The Protective Effects of Curcumin against Renal Toxicity


Cite item

Full Text

Abstract

:Curcumin is a naturally polyphenolic compound used for hepatoprotective, thrombosuppressive, neuroprotective, cardioprotective, antineoplastic, antiproliferative, hypoglycemic, and antiarthritic effects. Kidney disease is a major public health problem associated with severe clinical complications worldwide. The protective effects of curcumin against nephrotoxicity have been evaluated in several experimental models. In this review, we discussed how curcumin exerts its protective effect against renal toxicity and also illustrated the mechanisms of action such as anti-inflammatory, antioxidant, regulating cell death, and anti-fibrotic. This provides new perspectives and directions for the clinical guidance and molecular mechanisms for the treatment of renal diseases by curcumin.

About the authors

Jianan Zhai

Department of Food Nutrition and Safety, Dalian Medical University

Email: info@benthamscience.net

Zhengguo Chen

Department of Food Nutrition and Safety, Dalian Medical University

Email: info@benthamscience.net

Qi Zhu

Department of Food Nutrition and Safety, Dalian Medical University

Email: info@benthamscience.net

Zhifang Guo

Department of Food Nutrition and Safety, Dalian Medical University

Email: info@benthamscience.net

Ningning Wang

Department of Food Nutrition and Safety, Dalian Medical University

Email: info@benthamscience.net

Cong Zhang

Department of Food Nutrition and Safety, Department of Food Nutrition and Safety

Email: info@benthamscience.net

Haoyuan Deng

Department of Food Nutrition and Safety, Dalian Medical University

Email: info@benthamscience.net

Shaopeng Wang

Department of Cardiology, the First Affiliated Hospital of Dalian Medical University

