EPHA2 Receptor as a Possible Therapeutic Target in Viral Infections
- Authors: Vincenzi M.1, Mercurio F.1, Leone M.1
-
Affiliations:
- Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB)
- Issue: Vol 31, No 35 (2024)
- Pages: 5670-5701
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645071
- DOI: https://doi.org/10.2174/0109298673256638231003111234
- ID: 645071
Cite item
Full Text
Abstract
Background:The receptor tyrosine kinase EphA2 plays a role in many diseases, like cancer, cataracts, and osteoporosis. Interestingly, it has also been linked to viral infections.
Objective:Herein, current literature has been reviewed to clarify EphA2 functions in viral infections and explore its potential role as a target in antiviral drug discovery strategies.
Methods:Research and review articles along with preprints connecting EphA2 to different viruses have been searched through PubMed and the web. Structures of complexes between EphA2 domains and viral proteins have been retrieved from the PDB database.
Results:EphA2 assumes a key role in Kaposis sarcoma-associated herpesvirus (KSHV) and Epstein Barr virus (EBV) infections by directly binding, through its ligand binding domain, viral glycoproteins. For human cytomegalovirus (HCMV), the role of EphA2 in maintaining virus latency state, through cooperation with specific viral proteins, has also been speculated. In certain cells, with high EphA2 expression levels, following ligand stimulation, receptor activation might contribute to severe symptoms accompanying a few viral infections, including lung injuries often related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).
Conclusion:Since EphA2 works as a host receptor for certain viruses, it might be worth more deeply investigating known compounds targeting its extracellular ligand binding domain as antiviral therapeutics. Due to EphA2's function in inflammation, its possible correlation with SARS-CoV-2 cannot be excluded, but more experimental studies are needed in this case to undoubtedly attribute the role of this receptor in viral infections.
Keywords
About the authors
Marian Vincenzi
Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB)
Email: info@benthamscience.net
Flavia Mercurio
Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB)
Email: info@benthamscience.net
Marilisa Leone
Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB)
Author for correspondence.
Email: info@benthamscience.net
References
- Du, Z.; Lovly, C.M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer, 2018, 17(1), 58. doi: 10.1186/s12943-018-0782-4 PMID: 29455648
- Park, J.; Son, A.; Zhou, R. Roles of EphA2 in development and disease. Genes (Basel), 2013, 4(3), 334-357. doi: 10.3390/genes4030334 PMID: 24705208
- Hubbard, S.R.; Miller, W.T. Receptor tyrosine kinases: Mechanisms of activation and signaling. Curr. Opin. Cell Biol., 2007, 19(2), 117-123. doi: 10.1016/j.ceb.2007.02.010 PMID: 17306972
- Darling, T.K.; Lamb, T.J. Emerging roles for Eph receptors and ephrin ligands in immunity. Front. Immunol., 2019, 10, 1473. doi: 10.3389/fimmu.2019.01473 PMID: 31333644
- Pasquale, E.B. The Eph family of receptors. Curr. Opin. Cell Biol., 1997, 9(5), 608-615. doi: 10.1016/S0955-0674(97)80113-5 PMID: 9330863
- Mercurio, F.A.; Vincenzi, M.; Leone, M. Hunting for novel routes in anticancer drug discovery: Peptides against Sam-Sam interactions. Int. J. Mol. Sci., 2022, 23(18), 10397. doi: 10.3390/ijms231810397 PMID: 36142306
- Zhou, Y.; Sakurai, H. Emerging and diverse functions of the EphA2 noncanonical pathway in cancer progression. Biol. Pharm. Bull., 2017, 40(10), 1616-1624. doi: 10.1248/bpb.b17-00446 PMID: 28966234
- Wilson, K.; Shiuan, E.; Brantley-Sieders, D.M. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene, 2021, 40(14), 2483-2495. doi: 10.1038/s41388-021-01714-8 PMID: 33686241
- Lisabeth, E.M.; Falivelli, G.; Pasquale, E.B. Eph receptor signaling and ephrins. Cold Spring Harb. Perspect. Biol., 2013, 5(9), a009159. doi: 10.1101/cshperspect.a009159 PMID: 24003208
- Mercurio, F.; Leone, M. The Sam domain of EphA2 receptor and its relevance to cancer: A novel challenge for drug discovery? Curr. Med. Chem., 2016, 23(42), 4718-4734. doi: 10.2174/0929867323666161101100722 PMID: 27804871
- Sahoo, A.R.; Buck, M. Structural and functional insights into the transmembrane domain association of Eph receptors. Int. J. Mol. Sci., 2021, 22(16), 8593. doi: 10.3390/ijms22168593 PMID: 34445298
- Seiradake, E.; Harlos, K.; Sutton, G.; Aricescu, A.R.; Jones, E.Y. An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nat. Struct. Mol. Biol., 2010, 17(4), 398-402. doi: 10.1038/nsmb.1782 PMID: 20228801
- Lechtenberg, B.C.; Gehring, M.P.; Light, T.P.; Horne, C.R.; Matsumoto, M.W.; Hristova, K.; Pasquale, E.B. Regulation of the EphA2 receptor intracellular region by phosphomimetic negative charges in the kinase-SAM linker. Nat. Commun., 2021, 12(1), 7047. doi: 10.1038/s41467-021-27343-z PMID: 34857764
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods, 2022, 19(6), 679-682. doi: 10.1038/s41592-022-01488-1 PMID: 35637307
- Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; Cukura, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Garmiri, P.; da Costa Gonzales, L.J.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Joshi, V.; Jyothi, D.; Kandasaamy, S.; Lock, A.; Luciani, A.; Lugaric, M.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Pundir, S.; Qi, G.; Raj, S.; Raposo, P.; Rice, D.L.; Saidi, R.; Santos, R.; Speretta, E.; Stephenson, J.; Totoo, P.; Turner, E.; Tyagi, N.; Vasudev, P.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.J.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.H.; Axelsen, K.B.; Bansal, P.; Baratin, D.; Batista Neto, T.M.; Blatter, M-C.; Bolleman, J.T.; Boutet, E.; Breuza, L.; Gil, B.C.; Casals-Casas, C.; Echioukh, K.C.; Coudert, E.; Cuche, B.; de Castro, E.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gaudet, P.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz, N.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Kerhornou, A.; Le Mercier, P.; Lieberherr, D.; Masson, P.; Morgat, A.; Muthukrishnan, V.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Poux, S.; Pozzato, M.; Pruess, M.; Redaschi, N.; Rivoire, C.; Sigrist, C.J.A.; Sonesson, K.; Sundaram, S.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Zhang, J. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res., 2023, 51(D1), D523-D531. doi: 10.1093/nar/gkac1052 PMID: 36408920
- Hedger, G.; Sansom, M.S.P.; Koldsø, H. The juxtamembrane regions of human receptor tyrosine kinases exhibit conserved interaction sites with anionic lipids. Sci. Rep., 2015, 5(1), 9198. doi: 10.1038/srep09198 PMID: 25779975
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612. doi: 10.1002/jcc.20084 PMID: 15264254
- Xiao, T.; Xiao, Y.; Wang, W.; Tang, Y.Y.; Xiao, Z.; Su, M. Targeting EphA2 in cancer. J. Hematol. Oncol., 2020, 13(1), 114. doi: 10.1186/s13045-020-00944-9 PMID: 32811512
- Zhao, P.; Jiang, D.; Huang, Y.; Chen, C. EphA2: A promising therapeutic target in breast cancer. J. Genet. Genomics, 2021, 48(4), 261-267. doi: 10.1016/j.jgg.2021.02.011 PMID: 33962882
- Coulthard, M.G.; Morgan, M.; Woodruff, T.M.; Arumugam, T.V.; Taylor, S.M.; Carpenter, T.C.; Lackmann, M.; Boyd, A.W. Eph/Ephrin signaling in injury and inflammation. Am. J. Pathol., 2012, 181(5), 1493-1503. doi: 10.1016/j.ajpath.2012.06.043 PMID: 23021982
- Funk, S.D.; Orr, A.W. Ephs and ephrins resurface in inflammation, immunity, and atherosclerosis. Pharmacol. Res., 2013, 67(1), 42-52. doi: 10.1016/j.phrs.2012.10.008 PMID: 23098817
- Arthur, A.; Gronthos, S. Eph-ephrin signaling mediates cross-talk within the bone microenvironment. Front. Cell Dev. Biol., 2021, 9, 598612. doi: 10.3389/fcell.2021.598612 PMID: 33634116
- Jin, S.; Yan, Z.; Tieyi, Y.; Shuyi, L.; Liang, W.; Hui, Y. Ephephrin bidirectional signalling: A promising approach for osteoporosis treatment. J. Medical Hypotheses Ideas, 2013, 7(2), 40-42. doi: 10.1016/j.jmhi.2013.02.002
- Bennett, T.M.; MHamdi, O.; Hejtmancik, J.F.; Shiels, A. Germ-line and somatic EphA2 coding variants in lens aging and cataract. PLoS One, 2017, 12(12), e0189881. doi: 10.1371/journal.pone.0189881 PMID: 29267365
- Zhang, T.; Hua, R.; Xiao, W.; Burdon, K.P.; Bhattacharya, S.S.; Craig, J.E.; Shang, D.; Zhao, X.; Mackey, D.A.; Moore, A.T.; Luo, Y.; Zhang, J.; Zhang, X. Mutations of the EphA2 receptor tyrosine kinase gene cause autosomal dominant congenital cataract. Hum. Mutat., 2009, 30(5), E603-E611. doi: 10.1002/humu.20995 PMID: 19306328
- Shiels, A.; Bennett, T.M.; Knopf, H.L.; Maraini, G.; Li, A.; Jiao, X.; Hejtmancik, J.F. The EPHA2 gene is associated with cataracts linked to chromosome 1p. Mol. Vis., 2008, 14, 2042-2055. PMID: 19005574
- Su, C.; Wu, L.; Chai, Y.; Qi, J.; Tan, S.; Gao, G.F.; Song, H.; Yan, J. Molecular basis of EphA2 recognition by gHgL from gamma herpesviruses. Nat. Commun., 2020, 11(1), 5964. doi: 10.1038/s41467-020-19617-9 PMID: 33235207
- Chen, J.; Schaller, S.; Jardetzky, T.S.; Longnecker, R. Epstein-barr virus gH/gL and Kaposis sarcoma-associated herpesvirus gH/gL bind to different sites on EphA2 to trigger fusion. J. Virol., 2020, 94(21), e01454-20. doi: 10.1128/JVI.01454-20 PMID: 32847853
- Möhl, B.S.; Chen, J.; Longnecker, R. Gammaherpesvirus entry and fusion: A tale how two human pathogenic viruses enter their host cells. Adv. Virus Res., 2019, 104, 313-343. doi: 10.1016/bs.aivir.2019.05.006 PMID: 31439152
- Shin, J.M.; Han, M.S.; Park, J.H.; Lee, S.H.; Kim, T.H.; Lee, S.H. The EphA1 and EphA2 signaling modulates the epithelial permeability in human sinonasal epithelial cells and the rhinovirus infection induces epithelial barrier dysfunction via EphA2 receptor signaling. Int. J. Mol. Sci., 2023, 24(4), 3629. doi: 10.3390/ijms24043629 PMID: 36835041
- Lupberger, J.; Zeisel, M.B.; Xiao, F.; Thumann, C.; Fofana, I.; Zona, L.; Davis, C.; Mee, C.J.; Turek, M.; Gorke, S.; Royer, C.; Fischer, B.; Zahid, M.N.; Lavillette, D.; Fresquet, J.; Cosset, F.L.; Rothenberg, S.M.; Pietschmann, T.; Patel, A.H.; Pessaux, P.; Doffoël, M.; Raffelsberger, W.; Poch, O.; McKeating, J.A.; Brino, L.; Baumert, T.F. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat. Med., 2011, 17(5), 589-595. doi: 10.1038/nm.2341 PMID: 21516087
- Light, T.P.; Brun, D.; Guardado-Calvo, P.; Pederzoli, R.; Haouz, A.; Neipel, F.; Rey, F.A.; Hristova, K.; Backovic, M. Human herpesvirus 8 molecular mimicry of ephrin ligands facilitates cell entry and triggers EphA2 signaling. PLoS Biol., 2021, 19(9), e3001392. doi: 10.1371/journal.pbio.3001392 PMID: 34499637
