Recent Developments in Coumarin Derivatives as Neuroprotective Agents


Cite item

Full Text

Abstract

Background:Background: Neurodegenerative diseases are among the diseases that cause the foremost burden on the health system of the world. The diseases are multifaceted and difficult to treat because of their complex pathophysiology, which includes protein aggregation, neurotransmitter breakdown, metal dysregulation, oxidative stress, neuroinflammation, excitotoxicity, etc. None of the currently available therapies has been found to be significant in producing desired responses without any major side effects; besides, they only give symptomatic relief otherwise indicated off-episode relief. Targeting various pathways, namely choline esterase, monoamine oxidase B, cannabinoid system, metal chelation, β-secretase, oxidative stress, etc., may lead to neurodegeneration. By substituting various functional moieties over the coumarin nucleus, researchers are trying to produce safer and more effective neuroprotective agents.

Objectives:This study aimed to review the current literature to produce compounds with lower side effects using coumarin as a pharmacophore.

Methods:In this review, we have attempted to compile various synthetic strategies that have been used to produce coumarin and various substitutional strategies used to produce neuropro-tective agents from the coumarin pharmacophore. Moreover, structure-activity relationships of substituting coumarin scaffold at various positions, which could be instrumental in designing new compounds, were also discussed.

Results:The literature review suggested that coumarins and their derivatives can act as neuro-protective agents following various mechanisms.

Conclusion:Various studies have demonstrated the neuroprotective activity of coumarin due to an oxaheterocyclic loop, which allows binding with a broad array of proteins, thus motivat-ing researchers to explore its potential as a lead against various neurodegenerative diseases.