Author for correspondence.
Email: info@benthamscience.net

Guang Yang

Department of Food Nutrition and Safety, Dalian Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Yaribeygi, H.; Maleki, M.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Renoprotective roles of curcumin. Adv. Exp. Med. Biol., 2021, 1328, 531-544. doi: 10.1007/978-3-030-73234-9_38 PMID: 34981504
  2. Rahman, M.A.; Akter, S.; Dorotea, D.; Mazumder, A.; Uddin, M.N.; Hannan, M.A.; Hossen, M.J.; Ahmed, M.S.; Kim, W.; Kim, B.; Uddin, M.J. Renoprotective potentials of small molecule natural products targeting mitochondrial dysfunction. Front. Pharmacol., 2022, 13, 925993. doi: 10.3389/fphar.2022.925993 PMID: 35910356
  3. Marx, D.; Metzger, J.; Pejchinovski, M.; Gil, R.B.; Frantzi, M.; Latosinska, A.; Belczacka, I.; Heinzmann, S.S.; Husi, H.; Zoidakis, J.; Klingele, M.; Herget-Rosenthal, S. Proteomics and metabolomics for AKI diagnosis. Semin. Nephrol., 2018, 38(1), 63-87. doi: 10.1016/j.semnephrol.2017.09.007 PMID: 29291763
  4. Chen, H.; Busse, L.W. Novel therapies for acute kidney injury. Kidney Int. Rep., 2017, 2(5), 785-799. doi: 10.1016/j.ekir.2017.06.020 PMID: 29270486
  5. Kumar, S. Cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int., 2018, 93(1), 27-40. doi: 10.1016/j.kint.2017.07.030 PMID: 29291820
  6. Lin, Q.; Li, S.; Jiang, N.; Shao, X.; Zhang, M.; Jin, H.; Zhang, Z.; Shen, J.; Zhou, Y.; Zhou, W.; Gu, L.; Lu, R.; Ni, Z. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol., 2019, 26, 101254. doi: 10.1016/j.redox.2019.101254 PMID: 31229841
  7. Peerapornratana, S.; Manrique-Caballero, C.L.; Gómez, H.; Kellum, J.A. Acute kidney injury from sepsis: Current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int., 2019, 96(5), 1083-1099. doi: 10.1016/j.kint.2019.05.026 PMID: 31443997
  8. Yu, H.; Jin, F.; Liu, D.; Shu, G.; Wang, X.; Qi, J.; Sun, M.; Yang, P.; Jiang, S.; Ying, X.; Du, Y. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics, 2020, 10(5), 2342-2357. doi: 10.7150/thno.40395 PMID: 32104507
  9. Coca, S.G.; Singanamala, S.; Parikh, C.R. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int., 2012, 81(5), 442-448. doi: 10.1038/ki.2011.379 PMID: 22113526
  10. Castañeda, R.; Cáceres, A.; Cruz, S.M.; Aceituno, J.A.; Marroquín, E.S.; Barrios Sosa, A.C.; Strangman, W.K.; Williamson, R.T. Nephroprotective plant species used in traditional Mayan medicine for renal-associated diseases. J. Ethnopharmacol., 2023, 301, 115755. doi: 10.1016/j.jep.2022.115755 PMID: 36181985
  11. Ranasinghe, R.; Mathai, M.; Zulli, A. Cytoprotective remedies for ameliorating nephrotoxicity induced by renal oxidative stress. Life Sci., 2023, 318, 121466. doi: 10.1016/j.lfs.2023.121466 PMID: 36773693
  12. Prasad, S.; Tyagi, A.K.; Aggarwal, B.B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Res. Treat., 2014, 46(1), 2-18. doi: 10.4143/crt.2014.46.1.2 PMID: 24520218
  13. Dao, T.T.; Sehgal, P.; Tung, T.T.; Møller, J.V.; Nielsen, J.; Palmgren, M.; Christensen, S.B.; Fuglsang, A.T. Demethoxycurcumin is a potent inhibitor of p-type ATPases from diverse kingdoms of life. PLoS One, 2016, 11(9), e0163260. doi: 10.1371/journal.pone.0163260 PMID: 27644036
  14. Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895. doi: 10.1080/10408398.2015.1077195 PMID: 26528921
  15. Soleimani, V.; Sahebkar, A.; Hosseinzadeh, H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother. Res., 2018, 32(6), 985-995. doi: 10.1002/ptr.6054 PMID: 29480523
  16. Abd El-Hack, M.E.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; Noreldin, A.; Taha, A.E.; El-Tarabily, K.A. Curcumin, the active substance of turmeric its effects on health and ways to improve its bioavailability. J. Sci. Food Agric., 2021, 101(14), 5747-5762. doi: 10.1002/jsfa.11372 PMID: 34143894
  17. Wang, M.E.; Chen, Y.C.; Chen, I.S.; Hsieh, S.C.; Chen, S.S.; Chiu, C.H. Curcumin protects against thioacetamide-induced hepatic fibrosis by attenuating the inflammatory response and inducing apoptosis of damaged hepatocytes. J. Nutr. Biochem., 2012, 23(10), 1352-1366. doi: 10.1016/j.jnutbio.2011.08.004 PMID: 22221674
  18. Murillo, B.O.; Fuentes, P.A.R.; Ramírez, E.J.; Martínez, G.S.; Ramos, R.E.; de Alba, M.L.A. Recovery of bone and muscle mass in patients with chronic kidney disease and iron overload on hemodialysis and taking combined supplementation with curcumin and resveratrol. Clin. Interv. Aging, 2019, 14, 2055-2062. doi: 10.2147/CIA.S223805 PMID: 31819387
  19. Pivari, F.; Mingione, A.; Piazzini, G.; Ceccarani, C.; Ottaviano, E.; Brasacchio, C.; Dei Cas, M.; Vischi, M.; Cozzolino, M.G.; Fogagnolo, P.; Riva, A.; Petrangolini, G.; Barrea, L.; Di Renzo, L.; Borghi, E.; Signorelli, P.; Paroni, R.; Soldati, L. Curcumin supplementation (Meriva®) modulates inflammation, lipid peroxidation and gut microbiota composition in chronic kidney disease. Nutrients, 2022, 14(1), 231. doi: 10.3390/nu14010231 PMID: 35011106
  20. Trujillo, J.; Chirino, Y.I.; Molina-Jijón, E.; Andérica-Romero, A.C.; Tapia, E.; Pedraza-Chaverrí, J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol., 2013, 1(1), 448-456. doi: 10.1016/j.redox.2013.09.003 PMID: 24191240
  21. Zhang, F.; Wu, R.; Liu, Y.; Dai, S.; Xue, X.; Li, Y.; Gong, X. Nephroprotective and nephrotoxic effects of Rhubarb and their molecular mechanisms. Biomed. Pharmacother., 2023, 160, 114297. doi: 10.1016/j.biopha.2023.114297 PMID: 36716659
  22. Kimura, T.; Isaka, Y.; Yoshimori, T. Autophagy and kidney inflammation. Autophagy, 2017, 13(6), 997-1003. doi: 10.1080/15548627.2017.1309485 PMID: 28441075
  23. Xu, G.; Gu, Y.; Yan, N.; Li, Y.; Sun, L.; Li, B. Curcumin functions as an anti-inflammatory and antioxidant agent on arsenic-induced hepatic and kidney injury by inhibiting MAPKs/NF-κB and activating Nrf2 pathways. Environ. Toxicol., 2021, 36(11), 2161-2173. doi: 10.1002/tox.23330 PMID: 34272803
  24. Hashmp, S.F.; Sattar, M.Z.A.; Rathore, H.A.; Ahmadi, A.; Johns, E.J. A critical review on pharmacological significance of hydrogen sulfide (H2S) on NF-κB concentration and ICAM-1 expression in renal ischemia reperfusion injury. Acta Pol. Pharm., 2017, 74(3), 747-752. PMID: 29513943
  25. Peng, J.; Ren, X.; Lan, T.; Chen, Y.; Shao, Z.; Yang, C. Renoprotective effects of ursolic acid on ischemia/reperfusion-induced acute kidney injury through oxidative stress, inflammation and the inhibition of STAT3 and NF-κB activities. Mol. Med. Rep., 2016, 14(4), 3397-3402. doi: 10.3892/mmr.2016.5654 PMID: 27573738
  26. Zhang, J.; Tang, L.; Li, G.S.; Wang, J. The anti-inflammatory effects of curcumin on renal ischemia-reperfusion injury in rats. Ren. Fail., 2018, 40(1), 680-686. doi: 10.1080/0886022X.2018.1544565 PMID: 30741618
  27. Bonavia, A.; Singbartl, K. A review of the role of immune cells in acute kidney injury. Pediatr. Nephrol., 2018, 33(10), 1629-1639. doi: 10.1007/s00467-017-3774-5 PMID: 28801723
  28. Tan, R.Z.; Liu, J.; Zhang, Y.Y.; Wang, H.L.; Li, J.C.; Liu, Y.H.; Zhong, X.; Zhang, Y.W.; Yan, Y.; Lan, H.Y.; Wang, L. Curcumin relieved cisplatin-induced kidney inflammation through inhibiting Mincle-maintained M1 macrophage phenotype. Phytomedicine, 2019, 52, 284-294. doi: 10.1016/j.phymed.2018.09.210 PMID: 30599909
  29. Guerrero-Hue, M.; García-Caballero, C.; Palomino-Antolín, A.; Rubio-Navarro, A.; Vázquez-Carballo, C.; Herencia, C.; Martín-Sanchez, D.; Farré-Alins, V.; Egea, J.; Cannata, P.; Praga, M.; Ortiz, A.; Egido, J.; Sanz, A.B.; Moreno, J.A. Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. FASEB J., 2019, 33(8), 8961-8975. doi: 10.1096/fj.201900077R PMID: 31034781
  30. Ugur, S.; Ulu, R.; Dogukan, A.; Gurel, A.; Yigit, I.P.; Gozel, N.; Aygen, B.; Ilhan, N. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren. Fail., 2015, 37(2), 332-336. doi: 10.3109/0886022X.2014.986005 PMID: 25594614
  31. Shen, S.; Li, J.; You, H.; Wu, Z.; Wu, Y.; Zhao, Y.; Zhu, Y.; Guo, Q.; Li, X.; Li, R.; Ma, P.; Yang, X.; Chen, M. Oral exposure to diisodecyl phthalate aggravates allergic dermatitis by oxidative stress and enhancement of thymic stromal lymphopoietin. Food Chem. Toxicol., 2017, 99, 60-69. doi: 10.1016/j.fct.2016.11.016 PMID: 27871981
  32. Liang, F.; Xi, J.; Chen, X.; Huang, J.; Jin, D.; Zhu, X. Curcumin decreases dibutyl phthalate-induced renal dysfunction in Kunming mice via inhibiting oxidative stress and apoptosis. Hum. Exp. Toxicol., 2021, 40(9), 1528-1536. doi: 10.1177/09603271211001124 PMID: 33729022
  33. Hashemzaei, M.; Tabrizian, K.; Alizadeh, Z.; Pasandideh, S.; Rezaee, R.; Mamoulakis, C.; Tsatsakis, A.; Skaperda, Z.; Kouretas, D.; Shahraki, J. Resveratrol, curcumin and gallic acid attenuate glyoxal-induced damage to rat renal cells. Toxicol. Rep., 2020, 7, 1571-1577. doi: 10.1016/j.toxrep.2020.11.008 PMID: 33304826
  34. Wu, J.; Pan, X.; Fu, H.; Zheng, Y.; Dai, Y.; Yin, Y.; Chen, Q.; Hao, Q.; Bao, D.; Hou, D. Effect of curcumin on glycerol-induced acute kidney injury in rats. Sci. Rep., 2017, 7(1), 10114. doi: 10.1038/s41598-017-10693-4 PMID: 28860665
  35. Oraby, M.A.; El-Yamany, M.F.; Safar, M.M.; Assaf, N.; Ghoneim, H.A. Amelioration of early markers of diabetic nephropathy by linagliptin in fructose-streptozotocin-induced type 2 diabetic rats. Nephron J., 2019, 141(4), 273-286. doi: 10.1159/000495517 PMID: 30699409
  36. Wang, D.; Wang, T.; Wang, R.; Zhang, X.; Wang, L.; Xiang, Z.; Zhuang, L.; Shen, S.; Wang, H.; Gao, Q.; Wang, Y. Suppression of p66Shc prevents hyperandrogenism-induced ovarian oxidative stress and fibrosis. J. Transl. Med., 2020, 18(1), 84. doi: 10.1186/s12967-020-02249-4 PMID: 32066482
  37. ALTamimi, J.Z.; AlFaris, N.A.; AL-Farga, A.M.; Alshammari, G.M.; BinMowyna, M.N.; Yahya, M.A. Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKCβ/p66Shc axis and activation of FOXO-3a. J. Nutr. Biochem., 2021, 87, 108515. doi: 10.1016/j.jnutbio.2020.108515 PMID: 33017608
  38. Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516. doi: 10.1080/01926230701320337 PMID: 17562483
  39. Soetikno, V.; Sari, S.; Ul Maknun, L.; Sumbung, N.; Rahmi, D.; Pandhita, B.; Louisa, M.; Estuningtyas, A. Pre-treatment with curcumin ameliorates cisplatin-induced kidney damage by suppressing kidney inflammation and apoptosis in rats. Drug Res., 2019, 69(2), 75-82. doi: 10.1055/a-0641-5148 PMID: 29945277
  40. Eldutar, E.; Kandemir, F.M.; Kucukler, S.; Caglayan, C. Restorative effects of Chrysin pretreatment on oxidant–antioxidant status, inflammatory cytokine production, and apoptotic and autophagic markers in acute paracetamol-induced hepatotoxicity in rats: An experimental and biochemical study. J. Biochem. Mol. Toxicol., 2017, 31(11), e21960. doi: 10.1002/jbt.21960 PMID: 28682524