- Beauchamp, A.; Debinski, W. Ephs and ephrins in cancer: Ephrin-A1 signalling. Semin. Cell Dev. Biol., 2012, 23(1), 109-115. doi: 10.1016/j.semcdb.2011.10.019 PMID: 22040911
- Nasreen, N.; Khodayari, N.; Mohammed, K.A. Advances in malignant pleural mesothelioma therapy: Targeting EphA2 a novel approach. Am. J. Cancer Res., 2012, 2(2), 222-234. PMID: 22432060
- London, M.; Gallo, E. The EphA2 and cancer connection: Potential for immune-based interventions. Mol. Biol. Rep., 2020, 47(10), 8037-8048. doi: 10.1007/s11033-020-05767-y PMID: 32990903
- Psilopatis, I.; Pergaris, A.; Vrettou, K.; Tsourouflis, G.; Theocharis, S. The EPH/Ephrin system in gynecological cancers: Focusing on the roots of carcinogenesis for better patient management. Int. J. Mol. Sci., 2022, 23(6), 3249. doi: 10.3390/ijms23063249 PMID: 35328669
- Tandon, M.; Vemula, S.V.; Mittal, S.K. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin. Ther. Targets, 2011, 15(1), 31-51. doi: 10.1517/14728222.2011.538682 PMID: 21142802
- Zhuang, G.; Hunter, S.; Hwang, Y.; Chen, J. Regulation of EphA2 receptor endocytosis by SHIP2 lipid phosphatase via phosphatidylinositol 3-Kinase-dependent Rac1 activation. J. Biol. Chem., 2007, 282(4), 2683-2694. doi: 10.1074/jbc.M608509200 PMID: 17135240
- Buckens, O.J.; El Hassouni, B.; Giovannetti, E.; Peters, G.J. The role of Eph receptors in cancer and how to target them: Novel approaches in cancer treatment. Expert Opin. Investig. Drugs, 2020, 29(6), 567-582. doi: 10.1080/13543784.2020.1762566 PMID: 32348169
- Giorgio, C.; Hassan Mohamed, I.; Flammini, L.; Barocelli, E.; Incerti, M.; Lodola, A.; Tognolini, M. Lithocholic acid is an Eph-ephrin ligand interfering with Eph-kinase activation. PLoS One, 2011, 6(3), e18128. doi: 10.1371/journal.pone.0018128 PMID: 21479221
- Giorgio, C.; Russo, S.; Incerti, M.; Bugatti, A.; Vacondio, F.; Barocelli, E.; Mor, M.; Pala, D.; Hassan-Mohamed, I.; Gioiello, A.; Rusnati, M.; Lodola, A.; Tognolini, M. Biochemical characterization of EphA2 antagonists with improved physico-chemical properties by cell-based assays and surface plasmon resonance analysis. Biochem. Pharmacol., 2016, 99, 18-30. doi: 10.1016/j.bcp.2015.10.006 PMID: 26462575
- Hassan-Mohamed, I.; Giorgio, C.; Incerti, M.; Russo, S.; Pala, D.; Pasquale, E.B.; Zanotti, I.; Vicini, P.; Barocelli, E.; Rivara, S.; Mor, M.; Lodola, A.; Tognolini, M. UniPR129 is a competitive small molecule Eph-ephrin antagonist blocking in vitro angiogenesis at low micromolar concentrations. Br. J. Pharmacol., 2014, 171(23), 5195-5208. doi: 10.1111/bph.12669 PMID: 24597515
- Jackson, D.; Gooya, J.; Mao, S.; Kinneer, K.; Xu, L.; Camara, M.; Fazenbaker, C.; Fleming, R.; Swamynathan, S.; Meyer, D.; Senter, P.D.; Gao, C.; Wu, H.; Kinch, M.; Coats, S.; Kiener, P.A.; Tice, D.A. A human antibody-drug conjugate targeting EphA2 inhibits tumor growth in vivo. Cancer Res., 2008, 68(22), 9367-9374. doi: 10.1158/0008-5472.CAN-08-1933 PMID: 19010911
- Riedl, S.; Pasquale, E. Targeting the Eph system with peptides and peptide conjugates. Curr. Drug Targets, 2015, 16(10), 1031-1047. doi: 10.2174/1389450116666150727115934 PMID: 26212263
- Noberini, R.; Lamberto, I.; Pasquale, E.B. Targeting Eph receptors with peptides and small molecules: Progress and challenges. Semin. Cell Dev. Biol., 2012, 23(1), 51-57. doi: 10.1016/j.semcdb.2011.10.023 PMID: 22044885
- Koolpe, M.; Dail, M.; Pasquale, E.B. An ephrin mimetic peptide that selectively targets the EphA2 receptor. J. Biol. Chem., 2002, 277(49), 46974-46979. doi: 10.1074/jbc.M208495200 PMID: 12351647
- Mitra, S.; Duggineni, S.; Koolpe, M.; Zhu, X.; Huang, Z.; Pasquale, E.B. Structure-activity relationship analysis of peptides targeting the EphA2 receptor. Biochemistry, 2010, 49(31), 6687-6695. doi: 10.1021/bi1006223 PMID: 20677833
- Wu, B.; Wang, S.; De, S.K.; Barile, E.; Quinn, B.A.; Zharkikh, I.; Purves, A.; Stebbins, J.L.; Oshima, R.G.; Fisher, P.B.; Pellecchia, M. Design and characterization of novel EphA2 agonists for targeted delivery of chemotherapy to cancer cells. Chem. Biol., 2015, 22(7), 876-887. doi: 10.1016/j.chembiol.2015.06.011 PMID: 26165155
- Salem, A.F.; Wang, S.; Billet, S.; Chen, J.F.; Udompholkul, P.; Gambini, L.; Baggio, C.; Tseng, H.R.; Posadas, E.M.; Bhowmick, N.A.; Pellecchia, M. Reduction of circulating cancer cells and metastases in breast-cancer models by a potent EphA2-agonistic peptidedrug conjugate. J. Med. Chem., 2018, 61(5), 2052-2061. doi: 10.1021/acs.jmedchem.7b01837 PMID: 29470068
- Udompholkul, P.; Baggio, C.; Gambini, L.; Sun, Y.; Zhao, M.; Hoffman, R.M.; Pellecchia, M. Effective tumor targeting by EphA2-agonist-biotin-streptavidin conjugates. Molecules, 2021, 26(12), 3687. doi: 10.3390/molecules26123687 PMID: 34204178
- Gambini, L.; Salem, A.F.; Udompholkul, P.; Tan, X.F.; Baggio, C.; Shah, N.; Aronson, A.; Song, J.; Pellecchia, M. Structure-based design of novel EphA2 agonistic agents with nanomolar affinity in vitro and in cell. ACS Chem. Biol., 2018, 13(9), 2633-2644. doi: 10.1021/acschembio.8b00556 PMID: 30110533
- Wykosky, J.; Gibo, D.M.; Debinski, W. A novel, potent, and specific ephrinA1-based cytotoxin against EphA2 receptorexpressing tumor cells. Mol. Cancer Ther., 2007, 6(12), 3208-3218. doi: 10.1158/1535-7163.MCT-07-0200 PMID: 18089715
- Kim, J.M.; Lin, C.; Stavre, Z.; Greenblatt, M.B.; Shim, J.H. Osteoblast-osteoclast communication and bone homeostasis. Cells, 2020, 9(9), 2073. doi: 10.3390/cells9092073 PMID: 32927921
- Matsuo, K.; Otaki, N. Bone cell interactions through Eph/ephrin. Cell Adhes. Migr., 2012, 6(2), 148-156. doi: 10.4161/cam.20888 PMID: 22660185
- Vaught, D.B.; Merkel, A.R.; Lynch, C.C.; Edwards, J.; Tantawy, M.N.; Hilliard, T.; Wang, S.; Peterson, T.; Johnson, R.W.; Sterling, J.A.; Brantley-Sieders, D. EphA2 is a clinically relevant target for breast cancer bone metastatic disease. JBMR Plus, 2021, 5(4), e10465. doi: 10.1002/jbm4.10465 PMID: 33869989
- Murugan, S.; Cheng, C. Roles of Eph-ephrin signaling in the eye lens cataractogenesis, biomechanics, and homeostasis. Front. Cell Dev. Biol., 2022, 10, 852236. doi: 10.3389/fcell.2022.852236 PMID: 35295853
- Zhou, Y.; Bennett, T.M.; Ruzycki, P.A.; Shiels, A. Mutation of the EPHA2 tyrosine-kinase domain dysregulates cell pattern formation and cytoskeletal gene expression in the lens. Cells, 2021, 10(10), 2606. doi: 10.3390/cells10102606 PMID: 34685586
- Cooper, M.A.; Son, A.I.; Komlos, D.; Sun, Y.; Kleiman, N.J.; Zhou, R. Loss of ephrin-A5 function disrupts lens fiber cell packing and leads to cataract. Proc. Natl. Acad. Sci. U.S.A., 2008, 105(43), 16620-16625. doi: 10.1073/pnas.0808987105 PMID: 18948590
- Liu, W.; Huang, D.; Guo, R.; Ji, J. Pathological changes of the anterior lens capsule. J. Ophthalmol., 2021, 2021, 9951032. doi: 10.1155/2021/9951032 PMID: 34055399
- Cheng, C.; Gong, X. Diverse roles of Eph/ephrin signaling in the mouse lens. PLoS One, 2011, 6(11), e28147. doi: 10.1371/journal.pone.0028147 PMID: 22140528
- Tan, W.; Hou, S.; Jiang, Z.; Hu, Z.; Yang, P.; Ye, J. Association of EPHA2 polymorphisms and age-related cortical cataract in a Han Chinese population. Mol. Vis., 2011, 17, 1553-1558. PMID: 21686326
- Sundaresan, P.; Ravindran, R.D.; Vashist, P.; Shanker, A.; Nitsch, D.; Talwar, B.; Maraini, G.; Camparini, M.; Nonyane, B.A.S.; Smeeth, L.; Chakravarthy, U.; Hejtmancik, J.F.; Fletcher, A.E. EPHA2 polymorphisms and age-related cataract in India. PLoS One, 2012, 7(3), e33001. doi: 10.1371/journal.pone.0033001 PMID: 22412971
- Reis, L.M.; Tyler, R.C.; Semina, E.V. Identification of a novel C-terminal extension mutation in EPHA2 in a family affected with congenital cataract. Mol. Vis., 2014, 20, 836-842. PMID: 24940039
- Park, J.E.; Son, A.I.; Hua, R.; Wang, L.; Zhang, X.; Zhou, R. Human cataract mutations in EPHA2 SAM domain alter receptor stability and function. PLoS One, 2012, 7(5), e36564. doi: 10.1371/journal.pone.0036564 PMID: 22570727
- Vincenzi, M.; Mercurio, F.A.; Leone, M. Sam domains in multiple diseases. Curr. Med. Chem., 2020, 27(3), 450-476. doi: 10.2174/0929867325666181009114445 PMID: 30306850
- Mercurio, F.A.; Costantini, S.; Di Natale, C.; Pirone, L.; Guariniello, S.; Scognamiglio, P.L.; Marasco, D.; Pedone, E.M.; Leone, M. Structural investigation of a C-terminal EphA2 receptor mutant: Does mutation affect the structure and interaction properties of the Sam domain? Biochim. Biophys. Acta. Proteins Proteomics, 2017, 1865(9), 1095-1104. doi: 10.1016/j.bbapap.2017.06.003 PMID: 28602916
- Cercone, M.A.; Schroeder, W.; Schomberg, S.; Carpenter, T.C. EphA2 receptor mediates increased vascular permeability in lung injury due to viral infection and hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol., 2009, 297(5), L856-L863. doi: 10.1152/ajplung.00118.2009 PMID: 19684201
- Zhang, A.; Xing, J.; Xia, T.; Zhang, H.; Fang, M.; Li, S.; Du, Y.; Li, X.C.; Zhang, Z.; Zeng, M.S. EphA2 phosphorylates NLRP 3 and inhibits inflammasomes in airway epithelial cells. EMBO Rep., 2020, 21(7), e49666. doi: 10.15252/embr.201949666 PMID: 32352641
- Lee, S.H.; Kang, S.H.; Han, M.S.; Kwak, J.W.; Kim, H.G.; Lee, T.H.; Lee, D.B.; Kim, T.H. The expression of ephrinA1/ephA2 receptor increases in chronic rhinosinusitis and ephrina1/epha2 signaling affects rhinovirus-induced innate immunity in human sinonasal epithelial cells. Front. Immunol., 2021, 12, 793517. doi: 10.3389/fimmu.2021.793517 PMID: 34975898
- de Boer, E.C.W.; van Gils, J.M.; van Gils, M.J. Ephrin-Eph signaling usage by a variety of viruses. Pharmacol. Res., 2020, 159, 105038. doi: 10.1016/j.phrs.2020.105038 PMID: 32565311
- Bossart, K.N.; Bingham, J.; Middleton, D. Targeted strategies for henipavirus therapeutics. Open Virol. J., 2007, 1(1), 14-25. doi: 10.2174/1874357900701010014 PMID: 19440455
- Wang, J.; Zheng, X.; Peng, Q.; Zhang, X.; Qin, Z. Eph receptors: The bridge linking host and virus. Cell. Mol. Life Sci., 2020, 77(12), 2355-2365. doi: 10.1007/s00018-019-03409-6 PMID: 31893311
- Jilg, N.; Chung, R.T. Adding to the toolbox: Receptor tyrosine kinases as potential targets in the treatment of hepatitis C. J. Hepatol., 2012, 56(1), 282-284. doi: 10.1016/j.jhep.2011.06.020 PMID: 21784050
- Harris, H.J.; Farquhar, M.J.; Mee, C.J.; Davis, C.; Reynolds, G.M.; Jennings, A.; Hu, K.; Yuan, F.; Deng, H.; Hubscher, S.G.; Han, J.H.; Balfe, P.; McKeating, J.A. CD81 and claudin 1 coreceptor association: Role in hepatitis C virus entry. J. Virol., 2008, 82(10), 5007-5020. doi: 10.1128/JVI.02286-07 PMID: 18337570
- Atkins, C.; Evans, C.W.; Nordin, B.; Patricelli, M.P.; Reynolds, R.; Wennerberg, K.; Noah, J.W. Global human-kinase screening identifies therapeutic host targets against influenza. SLAS Discov., 2014, 19(6), 936-946. doi: 10.1177/1087057113518068 PMID: 24464431
