Recent Developments in Coumarin Derivatives as Neuroprotective Agents
- Authors: Mishra P.1, Kumar A.1, Kaur K.1, Jaitak V.1
-
Affiliations:
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab
- Issue: Vol 31, No 35 (2024)
- Pages: 5702-5738
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645072
- DOI: https://doi.org/10.2174/0929867331666230714160047
- ID: 645072
Cite item
Full Text
Abstract
Background:Background: Neurodegenerative diseases are among the diseases that cause the foremost burden on the health system of the world. The diseases are multifaceted and difficult to treat because of their complex pathophysiology, which includes protein aggregation, neurotransmitter breakdown, metal dysregulation, oxidative stress, neuroinflammation, excitotoxicity, etc. None of the currently available therapies has been found to be significant in producing desired responses without any major side effects; besides, they only give symptomatic relief otherwise indicated off-episode relief. Targeting various pathways, namely choline esterase, monoamine oxidase B, cannabinoid system, metal chelation, β-secretase, oxidative stress, etc., may lead to neurodegeneration. By substituting various functional moieties over the coumarin nucleus, researchers are trying to produce safer and more effective neuroprotective agents.
Objectives:This study aimed to review the current literature to produce compounds with lower side effects using coumarin as a pharmacophore.
Methods:In this review, we have attempted to compile various synthetic strategies that have been used to produce coumarin and various substitutional strategies used to produce neuropro-tective agents from the coumarin pharmacophore. Moreover, structure-activity relationships of substituting coumarin scaffold at various positions, which could be instrumental in designing new compounds, were also discussed.
Results:The literature review suggested that coumarins and their derivatives can act as neuro-protective agents following various mechanisms.
Conclusion:Various studies have demonstrated the neuroprotective activity of coumarin due to an oxaheterocyclic loop, which allows binding with a broad array of proteins, thus motivat-ing researchers to explore its potential as a lead against various neurodegenerative diseases.
About the authors
Prakash Mishra
Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab
Email: info@benthamscience.net
Amit Kumar
Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab
Email: info@benthamscience.net
Kamalpreet Kaur
Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab
Email: info@benthamscience.net
Vikas Jaitak
Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab
Author for correspondence.
Email: info@benthamscience.net
References
- Farooqui, A.A. Neurochemical aspects of neurotraumatic and neurodegenerative diseases; Springer, 2010, pp. 14-18. doi: 10.1007/978-1-4419-6652-0
- Deleidi, M.; Jäggle, M.; Rubino, G. Immune aging, dysmetabolism, and inflammation in neurological diseases. Front. Neurosci., 2015, 9, 172. doi: 10.3389/fnins.2015.00172 PMID: 26089771
- Bansal, R.; Singh, R. Exploring the potential of natural and synthetic neuroprotective steroids against neurodegenerative disorders: A literature review. Med. Res. Rev., 2018, 38(4), 1126-1158. doi: 10.1002/med.21458 PMID: 28697282
- Farooqui, A.A. Molecular aspects of neurodegeneration, neuroprotection, and regeneration in neurological disorders; Academic Press, 2020, pp. 2-4.
- Przedborski, S.; Vila, M.; Jackson-Lewis, V. Series Introduction: Neurodegeneration: What is it and where are we? J. Clin. Invest., 2003, 111(1), 3-10. doi: 10.1172/JCI200317522 PMID: 12511579
- Agrawal, M.; Biswas, A. Molecular diagnostics of neurodegenerative disorders. Front. Mol. Biosci., 2015, 2, 54. doi: 10.3389/fmolb.2015.00054 PMID: 26442283
- Poddar, M.K.; Chakraborty, A.; Banerjee, S. Neurodegeneration: Diagnosis, prevention, and therapy. In: Oxidoreductase; Mansour, M.A.; Blumenberg, M., Eds.; IntechOPen, 2021.
- Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; Fisher, J.L.; Fitzmaurice, C.; Giussani, G.; Glennie, L.; James, S.L.; Johnson, C.O.; Kassebaum, N.J.; Logroscino, G.; Marin, B.; Mountjoy-Venning, W.C.; Nguyen, M.; Ofori-Asenso, R.; Patel, A.P.; Piccininni, M.; Roth, G.A.; Steiner, T.J.; Stovner, L.J.; Szoeke, C.E.I.; Theadom, A.; Vollset, S.E.; Wallin, M.T.; Wright, C.; Zunt, J.R.; Abbasi, N.; Abd-Allah, F.; Abdelalim, A.; Abdollahpour, I.; Aboyans, V.; Abraha, H.N.; Acharya, D.; Adamu, A.A.; Adebayo, O.M.; Adeoye, A.M.; Adsuar, J.C.; Afarideh, M.; Agrawal, S.; Ahmadi, A.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akinyemi, R.O.; Akseer, N.; Al-Eyadhy, A.; Al-Shahi Salman, R.; Alahdab, F.; Alene, K.A.; Aljunid, S.M.; Altirkawi, K.; Alvis-Guzman, N.; Anber, N.H.; Antonio, C.A.T.; Arabloo, J.; Aremu, O.; Ärnlöv, J.; Asayesh, H.; Asghar, R.J.; Atalay, H.T.; Awasthi, A.; Ayala Quintanilla, B.P.; Ayuk, T.B.; Badawi, A.; Banach, M.; Banoub, J.A.M.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Baune, B.T.; Bedi, N.; Behzadifar, M.; Behzadifar, M.; Béjot, Y.; Bekele, B.B.; Belachew, A.B.; Bennett, D.A.; Bensenor, I.M.; Berhane, A.; Beuran, M.; Bhattacharyya, K.; Bhutta, Z.A.; Biadgo, B.; Bijani, A.; Bililign, N.; Bin Sayeed, M.S.; Blazes, C.K.; Brayne, C.; Butt, Z.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, M.; Cárdenas, R.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castro, F.; Catalá-López, F.; Cerin, E.; Chaiah, Y.; Chang, J-C.; Chatziralli, I.; Chiang, P.P-C.; Christensen, H.; Christopher, D.J.; Cooper, C.; Cortesi, P.A.; Costa, V.M.; Criqui, M.H.; Crowe, C.S.; Damasceno, A.A.M.; Daryani, A.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Leo, D.; Demoz, G.T.; Deribe, K.; Dharmaratne, S.D.; Diaz, D.; Dinberu, M.T.; Djalalinia, S.; Doku, D.T.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Edvardsson, D.; El-Khatib, Z.; Endres, M.; Endries, A.Y.; Eskandarieh, S.; Esteghamati, A.; Esteghamati, S.; Farhadi, F.; Faro, A.; Farzadfar, F.; Farzaei, M.H.; Fatima, B.; Fereshtehnejad, S-M.; Fernandes, E.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fukumoto, T.; Ganji, M.; Gankpe, F.G.; Garcia-Gordillo, M.A.; Gebre, A.K.; Gebremichael, T.G.; Gelaw, B.K.; Geleijnse, J.M.; Geremew, D.; Gezae, K.E.; Ghasemi-Kasman, M.; Gidey, M.Y.; Gill, P.S.; Gill, T.K.; Girma, E.T.; Gnedovskaya, E.V.; Goulart, A.C.; Grada, A.; Grosso, G.; Guo, Y.; Gupta, R.; Gupta, R.; Haagsma, J.A.; Hagos, T.B.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hao, Y.; Haro, J.M.; Hassankhani, H.; Hassen, H.Y.; Havmoeller, R.; Hay, S.I.; Hegazy, M.I.; Heidari, B.; Henok, A.; Heydarpour, F.; Hoang, C.L.; Hole, M.K.; Homaie Rad, E.; Hosseini, S.M.; Hu, G.; Igumbor, E.U.; Ilesanmi, O.S.; Irvani, S.S.N.; Islam, S.M.S.; Jakovljevic, M.; Javanbakht, M.; Jha, R.P.; Jobanputra, Y.B.; Jonas, J.B.; Jozwiak, J.J.; Jürisson, M.; Kahsay, A.; Kalani, R.; Kalkonde, Y.; Kamil, T.A.; Kanchan, T.; Karami, M.; Karch, A.; Karimi, N.; Kasaeian, A.; Kassa, T.D.; Kassa, Z.Y.; Kaul, A.; Kefale, A.T.; Keiyoro, P.N.; Khader, Y.S.; Khafaie, M.A.; Khalil, I.A.; Khan, E.A.; Khang, Y-H.; Khazaie, H.; Kiadaliri, A.A.; Kiirithio, D.N.; Kim, A.S.; Kim, D.; Kim, Y-E.; Kim, Y.J.; Kisa, A.; Kokubo, Y.; Koyanagi, A.; Krishnamurthi, R.V.; Kuate Defo, B.; Kucuk Bicer, B.; Kumar, M.; Lacey, B.; Lafranconi, A.; Lansingh, V.C.; Latifi, A.; Leshargie, C.T.; Li, S.; Liao, Y.; Linn, S.; Lo, W.D.; Lopez, J.C.F.; Lorkowski, S.; Lotufo, P.A.; Lucas, R.M.; Lunevicius, R.; Mackay, M.T.; Mahotra, N.B.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; März, W.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Mate, K.K.V.; McAlinden, C.; McGrath, J.J.; Mehta, V.; Meier, T.; Meles, H.G.; Melese, A.; Memiah, P.T.N.; Memish, Z.A.; Mendoza, W.; Mengistu, D.T.; Mengistu, G.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Miller, T.R.; Mini, G.K.; Mirrakhimov, E.M.; Moazen, B.; Mohajer, B.; Mohammad Gholi Mezerji, N.; Mohammadi, M.; Mohammadi-Khanaposhtani, M.; Mohammadibakhsh, R.; Mohammadnia-Afrouzi, M.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Monasta, L.; Mondello, S.; Moodley, Y.; Moosazadeh, M.; Moradi, G.; Moradi-Lakeh, M.; Moradinazar, M.; Moraga, P.; Moreno Velásquez, I.; Morrison, S.D.; Mousavi, S.M.; Muhammed, O.S.; Muruet, W.; Musa, K.I.; Mustafa, G.; Naderi, M.; Nagel, G.; Naheed, A.; Naik, G.; Najafi, F.; Nangia, V.; Negoi, I.; Negoi, R.I.; Newton, C.R.J.; Ngunjiri, J.W.; Nguyen, C.T.; Nguyen, L.H.; Ningrum, D.N.A.; Nirayo, Y.L.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nourollahpour Shiadeh, M.; Nyasulu, P.S.; Ogah, O.S.; Oh, I-H.; Olagunju, A.T.; Olagunju, T.O.; Olivares, P.R.; Onwujekwe, O.E.; Oren, E.; Owolabi, M.O.; Pa, M.; Pakpour, A.H.; Pan, W-H.; Panda-Jonas, S.; Pandian, J.D.; Patel, S.K.; Pereira, D.M.; Petzold, M.; Pillay, J.D.; Piradov, M.A.; Polanczyk, G.V.; Polinder, S.; Postma, M.J.; Poulton, R.; Poustchi, H.; Prakash, S.; Prakash, V.; Qorbani, M.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, M.A.; Rajati, F.; Ram, U.; Ranta, A.; Rawaf, D.L.; Rawaf, S.; Reinig, N.; Reis, C.; Renzaho, A.M.N.; Resnikoff, S.; Rezaeian, S.; Rezai, M.S.; Rios González, C.M.; Roberts, N.L.S.; Roever, L.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rostami, A.; Sabbagh, P.; Sacco, R.L.; Sachdev, P.S.; Saddik, B.; Safari, H.; Safari-Faramani, R.; Safi, S.; Safiri, S.; Sagar, R.; Sahathevan, R.; Sahebkar, A.; Sahraian, M.A.; Salamati, P.; Salehi Zahabi, S.; Salimi, Y.; Samy, A.M.; Sanabria, J.; Santos, I.S.; Santric Milicevic, M.M.; Sarrafzadegan, N.; Sartorius, B.; Sarvi, S.; Sathian, B.; Satpathy, M.; Sawant, A.R.; Sawhney, M.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Seedat, S.; Sepanlou, S.G.; Shabaninejad, H.; Shafieesabet, A.; Shaikh, M.A.; Shakir, R.A.; Shams-Beyranvand, M.; Shamsizadeh, M.; Sharif, M.; Sharif-Alhoseini, M.; She, J.; Sheikh, A.; Sheth, K.N.; Shigematsu, M.; Shiri, R.; Shirkoohi, R.; Shiue, I.; Siabani, S.; Siddiqi, T.J.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silberberg, D.H.; Silva, J.P.; Silveira, D.G.A.; Singh, J.A.; Sinha, D.N.; Skiadaresi, E.; Smith, M.; Sobaih, B.H.; Sobhani, S.; Soofi, M.; Soyiri, I.N.; Sposato, L.A.; Stein, D.J.; Stein, M.B.; Stokes, M.A.; Sufiyan, M.B.; Sykes, B.L.; Sylaja, P.N.; Tabarés-Seisdedos, R.; Te Ao, B.J.; Tehrani-Banihashemi, A.; Temsah, M-H.; Temsah, O.; Thakur, J.S.; Thrift, A.G.; Topor-Madry, R.; Tortajada-Girbés, M.; Tovani-Palone, M.R.; Tran, B.X.; Tran, K.B.; Truelsen, T.C.; Tsadik, A.G.; Tudor Car, L.; Ukwaja, K.N.; Ullah, I.; Usman, M.S.; Uthman, O.A.; Valdez, P.R.; Vasankari, T.J.; Vasanthan, R.; Veisani, Y.; Venketasubramanian, N.; Violante, F.S.; Vlassov, V.; Vosoughi, K.; Vu, G.T.; Vujcic, I.S.; Wagnew, F.S.; Waheed, Y.; Wang, Y-P.; Weiderpass, E.; Weiss, J.; Whiteford, H.A.; Wijeratne, T.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Xu, G.; Yadollahpour, A.; Yamada, T.; Yano, Y.; Yaseri, M.; Yatsuya, H.; Yimer, E.M.; Yip, P.; Yisma, E.; Yonemoto, N.; Yousefifard, M.; Yu, C.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zandian, H.; Zare, Z.; Zhang, Y.; Zodpey, S.; Naghavi, M.; Murray, C.J.L.; Vos, T Global, regional, and national burden of neurological disorders, 19902016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(5), 459-480. doi: 10.1016/S1474-4422(18)30499-X PMID: 30879893
- The top 10 causes of death. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
- Hong, S.; Nagayach, A.; Lu, Y.; Peng, H.; Duong, Q.V.A.; Pham, N.B.; Vuong, C.A.; Bazan, N.G. A high fat, sugar, and salt Western diet induces motor‐muscular and sensory dysfunctions and neurodegeneration in mice during aging: Ameliorative action of metformin. CNS Neurosci. Ther., 2021, 27(12), 1458-1471. doi: 10.1111/cns.13726 PMID: 34510763
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol., 2019, 15(10), 565-581. doi: 10.1038/s41582-019-0244-7 PMID: 31501588
- Migliore, L.; Coppedè, F. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat. Res., 2009, 667(1-2), 82-97. doi: 10.1016/j.mrfmmm.2008.10.011 PMID: 19026668
- Cory-Slechta, D.; Sobolewski, M.; Oberdörster, G. Air pollution-related brain metal dyshomeostasis as a potential risk factor for neurodevelopmental disorders and neurodegenerative diseases. Atmosphere (Basel), 2020, 11(10), 1098. doi: 10.3390/atmos11101098
- Bombois, S.; Derambure, P.; Pasquier, F.; Monaca, C. Sleep disorders in aging and dementia. J. Nutr. Health Aging, 2010, 14(3), 212-217. doi: 10.1007/s12603-010-0052-7 PMID: 20191256
- Jellinger, K.A. Basic mechanisms of neurodegeneration: a critical update. J. Cell. Mol. Med., 2010, 14(3), 457-487. doi: 10.1111/j.1582-4934.2010.01010.x PMID: 20070435
- Fricker, M.; Tolkovsky, A.M.; Borutaite, V.; Coleman, M.; Brown, G.C. Neuronal cell death. Physiol. Rev., 2018, 98(2), 813-880. doi: 10.1152/physrev.00011.2017 PMID: 29488822
- Wang, D.; Hiesinger, P.R. Autophagy, neuron-specific degradation and neurodegeneration. Autophagy, 2012, 8(4), 711-713. doi: 10.4161/auto.19660 PMID: 22498474
- Plotegher, N.; Filadi, R.; Pizzo, P.; Duchen, M.R. Excitotoxicity revisited: Mitochondria on the verge of a nervous breakdown. Trends Neurosci., 2021, 44(5), 342-351. doi: 10.1016/j.tins.2021.01.001 PMID: 33608137
- Rehman, M.U.; Wali, A.F.; Ahmad, A.; Shakeel, S.; Rasool, S.; Ali, R.; Rashid, S.M.; Madkhali, H.; Ganaie, M.A.; Khan, R. Neuroprotective strategies for neurological disorders by natural products: an update. Curr. Neuropharmacol., 2019, 17(3), 247-267. doi: 10.2174/1570159X16666180911124605 PMID: 30207234
- Chang, R.C-C.; Ho, Y-S. Introductory chapter: Concept of neuroprotection-A new perspective. In: Neuroprotection; Chang, R.C-C.; Ho, Y-S., Eds.; InTechOpen, 2019. doi: 10.5772/intechopen.77296
- New Drugs at FDA: CDERs New Molecular Entities and New Therapeutic Biological Products. 2021. Available from: https://www.fda.gov/drugs/development-approval-process-drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products
- Durães, F.; Pinto, M.; Sousa, E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel), 2018, 11(2), 44. doi: 10.3390/ph11020044 PMID: 29751602
- Wu, L.; Wang, X.; Xu, W.; Farzaneh, F.; Xu, R. The structure and pharmacological functions of coumarins and their derivatives. Curr. Med. Chem., 2009, 16(32), 4236-4260. doi: 10.2174/092986709789578187 PMID: 19754420
- Matos, M.J.; Santana, L.; Uriarte, E.; Abreu, O.A.; Molina, E.; Yordi, E.G. Coumarinsan important class of phytochemicals. Phytochemicals-Isolation. Characterisation and Role in Human Health, 2015, 25, 533-538.
- Stefanachi, A.; Leonetti, F.; Pisani, L.; Catto, M.; Carotti, A. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules, 2018, 23(2), 250. doi: 10.3390/molecules23020250 PMID: 29382051
- Hu, Y.Q.; Xu, Z.; Zhang, S.; Wu, X.; Ding, J.W.; Lv, Z.S.; Feng, L.S. Recent developments of coumarin-containing derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 136, 122-130. doi: 10.1016/j.ejmech.2017.05.004 PMID: 28494250
- Mishra, S.; Pandey, A.; Manvati, S. Coumarin: An emerging antiviral agent. Heliyon, 2020, 6(1), e03217. doi: 10.1016/j.heliyon.2020.e03217 PMID: 32042967
- Seong, S.H.; Ali, M.Y.; Jung, H.A.; Choi, J.S. Umbelliferone derivatives exert neuroprotective effects by inhibiting monoamine oxidase A, self-amyloidβ aggregation, and lipid peroxidation. Bioorg. Chem., 2019, 92103293. doi: 10.1016/j.bioorg.2019.103293 PMID: 31557622
- Kostova, I.; Bhatia, S.; Grigorov, P.; Balkansky, S.; Parmar, V.S.; Prasad, A.K.; Saso, L. Coumarins as antioxidants. Curr. Med. Chem., 2011, 18(25), 3929-3951. doi: 10.2174/092986711803414395 PMID: 21824098
- Singh, A.; Sharma, S.; Arora, S.; Attri, S.; Kaur, P.; Kaur Gulati, H.; Bhagat, K.; Kumar, N.; Singh, H.; Vir Singh, J.; Bedi, M.S.P. New coumarin-benzotriazole based hybrid molecules as inhibitors of acetylcholinesterase and amyloid aggregation. Bioorg. Med. Chem. Lett., 2020, 30(20), 127477. doi: 10.1016/j.bmcl.2020.127477 PMID: 32781220
- Atmaca, M.; Bilgin, H.M.; Obay, B.D.; Diken, H.; Kelle, M.; Kale, E. The hepatoprotective effect of coumarin and coumarin derivates on carbon tetrachloride-induced hepatic injury by antioxidative activities in rats. J. Physiol. Biochem., 2011, 67(4), 569-576. doi: 10.1007/s13105-011-0103-5 PMID: 21656273
- Sutar, S.M.; Savanur, H.M.; Malunavar, S.S.; Pawashe, G.M.; Aridoss, G.; Kim, K.M.; Lee, J.Y.; Kalkhambkar, R.G. Synthesis and molecular modelling studies of coumarin and 1‐aza‐coumarin linked miconazole analogues and their antimicrobial properties. ChemistrySelect, 2020, 5(4), 1322-1330. doi: 10.1002/slct.201903572
- Chen, L.Z.; Sun, W.W.; Bo, L.; Wang, J.Q.; Xiu, C.; Tang, W.J.; Shi, J.B.; Zhou, H.P.; Liu, X.H. New arylpyrazoline-coumarins: Synthesis and anti-inflammatory activity. Eur. J. Med. Chem., 2017, 138, 170-181. doi: 10.1016/j.ejmech.2017.06.044 PMID: 28667873
- Kasperkiewicz, K.; Ponczek, M.B.; Owczarek, J.; Guga, P.; Budzisz, E. Antagonists of vitamin Kpopular coumarin drugs and new synthetic and natural coumarin derivatives. Molecules, 2020, 25(6), 1465. doi: 10.3390/molecules25061465 PMID: 32213944
- Bhattarai, N.; Kumbhar, A.A.; Pokharel, Y.R.; Yadav, P.N. Anticancer potential of coumarin and its derivatives. Mini Rev. Med. Chem., 2021, 21(19), 2996-3029. doi: 10.2174/18755607MTE1uMjAm4 PMID: 33820507
- Dandriyal, J.; Kaur, K.; Jaitak, V. Synthesis and in silico studies of c-4 substituted coumarin analogues as anticancer agents. Curr. Computeraided Drug Des., 2021, 17(4), 560-570. doi: 10.2174/1573409916666200628104638 PMID: 32598267
- Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur. J. Med. Chem., 2016, 119, 141-168. doi: 10.1016/j.ejmech.2016.03.087 PMID: 27155469
- Kumar, M.; Singla, R.; Dandriyal, J.; Jaitak, V. Coumarin derivatives as anticancer agents for lung cancer therapy: A review. Anticancer. Agents Med. Chem., 2018, 18(7), 964-984. doi: 10.2174/1871520618666171229185926 PMID: 29298657
- Thakur, A.; Kaur, K.; Sharma, P.; Singla, R.; Singh, S.; Jaitak, V. Synthesis, in vitro, and docking analysis of C-3 substituted coumarin analogues as anticancer agents. Curr. Computeraided Drug Des., 2021, 17(2), 161-172. doi: 10.2174/1573409916666200120114641 PMID: 31987025
- Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem., 2015, 101, 476-495. doi: 10.1016/j.ejmech.2015.07.010 PMID: 26188907
- Li, C.; Zhu, H.; Zhang, H.; Yang, Y.; Wang, F. Synthesis of 2H-chromenones from salicylaldehydes and arylacetonitriles. Molecules, 2017, 22(7), 1197. doi: 10.3390/molecules22071197 PMID: 28718827
- Choi, H.; Kim, J.; Lee, K. Metal-free, Brønsted acid-mediated synthesis of coumarin derivatives from phenols and propiolic acids. Tetrahedron Lett., 2016, 57(32), 3600-3603. doi: 10.1016/j.tetlet.2016.06.039
- Fiorito, S.; Taddeo, V.A.; Genovese, S.; Epifano, F. A green chemical synthesis of coumarin-3-carboxylic and cinnamic acids using crop-derived products and waste waters as solvents. Tetrahedron Lett., 2016, 57(43), 4795-4798. doi: 10.1016/j.tetlet.2016.09.023
- Gao, W.C.; Liu, T.; Zhang, B.; Li, X.; Wei, W.L.; Liu, Q.; Tian, J.; Chang, H.H. Synthesis of 3-sulfenylated coumarins: BF3Et2 O-mediated electrophilic cyclization of aryl alkynoates using N-sulfanylsuccinimides. J. Org. Chem., 2016, 81(22), 11297-11304. doi: 10.1021/acs.joc.6b02271 PMID: 27704858
- Chen, L.; Cui, Y.M.; Xu, Z.; Cao, J.; Zheng, Z.J.; Xu, L.W. An efficient approach toward formation of polycyclic coumarin derivatives via carbocation-initiated 4+2 cycloaddition and atom-economical photo-irradiated cyclization. Chem. Commun. (Camb.), 2016, 52(74), 11131-11134. doi: 10.1039/C6CC05698A PMID: 27550635
- Li, G.T.; Li, Z.K.; Gu, Q.; You, S.L. Asymmetric synthesis of 4-Aryl-3, 4-dihydrocoumarins by N-heterocyclic carbene catalyzed annulation of phenols with enals. Org. Lett., 2017, 19(6), 1318-1321. doi: 10.1021/acs.orglett.7b00088 PMID: 28233489
- Qiu, G.; Liu, T.; Ding, Q. Tandem oxidative radical brominative addition of activated alkynes and spirocyclization: switchable synthesis of 3-bromocoumarins and 3-bromo spiro-4,5 trienone. Org. Chem. Front., 2016, 3(4), 510-515. doi: 10.1039/C6QO00041J
- Pérez, J.M.; Cano, R.; McGlacken, G.P.; Ramón, D.J. Palladium(II) oxide impregnated on magnetite as a catalyst for the synthesis of 4-arylcoumarins via a Heck-arylation/cyclization process. RSC Advances, 2016, 6(43), 36932-36941. doi: 10.1039/C6RA01731B
- Huang, X.; Zhu, T.; Huang, Z.; Zhang, Y.; Jin, Z.; Zanoni, G.; Chi, Y.R. Carbene-catalyzed formal 5+ 5 reaction for coumarin construction and total synthesis of defucogilvocarcins. Org. Lett., 2017, 19(22), 6188-6191. doi: 10.1021/acs.orglett.7b03102 PMID: 29111757
- Khan, D.; Mukhtar, S.; Alsharif, M.A.; Alahmdi, M.I.; Ahmed, N.PhI. (OAc) 2 mediated an efficient Knoevenagel reaction and their synthetic application for coumarin derivatives. Tetrahedron Lett., 2017, 58(32), 3183-3187. doi: 10.1016/j.tetlet.2017.07.018
- da Silveira Pinto, L.; de Souza, M. Sonochemistry as a general procedure for the synthesis of coumarins, including multigram synthesis. Synthesis, 2017, 49(12), 2677-2682. doi: 10.1055/s-0036-1590201
- Payra, S.; Saha, A.; Banerjee, S. Magnetically recoverable Fe3O4 nanoparticles for the one-pot synthesis of coumarin-3-carboxamide derivatives in aqueous ethanol. ChemistrySelect, 2018, 3(26), 7535-7540. doi: 10.1002/slct.201800523
- Shao, A.; Zhan, J.; Li, N.; Chiang, C.W.; Lei, A. External oxidant-free dehydrogenative lactonization of 2-arylbenzoic acids via visible-light photocatalysis. J. Org. Chem., 2018, 83(7), 3582-3589. doi: 10.1021/acs.joc.7b03195 PMID: 29505258
- Kawaai, K.; Yamaguchi, T.; Yamaguchi, E.; Endo, S.; Tada, N.; Ikari, A.; Itoh, A. Photoinduced generation of acyl radicals from simple aldehydes, access to 3-acyl-4-arylcoumarin derivatives, and evaluation of their antiandrogenic activities. J. Org. Chem., 2018, 83(4), 1988-1996. doi: 10.1021/acs.joc.7b02933 PMID: 29327585
- Chen, L.; Wu, L.; Duan, W.; Wang, T.; Li, L.; Zhang, K.; Zhu, J.; Peng, Z.; Xiong, F. Photoredox-catalyzed cascade radical cyclization of ester arylpropiolates with CF3SO2Cl to construct 3-trifluoromethyl coumarin derivatives. J. Org. Chem., 2018, 83(15), 8607-8614. doi: 10.1021/acs.joc.8b00581 PMID: 29878780
- Liu, Y.; Wang, Q.L.; Zhou, C.S.; Xiong, B.Q.; Zhang, P.L.; Kang, S.J.; Yang, C.A.; Tang, K.W. Visible-light-mediated cascade difunctionalization/cyclization of alkynoates with acyl chlorides for synthesis of 3-acylcoumarins. Tetrahedron Lett., 2018, 59(21), 2038-2041. doi: 10.1016/j.tetlet.2018.04.033
- Ren, H.; Zhang, M.; Zhang, A.Q. Synthesis of 3-sulfonyl coumarins through radical sulfonylation with disulfides under catalyst-free conditions. Tetrahedron, 2018, 74(33), 4435-4444. doi: 10.1016/j.tet.2018.07.014
- Yadav, V.K.; Srivastava, V.P.; Yadav, L.D.S. Pd-catalysed carbonylative annulation of salicylaldehydes with benzyl chlorides using N -formylsaccharin as a CO surrogate. New J. Chem., 2018, 42(19), 16281-16286. doi: 10.1039/C8NJ03173H
- Xu, G.D.; Huang, Z.Z.A. Rh(III)-catalyzed cascade CH functionalization/cyclization reaction of salicylaldehydes with diazomalonates for the synthesis of 4-hydroxycoumarin derivatives. New J. Chem., 2018, 42(22), 18358-18362. doi: 10.1039/C8NJ04576C
- Mirosanloo, A.; Zareyee, D.; Khalilzadeh, M.A. Recyclable cellulose nanocrystal supported Palladium nanoparticles as an efficient heterogeneous catalyst for the solvent-free synthesis of coumarin derivatives via von Pechmann condensation. Appl. Organomet. Chem., 2018, 32(12), e4546. doi: 10.1002/aoc.4546
- Ramsay, R.R.; Majekova, M.; Medina, M.; Valoti, M. Key targets for multi-target ligands designed to combat neurodegeneration. Front. Neurosci., 2016, 10, 375. doi: 10.3389/fnins.2016.00375 PMID: 27597816
- Bawa, P.; Pradeep, P.; Kumar, P.; Choonara, Y.E.; Modi, G.; Pillay, V. Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov. Today, 2016, 21(12), 1886-1914. doi: 10.1016/j.drudis.2016.08.001 PMID: 27506871
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever‐increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021, 127(16), 3029-3030. doi: 10.1002/cncr.33587 PMID: 34086348
- Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51(3), 347-372. doi: 10.1021/jm7009364 PMID: 18181565
- Tzvetkov, N.T.; Atanasov, A.G. Natural product-based multitargeted ligands for Alzheimers disease treatment? Future Med. Chem., 2018, 10(15), 1745-1748. doi: 10.4155/fmc-2018-0146 PMID: 30043630
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimers disease. Brain, 2018, 141(7), 1917-1933. doi: 10.1093/brain/awy132 PMID: 29850777
- Larner, A.J. Cholinesterase inhibitors: beyond Alzheimers disease. Expert Rev. Neurother., 2010, 10(11), 1699-1705. doi: 10.1586/ern.10.105 PMID: 21046692
- Mushtaq, G.; Greig, N.; Khan, J.; Kamal, M. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimers disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets, 2014, 13(8), 1432-1439. doi: 10.2174/1871527313666141023141545 PMID: 25345511
- Darvesh, S.; Hopkins, D.A.; Geula, C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci., 2003, 4(2), 131-138. doi: 10.1038/nrn1035 PMID: 12563284
- Pisani, L.; Catto, M.; De Palma, A.; Farina, R.; Cellamare, S.; Altomare, C.D. Discovery of potent dual binding site acetylcholinesterase inhibitors via homo-and heterodimerization of coumarin-based moieties. ChemMedChem, 2017, 12(16), 1349-1358. doi: 10.1002/cmdc.201700282 PMID: 28570763
- Sameem, B.; Saeedi, M.; Mahdavi, M.; Nadri, H.; Moghadam, F.H.; Edraki, N.; Khan, M.I.; Amini, M. Synthesis, docking study and neuroprotective effects of some novel pyrano3,2- cchromene derivatives bearing morpholine/phenylpiperazine moiety. Bioorg. Med. Chem., 2017, 25(15), 3980-3988. doi: 10.1016/j.bmc.2017.05.043 PMID: 28587871
- Sonmez, F.; Zengin Kurt, B.; Gazioglu, I.; Basile, L.; Dag, A.; Cappello, V.; Ginex, T.; Kucukislamoglu, M.; Guccione, S. Design, synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 285-297. doi: 10.1080/14756366.2016.1250753 PMID: 28097911
- Jiang, N.; Huang, Q.; Liu, J.; Liang, N.; Li, Q.; Li, Q.; Xie, S.S. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimers disease. Eur. J. Med. Chem., 2018, 146, 287-298. doi: 10.1016/j.ejmech.2018.01.055 PMID: 29407958
- Vafadarnejad, F.; Mahdavi, M.; Karimpour-Razkenari, E.; Edraki, N.; Sameem, B.; Khanavi, M.; Saeedi, M.; Akbarzadeh, T. Design and synthesis of novel coumarin-pyridinium hybrids: in vitro cholinesterase inhibitory activity. Bioorg. Chem., 2018, 77, 311-319. doi: 10.1016/j.bioorg.2018.01.013 PMID: 29421707
- Moradi, A.; Faraji, L.; Nadri, H.; Hasanpour, Z.; Moghadam, F.H.; Pakseresht, B.; Golshani, M.; Moghimi, S.; Ramazani, A.; Firoozpour, L.; Khoobi, M.; Foroumadi, A. Synthesis, docking study, and biological evaluation of novel umbellipherone/hymecromone derivatives as acetylcholinesterase/butyrylcholinesterase inhibitors. Med. Chem. Res., 2018, 27(7), 1741-1747. doi: 10.1007/s00044-018-2187-8
- Zhang, J.; Li, J.C.; Song, J.L.; Cheng, Z.Q.; Sun, J.Z.; Jiang, C.S. Synthesis and evaluation of coumarin/1,2,4-oxadiazole hybrids as selective BChE inhibitors with neuroprotective activity. J. Asian Nat. Prod. Res., 2019, 21(11), 1090-1103. doi: 10.1080/10286020.2018.1492566 PMID: 29991292
- Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Edraki, N.; Sharifzadeh, M.; Khanavi, M.; Akbarzadeh, T. Novel tacrine-coumarin hybrids linked to 1,2,3-triazole as anti-Alzheimers compounds: In vitro and in vivo biological evaluation and docking study. Bioorg. Chem., 2019, 83, 303-316. doi: 10.1016/j.bioorg.2018.10.056 PMID: 30396115
- Rastegari, A.; Nadri, H.; Mahdavi, M.; Moradi, A.; Mirfazli, S.S.; Edraki, N.; Moghadam, F.H.; Larijani, B.; Akbarzadeh, T.; Saeedi, M. Design, synthesis and anti-Alzheimers activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorg. Chem., 2019, 83, 391-401. doi: 10.1016/j.bioorg.2018.10.065 PMID: 30412794
- Hu, Y.H.; Yang, J.; Zhang, Y.; Liu, K.C.; Liu, T.; Sun, J.; Wang, X.J. Synthesis and biological evaluation of 3(4-aminophenyl)-coumarin derivatives as potential anti-Alzheimers disease agents. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1083-1092. doi: 10.1080/14756366.2019.1615484 PMID: 31117844
- Tehrani, M.B.; Rezaei, Z.; Asadi, M.; Behnammanesh, H.; Nadri, H.; Afsharirad, F.; Moradi, A.; Larijani, B.; Mohammadi-Khanaposhtani, M.; Mahdavi, M. Design, synthesis, and cholinesterase inhibition assay of coumarin‐3‐carboxamide‐ N ‐morpholine hybrids as new anti‐alzheimer agents. Chem. Biodivers., 2019, 16(7), e1900144. doi: 10.1002/cbdv.201900144 PMID: 31155827
- Sepehri, N.; Mohammadi-Khanaposhtani, M.; Asemanipoor, N.; Hosseini, S.; Biglar, M.; Larijani, B.; Mahdavi, M.; Hamedifar, H.; Taslimi, P.; Sadeghian, N.; Gulcin, I. Synthesis, characterization, molecular docking, and biological activities of coumarin1,2,3‐triazole‐acetamide hybrid derivatives. Arch. Pharm. (Weinheim), 2020, 353(10), 2000109. doi: 10.1002/ardp.202000109 PMID: 32643792
- de Souza, G.A.; da Silva, S.J.; Del Cistia, C.N.; Pitasse-Santos, P.; Pires, L.O.; Passos, Y.M.; Cordeiro, Y.; Cardoso, C.M.; Castro, R.N.; SantAnna, C.M.R.; Kümmerle, A.E. Discovery of novel dual-active 3-(4-(dimethylamino)phenyl)-7-aminoalcoxy-coumarin as potent and selective acetylcholinesterase inhibitor and antioxidant. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 631-637. doi: 10.1080/14756366.2019.1571270 PMID: 30727776
- Gardelly, M.; Trimech, B.; Horchani, M.; Znati, M.; Jannet, H.B.; Romdhane, A. Anti-tyrosinase and anti-butyrylcholinesterase quinolines-based coumarin derivatives: Synthesis and insights from molecular docking studies. Chemistry Africa, 2021, 4(3), 491-501. doi: 10.1007/s42250-021-00235-x
- Cenini, G.; Lloret, A.; Cascella, R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid. Med. Cell. Longev., 2019, 2019, 1-18. doi: 10.1155/2019/2105607 PMID: 31210837
- Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov., 2004, 3(3), 205-214. doi: 10.1038/nrd1330 PMID: 15031734
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem., 2015, 97, 55-74. doi: 10.1016/j.ejmech.2015.04.040 PMID: 25942353
- Jalili-Baleh, L.; Forootanfar, H.; Küçükkılınç, T.T.; Nadri, H.; Abdolahi, Z.; Ameri, A.; Jafari, M.; Ayazgok, B.; Baeeri, M.; Rahimifard, M.; Abbas Bukhari, S.N.; Abdollahi, M.; Ganjali, M.R.; Emami, S.; Khoobi, M.; Foroumadi, A. Design, synthesis and evaluation of novel multi-target-directed ligands for treatment of Alzheimers disease based on coumarin and lipoic acid scaffolds. Eur. J. Med. Chem., 2018, 152, 600-614. doi: 10.1016/j.ejmech.2018.04.058 PMID: 29763808
- Jalili-Baleh, L.; Nadri, H.; Forootanfar, H.; Samzadeh-Kermani, A.; Küçükkılınç, T.T.; Ayazgok, B.; Rahimifard, M.; Baeeri, M.; Doostmohammadi, M.; Firoozpour, L.; Bukhari, S.N.A.; Abdollahi, M.; Ganjali, M.R.; Emami, S.; Khoobi, M.; Foroumadi, A. Novel 3-phenylcoumarinlipoic acid conjugates as multi-functional agents for potential treatment of Alzheimers disease. Bioorg. Chem., 2018, 79, 223-234. doi: 10.1016/j.bioorg.2018.04.030 PMID: 29775948
- Lan, J.S.; Ding, Y.; Liu, Y.; Kang, P.; Hou, J.W.; Zhang, X.Y.; Xie, S.S.; Zhang, T. Design, synthesis and biological evaluation of novel coumarin- N -benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimers disease. Eur. J. Med. Chem., 2017, 139, 48-59. doi: 10.1016/j.ejmech.2017.07.055 PMID: 28797883
- Kurt, B.Z.; Gazioglu, I.; Kandas, N.O.; Sonmez, F. Synthesis, anticholinesterase, antioxidant, and anti‐aflatoxigenic activity of novel coumarin carbamate derivatives. ChemistrySelect, 2018, 3(14), 3978-3983. doi: 10.1002/slct.201800142
- Paloczi, J.; Varga, Z.V.; Hasko, G.; Pacher, P. Neuroprotection in oxidative stress-related neurodegenerative diseases: role of endocannabinoid system modulation. Antioxid. Redox Signal., 2018, 29(1), 75-108. doi: 10.1089/ars.2017.7144 PMID: 28497982
- Pertwee, R.; Howlett, A.; Abood, M. Cannabinoid receptors and their ligands: Beyond CB1 and CB2. LXXIX International Union of basic and clinical pharmacology. Pharmacol. Rev., 2010, 62, 588-631. doi: 10.1124/pr.110.003004 PMID: 21079038
- Di Marzo, V. Endocannabinoids: Synthesis and degradation. Rev. Physiol. Biochem. Pharmacol., 2008, 160, 1-24. PMID: 18481028
- Fernández-Ruiz, J. The endocannabinoid system as a target for the treatment of motor dysfunction. Br. J. Pharmacol., 2009, 156(7), 1029-1040. doi: 10.1111/j.1476-5381.2008.00088.x PMID: 19220290
- Ahn, K.; Johnson, D.S.; Cravatt, B.F. Fatty acid amide hydrolase as a potential therapeutic target for the treatment of pain and CNS disorders. Expert Opin. Drug Discov., 2009, 4(7), 763-784. doi: 10.1517/17460440903018857 PMID: 20544003
- Montanari, S.; Allarà, M.; Scalvini, L.; Kostrzewa, M.; Belluti, F.; Gobbi, S.; Naldi, M.; Rivara, S.; Bartolini, M.; Ligresti, A.; Bisi, A.; Rampa, A. New coumarin derivatives as cholinergic and cannabinoid system modulators. Molecules, 2021, 26(11), 3254. doi: 10.3390/molecules26113254 PMID: 34071439
- Gaweska, H.; Fitzpatrick, P.F. Structures and mechanism of the monoamine oxidase family. Biomol. Concepts, 2011, 2(5), 365-377. doi: 10.1515/BMC.2011.030 PMID: 22022344
- Johnston, J.P. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem. Pharmacol., 1968, 17(7), 1285-1297. doi: 10.1016/0006-2952(68)90066-X PMID: 5659776
- Mallajosyula, J.K.; Kaur, D.; Chinta, S.J.; Rajagopalan, S.; Rane, A.; Nicholls, D.G.; Di Monte, D.A.; Macarthur, H.; Andersen, J.K. MAO-B elevation in mouse brain astrocytes results in Parkinsons pathology. PLoS One, 2008, 3(2), e1616. doi: 10.1371/journal.pone.0001616 PMID: 18286173
- Yeung, A.W.K.; Georgieva, M.G.; Atanasov, A.G.; Tzvetkov, N.T. Monoamine oxidases (MAOs) as privileged molecular targets in neuroscience: Research literature analysis. Front. Mol. Neurosci., 2019, 12, 143. doi: 10.3389/fnmol.2019.00143 PMID: 31191248
- Li, S.Y.; Wang, X.B.; Xie, S.S.; Jiang, N.; Wang, K.D.G.; Yao, H.Q.; Sun, H.B.; Kong, L.Y. Multifunctional tacrineflavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimers disease. Eur. J. Med. Chem., 2013, 69, 632-646. doi: 10.1016/j.ejmech.2013.09.024 PMID: 24095756
- Samadi, A.; de los Ríos, C.; Bolea, I.; Chioua, M.; Iriepa, I.; Moraleda, I.; Bartolini, M.; Andrisano, V.; Gálvez, E.; Valderas, C.; Unzeta, M.; Marco-Contelles, J. Multipotent MAO and cholinesterase inhibitors for the treatment of Alzheimers disease: Synthesis, pharmacological analysis and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amine. Eur. J. Med. Chem., 2012, 52, 251-262. doi: 10.1016/j.ejmech.2012.03.022 PMID: 22503231
- Joubert, J.; Foka, G.B.; Repsold, B.P.; Oliver, D.W.; Kapp, E.; Malan, S.F. Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimers disease. Eur. J. Med. Chem., 2017, 125, 853-864. doi: 10.1016/j.ejmech.2016.09.041 PMID: 27744252
- He, Q.; Liu, J.; Lan, J.S.; Ding, J.; Sun, Y.; Fang, Y.; Jiang, N.; Yang, Z.; Sun, L.; Jin, Y.; Xie, S.S. Coumarin-dithiocarbamate hybrids as novel multitarget AChE and MAO-B inhibitors against Alzheimers disease: Design, synthesis and biological evaluation. Bioorg. Chem., 2018, 81, 512-528. doi: 10.1016/j.bioorg.2018.09.010 PMID: 30245233
- Repsold, B.P.; Malan, S.F.; Joubert, J.; Oliver, D.W. Multi-targeted directed ligands for Alzheimers disease: Design of novel lead coumarin conjugates. SAR QSAR Environ. Res., 2018, 29(3), 231-255. doi: 10.1080/1062936X.2018.1423641 PMID: 29390885
- Rullo, M.; Catto, M.; Carrieri, A.; de Candia, M.; Altomare, C.D.; Pisani, L. Chasing ChEs-MAO B multi-targeting 4-aminomethyl-7-benzyloxy-2H-chromen-2-ones. Molecules, 2019, 24(24), 4507. doi: 10.3390/molecules24244507 PMID: 31835376
- Rehuman, N.A.; Oh, J.M.; Nath, L.R.; Khames, A.; Abdelgawad, M.A.; Gambacorta, N.; Nicolotti, O.; Jat, R.K.; Kim, H.; Mathew, B. Halogenated coumarinchalcones as multifunctional monoamine oxidase-b and butyrylcholinesterase inhibitors. ACS Omega, 2021, 6(42), 28182-28193. doi: 10.1021/acsomega.1c04252 PMID: 34723016
- Mzezewa, S.C.; Omoruyi, S.I.; Zondagh, L.S.; Malan, S.F.; Ekpo, O.E.; Joubert, J. Design, synthesis, and evaluation of 3,7-substituted coumarin derivatives as multifunctional Alzheimers disease agents. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1606-1620. doi: 10.1080/14756366.2021.1913137 PMID: 34281458
- Quezada, E.; Rodríguez-Enríquez, F.; Laguna, R.; Cutrín, E.; Otero, F.; Uriarte, E.; Viña, D. Curcumincoumarin hybrid analogues as multitarget agents in neurodegenerative disorders. Molecules, 2021, 26(15), 4550. doi: 10.3390/molecules26154550 PMID: 34361702
- Rodríguez-Enríquez, F.; Viña, D.; Uriarte, E.; Laguna, R.; Matos, M.J. 7‐Amidocoumarins as multitarget agents against neurodegenerative diseases: Substitution pattern modulation. ChemMedChem, 2021, 16(1), 179-186. doi: 10.1002/cmdc.202000454 PMID: 32700464
- Pourabdi, L.; Küçükkılınç, T.T.; Khoshtale, F.; Ayazgök, B.; Nadri, H.; Farokhi Alashti, F.; Forootanfar, H.; Akbari, T.; Shafiei, M.; Foroumadi, A.; Sharifzadeh, M.; Shafiee Ardestani, M.; Abaee, M.S.; Firoozpour, L.; Khoobi, M.; Mojtahedi, M.M. Synthesis of new 3-arylcoumarins bearing N-benzyl triazole moiety: dual lipoxygenase and butyrylcholinesterase inhibitors with anti-amyloid aggregation and neuroprotective properties against Alzheimers disease. Front Chem., 2022, 98, 10233. doi: 10.3389/fchem.2021.810233 PMID: 35127652
- Rubino, J.T.; Franz, K.J. Coordination chemistry of copper proteins: How nature handles a toxic cargo for essential function. J. Inorg. Biochem., 2012, 107(1), 129-143. doi: 10.1016/j.jinorgbio.2011.11.024 PMID: 22204943
- Gonzalez, P.; Pota, K.; Turan, L.S.; da Costa, V.C.P.; Akkaraju, G.; Green, K.N. Synthesis, characterization, and activity of a triazine bridged antioxidant small molecule. ACS Chem. Neurosci., 2017, 8(11), 2414-2423. doi: 10.1021/acschemneuro.7b00184 PMID: 28768410
- Costas-Lago, M.C.; Besada, P.; Rodríguez-Enríquez, F.; Viña, D.; Vilar, S.; Uriarte, E.; Borges, F.; Terán, C. Synthesis and structure-activity relationship study of novel 3-heteroarylcoumarins based on pyridazine scaffold as selective MAO-B inhibitors. Eur. J. Med. Chem., 2017, 139, 1-11. doi: 10.1016/j.ejmech.2017.07.045 PMID: 28797881
- Rodríguez-Enríquez, F.; Costas-Lago, M.C.; Besada, P.; Alonso-Pena, M.; Torres-Terán, I.; Viña, D.; Fontenla, J.Á.; Sturlese, M.; Moro, S.; Quezada, E.; Terán, C. Novel coumarin-pyridazine hybrids as selective MAO-B inhibitors for the Parkinsons disease therapy. Bioorg. Chem., 2020, 104104203. doi: 10.1016/j.bioorg.2020.104203 PMID: 32932120
Supplementary files