  41. Hassan, M.H.; Ghobara, M.; Abd-Allah, G.M. Modulator effects of meloxicam against doxorubicin-induced nephrotoxicity in mice. J. Biochem. Mol. Toxicol., 2014, 28(8), 337-346. doi: 10.1002/jbt.21570 PMID: 24799355
  42. Topal, A.; Alak, G.; Ozkaraca, M.; Yeltekin, A.C.; Comaklı, S.; Acıl, G.; Kokturk, M.; Atamanalp, M. Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: Assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activity. Chemosphere, 2017, 175, 186-191. doi: 10.1016/j.chemosphere.2017.02.047 PMID: 28219821
  43. Benzer, F.; Kandemir, F.M.; Kucukler, S.; Comaklı, S.; Caglayan, C. Chemoprotective effects of curcumin on doxorubicin-induced nephrotoxicity in wistar rats: By modulating inflammatory cytokines, apoptosis, oxidative stress and oxidative DNA damage. Arch. Physiol. Biochem., 2018, 124(5), 448-457. doi: 10.1080/13813455.2017.1422766 PMID: 29302997
  44. Kim, W.Y.; Nam, S.A.; Song, H.C.; Ko, J.S.; Park, S.H.; Kim, H.L.; Choi, E.J.; Kim, Y.S.; Kim, J.; Kim, Y.K. The role of autophagy in unilateral ureteral obstruction rat model. Nephrology, 2012, 17(2), 148-159. doi: 10.1111/j.1440-1797.2011.01541.x PMID: 22085202
  45. Lu, M.; Li, H.; Liu, W.; Zhang, X.; Li, L.; Zhou, H. Curcumin attenuates renal interstitial fibrosis by regulating autophagy and retaining mitochondrial function in unilateral ureteral obstruction rats. Basic Clin. Pharmacol. Toxicol., 2021, 128(4), 594-604. doi: 10.1111/bcpt.13550 PMID: 33354908
  46. Chuang, S.T.; Kuo, Y.H.; Su, M.J. KS370G, a caffeamide derivative, attenuates unilateral ureteral obstruction-induced renal fibrosis by the reduction of inflammation and oxidative stress in mice. Eur. J. Pharmacol., 2015, 750, 1-7. doi: 10.1016/j.ejphar.2015.01.020 PMID: 25620133
  47. Wang, F.M.; Yang, Y.; Ma, L.; Tian, X.; He, Y. Berberine ameliorates renal interstitial fibrosis induced by unilateral ureteral obstruction in rats. Nephrology, 2014, 19(9), 542-551. doi: 10.1111/nep.12271 PMID: 24754438
  48. Meng, X.; Zhang, Y.; Huang, X.R.; Ren, G.; Li, J.; Lan, H.Y. Treatment of renal fibrosis by rebalancing TGF-β/Smad signaling with the combination of asiatic acid and naringenin. Oncotarget, 2015, 6(35), 36984-36997. doi: 10.18632/oncotarget.6100 PMID: 26474462
  49. Derynck, R.; Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature, 2003, 425(6958), 577-584. doi: 10.1038/nature02006 PMID: 14534577
  50. Farahpour, M.R.; Dilmaghanian, A.; Faridy, M.; Karashi, E. Topical Moltkia coerulea hydroethanolic extract accelerates the repair of excision wound in a rat model. Chin. J. Traumatol., 2016, 19(2), 97-103. doi: 10.1016/j.cjtee.2015.08.005 PMID: 27140217
  51. Loeffler, I.; Wolf, G. Transforming growth factor- and the progression of renal disease. Nephrol. Dial. Transplant., 2014, 29(S1), i37-i45. doi: 10.1093/ndt/gft267 PMID: 24030832
  52. Chen, F.; Xie, Y.; Lv, Q.; Zou, W.; Xiong, L. Curcumin mediates repulsive guidance molecule B (RGMb) in the treatment mechanism of renal fibrosis induced by unilateral ureteral obstruction. Ren. Fail., 2021, 43(1), 1496-1505. doi: 10.1080/0886022X.2021.1997764 PMID: 34751624
  53. Zhu, F.; Chen, M.; Zhu, M.; Zhao, R.; Qiu, W.; Xu, X.; Liu, H.; Zhao, H.; Yu, R.; Wu, X.; Zhang, K.; Huang, H. Curcumin suppresses epithelial–mesenchymal transition of renal tubular epithelial cells through the inhibition of Akt/mTOR pathway. Biol. Pharm. Bull., 2017, 40(1), 17-24. doi: 10.1248/bpb.b16-00364 PMID: 27829579
  54. Border, W.A.; Noble, N.A. TGF-β in kidney fibrosis: A target for gene therapy. Kidney Int., 1997, 51(5), 1388-1396. doi: 10.1038/ki.1997.190 PMID: 9150449
  55. Zhang, L.; Lin, W.; Chen, X.; Wei, G.; Zhu, H.; Xing, S. Tanshinone IIA reverses EGF- and TGF-β1-mediated epithelial-mesenchymal transition in HepG2 cells via the PI3K/Akt/ERK signaling pathway. Oncol. Lett., 2019, 18(6), 6554-6562. doi: 10.3892/ol.2019.11032 PMID: 31807174
  56. Holdsworth, S.R.; Summers, S.A. Role of mast cells in progressive renal diseases. J. Am. Soc. Nephrol., 2008, 19(12), 2254-2261. doi: 10.1681/ASN.2008010015 PMID: 18776124
  57. Li, R.; Guo, Y.; Zhang, Y.; Zhang, X.; Zhu, L.; Yan, T. Salidroside ameliorates renal interstitial fibrosis by inhibiting the TLR4/NF-κB and MAPK signaling pathways. Int. J. Mol. Sci., 2019, 20(5), 1103. doi: 10.3390/ijms20051103
  58. Artlett, C.M.; Thacker, J.D. Molecular activation of the NLRP3 Inflammasome in fibrosis: Common threads linking divergent fibrogenic diseases. Antioxid. Redox Signal., 2015, 22(13), 1162-1175. doi: 10.1089/ars.2014.6148 PMID: 25329971
  59. Ye, B.; Jiang, L-L.; Xu, H-T.; Zhou, D-W.; Li, Z-S. Expression of PI3K/AKT pathway in gastric cancer and its blockade suppresses tumor growth and metastasis. Int. J. Immunopathol. Pharmacol., 2012, 25(3), 627-636. doi: 10.1177/039463201202500309 PMID: 23058013
  60. Zhu, J.F.; Huang, W.; Yi, H.M.; Xiao, T.; Li, J.Y.; Feng, J.; Yi, H.; Lu, S.S.; Li, X.H.; Lu, R.H.; He, Q.Y.; Xiao, Z.Q. Annexin A1-suppressed autophagy promotes nasopharyngeal carcinoma cell invasion and metastasis by PI3K/AKT signaling activation. Cell Death Dis., 2018, 9(12), 1154. doi: 10.1038/s41419-018-1204-7 PMID: 30459351
  61. Liang, F.; Ren, C.; Wang, J.; Wang, S.; Yang, L.; Han, X.; Chen, Y.; Tong, G.; Yang, G. The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy. Oncogenesis, 2019, 8(10), 59. doi: 10.1038/s41389-019-0165-8 PMID: 31597912
  62. Wang, Z.; Chen, Z.; Li, B.; Zhang, B.; Du, Y.; Liu, Y.; He, Y.; Chen, X. Curcumin attenuates renal interstitial fibrosis of obstructive nephropathy by suppressing epithelial-mesenchymal transition through inhibition of the TLR4/NF-кB and PI3K/AKT signalling pathways. Pharm. Biol., 2020, 58(1), 828-837. doi: 10.1080/13880209.2020.1809462 PMID: 32866059
  63. Guo, J.; Guan, Q.; Liu, X.; Wang, H.; Gleave, M.E.; Nguan, C.Y.C.; Du, C. Relationship of clusterin with renal inflammation and fibrosis after the recovery phase of ischemia-reperfusion injury. BMC Nephrol., 2016, 17(1), 133. doi: 10.1186/s12882-016-0348-x PMID: 27649757
  64. Christou, G.A.; Kiortsis, D.N. The role of adiponectin in renal physiology and development of albuminuria. J. Endocrinol., 2014, 221(2), R49-R61. doi: 10.1530/JOE-13-0578 PMID: 24464020
  65. Hongtao, C.; Youling, F.; Fang, H.; Huihua, P.; Jiying, Z.; Jun, Z. Curcumin alleviates ischemia reperfusion-induced late kidney fibrosis through the APPL1/Akt signaling pathway. J. Cell. Physiol., 2018, 233(11), 8588-8596. doi: 10.1002/jcp.26536 PMID: 29741772
  66. Cai, Y.; Huang, C.; Zhou, M.; Xu, S.; Xie, Y.; Gao, S.; Yang, Y.; Deng, Z.; Zhang, L.; Shu, J.; Yan, T.; Wan, C.C. Role of curcumin in the treatment of acute kidney injury: Research challenges and opportunities. Phytomedicine, 2022, 104, 154306. doi: 10.1016/j.phymed.2022.154306 PMID: 35809376

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers