.Y.; Wang, H.L.; Li, J.C.; Liu, Y.H.; Zhong, X.; Zhang, Y.W.; Yan, Y.; Lan, H.Y.; Wang, L. Curcumin relieved cisplatin-induced kidney inflammation through inhibiting Mincle-maintained M1 macrophage phenotype. Phytomedicine, 2019, 52, 284-294. doi: 10.1016/j.phymed.2018.09.210 PMID: 30599909
- Guerrero-Hue, M.; García-Caballero, C.; Palomino-Antolín, A.; Rubio-Navarro, A.; Vázquez-Carballo, C.; Herencia, C.; Martín-Sanchez, D.; Farré-Alins, V.; Egea, J.; Cannata, P.; Praga, M.; Ortiz, A.; Egido, J.; Sanz, A.B.; Moreno, J.A. Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. FASEB J., 2019, 33(8), 8961-8975. doi: 10.1096/fj.201900077R PMID: 31034781
- Ugur, S.; Ulu, R.; Dogukan, A.; Gurel, A.; Yigit, I.P.; Gozel, N.; Aygen, B.; Ilhan, N. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren. Fail., 2015, 37(2), 332-336. doi: 10.3109/0886022X.2014.986005 PMID: 25594614
- Shen, S.; Li, J.; You, H.; Wu, Z.; Wu, Y.; Zhao, Y.; Zhu, Y.; Guo, Q.; Li, X.; Li, R.; Ma, P.; Yang, X.; Chen, M. Oral exposure to diisodecyl phthalate aggravates allergic dermatitis by oxidative stress and enhancement of thymic stromal lymphopoietin. Food Chem. Toxicol., 2017, 99, 60-69. doi: 10.1016/j.fct.2016.11.016 PMID: 27871981
- Liang, F.; Xi, J.; Chen, X.; Huang, J.; Jin, D.; Zhu, X. Curcumin decreases dibutyl phthalate-induced renal dysfunction in Kunming mice via inhibiting oxidative stress and apoptosis. Hum. Exp. Toxicol., 2021, 40(9), 1528-1536. doi: 10.1177/09603271211001124 PMID: 33729022
- Hashemzaei, M.; Tabrizian, K.; Alizadeh, Z.; Pasandideh, S.; Rezaee, R.; Mamoulakis, C.; Tsatsakis, A.; Skaperda, Z.; Kouretas, D.; Shahraki, J. Resveratrol, curcumin and gallic acid attenuate glyoxal-induced damage to rat renal cells. Toxicol. Rep., 2020, 7, 1571-1577. doi: 10.1016/j.toxrep.2020.11.008 PMID: 33304826
- Wu, J.; Pan, X.; Fu, H.; Zheng, Y.; Dai, Y.; Yin, Y.; Chen, Q.; Hao, Q.; Bao, D.; Hou, D. Effect of curcumin on glycerol-induced acute kidney injury in rats. Sci. Rep., 2017, 7(1), 10114. doi: 10.1038/s41598-017-10693-4 PMID: 28860665
- Oraby, M.A.; El-Yamany, M.F.; Safar, M.M.; Assaf, N.; Ghoneim, H.A. Amelioration of early markers of diabetic nephropathy by linagliptin in fructose-streptozotocin-induced type 2 diabetic rats. Nephron J., 2019, 141(4), 273-286. doi: 10.1159/000495517 PMID: 30699409
- Wang, D.; Wang, T.; Wang, R.; Zhang, X.; Wang, L.; Xiang, Z.; Zhuang, L.; Shen, S.; Wang, H.; Gao, Q.; Wang, Y. Suppression of p66Shc prevents hyperandrogenism-induced ovarian oxidative stress and fibrosis. J. Transl. Med., 2020, 18(1), 84. doi: 10.1186/s12967-020-02249-4 PMID: 32066482
- ALTamimi, J.Z.; AlFaris, N.A.; AL-Farga, A.M.; Alshammari, G.M.; BinMowyna, M.N.; Yahya, M.A. Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKCβ/p66Shc axis and activation of FOXO-3a. J. Nutr. Biochem., 2021, 87, 108515. doi: 10.1016/j.jnutbio.2020.108515 PMID: 33017608
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516. doi: 10.1080/01926230701320337 PMID: 17562483
- Soetikno, V.; Sari, S.; Ul Maknun, L.; Sumbung, N.; Rahmi, D.; Pandhita, B.; Louisa, M.; Estuningtyas, A. Pre-treatment with curcumin ameliorates cisplatin-induced kidney damage by suppressing kidney inflammation and apoptosis in rats. Drug Res., 2019, 69(2), 75-82. doi: 10.1055/a-0641-5148 PMID: 29945277
- Eldutar, E.; Kandemir, F.M.; Kucukler, S.; Caglayan, C. Restorative effects of Chrysin pretreatment on oxidantantioxidant status, inflammatory cytokine production, and apoptotic and autophagic markers in acute paracetamol-induced hepatotoxicity in rats: An experimental and biochemical study. J. Biochem. Mol. Toxicol., 2017, 31(11), e21960. doi: 10.1002/jbt.21960 PMID: 28682524
- Hassan, M.H.; Ghobara, M.; Abd-Allah, G.M. Modulator effects of meloxicam against doxorubicin-induced nephrotoxicity in mice. J. Biochem. Mol. Toxicol., 2014, 28(8), 337-346. doi: 10.1002/jbt.21570 PMID: 24799355
- Topal, A.; Alak, G.; Ozkaraca, M.; Yeltekin, A.C.; Comaklı, S.; Acıl, G.; Kokturk, M.; Atamanalp, M. Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: Assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activity. Chemosphere, 2017, 175, 186-191. doi: 10.1016/j.chemosphere.2017.02.047 PMID: 28219821
- Benzer, F.; Kandemir, F.M.; Kucukler, S.; Comaklı, S.; Caglayan, C. Chemoprotective effects of curcumin on doxorubicin-induced nephrotoxicity in wistar rats: By modulating inflammatory cytokines, apoptosis, oxidative stress and oxidative DNA damage. Arch. Physiol. Biochem., 2018, 124(5), 448-457. doi: 10.1080/13813455.2017.1422766 PMID: 29302997
- Kim, W.Y.; Nam, S.A.; Song, H.C.; Ko, J.S.; Park, S.H.; Kim, H.L.; Choi, E.J.; Kim, Y.S.; Kim, J.; Kim, Y.K. The role of autophagy in unilateral ureteral obstruction rat model. Nephrology, 2012, 17(2), 148-159. doi: 10.1111/j.1440-1797.2011.01541.x PMID: 22085202
- Lu, M.; Li, H.; Liu, W.; Zhang, X.; Li, L.; Zhou, H. Curcumin attenuates renal interstitial fibrosis by regulating autophagy and retaining mitochondrial function in unilateral ureteral obstruction rats. Basic Clin. Pharmacol. Toxicol., 2021, 128(4), 594-604. doi: 10.1111/bcpt.13550 PMID: 33354908
- Chuang, S.T.; Kuo, Y.H.; Su, M.J. KS370G, a caffeamide derivative, attenuates unilateral ureteral obstruction-induced renal fibrosis by the reduction of inflammation and oxidative stress in mice. Eur. J. Pharmacol., 2015, 750, 1-7. doi: 10.1016/j.ejphar.2015.01.020 PMID: 25620133
- Wang, F.M.; Yang, Y.; Ma, L.; Tian, X.; He, Y. Berberine ameliorates renal interstitial fibrosis induced by unilateral ureteral obstruction in rats. Nephrology, 2014, 19(9), 542-551. doi: 10.1111/nep.12271 PMID: 24754438
- Meng, X.; Zhang, Y.; Huang, X.R.; Ren, G.; Li, J.; Lan, H.Y. Treatment of renal fibrosis by rebalancing TGF-β/Smad signaling with the combination of asiatic acid and naringenin. Oncotarget, 2015, 6(35), 36984-36997. doi: 10.18632/oncotarget.6100 PMID: 26474462
- Derynck, R.; Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature, 2003, 425(6958), 577-584. doi: 10.1038/nature02006 PMID: 14534577
- Farahpour, M.R.; Dilmaghanian, A.; Faridy, M.; Karashi, E. Topical Moltkia coerulea hydroethanolic extract accelerates the repair of excision wound in a rat model. Chin. J. Traumatol., 2016, 19(2), 97-103. doi: 10.1016/j.cjtee.2015.08.005 PMID: 27140217
- Loeffler, I.; Wolf, G. Transforming growth factor- and the progression of renal disease. Nephrol. Dial. Transplant., 2014, 29(S1), i37-i45. doi: 10.1093/ndt/gft267 PMID: 24030832
- Chen, F.; Xie, Y.; Lv, Q.; Zou, W.; Xiong, L. Curcumin mediates repulsive guidance molecule B (RGMb) in the treatment mechanism of renal fibrosis induced by unilateral ureteral obstruction. Ren. Fail., 2021, 43(1), 1496-1505. doi: 10.1080/0886022X.2021.1997764 PMID: 34751624
- Zhu, F.; Chen, M.; Zhu, M.; Zhao, R.; Qiu, W.; Xu, X.; Liu, H.; Zhao, H.; Yu, R.; Wu, X.; Zhang, K.; Huang, H. Curcumin suppresses epithelialmesenchymal transition of renal tubular epithelial cells through the inhibition of Akt/mTOR pathway. Biol. Pharm. Bull., 2017, 40(1), 17-24. doi: 10.1248/bpb.b16-00364 PMID: 27829579
- Border, W.A.; Noble, N.A. TGF-β in kidney fibrosis: A target for gene therapy. Kidney Int., 1997, 51(5), 1388-1396. doi: 10.1038/ki.1997.190 PMID: 9150449
- Zhang, L.; Lin, W.; Chen, X.; Wei, G.; Zhu, H.; Xing, S. Tanshinone IIA reverses EGF- and TGF-β1-mediated epithelial-mesenchymal transition in HepG2 cells via the PI3K/Akt/ERK signaling pathway. Oncol. Lett., 2019, 18(6), 6554-6562. doi: 10.3892/ol.2019.11032 PMID: 31807174
- Holdsworth, S.R.; Summers, S.A. Role of mast cells in progressive renal diseases. J. Am. Soc. Nephrol., 2008, 19(12), 2254-2261. doi: 10.1681/ASN.2008010015 PMID: 18776124
- Li, R.; Guo, Y.; Zhang, Y.; Zhang, X.; Zhu, L.; Yan, T. Salidroside ameliorates renal interstitial fibrosis by inhibiting the TLR4/NF-κB and MAPK signaling pathways. Int. J. Mol. Sci., 2019, 20(5), 1103. doi: 10.3390/ijms20051103
- Artlett, C.M.; Thacker, J.D. Molecular activation of the NLRP3 Inflammasome in fibrosis: Common threads linking divergent fibrogenic diseases. Antioxid. Redox Signal., 2015, 22(13), 1162-1175. doi: 10.1089/ars.2014.6148 PMID: 25329971
- Ye, B.; Jiang, L-L.; Xu, H-T.; Zhou, D-W.; Li, Z-S. Expression of PI3K/AKT pathway in gastric cancer and its blockade suppresses tumor growth and metastasis. Int. J. Immunopathol. Pharmacol., 2012, 25(3), 627-636. doi: 10.1177/039463201202500309 PMID: 23058013
- Zhu, J.F.; Huang, W.; Yi, H.M.; Xiao, T.; Li, J.Y.; Feng, J.; Yi, H.; Lu, S.S.; Li, X.H.; Lu, R.H.; He, Q.Y.; Xiao, Z.Q. Annexin A1-suppressed autophagy promotes nasopharyngeal carcinoma cell invasion and metastasis by PI3K/AKT signaling activation. Cell Death Dis., 2018, 9(12), 1154. doi: 10.1038/s41419-018-1204-7 PMID: 30459351
- Liang, F.; Ren, C.; Wang, J.; Wang, S.; Yang, L.; Han, X.; Chen, Y.; Tong, G.; Yang, G. The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy. Oncogenesis, 2019, 8(10), 59. doi: 10.1038/s41389-019-0165-8 PMID: 31597912
- Wang, Z.; Chen, Z.; Li, B.; Zhang, B.; Du, Y.; Liu, Y.; He, Y.; Chen, X. Curcumin attenuates renal interstitial fibrosis of obstructive nephropathy by suppressing epithelial-mesenchymal transition through inhibition of the TLR4/NF-кB and PI3K/AKT signalling pathways. Pharm. Biol., 2020, 58(1), 828-837. doi: 10.1080/13880209.2020.1809462 PMID: 32866059
- Guo, J.; Guan, Q.; Liu, X.; Wang, H.; Gleave, M.E.; Nguan, C.Y.C.; Du, C. Relationship of clusterin with renal inflammation and fibrosis after the recovery phase of ischemia-reperfusion injury. BMC Nephrol., 2016, 17(1), 133. doi: 10.1186/s12882-016-0348-x PMID: 27649757
- Christou, G.A.; Kiortsis, D.N. The role of adiponectin in renal physiology and development of albuminuria. J. Endocrinol., 2014, 221(2), R49-R61. doi: 10.1530/JOE-13-0578 PMID: 24464020
- Hongtao, C.; Youling, F.; Fang, H.; Huihua, P.; Jiying, Z.; Jun, Z. Curcumin alleviates ischemia reperfusion-induced late kidney fibrosis through the APPL1/Akt signaling pathway. J. Cell. Physiol., 2018, 233(11), 8588-8596. doi: 10.1002/jcp.26536 PMID: 29741772
- Cai, Y.; Huang, C.; Zhou, M.; Xu, S.; Xie, Y.; Gao, S.; Yang, Y.; Deng, Z.; Zhang, L.; Shu, J.; Yan, T.; Wan, C.C. Role of curcumin in the treatment of acute kidney injury: Research challenges and opportunities. Phytomedicine, 2022, 104, 154306. doi: 10.1016/j.phymed.2022.154306 PMID: 35809376
Supplementary files