- Rani, A.; Jakhmola, S.; Karnati, S.; Parmar, H.S.; Chandra Jha, H. Potential entry receptors for human γ-herpesvirus into epithelial cells: A plausible therapeutic target for viral infections. Tumour Virus Res., 2021, 12, 200227. doi: 10.1016/j.tvr.2021.200227 PMID: 34800753
- Blumenthal, M.J.; Schutz, C.; Meintjes, G.; Mohamed, Z.; Mendelson, M.; Ambler, J.M.; Whitby, D.; Mackelprang, R.D.; Carse, S.; Katz, A.A.; Schäfer, G. EPHA2 sequence variants are associated with susceptibility to Kaposis sarcoma-associated herpesvirus infection and Kaposis sarcoma prevalence in HIV-infected patients. Cancer Epidemiol., 2018, 56, 133-139. doi: 10.1016/j.canep.2018.08.005 PMID: 30176543
- Ganem, D. KSHV and the pathogenesis of Kaposi sarcoma: Listening to human biology and medicine. J. Clin. Invest., 2010, 120(4), 939-949. doi: 10.1172/JCI40567 PMID: 20364091
- Chakraborty, S.; Veettil, M.V.; Bottero, V.; Chandran, B. Kaposis sarcoma-associated herpesvirus interacts with EphrinA2 receptor to amplify signaling essential for productive infection. Proc. Natl. Acad. Sci. USA., 2012, 109(19), E1163-E1172. doi: 10.1073/pnas.1119592109 PMID: 22509030
- Boshoff, C. Ephrin receptor: A door to KSHV infection. Nat. Med., 2012, 18(6), 861-863. doi: 10.1038/nm.2803 PMID: 22673996
- Kumar, B.; Roy, A.; Veettil, M.V.; Chandran, B. Insight into the roles of E3 ubiquitin ligase c-Cbl, ESCRT machinery, and host cell signaling in Kaposis sarcoma-associated herpesvirus entry and trafficking. J. Virol., 2018, 92(4), e01376-17. doi: 10.1128/JVI.01376-17 PMID: 29167336
- Veettil, M.; Bandyopadhyay, C.; Dutta, D.; Chandran, B. Interaction of KSHV with host cell surface receptors and cell entry. Viruses, 2014, 6(10), 4024-4046. doi: 10.3390/v6104024 PMID: 25341665
- Kumar, B.; Chandran, B. KSHV entry and trafficking in target cellshijacking of cell signal pathways, actin and membrane dynamics. Viruses, 2016, 8(11), 305. doi: 10.3390/v8110305 PMID: 27854239
- Bandyopadhyay, C.; Valiya-Veettil, M.; Dutta, D.; Chakraborty, S.; Chandran, B. CIB1 synergizes with EphrinA2 to regulate Kaposis sarcoma-associated herpesvirus macropinocytic entry in human microvascular dermal endothelial cells. PLoS Pathog., 2014, 10(2), e1003941. doi: 10.1371/journal.ppat.1003941 PMID: 24550731
- Wang, X.; Zou, Z.; Deng, Z.; Liang, D.; Zhou, X.; Sun, R.; Lan, K. Male hormones activate EphA2 to facilitate Kaposis sarcoma-associated herpesvirus infection: Implications for gender disparity in Kaposis sarcoma. PLoS Pathog., 2017, 13(9), e1006580. doi: 10.1371/journal.ppat.1006580 PMID: 28957431
- TerBush, A.A.; Hafkamp, F.; Lee, H.J.; Coscoy, L. A kaposis sarcoma-associated herpesvirus infection mechanism is independent of integrins α3β1, αVβ3, and αVβ5. J. Virol., 2018, 92(17), e00803-18. doi: 10.1128/JVI.00803-18 PMID: 29899108
- Hahn, A.S.; Kaufmann, J.K.; Wies, E.; Naschberger, E.; Panteleev-Ivlev, J.; Schmidt, K.; Holzer, A.; Schmidt, M.; Chen, J.; König, S.; Ensser, A.; Myoung, J.; Brockmeyer, N.H.; Stürzl, M.; Fleckenstein, B.; Neipel, F. The ephrin receptor tyrosine kinase A2 is a cellular receptor for Kaposis sarcomaassociated herpesvirus. Nat. Med., 2012, 18(6), 961-966. doi: 10.1038/nm.2805 PMID: 22635007
- Hahn, A.S.; Desrosiers, R.C. Binding of the Kaposis sarcoma-associated herpesvirus to the ephrin binding surface of the EphA2 receptor and its inhibition by a small molecule. J. Virol., 2014, 88(16), 8724-8734. doi: 10.1128/JVI.01392-14 PMID: 24899181
- Fricke, T.; Großkopf, A.K.; Ensser, A.; Backovic, M.; Hahn, A.S. Antibodies targeting KSHV gH/gL reveal distinct neutralization mechanisms. Viruses, 2022, 14(3), 541. doi: 10.3390/v14030541 PMID: 35336948
- Chen, W.; Sin, S.H.; Wen, K.W.; Damania, B.; Dittmer, D.P. Hsp90 inhibitors are efficacious against Kaposi Sarcoma by enhancing the degradation of the essential viral gene LANA, of the viral co-receptor EphA2 as well as other client proteins. PLoS Pathog., 2012, 8(11), e1003048. doi: 10.1371/journal.ppat.1003048 PMID: 23209418
- Smatti, M.K.; Al-Sadeq, D.W.; Ali, N.H.; Pintus, G.; Abou-Saleh, H.; Nasrallah, G.K. Epsteinbarr virus epidemiology, serology, and genetic variability of LMP-1 oncogene among healthy population: An update. Front. Oncol., 2018, 8, 211. doi: 10.3389/fonc.2018.00211 PMID: 29951372
- Cao, Y.; Xie, L.; Shi, F.; Tang, M.; Li, Y.; Hu, J.; Zhao, L.; Zhao, L.; Yu, X.; Luo, X.; Liao, W.; Bode, A.M. Targeting the signaling in EpsteinBarr virus-associated diseases: Mechanism, regulation, and clinical study. Signal Transduct. Target. Ther., 2021, 6(1), 15. doi: 10.1038/s41392-020-00376-4 PMID: 33436584
- Frappier, L. Epstein-Barr virus: Current questions and challenges. Tumour Virus Res., 2021, 12, 200218. doi: 10.1016/j.tvr.2021.200218 PMID: 34052467
- Soldan, S.S.; Lieberman, P.M. EpsteinBarr virus and multiple sclerosis. Nat. Rev. Microbiol., 2023, 21(1), 51-64. doi: 10.1038/s41579-022-00770-5 PMID: 35931816
- Bu, G.L.; Xie, C.; Kang, Y.F.; Zeng, M.S.; Sun, C. How EBV infects: The tropism and underlying molecular mechanism for viral infection. Viruses, 2022, 14(11), 2372. doi: 10.3390/v14112372 PMID: 36366470
- Zhu, Q.Y.; Shan, S.; Yu, J.; Peng, S.Y.; Sun, C.; Zuo, Y.; Zhong, L.Y.; Yan, S.M.; Zhang, X.; Yang, Z.; Peng, Y.J.; Shi, X.; Cao, S.M.; Wang, X.; Zeng, M.S.; Zhang, L. A potent and protective human neutralizing antibody targeting a novel vulnerable site of Epstein-Barr virus. Nat. Commun., 2021, 12(1), 6624. doi: 10.1038/s41467-021-26912-6 PMID: 34785638
- Hutt-Fletcher, L.M. Epstein-Barr virus entry. J. Virol., 2007, 81(15), 7825-7832. doi: 10.1128/JVI.00445-07 PMID: 17459936
- Campadelli-Fiume, G.; Collins-McMillen, D.; Gianni, T.; Yurochko, A.D. Integrins as herpesvirus receptors and mediators of the host signalosome. Annu. Rev. Virol., 2016, 3(1), 215-236. doi: 10.1146/annurev-virology-110615-035618 PMID: 27501260
- Chen, Y.; Cao, A.; Li, Q.; Quan, J. Identification of DNA aptamers that specifically targets EBV+ nasopharyngeal carcinoma via binding with EphA2/CD98hc complex. Biochem. Biophys. Res. Commun., 2022, 608, 135-141. doi: 10.1016/j.bbrc.2022.03.157 PMID: 35397426
- Kanno-Okada, H.; Takahashi, K.; Katano, H.; Shimizu, A.; Takakuwa, E.; Miyamoto, S.; Abiko, S.; Yamamoto, K.; Shimoda, T.; Mitsuhashi, T.; Hasegawa, H.; Matsuno, Y. A case of EpsteinBarr virus-associated lymphoepithelioma-like carcinoma of the colon. Pathol. Int., 2021, 71(6), 420-426. doi: 10.1111/pin.13095 PMID: 33792098
- Fekadu, S.; Kanehiro, Y.; Kartika, A.V.; Hamada, K.; Sakurai, N.; Mizote, T.; Akada, J.; Yamaoka, Y.; Iizasa, H.; Yoshiyama, H. Gastric epithelial attachment of Helicobacter pylori induces EphA2 and NMHC-IIA receptors for Epstein-Barr virus. Cancer Sci., 2021, 112(11), 4799-4811. doi: 10.1111/cas.15121 PMID: 34449934
- Wallaschek, N.; Reuter, S.; Silkenat, S.; Wolf, K.; Niklas, C.; Kayisoglu, Ö.; Aguilar, C.; Wiegering, A.; Germer, C.T.; Kircher, S.; Rosenwald, A.; Shannon-Lowe, C.; Bartfeld, S. Ephrin receptor A2, the epithelial receptor for Epstein-Barr virus entry, is not available for efficient infection in human gastric organoids. PLoS Pathog., 2021, 17(2), e1009210. doi: 10.1371/journal.ppat.1009210 PMID: 33596248
- Manns, M.P.; Maasoumy, B. Breakthroughs in hepatitis C research: From discovery to cure. Nat. Rev. Gastroenterol. Hepatol., 2022, 19(8), 533-550. doi: 10.1038/s41575-022-00608-8 PMID: 35595834
- Rabaan, A.A.; Al-Ahmed, S.H.; Bazzi, A.M.; Alfouzan, W.A.; Alsuliman, S.A.; Aldrazi, F.A.; Haque, S. Overview of hepatitis C infection, molecular biology, and new treatment. J. Infectiology Public Health, 2020, 13(5), 773-783. doi: 10.1016/j.jiph.2019.11.015 PMID: 31870632
- Colpitts, C.C.; Lupberger, J.; Doerig, C.; Baumert, T.F. Host cell kinases and the hepatitis C virus life cycle. Biochim. Biophys. Acta. Proteins Proteomics, 2015, 1854(10), 1657-1662. doi: 10.1016/j.bbapap.2015.04.011 PMID: 25896387
- Crouchet, E.; Wrensch, F.; Schuster, C.; Zeisel, M.B.; Baumert, T.F. Host-targeting therapies for hepatitis C virus infection: Current developments and future applications. Therap. Adv. Gastroenterol., 2018, 11, 1756284818759483. doi: 10.1177/1756284818759483 PMID: 29619090
- Scheel, T.K.H.; Rice, C.M. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat. Med., 2013, 19(7), 837-849. doi: 10.1038/nm.3248 PMID: 23836234
- Colpitts, C.C.; El-Saghire, H.; Pochet, N.; Schuster, C.; Baumert, T.F. High-throughput approaches to unravel hepatitis C virus-host interactions. Virus Res., 2016, 218, 18-24. doi: 10.1016/j.virusres.2015.09.013 PMID: 26410623
- Jeulin, H.; Velay, A.; Murray, J.; Schvoerer, E. Clinical impact of hepatitis B and C virus envelope glycoproteins. World J. Gastroenterol., 2013, 19(5), 654-664. doi: 10.3748/wjg.v19.i5.654 PMID: 23429668
- Gerold, G.; Rice, C.M. Locking out hepatitis C. Nat. Med., 2011, 17(5), 542-544. doi: 10.1038/nm0511-542 PMID: 21546968
- Tsai, E. Review of current and potential treatments for chronic hepatitis B virus infection. Gastroenterol. Hepatol. (N. Y.), 2021, 17(8), 367-376. PMID: 34602899
- Vincenzi, M.; Leone, M. The fight against human viruses: How NMR can help? Curr. Med. Chem., 2021, 28(22), 4380-4453. doi: 10.2174/0929867328666201228123748 PMID: 33371830
- Tian, J.; Liu, W.; Zhang, Z.; Tang, L.; Li, D.; Tian, Z.; Lin, S.; Li, Y. Influence of miR-520e-mediated MAPK signalling pathway on HBV replication and regulation of hepatocellular carcinoma cells via targeting EphA2. J. Viral Hepat., 2019, 26(4), 496-505. doi: 10.1111/jvh.13048 PMID: 30521133
- Wang, Y.; Zhang, Z.; Zhu, Z.; Wang, P.; Zhang, J.; Liu, H.; Li, J. The significance of EphA2-regulated Wnt/β-catenin signal pathway in promoting the metastasis of HBV-related hepatocellular carcinoma. Mol. Biol. Rep., 2023, 50(1), 565-575. doi: 10.1007/s11033-022-08045-1 PMID: 36350420
- Shang, Z.; Kouznetsova, V.; Tsigelny, I. Human Papillomavirus (HPV) viral proteins substitute for the impact of somatic mutations by affecting cancer-related genes: Meta-analysis and perspectives. J. Infect., 2020, 3(1), 29-47. doi: 10.29245/2689-9981/2020/1.1157
- Seiwert, T.Y.; Zuo, Z.; Keck, M.K.; Khattri, A.; Pedamallu, C.S.; Stricker, T.; Brown, C.; Pugh, T.J.; Stojanov, P.; Cho, J.; Lawrence, M.S.; Getz, G.; Brägelmann, J.; DeBoer, R.; Weichselbaum, R.R.; Langerman, A.; Portugal, L.; Blair, E.; Stenson, K.; Lingen, M.W.; Cohen, E.E.W.; Vokes, E.E.; White, K.P.; Hammerman, P.S. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin. Cancer Res., 2015, 21(3), 632-641. doi: 10.1158/1078-0432.CCR-13-3310 PMID: 25056374
- Goudsmit, C.; da Veiga Leprevost, F.; Basrur, V.; Peters, L.; Nesvizhskii, A.; Walline, H. Differences in extracellular vesicle protein cargo are dependent on head and neck squamous cell carcinoma cell of origin and human papillomavirus status. Cancers (Basel), 2021, 13(15), 3714. doi: 10.3390/cancers13153714 PMID: 34359613
- Li, X.; Li, D.; Ma, R. ALW-II-41-27, an EphA2 inhibitor, inhibits proliferation, migration and invasion of cervical cancer cells via inhibition of the RhoA/ROCK pathway. Oncol. Lett., 2022, 23(4), 129. doi: 10.3892/ol.2022.13249 PMID: 35251349
- Wang, Y.Q.; Zhao, X.Y. Human cytomegalovirus primary infection and reactivation: Insights from virion-carried molecules. Front. Microbiol., 2020, 11, 1511. doi: 10.3389/fmicb.2020.01511 PMID: 32765441
- Griffiths, P.; Reeves, M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat. Rev. Microbiol., 2021, 19(12), 759-773. doi: 10.1038/s41579-021-00582-z PMID: 34168328
- Wass, A.B.; Krishna, B.A.; Herring, L.E.; Gilbert, T.S.K.; Nukui, M.; Groves, I.J.; Dooley, A.L.; Kulp, K.H.; Matthews, S.M.; Rotroff, D.M.; Graves, L.M.; OConnor, C.M. Cytomegalovirus US28 regulates cellular EphA2 to maintain viral latency. Sci. Adv., 2022, 8(43), eadd1168. doi: 10.1126/sciadv.add1168 PMID: 36288299
- Dong, X.D.; Li, Y.; Li, Y.; Sun, C.; Liu, S.X.; Duan, H.; Cui, R.; Zhong, Q.; Mou, Y.G.; Wen, L.; Yang, B.; Zeng, M.S.; Luo, M.H.; Zhang, H. EphA2 is a functional entry receptor for HCMV infection of glioblastoma cells. PLoS Pathog., 2023, 19(5), e1011304. doi: 10.1371/journal.ppat.1011304 PMID: 37146061
- Hahn, A.S.; Desrosiers, R.C. Rhesus monkey rhadinovirus uses eph family receptors for entry into B cells and endothelial cells but not fibroblasts. PLoS Pathog., 2013, 9(5), e1003360. doi: 10.1371/journal.ppat.1003360 PMID: 23696734
- Bizot, E.; Bousquet, A.; Charpié, M.; Coquelin, F.; Lefevre, S.; Le Lorier, J.; Patin, M.; Sée, P.; Sarfati, E.; Walle, S.; Visseaux, B.; Basmaci, R. Rhinovirus: A narrative review on its genetic characteristics, pediatric clinical presentations, and pathogenesis. Front Pediatr., 2021, 9, 643219. doi: 10.3389/fped.2021.643219 PMID: 33829004
- Esneau, C.; Duff, A.C.; Bartlett, N.W. Understanding rhinovirus circulation and impact on illness. Viruses, 2022, 14(1), 141. doi: 10.3390/v14010141 PMID: 35062345
- Vincenzi, M.; Mercurio, F.A.; Leone, M. Looking for SARS-CoV-2 therapeutics through computational approaches. Curr. Med. Chem., 2022, 30(28), 3158-3214. PMID: 36200217
- Zhang, W.; Zhao, Y.; Zhang, F.; Wang, Q.; Li, T.; Liu, Z.; Wang, J.; Qin, Y.; Zhang, X.; Yan, X.; Zeng, X.; Zhang, S. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin. Immunol., 2020, 214, 108393. doi: 10.1016/j.clim.2020.108393 PMID: 32222466
- Weisberg, E.; Parent, A.; Yang, P.L.; Sattler, M.; Liu, Q.; Liu, Q.; Wang, J.; Meng, C.; Buhrlage, S.J.; Gray, N.; Griffin, J.D. Repurposing of kinase inhibitors for treatment of COVID-19. Pharm. Res., 2020, 37(9), 167. doi: 10.1007/s11095-020-02851-7 PMID: 32778962
- Galimberti, S.; Petrini, M.; Baratè, C.; Ricci, F.; Balducci, S.; Grassi, S.; Guerrini, F.; Ciabatti, E.; Mechelli, S.; Di Paolo, A.; Baldini, C.; Baglietto, L.; Macera, L.; Spezia, P.G.; Maggi, F. Tyrosine kinase inhibitors play an antiviral action in patients affected by chronic myeloid leukemia: A possible model supporting their use in the fight against SARS-CoV-2. Front. Oncol., 2020, 10, 1428. doi: 10.3389/fonc.2020.01428 PMID: 33014780
- Carpenter, T.C.; Schroeder, W.; Stenmark, K.R.; Schmidt, E.P. Eph-A2 promotes permeability and inflammatory responses to bleomycin-induced lung injury. Am. J. Respir. Cell Mol. Biol., 2012, 46(1), 40-47. doi: 10.1165/rcmb.2011-0044OC PMID: 21799118
- Qiao, Q.; Liu, X.; Yang, T.; Cui, K.; Kong, L.; Yang, C.; Zhang, Z. Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design. Acta Pharm. Sin. B, 2021, 11(10), 3060-3091. doi: 10.1016/j.apsb.2021.04.023 PMID: 33977080
- Patil, M.A.; Upadhyay, A.K.; Hernandez-Lagunas, L.; Good, R.; Carpenter, T.C.; Sucharov, C.C.; Nozik-Grayck, E.; Kompella, U.B. Targeted delivery of YSA-functionalized and non-functionalized polymeric nanoparticles to injured pulmonary vasculature. Artif. Cells Nanomed. Biotechnol., 2018, 46(3), S1059-S1066. doi: 10.1080/21691401.2018.1528984 PMID: 30450979
- Ahsan, N.; Rao, R.S.P.; Wilson, R.S.; Punyamurtula, U.; Salvato, F.; Petersen, M.; Ahmed, M.K.; Abid, M.R.; Verburgt, J.C.; Kihara, D.; Yang, Z.; Fornelli, L.; Foster, S.B.; Ramratnam, B. Mass spectrometry-based proteomic platforms for better understanding of SARS-CoV-2 induced pathogenesis and potential diagnostic approaches. Proteomics, 2021, 21(10), 2000279. doi: 10.1002/pmic.202000279 PMID: 33860983
- Appelberg, S.; Gupta, S.; Svensson Akusjärvi, S.; Ambikan, A.T.; Mikaeloff, F.; Saccon, E.; Végvári, Á.; Benfeitas, R.; Sperk, M.; Ståhlberg, M.; Krishnan, S.; Singh, K.; Penninger, J.M.; Mirazimi, A.; Neogi, U. Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerg. Microbes Infect., 2020, 9(1), 1748-1760. doi: 10.1080/22221751.2020.1799723 PMID: 32691695
- Bojkova, D.; Klann, K.; Koch, B.; Widera, M.; Krause, D.; Ciesek, S.; Cinatl, J.; Münch, C. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature, 2020, 583(7816), 469-472. doi: 10.1038/s41586-020-2332-7 PMID: 32408336
- Zecha, J.; Lee, C.Y.; Bayer, F.P.; Meng, C.; Grass, V.; Zerweck, J.; Schnatbaum, K.; Michler, T.; Pichlmair, A.; Ludwig, C.; Kuster, B. Data, reagents, assays and merits of proteomics for SARS-CoV-2 research and testing. Mol. Cell. Proteomics, 2020, 19(9), 1503-1522. doi: 10.1074/mcp.RA120.002164 PMID: 32591346
- Stukalov, A.; Girault, V.; Grass, V.; Karayel, O.; Bergant, V.; Urban, C.; Haas, D.A.; Huang, Y.; Oubraham, L.; Wang, A.; Hamad, M.S.; Piras, A.; Hansen, F.M.; Tanzer, M.C.; Paron, I.; Zinzula, L.; Engleitner, T.; Reinecke, M.; Lavacca, T.M.; Ehmann, R.; Wölfel, R.; Jores, J.; Kuster, B.; Protzer, U.; Rad, R.; Ziebuhr, J.; Thiel, V.; Scaturro, P.; Mann, M.; Pichlmair, A. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature, 2021, 594(7862), 246-252. doi: 10.1038/s41586-021-03493-4 PMID: 33845483
- Hekman, R.M.; Hume, A.J.; Goel, R.K.; Abo, K.M.; Huang, J.; Blum, B.C.; Werder, R.B.; Suder, E.L.; Paul, I.; Phanse, S.; Youssef, A.; Alysandratos, K.D.; Padhorny, D.; Ojha, S.; Mora-Martin, A.; Kretov, D.; Ash, P.E.A.; Verma, M.; Zhao, J.; Patten, J.J.; Villacorta-Martin, C.; Bolzan, D.; Perea-Resa, C.; Bullitt, E.; Hinds, A.; Tilston-Lunel, A.; Varelas, X.; Farhangmehr, S.; Braunschweig, U.; Kwan, J.H.; McComb, M.; Basu, A.; Saeed, M.; Perissi, V.; Burks, E.J.; Layne, M.D.; Connor, J.H.; Davey, R.; Cheng, J.X.; Wolozin, B.L.; Blencowe, B.J.; Wuchty, S.; Lyons, S.M.; Kozakov, D.; Cifuentes, D.; Blower, M.; Kotton, D.N.; Wilson, A.A.; Mühlberger, E.; Emili, A. Actionable cytopathogenic host responses of human alveolar type 2 cells to SARS-CoV-2. Mol. Cell, 2021, 81(1), 212. doi: 10.1016/j.molcel.2020.12.028 PMID: 33417854
- Klann, K.; Bojkova, D.; Tascher, G.; Ciesek, S.; Münch, C.; Cinatl, J. Growth factor receptor signaling inhibition prevents SARS-CoV-2 replication. Mol. Cell, 2020, 80(1), 164-174.e4. doi: 10.1016/j.molcel.2020.08.006 PMID: 32877642
- Laurent, E.M.N.; Sofianatos, Y.; Komarova, A.; Gimeno, J.P.; Tehrani, P.S.; Kim, D.K.; Abdouni, H.; Duhamel, M.; Cassonnet, P.; Knapp, J.J.; Kuang, D.; Chawla, A.; Sheykhkarimli, D.; Rayhan, A.; Li, R.; Pogoutse, O.; Hill, D.E.; Calderwood, M.A.; Falter-Braun, P.; Aloy, P.; Stelzl, U.; Vidal, M.; Gingras, A.C.; Pavlopoulos, G.A.; Van Der Werf, S.; Fournier, I.; Roth, F.P.; Salzet, M.; Demeret, C.; Jacob, Y.; Coyaud, E. Global BioID-based SARS-CoV-2 proteins proximal interactome unveils novel ties between viral polypeptides and host factors involved in multiple COVID19-associated mechanisms. bioRxiv, 2020. doi: 10.1101/2020.08.28.272955
- Samavarchi-Tehrani, P.; Abdouni, H.; Knight, J.D.R.; Astori, A.; Samson, R.; Lin, Z-Y.; Kim, D-K.; Knapp, J.J.; St-Germain, J.; Go, C.D.; Larsen, B.; Wong, C.J.; Cassonnet, P.; Demeret, C.; Jacob, Y.; Roth, F.P.; Raught, B.; Gingras, A-C.A. SARS-CoV-2 - host proximity interactome. bioRxiv, 2020.
- St-Germain, J.R.; Astori, A.; Samavarchi-Tehrani, P.; Abdouni, H.; Macwan, V.; Kim, D-K.; Knapp, J.J.; Roth, F.P.; Gingras, A.C.; Raught, B.A. SARS-CoV-2 BioID-based virus-host membrane protein interactome and virus peptide compendium: new proteomics resources for COVID-19 research. bioRxiv, 2020. doi: 10.1101/2020.08.28.269175
- Datta, S.; Tavares, A.H.; Reyes-Robles, T.; Ryu, K.A.; Khan, N.; Bechtel, T.J.; Bertoch, J.M.; White, C.H.; Hazuda, D.J.; Vora, K.A.; Hett, E.C.; Fadeyi, O.O.; Oslund, R.C.; Saeed, M.; Emili, A. High resolution photocatalytic mapping of SARS-CoV-2 Spike protein-host cell membrane interactions. bioRxiv, 2022. doi: 10.1101/2022.09.02.506438
- Liu, X.; Huuskonen, S.; Laitinen, T.; Redchuk, T.; Bogacheva, M.; Salokas, K.; Pöhner, I.; Öhman, T.; Tonduru, A.K.; Hassinen, A.; Gawriyski, L.; Keskitalo, S.; Vartiainen, M.K.; Pietiäinen, V.; Poso, A.; Varjosalo, M. SARS-CoV-2host proteome interactions for antiviral drug discovery. Mol. Syst. Biol., 2021, 17(11), e10396. doi: 10.15252/msb.202110396 PMID: 34709727
- EPHA2. Available from: https://thebiogrid.org/108288/summary/homo-sapiens/epha2.html
- Oughtred, R.; Rust, J.; Chang, C.; Breitkreutz, B.J.; Stark, C.; Willems, A.; Boucher, L.; Leung, G.; Kolas, N.; Zhang, F.; Dolma, S.; Coulombe-Huntington, J.; Chatr-aryamontri, A.; Dolinski, K.; Tyers, M. The BIOGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci., 2021, 30(1), 187-200. doi: 10.1002/pro.3978 PMID: 33070389
- Garg, A.; Kumar, G.; Sinha, S. New insights into nCOVID-19 binding domain and its cellular receptors. bioRxiv, 2020. doi: 10.1101/2020.09.06.285023
- Zalpoor, H.; Akbari, A.; Samei, A.; Forghaniesfidvajani, R.; Kamali, M.; Afzalnia, A.; Manshouri, S.; Heidari, F.; Pornour, M.; Khoshmirsafa, M.; Aazami, H.; Seif, F. The roles of Eph receptors, neuropilin-1, P2X7, and CD147 in COVID-19-associated neurodegenerative diseases: inflammasome and JaK inhibitors as potential promising therapies. Cell. Mol. Biol. Lett., 2022, 27(1), 10. doi: 10.1186/s11658-022-00311-1 PMID: 35109786
- McGill, J.R.; Lagassé, H.A.D.; Hernandez, N.; Hopkins, L.; Jankowski, W.; McCormick, Q.; Simhadri, V.; Golding, B.; Sauna, Z.E. A structural homology approach to identify potential cross-reactive antibody responses following SARS-CoV-2 infection. Sci. Rep., 2022, 12(1), 11388. doi: 10.1038/s41598-022-15225-3 PMID: 35794133
- Zalpoor, H.; Akbari, A.; Nabi-Afjadi, M. Ephrin (Eph) receptor and downstream signaling pathways: A promising potential targeted therapy for COVID-19 and associated cancers and diseases. Hum. Cell, 2022, 35(3), 952-954. doi: 10.1007/s13577-022-00697-2 PMID: 35377105
- BioRender Templates. Available from: https://app.biorender.com/biorender-templates
Supplementary files