About the authors

Prakash Mishra

Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab

Email: info@benthamscience.net

Amit Kumar

Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab

Email: info@benthamscience.net

Kamalpreet Kaur

Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab

Email: info@benthamscience.net

Vikas Jaitak

Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab

Author for correspondence.
Email: info@benthamscience.net

References

  1. Farooqui, A.A. Neurochemical aspects of neurotraumatic and neurodegenerative diseases; Springer, 2010, pp. 14-18. doi: 10.1007/978-1-4419-6652-0
  2. Deleidi, M.; Jäggle, M.; Rubino, G. Immune aging, dysmetabolism, and inflammation in neurological diseases. Front. Neurosci., 2015, 9, 172. doi: 10.3389/fnins.2015.00172 PMID: 26089771
  3. Bansal, R.; Singh, R. Exploring the potential of natural and synthetic neuroprotective steroids against neurodegenerative disorders: A literature review. Med. Res. Rev., 2018, 38(4), 1126-1158. doi: 10.1002/med.21458 PMID: 28697282
  4. Farooqui, A.A. Molecular aspects of neurodegeneration, neuroprotection, and regeneration in neurological disorders; Academic Press, 2020, pp. 2-4.
  5. Przedborski, S.; Vila, M.; Jackson-Lewis, V. Series Introduction: Neurodegeneration: What is it and where are we? J. Clin. Invest., 2003, 111(1), 3-10. doi: 10.1172/JCI200317522 PMID: 12511579
  6. Agrawal, M.; Biswas, A. Molecular diagnostics of neurodegenerative disorders. Front. Mol. Biosci., 2015, 2, 54. doi: 10.3389/fmolb.2015.00054 PMID: 26442283
  7. Poddar, M.K.; Chakraborty, A.; Banerjee, S. Neurodegeneration: Diagnosis, prevention, and therapy. In: Oxidoreductase; Mansour, M.A.; Blumenberg, M., Eds.; IntechOPen, 2021.
  8. Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; Fisher, J.L.; Fitzmaurice, C.; Giussani, G.; Glennie, L.; James, S.L.; Johnson, C.O.; Kassebaum, N.J.; Logroscino, G.; Marin, B.; Mountjoy-Venning, W.C.; Nguyen, M.; Ofori-Asenso, R.; Patel, A.P.; Piccininni, M.; Roth, G.A.; Steiner, T.J.; Stovner, L.J.; Szoeke, C.E.I.; Theadom, A.; Vollset, S.E.; Wallin, M.T.; Wright, C.; Zunt, J.R.; Abbasi, N.; Abd-Allah, F.; Abdelalim, A.; Abdollahpour, I.; Aboyans, V.; Abraha, H.N.; Acharya, D.; Adamu, A.A.; Adebayo, O.M.; Adeoye, A.M.; Adsuar, J.C.; Afarideh, M.; Agrawal, S.; Ahmadi, A.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akinyemi, R.O.; Akseer, N.; Al-Eyadhy, A.; Al-Shahi Salman, R.; Alahdab, F.; Alene, K.A.; Aljunid, S.M.; Altirkawi, K.; Alvis-Guzman, N.; Anber, N.H.; Antonio, C.A.T.; Arabloo, J.; Aremu, O.; Ärnlöv, J.; Asayesh, H.; Asghar, R.J.; Atalay, H.T.; Awasthi, A.; Ayala Quintanilla, B.P.; Ayuk, T.B.; Badawi, A.; Banach, M.; Banoub, J.A.M.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Baune, B.T.; Bedi, N.; Behzadifar, M.; Behzadifar, M.; Béjot, Y.; Bekele, B.B.; Belachew, A.B.; Bennett, D.A.; Bensenor, I.M.; Berhane, A.; Beuran, M.; Bhattacharyya, K.; Bhutta, Z.A.; Biadgo, B.; Bijani, A.; Bililign, N.; Bin Sayeed, M.S.; Blazes, C.K.; Brayne, C.; Butt, Z.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, M.; Cárdenas, R.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castro, F.; Catalá-López, F.; Cerin, E.; Chaiah, Y.; Chang, J-C.; Chatziralli, I.; Chiang, P.P-C.; Christensen, H.; Christopher, D.J.; Cooper, C.; Cortesi, P.A.; Costa, V.M.; Criqui, M.H.; Crowe, C.S.; Damasceno, A.A.M.; Daryani, A.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Leo, D.; Demoz, G.T.; Deribe, K.; Dharmaratne, S.D.; Diaz, D.; Dinberu, M.T.; Djalalinia, S.; Doku, D.T.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Edvardsson, D.; El-Khatib, Z.; Endres, M.; Endries, A.Y.; Eskandarieh, S.; Esteghamati, A.; Esteghamati, S.; Farhadi, F.; Faro, A.; Farzadfar, F.; Farzaei, M.H.; Fatima, B.; Fereshtehnejad, S-M.; Fernandes, E.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fukumoto, T.; Ganji, M.; Gankpe, F.G.; Garcia-Gordillo, M.A.; Gebre, A.K.; Gebremichael, T.G.; Gelaw, B.K.; Geleijnse, J.M.; Geremew, D.; Gezae, K.E.; Ghasemi-Kasman, M.; Gidey, M.Y.; Gill, P.S.; Gill, T.K.; Girma, E.T.; Gnedovskaya, E.V.; Goulart, A.C.; Grada, A.; Grosso, G.; Guo, Y.; Gupta, R.; Gupta, R.; Haagsma, J.A.; Hagos, T.B.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hao, Y.; Haro, J.M.; Hassankhani, H.; Hassen, H.Y.; Havmoeller, R.; Hay, S.I.; Hegazy, M.I.; Heidari, B.; Henok, A.; Heydarpour, F.; Hoang, C.L.; Hole, M.K.; Homaie Rad, E.; Hosseini, S.M.; Hu, G.; Igumbor, E.U.; Ilesanmi, O.S.; Irvani, S.S.N.; Islam, S.M.S.; Jakovljevic, M.; Javanbakht, M.; Jha, R.P.; Jobanputra, Y.B.; Jonas, J.B.; Jozwiak, J.J.; Jürisson, M.; Kahsay, A.; Kalani, R.; Kalkonde, Y.; Kamil, T.A.; Kanchan, T.; Karami, M.; Karch, A.; Karimi, N.; Kasaeian, A.; Kassa, T.D.; Kassa, Z.Y.; Kaul, A.; Kefale, A.T.; Keiyoro, P.N.; Khader, Y.S.; Khafaie, M.A.; Khalil, I.A.; Khan, E.A.; Khang, Y-H.; Khazaie, H.; Kiadaliri, A.A.; Kiirithio, D.N.; Kim, A.S.; Kim, D.; Kim, Y-E.; Kim, Y.J.; Kisa, A.; Kokubo, Y.; Koyanagi, A.; Krishnamurthi, R.V.; Kuate Defo, B.; Kucuk Bicer, B.; Kumar, M.; Lacey, B.; Lafranconi, A.; Lansingh, V.C.; Latifi, A.; Leshargie, C.T.; Li, S.; Liao, Y.; Linn, S.; Lo, W.D.; Lopez, J.C.F.; Lorkowski, S.; Lotufo, P.A.; Lucas, R.M.; Lunevicius, R.; Mackay, M.T.; Mahotra, N.B.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; März, W.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Mate, K.K.V.; McAlinden, C.; McGrath, J.J.; Mehta, V.; Meier, T.; Meles, H.G.; Melese, A.; Memiah, P.T.N.; Memish, Z.A.; Mendoza, W.; Mengistu, D.T.; Mengistu, G.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Miller, T.R.; Mini, G.K.; Mirrakhimov, E.M.; Moazen, B.; Mohajer, B.; Mohammad Gholi Mezerji, N.; Mohammadi, M.; Mohammadi-Khanaposhtani, M.; Mohammadibakhsh, R.; Mohammadnia-Afrouzi, M.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Monasta, L.; Mondello, S.; Moodley, Y.; Moosazadeh, M.; Moradi, G.; Moradi-Lakeh, M.; Moradinazar, M.; Moraga, P.; Moreno Velásquez, I.; Morrison, S.D.; Mousavi, S.M.; Muhammed, O.S.; Muruet, W.; Musa, K.I.; Mustafa, G.; Naderi, M.; Nagel, G.; Naheed, A.; Naik, G.; Najafi, F.; Nangia, V.; Negoi, I.; Negoi, R.I.; Newton, C.R.J.; Ngunjiri, J.W.; Nguyen, C.T.; Nguyen, L.H.; Ningrum, D.N.A.; Nirayo, Y.L.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nourollahpour Shiadeh, M.; Nyasulu, P.S.; Ogah, O.S.; Oh, I-H.; Olagunju, A.T.; Olagunju, T.O.; Olivares, P.R.; Onwujekwe, O.E.; Oren, E.; Owolabi, M.O.; Pa, M.; Pakpour, A.H.; Pan, W-H.; Panda-Jonas, S.; Pandian, J.D.; Patel, S.K.; Pereira, D.M.; Petzold, M.; Pillay, J.D.; Piradov, M.A.; Polanczyk, G.V.; Polinder, S.; Postma, M.J.; Poulton, R.; Poustchi, H.; Prakash, S.; Prakash, V.; Qorbani, M.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, M.A.; Rajati, F.; Ram, U.; Ranta, A.; Rawaf, D.L.; Rawaf, S.; Reinig, N.; Reis, C.; Renzaho, A.M.N.; Resnikoff, S.; Rezaeian, S.; Rezai, M.S.; Rios González, C.M.; Roberts, N.L.S.; Roever, L.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rostami, A.; Sabbagh, P.; Sacco, R.L.; Sachdev, P.S.; Saddik, B.; Safari, H.; Safari-Faramani, R.; Safi, S.; Safiri, S.; Sagar, R.; Sahathevan, R.; Sahebkar, A.; Sahraian, M.A.; Salamati, P.; Salehi Zahabi, S.; Salimi, Y.; Samy, A.M.; Sanabria, J.; Santos, I.S.; Santric Milicevic, M.M.; Sarrafzadegan, N.; Sartorius, B.; Sarvi, S.; Sathian, B.; Satpathy, M.; Sawant, A.R.; Sawhney, M.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Seedat, S.; Sepanlou, S.G.; Shabaninejad, H.; Shafieesabet, A.; Shaikh, M.A.; Shakir, R.A.; Shams-Beyranvand, M.; Shamsizadeh, M.; Sharif, M.; Sharif-Alhoseini, M.; She, J.; Sheikh, A.; Sheth, K.N.; Shigematsu, M.; Shiri, R.; Shirkoohi, R.; Shiue, I.; Siabani, S.; Siddiqi, T.J.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silberberg, D.H.; Silva, J.P.; Silveira, D.G.A.; Singh, J.A.; Sinha, D.N.; Skiadaresi, E.; Smith, M.; Sobaih, B.H.; Sobhani, S.; Soofi, M.; Soyiri, I.N.; Sposato, L.A.; Stein, D.J.; Stein, M.B.; Stokes, M.A.; Sufiyan, M.B.; Sykes, B.L.; Sylaja, P.N.; Tabarés-Seisdedos, R.; Te Ao, B.J.; Tehrani-Banihashemi, A.; Temsah, M-H.; Temsah, O.; Thakur, J.S.; Thrift, A.G.; Topor-Madry, R.; Tortajada-Girbés, M.; Tovani-Palone, M.R.; Tran, B.X.; Tran, K.B.; Truelsen, T.C.; Tsadik, A.G.; Tudor Car, L.; Ukwaja, K.N.; Ullah, I.; Usman, M.S.; Uthman, O.A.; Valdez, P.R.; Vasankari, T.J.; Vasanthan, R.; Veisani, Y.; Venketasubramanian, N.; Violante, F.S.; Vlassov, V.; Vosoughi, K.; Vu, G.T.; Vujcic, I.S.; Wagnew, F.S.; Waheed, Y.; Wang, Y-P.; Weiderpass, E.; Weiss, J.; Whiteford, H.A.; Wijeratne, T.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Xu, G.; Yadollahpour, A.; Yamada, T.; Yano, Y.; Yaseri, M.; Yatsuya, H.; Yimer, E.M.; Yip, P.; Yisma, E.; Yonemoto, N.; Yousefifard, M.; Yu, C.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zandian, H.; Zare, Z.; Zhang, Y.; Zodpey, S.; Naghavi, M.; Murray, C.J.L.; Vos, T Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(5), 459-480. doi: 10.1016/S1474-4422(18)30499-X PMID: 30879893
  9. The top 10 causes of death. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  10. Hong, S.; Nagayach, A.; Lu, Y.; Peng, H.; Duong, Q.V.A.; Pham, N.B.; Vuong, C.A.; Bazan, N.G. A high fat, sugar, and salt Western diet induces motor‐muscular and sensory dysfunctions and neurodegeneration in mice during aging: Ameliorative action of metformin. CNS Neurosci. Ther., 2021, 27(12), 1458-1471. doi: 10.1111/cns.13726 PMID: 34510763
  11. Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol., 2019, 15(10), 565-581. doi: 10.1038/s41582-019-0244-7 PMID: 31501588
  12. Migliore, L.; Coppedè, F. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat. Res., 2009, 667(1-2), 82-97. doi: 10.1016/j.mrfmmm.2008.10.011 PMID: 19026668
  13. Cory-Slechta, D.; Sobolewski, M.; Oberdörster, G. Air pollution-related brain metal dyshomeostasis as a potential risk factor for neurodevelopmental disorders and neurodegenerative diseases. Atmosphere (Basel), 2020, 11(10), 1098. doi: 10.3390/atmos11101098
  14. Bombois, S.; Derambure, P.; Pasquier, F.; Monaca, C. Sleep disorders in aging and dementia. J. Nutr. Health Aging, 2010, 14(3), 212-217. doi: 10.1007/s12603-010-0052-7 PMID: 20191256
  15. Jellinger, K.A. Basic mechanisms of neurodegeneration: a critical update. J. Cell. Mol. Med., 2010, 14(3), 457-487. doi: 10.1111/j.1582-4934.2010.01010.x PMID: 20070435
  16. Fricker, M.; Tolkovsky, A.M.; Borutaite, V.; Coleman, M.; Brown, G.C. Neuronal cell death. Physiol. Rev., 2018, 98(2), 813-880. doi: 10.1152/physrev.00011.2017 PMID: 29488822
  17. Wang, D.; Hiesinger, P.R. Autophagy, neuron-specific degradation and neurodegeneration. Autophagy, 2012, 8(4), 711-713. doi: 10.4161/auto.19660 PMID: 22498474
  18. Plotegher, N.; Filadi, R.; Pizzo, P.; Duchen, M.R. Excitotoxicity revisited: Mitochondria on the verge of a nervous breakdown. Trends Neurosci., 2021, 44(5), 342-351. doi: 10.1016/j.tins.2021.01.001 PMID: 33608137
  19. Rehman, M.U.; Wali, A.F.; Ahmad, A.; Shakeel, S.; Rasool, S.; Ali, R.; Rashid, S.M.; Madkhali, H.; Ganaie, M.A.; Khan, R. Neuroprotective strategies for neurological disorders by natural products: an update. Curr. Neuropharmacol., 2019, 17(3), 247-267. doi: 10.2174/1570159X16666180911124605 PMID: 30207234
  20. Chang, R.C-C.; Ho, Y-S. Introductory chapter: Concept of neuroprotection-A new perspective. In: Neuroprotection; Chang, R.C-C.; Ho, Y-S., Eds.; InTechOpen, 2019. doi: 10.5772/intechopen.77296
  21. New Drugs at FDA: CDER’s New Molecular Entities and New Therapeutic Biological Products. 2021. Available from: https://www.fda.gov/drugs/development-approval-process-drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products
  22. Durães, F.; Pinto, M.; Sousa, E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel), 2018, 11(2), 44. doi: 10.3390/ph11020044 PMID: 29751602
  23. Wu, L.; Wang, X.; Xu, W.; Farzaneh, F.; Xu, R. The structure and pharmacological functions of coumarins and their derivatives. Curr. Med. Chem., 2009, 16(32), 4236-4260. doi: 10.2174/092986709789578187 PMID: 19754420
  24. Matos, M.J.; Santana, L.; Uriarte, E.; Abreu, O.A.; Molina, E.; Yordi, E.G. Coumarins—an important class of phytochemicals. Phytochemicals-Isolation. Characterisation and Role in Human Health, 2015, 25, 533-538.
  25. Stefanachi, A.; Leonetti, F.; Pisani, L.; Catto, M.; Carotti, A. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules, 2018, 23(2), 250. doi: 10.3390/molecules23020250 PMID: 29382051
  26. Hu, Y.Q.; Xu, Z.; Zhang, S.; Wu, X.; Ding, J.W.; Lv, Z.S.; Feng, L.S. Recent developments of coumarin-containing derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 136, 122-130. doi: 10.1016/j.ejmech.2017.05.004 PMID: 28494250
  27. Mishra, S.; Pandey, A.; Manvati, S. Coumarin: An emerging antiviral agent. Heliyon, 2020, 6(1), e03217. doi: 10.1016/j.heliyon.2020.e03217 PMID: 32042967
  28. Seong, S.H.; Ali, M.Y.; Jung, H.A.; Choi, J.S. Umbelliferone derivatives exert neuroprotective effects by inhibiting monoamine oxidase A, self-amyloidβ aggregation, and lipid peroxidation. Bioorg. Chem., 2019, 92103293. doi: 10.1016/j.bioorg.2019.103293 PMID: 31557622
  29. Kostova, I.; Bhatia, S.; Grigorov, P.; Balkansky, S.; Parmar, V.S.; Prasad, A.K.; Saso, L. Coumarins as antioxidants. Curr. Med. Chem., 2011, 18(25), 3929-3951. doi: 10.2174/092986711803414395 PMID: 21824098
  30. Singh, A.; Sharma, S.; Arora, S.; Attri, S.; Kaur, P.; Kaur Gulati, H.; Bhagat, K.; Kumar, N.; Singh, H.; Vir Singh, J.; Bedi, M.S.P. New coumarin-benzotriazole based hybrid molecules as inhibitors of acetylcholinesterase and amyloid aggregation. Bioorg. Med. Chem. Lett., 2020, 30(20), 127477. doi: 10.1016/j.bmcl.2020.127477 PMID: 32781220
  31. Atmaca, M.; Bilgin, H.M.; Obay, B.D.; Diken, H.; Kelle, M.; Kale, E. The hepatoprotective effect of coumarin and coumarin derivates on carbon tetrachloride-induced hepatic injury by antioxidative activities in rats. J. Physiol. Biochem., 2011, 67(4), 569-576. doi: 10.1007/s13105-011-0103-5 PMID: 21656273
  32. Sutar, S.M.; Savanur, H.M.; Malunavar, S.S.; Pawashe, G.M.; Aridoss, G.; Kim, K.M.; Lee, J.Y.; Kalkhambkar, R.G. Synthesis and molecular modelling studies of coumarin and 1‐aza‐coumarin linked miconazole analogues and their antimicrobial properties. ChemistrySelect, 2020, 5(4), 1322-1330. doi: 10.1002/slct.201903572
  33. Chen, L.Z.; Sun, W.W.; Bo, L.; Wang, J.Q.; Xiu, C.; Tang, W.J.; Shi, J.B.; Zhou, H.P.; Liu, X.H. New arylpyrazoline-coumarins: Synthesis and anti-inflammatory activity. Eur. J. Med. Chem., 2017, 138, 170-181. doi: 10.1016/j.ejmech.2017.06.044 PMID: 28667873
  34. Kasperkiewicz, K.; Ponczek, M.B.; Owczarek, J.; Guga, P.; Budzisz, E. Antagonists of vitamin K—popular coumarin drugs and new synthetic and natural coumarin derivatives. Molecules, 2020, 25(6), 1465. doi: 10.3390/molecules25061465 PMID: 32213944
  35. Bhattarai, N.; Kumbhar, A.A.; Pokharel, Y.R.; Yadav, P.N. Anticancer potential of coumarin and its derivatives. Mini Rev. Med. Chem., 2021, 21(19), 2996-3029. doi: 10.2174/18755607MTE1uMjAm4 PMID: 33820507
  36. Dandriyal, J.; Kaur, K.; Jaitak, V. Synthesis and in silico studies of c-4 substituted coumarin analogues as anticancer agents. Curr. Computeraided Drug Des., 2021, 17(4), 560-570. doi: 10.2174/1573409916666200628104638 PMID: 32598267
  37. Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur. J. Med. Chem., 2016, 119, 141-168. doi: 10.1016/j.ejmech.2016.03.087 PMID: 27155469
  38. Kumar, M.; Singla, R.; Dandriyal, J.; Jaitak, V. Coumarin derivatives as anticancer agents for lung cancer therapy: A review. Anticancer. Agents Med. Chem., 2018, 18(7), 964-984. doi: 10.2174/1871520618666171229185926 PMID: 29298657
  39. Thakur, A.; Kaur, K.; Sharma, P.; Singla, R.; Singh, S.; Jaitak, V. Synthesis, in vitro, and docking analysis of C-3 substituted coumarin analogues as anticancer agents. Curr. Computeraided Drug Des., 2021, 17(2), 161-172. doi: 10.2174/1573409916666200120114641 PMID: 31987025
  40. Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem., 2015, 101, 476-495. doi: 10.1016/j.ejmech.2015.07.010 PMID: 26188907
  41. Li, C.; Zhu, H.; Zhang, H.; Yang, Y.; Wang, F. Synthesis of 2H-chromenones from salicylaldehydes and arylacetonitriles. Molecules, 2017, 22(7), 1197. doi: 10.3390/molecules22071197 PMID: 28718827
  42. Choi, H.; Kim, J.; Lee, K. Metal-free, Brønsted acid-mediated synthesis of coumarin derivatives from phenols and propiolic acids. Tetrahedron Lett., 2016, 57(32), 3600-3603. doi: 10.1016/j.tetlet.2016.06.039
  43. Fiorito, S.; Taddeo, V.A.; Genovese, S.; Epifano, F. A green chemical synthesis of coumarin-3-carboxylic and cinnamic acids using crop-derived products and waste waters as solvents. Tetrahedron Lett., 2016, 57(43), 4795-4798. doi: 10.1016/j.tetlet.2016.09.023
  44. Gao, W.C.; Liu, T.; Zhang, B.; Li, X.; Wei, W.L.; Liu, Q.; Tian, J.; Chang, H.H. Synthesis of 3-sulfenylated coumarins: BF3•Et2 O-mediated electrophilic cyclization of aryl alkynoates using N-sulfanylsuccinimides. J. Org. Chem., 2016, 81(22), 11297-11304. doi: 10.1021/acs.joc.6b02271 PMID: 27704858
  45. Chen, L.; Cui, Y.M.; Xu, Z.; Cao, J.; Zheng, Z.J.; Xu, L.W. An efficient approach toward formation of polycyclic coumarin derivatives via carbocation-initiated 4+2 cycloaddition and atom-economical photo-irradiated cyclization. Chem. Commun. (Camb.), 2016, 52(74), 11131-11134. doi: 10.1039/C6CC05698A PMID: 27550635
  46. Li, G.T.; Li, Z.K.; Gu, Q.; You, S.L. Asymmetric synthesis of 4-Aryl-3, 4-dihydrocoumarins by N-heterocyclic carbene catalyzed annulation of phenols with enals. Org. Lett., 2017, 19(6), 1318-1321. doi: 10.1021/acs.orglett.7b00088 PMID: 28233489
  47. Qiu, G.; Liu, T.; Ding, Q. Tandem oxidative radical brominative addition of activated alkynes and spirocyclization: switchable synthesis of 3-bromocoumarins and 3-bromo spiro-4,5 trienone. Org. Chem. Front., 2016, 3(4), 510-515. doi: 10.1039/C6QO00041J
  48. Pérez, J.M.; Cano, R.; McGlacken, G.P.; Ramón, D.J. Palladium(II) oxide impregnated on magnetite as a catalyst for the synthesis of 4-arylcoumarins via a Heck-arylation/cyclization process. RSC Advances, 2016, 6(43), 36932-36941. doi: 10.1039/C6RA01731B
  49. Huang, X.; Zhu, T.; Huang, Z.; Zhang, Y.; Jin, Z.; Zanoni, G.; Chi, Y.R. Carbene-catalyzed formal 5+ 5 reaction for coumarin construction and total synthesis of defucogilvocarcins. Org. Lett., 2017, 19(22), 6188-6191. doi: 10.1021/acs.orglett.7b03102 PMID: 29111757
  50. Khan, D.; Mukhtar, S.; Alsharif, M.A.; Alahmdi, M.I.; Ahmed, N.PhI. (OAc) 2 mediated an efficient Knoevenagel reaction and their synthetic application for coumarin derivatives. Tetrahedron Lett., 2017, 58(32), 3183-3187. doi: 10.1016/j.tetlet.2017.07.018
  51. da Silveira Pinto, L.; de Souza, M. Sonochemistry as a general procedure for the synthesis of coumarins, including multigram synthesis. Synthesis, 2017, 49(12), 2677-2682. doi: 10.1055/s-0036-1590201
  52. Payra, S.; Saha, A.; Banerjee, S. Magnetically recoverable Fe3O4 nanoparticles for the one-pot synthesis of coumarin-3-carboxamide derivatives in aqueous ethanol. ChemistrySelect, 2018, 3(26), 7535-7540. doi: 10.1002/slct.201800523
  53. Shao, A.; Zhan, J.; Li, N.; Chiang, C.W.; Lei, A. External oxidant-free dehydrogenative lactonization of 2-arylbenzoic acids via visible-light photocatalysis. J. Org. Chem., 2018, 83(7), 3582-3589. doi: 10.1021/acs.joc.7b03195 PMID: 29505258
  54. Kawaai, K.; Yamaguchi, T.; Yamaguchi, E.; Endo, S.; Tada, N.; Ikari, A.; Itoh, A. Photoinduced generation of acyl radicals from simple aldehydes, access to 3-acyl-4-arylcoumarin derivatives, and evaluation of their antiandrogenic activities. J. Org. Chem., 2018, 83(4), 1988-1996. doi: 10.1021/acs.joc.7b02933 PMID: 29327585
  55. Chen, L.; Wu, L.; Duan, W.; Wang, T.; Li, L.; Zhang, K.; Zhu, J.; Peng, Z.; Xiong, F. Photoredox-catalyzed cascade radical cyclization of ester arylpropiolates with CF3SO2Cl to construct 3-trifluoromethyl coumarin derivatives. J. Org. Chem., 2018, 83(15), 8607-8614. doi: 10.1021/acs.joc.8b00581 PMID: 29878780
  56. Liu, Y.; Wang, Q.L.; Zhou, C.S.; Xiong, B.Q.; Zhang, P.L.; Kang, S.J.; Yang, C.A.; Tang, K.W. Visible-light-mediated cascade difunctionalization/cyclization of alkynoates with acyl chlorides for synthesis of 3-acylcoumarins. Tetrahedron Lett., 2018, 59(21), 2038-2041. doi: 10.1016/j.tetlet.2018.04.033
  57. Ren, H.; Zhang, M.; Zhang, A.Q. Synthesis of 3-sulfonyl coumarins through radical sulfonylation with disulfides under catalyst-free conditions. Tetrahedron, 2018, 74(33), 4435-4444. doi: 10.1016/j.tet.2018.07.014
  58. Yadav, V.K.; Srivastava, V.P.; Yadav, L.D.S. Pd-catalysed carbonylative annulation of salicylaldehydes with benzyl chlorides using N -formylsaccharin as a CO surrogate. New J. Chem., 2018, 42(19), 16281-16286. doi: 10.1039/C8NJ03173H
  59. Xu, G.D.; Huang, Z.Z.A. Rh(III)-catalyzed cascade C–H functionalization/cyclization reaction of salicylaldehydes with diazomalonates for the synthesis of 4-hydroxycoumarin derivatives. New J. Chem., 2018, 42(22), 18358-18362. doi: 10.1039/C8NJ04576C
  60. Mirosanloo, A.; Zareyee, D.; Khalilzadeh, M.A. Recyclable cellulose nanocrystal supported Palladium nanoparticles as an efficient heterogeneous catalyst for the solvent-free synthesis of coumarin derivatives via von Pechmann condensation. Appl. Organomet. Chem., 2018, 32(12), e4546. doi: 10.1002/aoc.4546
  61. Ramsay, R.R.; Majekova, M.; Medina, M.; Valoti, M. Key targets for multi-target ligands designed to combat neurodegeneration. Front. Neurosci., 2016, 10, 375. doi: 10.3389/fnins.2016.00375 PMID: 27597816
  62. Bawa, P.; Pradeep, P.; Kumar, P.; Choonara, Y.E.; Modi, G.; Pillay, V. Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov. Today, 2016, 21(12), 1886-1914. doi: 10.1016/j.drudis.2016.08.001 PMID: 27506871
  63. Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever‐increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021, 127(16), 3029-3030. doi: 10.1002/cncr.33587 PMID: 34086348
  64. Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51(3), 347-372. doi: 10.1021/jm7009364 PMID: 18181565
  65. Tzvetkov, N.T.; Atanasov, A.G. Natural product-based multitargeted ligands for Alzheimer’s disease treatment? Future Med. Chem., 2018, 10(15), 1745-1748. doi: 10.4155/fmc-2018-0146 PMID: 30043630
  66. Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 2018, 141(7), 1917-1933. doi: 10.1093/brain/awy132 PMID: 29850777
  67. Larner, A.J. Cholinesterase inhibitors: beyond Alzheimer’s disease. Expert Rev. Neurother., 2010, 10(11), 1699-1705. doi: 10.1586/ern.10.105 PMID: 21046692
  68. Mushtaq, G.; Greig, N.; Khan, J.; Kamal, M. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets, 2014, 13(8), 1432-1439. doi: 10.2174/1871527313666141023141545 PMID: 25345511
  69. Darvesh, S.; Hopkins, D.A.; Geula, C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci., 2003, 4(2), 131-138. doi: 10.1038/nrn1035 PMID: 12563284
  70. Pisani, L.; Catto, M.; De Palma, A.; Farina, R.; Cellamare, S.; Altomare, C.D. Discovery of potent dual binding site acetylcholinesterase inhibitors via homo-and heterodimerization of coumarin-based moieties. ChemMedChem, 2017, 12(16), 1349-1358. doi: 10.1002/cmdc.201700282 PMID: 28570763
  71. Sameem, B.; Saeedi, M.; Mahdavi, M.; Nadri, H.; Moghadam, F.H.; Edraki, N.; Khan, M.I.; Amini, M. Synthesis, docking study and neuroprotective effects of some novel pyrano3,2- cchromene derivatives bearing morpholine/phenylpiperazine moiety. Bioorg. Med. Chem., 2017, 25(15), 3980-3988. doi: 10.1016/j.bmc.2017.05.043 PMID: 28587871
  72. Sonmez, F.; Zengin Kurt, B.; Gazioglu, I.; Basile, L.; Dag, A.; Cappello, V.; Ginex, T.; Kucukislamoglu, M.; Guccione, S. Design, synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 285-297. doi: 10.1080/14756366.2016.1250753 PMID: 28097911
  73. Jiang, N.; Huang, Q.; Liu, J.; Liang, N.; Li, Q.; Li, Q.; Xie, S.S. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 146, 287-298. doi: 10.1016/j.ejmech.2018.01.055 PMID: 29407958
  74. Vafadarnejad, F.; Mahdavi, M.; Karimpour-Razkenari, E.; Edraki, N.; Sameem, B.; Khanavi, M.; Saeedi, M.; Akbarzadeh, T. Design and synthesis of novel coumarin-pyridinium hybrids: in vitro cholinesterase inhibitory activity. Bioorg. Chem., 2018, 77, 311-319. doi: 10.1016/j.bioorg.2018.01.013 PMID: 29421707
  75. Moradi, A.; Faraji, L.; Nadri, H.; Hasanpour, Z.; Moghadam, F.H.; Pakseresht, B.; Golshani, M.; Moghimi, S.; Ramazani, A.; Firoozpour, L.; Khoobi, M.; Foroumadi, A. Synthesis, docking study, and biological evaluation of novel umbellipherone/hymecromone derivatives as acetylcholinesterase/butyrylcholinesterase inhibitors. Med. Chem. Res., 2018, 27(7), 1741-1747. doi: 10.1007/s00044-018-2187-8
  76. Zhang, J.; Li, J.C.; Song, J.L.; Cheng, Z.Q.; Sun, J.Z.; Jiang, C.S. Synthesis and evaluation of coumarin/1,2,4-oxadiazole hybrids as selective BChE inhibitors with neuroprotective activity. J. Asian Nat. Prod. Res., 2019, 21(11), 1090-1103. doi: 10.1080/10286020.2018.1492566 PMID: 29991292
  77. Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Edraki, N.; Sharifzadeh, M.; Khanavi, M.; Akbarzadeh, T. Novel tacrine-coumarin hybrids linked to 1,2,3-triazole as anti-Alzheimer’s compounds: In vitro and in vivo biological evaluation and docking study. Bioorg. Chem., 2019, 83, 303-316. doi: 10.1016/j.bioorg.2018.10.056 PMID: 30396115
  78. Rastegari, A.; Nadri, H.; Mahdavi, M.; Moradi, A.; Mirfazli, S.S.; Edraki, N.; Moghadam, F.H.; Larijani, B.; Akbarzadeh, T.; Saeedi, M. Design, synthesis and anti-Alzheimer’s activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorg. Chem., 2019, 83, 391-401. doi: 10.1016/j.bioorg.2018.10.065 PMID: 30412794
  79. Hu, Y.H.; Yang, J.; Zhang, Y.; Liu, K.C.; Liu, T.; Sun, J.; Wang, X.J. Synthesis and biological evaluation of 3–(4-aminophenyl)-coumarin derivatives as potential anti-Alzheimer’s disease agents. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1083-1092. doi: 10.1080/14756366.2019.1615484 PMID: 31117844
  80. Tehrani, M.B.; Rezaei, Z.; Asadi, M.; Behnammanesh, H.; Nadri, H.; Afsharirad, F.; Moradi, A.; Larijani, B.; Mohammadi-Khanaposhtani, M.; Mahdavi, M. Design, synthesis, and cholinesterase inhibition assay of coumarin‐3‐carboxamide‐ N ‐morpholine hybrids as new anti‐alzheimer agents. Chem. Biodivers., 2019, 16(7), e1900144. doi: 10.1002/cbdv.201900144 PMID: 31155827
  81. Sepehri, N.; Mohammadi-Khanaposhtani, M.; Asemanipoor, N.; Hosseini, S.; Biglar, M.; Larijani, B.; Mahdavi, M.; Hamedifar, H.; Taslimi, P.; Sadeghian, N.; Gulcin, I. Synthesis, characterization, molecular docking, and biological activities of coumarin–1,2,3‐triazole‐acetamide hybrid derivatives. Arch. Pharm. (Weinheim), 2020, 353(10), 2000109. doi: 10.1002/ardp.202000109 PMID: 32643792
  82. de Souza, G.A.; da Silva, S.J.; Del Cistia, C.N.; Pitasse-Santos, P.; Pires, L.O.; Passos, Y.M.; Cordeiro, Y.; Cardoso, C.M.; Castro, R.N.; Sant’Anna, C.M.R.; Kümmerle, A.E. Discovery of novel dual-active 3-(4-(dimethylamino)phenyl)-7-aminoalcoxy-coumarin as potent and selective acetylcholinesterase inhibitor and antioxidant. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 631-637. doi: 10.1080/14756366.2019.1571270 PMID: 30727776
  83. Gardelly, M.; Trimech, B.; Horchani, M.; Znati, M.; Jannet, H.B.; Romdhane, A. Anti-tyrosinase and anti-butyrylcholinesterase quinolines-based coumarin derivatives: Synthesis and insights from molecular docking studies. Chemistry Africa, 2021, 4(3), 491-501. doi: 10.1007/s42250-021-00235-x
  84. Cenini, G.; Lloret, A.; Cascella, R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid. Med. Cell. Longev., 2019, 2019, 1-18. doi: 10.1155/2019/2105607 PMID: 31210837
  85. Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov., 2004, 3(3), 205-214. doi: 10.1038/nrd1330 PMID: 15031734
  86. Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem., 2015, 97, 55-74. doi: 10.1016/j.ejmech.2015.04.040 PMID: 25942353
  87. Jalili-Baleh, L.; Forootanfar, H.; Küçükkılınç, T.T.; Nadri, H.; Abdolahi, Z.; Ameri, A.; Jafari, M.; Ayazgok, B.; Baeeri, M.; Rahimifard, M.; Abbas Bukhari, S.N.; Abdollahi, M.; Ganjali, M.R.; Emami, S.; Khoobi, M.; Foroumadi, A. Design, synthesis and evaluation of novel multi-target-directed ligands for treatment of Alzheimer’s disease based on coumarin and lipoic acid scaffolds. Eur. J. Med. Chem., 2018, 152, 600-614. doi: 10.1016/j.ejmech.2018.04.058 PMID: 29763808
  88. Jalili-Baleh, L.; Nadri, H.; Forootanfar, H.; Samzadeh-Kermani, A.; Küçükkılınç, T.T.; Ayazgok, B.; Rahimifard, M.; Baeeri, M.; Doostmohammadi, M.; Firoozpour, L.; Bukhari, S.N.A.; Abdollahi, M.; Ganjali, M.R.; Emami, S.; Khoobi, M.; Foroumadi, A. Novel 3-phenylcoumarin–lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer’s disease. Bioorg. Chem., 2018, 79, 223-234. doi: 10.1016/j.bioorg.2018.04.030 PMID: 29775948
  89. Lan, J.S.; Ding, Y.; Liu, Y.; Kang, P.; Hou, J.W.; Zhang, X.Y.; Xie, S.S.; Zhang, T. Design, synthesis and biological evaluation of novel coumarin- N -benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 139, 48-59. doi: 10.1016/j.ejmech.2017.07.055 PMID: 28797883
  90. Kurt, B.Z.; Gazioglu, I.; Kandas, N.O.; Sonmez, F. Synthesis, anticholinesterase, antioxidant, and anti‐aflatoxigenic activity of novel coumarin carbamate derivatives. ChemistrySelect, 2018, 3(14), 3978-3983. doi: 10.1002/slct.201800142
  91. Paloczi, J.; Varga, Z.V.; Hasko, G.; Pacher, P. Neuroprotection in oxidative stress-related neurodegenerative diseases: role of endocannabinoid system modulation. Antioxid. Redox Signal., 2018, 29(1), 75-108. doi: 10.1089/ars.2017.7144 PMID: 28497982
  92. Pertwee, R.; Howlett, A.; Abood, M. Cannabinoid receptors and their ligands: Beyond CB1 and CB2. LXXIX International Union of basic and clinical pharmacology. Pharmacol. Rev., 2010, 62, 588-631. doi: 10.1124/pr.110.003004 PMID: 21079038
  93. Di Marzo, V. Endocannabinoids: Synthesis and degradation. Rev. Physiol. Biochem. Pharmacol., 2008, 160, 1-24. PMID: 18481028
  94. Fernández-Ruiz, J. The endocannabinoid system as a target for the treatment of motor dysfunction. Br. J. Pharmacol., 2009, 156(7), 1029-1040. doi: 10.1111/j.1476-5381.2008.00088.x PMID: 19220290
  95. Ahn, K.; Johnson, D.S.; Cravatt, B.F. Fatty acid amide hydrolase as a potential therapeutic target for the treatment of pain and CNS disorders. Expert Opin. Drug Discov., 2009, 4(7), 763-784. doi: 10.1517/17460440903018857 PMID: 20544003
  96. Montanari, S.; Allarà, M.; Scalvini, L.; Kostrzewa, M.; Belluti, F.; Gobbi, S.; Naldi, M.; Rivara, S.; Bartolini, M.; Ligresti, A.; Bisi, A.; Rampa, A. New coumarin derivatives as cholinergic and cannabinoid system modulators. Molecules, 2021, 26(11), 3254. doi: 10.3390/molecules26113254 PMID: 34071439
  97. Gaweska, H.; Fitzpatrick, P.F. Structures and mechanism of the monoamine oxidase family. Biomol. Concepts, 2011, 2(5), 365-377. doi: 10.1515/BMC.2011.030 PMID: 22022344
  98. Johnston, J.P. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem. Pharmacol., 1968, 17(7), 1285-1297. doi: 10.1016/0006-2952(68)90066-X PMID: 5659776
  99. Mallajosyula, J.K.; Kaur, D.; Chinta, S.J.; Rajagopalan, S.; Rane, A.; Nicholls, D.G.; Di Monte, D.A.; Macarthur, H.; Andersen, J.K. MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS One, 2008, 3(2), e1616. doi: 10.1371/journal.pone.0001616 PMID: 18286173
  100. Yeung, A.W.K.; Georgieva, M.G.; Atanasov, A.G.; Tzvetkov, N.T. Monoamine oxidases (MAOs) as privileged molecular targets in neuroscience: Research literature analysis. Front. Mol. Neurosci., 2019, 12, 143. doi: 10.3389/fnmol.2019.00143 PMID: 31191248
  101. Li, S.Y.; Wang, X.B.; Xie, S.S.; Jiang, N.; Wang, K.D.G.; Yao, H.Q.; Sun, H.B.; Kong, L.Y. Multifunctional tacrine–flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2013, 69, 632-646. doi: 10.1016/j.ejmech.2013.09.024 PMID: 24095756
  102. Samadi, A.; de los Ríos, C.; Bolea, I.; Chioua, M.; Iriepa, I.; Moraleda, I.; Bartolini, M.; Andrisano, V.; Gálvez, E.; Valderas, C.; Unzeta, M.; Marco-Contelles, J. Multipotent MAO and cholinesterase inhibitors for the treatment of Alzheimer’s disease: Synthesis, pharmacological analysis and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amine. Eur. J. Med. Chem., 2012, 52, 251-262. doi: 10.1016/j.ejmech.2012.03.022 PMID: 22503231
  103. Joubert, J.; Foka, G.B.; Repsold, B.P.; Oliver, D.W.; Kapp, E.; Malan, S.F. Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 853-864. doi: 10.1016/j.ejmech.2016.09.041 PMID: 27744252
  104. He, Q.; Liu, J.; Lan, J.S.; Ding, J.; Sun, Y.; Fang, Y.; Jiang, N.; Yang, Z.; Sun, L.; Jin, Y.; Xie, S.S. Coumarin-dithiocarbamate hybrids as novel multitarget AChE and MAO-B inhibitors against Alzheimer’s disease: Design, synthesis and biological evaluation. Bioorg. Chem., 2018, 81, 512-528. doi: 10.1016/j.bioorg.2018.09.010 PMID: 30245233
  105. Repsold, B.P.; Malan, S.F.; Joubert, J.; Oliver, D.W. Multi-targeted directed ligands for Alzheimer’s disease: Design of novel lead coumarin conjugates. SAR QSAR Environ. Res., 2018, 29(3), 231-255. doi: 10.1080/1062936X.2018.1423641 PMID: 29390885
  106. Rullo, M.; Catto, M.; Carrieri, A.; de Candia, M.; Altomare, C.D.; Pisani, L. Chasing ChEs-MAO B multi-targeting 4-aminomethyl-7-benzyloxy-2H-chromen-2-ones. Molecules, 2019, 24(24), 4507. doi: 10.3390/molecules24244507 PMID: 31835376
  107. Rehuman, N.A.; Oh, J.M.; Nath, L.R.; Khames, A.; Abdelgawad, M.A.; Gambacorta, N.; Nicolotti, O.; Jat, R.K.; Kim, H.; Mathew, B. Halogenated coumarin–chalcones as multifunctional monoamine oxidase-b and butyrylcholinesterase inhibitors. ACS Omega, 2021, 6(42), 28182-28193. doi: 10.1021/acsomega.1c04252 PMID: 34723016
  108. Mzezewa, S.C.; Omoruyi, S.I.; Zondagh, L.S.; Malan, S.F.; Ekpo, O.E.; Joubert, J. Design, synthesis, and evaluation of 3,7-substituted coumarin derivatives as multifunctional Alzheimer’s disease agents. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1606-1620. doi: 10.1080/14756366.2021.1913137 PMID: 34281458
  109. Quezada, E.; Rodríguez-Enríquez, F.; Laguna, R.; Cutrín, E.; Otero, F.; Uriarte, E.; Viña, D. Curcumin–coumarin hybrid analogues as multitarget agents in neurodegenerative disorders. Molecules, 2021, 26(15), 4550. doi: 10.3390/molecules26154550 PMID: 34361702
  110. Rodríguez-Enríquez, F.; Viña, D.; Uriarte, E.; Laguna, R.; Matos, M.J. 7‐Amidocoumarins as multitarget agents against neurodegenerative diseases: Substitution pattern modulation. ChemMedChem, 2021, 16(1), 179-186. doi: 10.1002/cmdc.202000454 PMID: 32700464
  111. Pourabdi, L.; Küçükkılınç, T.T.; Khoshtale, F.; Ayazgök, B.; Nadri, H.; Farokhi Alashti, F.; Forootanfar, H.; Akbari, T.; Shafiei, M.; Foroumadi, A.; Sharifzadeh, M.; Shafiee Ardestani, M.; Abaee, M.S.; Firoozpour, L.; Khoobi, M.; Mojtahedi, M.M. Synthesis of new 3-arylcoumarins bearing N-benzyl triazole moiety: dual lipoxygenase and butyrylcholinesterase inhibitors with anti-amyloid aggregation and neuroprotective properties against Alzheimer’s disease. Front Chem., 2022, 98, 10233. doi: 10.3389/fchem.2021.810233 PMID: 35127652
  112. Rubino, J.T.; Franz, K.J. Coordination chemistry of copper proteins: How nature handles a toxic cargo for essential function. J. Inorg. Biochem., 2012, 107(1), 129-143. doi: 10.1016/j.jinorgbio.2011.11.024 PMID: 22204943
  113. Gonzalez, P.; Pota, K.; Turan, L.S.; da Costa, V.C.P.; Akkaraju, G.; Green, K.N. Synthesis, characterization, and activity of a triazine bridged antioxidant small molecule. ACS Chem. Neurosci., 2017, 8(11), 2414-2423. doi: 10.1021/acschemneuro.7b00184 PMID: 28768410
  114. Costas-Lago, M.C.; Besada, P.; Rodríguez-Enríquez, F.; Viña, D.; Vilar, S.; Uriarte, E.; Borges, F.; Terán, C. Synthesis and structure-activity relationship study of novel 3-heteroarylcoumarins based on pyridazine scaffold as selective MAO-B inhibitors. Eur. J. Med. Chem., 2017, 139, 1-11. doi: 10.1016/j.ejmech.2017.07.045 PMID: 28797881
  115. Rodríguez-Enríquez, F.; Costas-Lago, M.C.; Besada, P.; Alonso-Pena, M.; Torres-Terán, I.; Viña, D.; Fontenla, J.Á.; Sturlese, M.; Moro, S.; Quezada, E.; Terán, C. Novel coumarin-pyridazine hybrids as selective MAO-B inhibitors for the Parkinson’s disease therapy. Bioorg. Chem., 2020, 104104203. doi: 10.1016/j.bioorg.2020.104203 PMID: 32932120

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers