Mechanisms of the Quorum Sensing Systems of Pseudomonas aeruginosa: Host and Bacteria
- Authors: Flores-Percino D.1, Osorio-Llanes E.2, Sepulveda Y.2, Castellar- López J.2, Madera R.3, Rada W.2, Meléndez C.4, Mendoza-Torres E.5
-
Affiliations:
- Department of Medicine, Benemérita Universidad Autónoma de Puebla
- Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla
- Department of Medicine, Faculty of Health Science, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla
- Department of Chemistry, Faculty of Basic Sciencies, Grupo de Investigación en Química Orgánica y Biomédica, Universidad del Atlántico
- Department of Medicine, Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla
- Issue: Vol 31, No 35 (2024)
- Pages: 5755-5767
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645074
- DOI: https://doi.org/10.2174/0929867331666230821110440
- ID: 645074
Cite item
Full Text
Abstract
:Quorum-sensing is a communication mechanism between bacteria with the ability to activate signaling pathways in the bacterium and in the host cells. Pseudomonas aeruginosa is a pathogen with high clinical relevance due to its vast virulence factors repertory and wide antibiotic resistance mechanisms. Due to this, it has become a pathogen of interest for developing new antimicrobial agents in recent years. P. aeruginosa has three major QS systems that regulate a wide gene range linked with virulence factors, metabolic regulation, and environment adaption. Consequently, inhibiting this communication mechanism would be a strategy to prevent the pathologic progression of the infections caused by this bacterium. In this review, we aim to overview the current studies about the signaling mechanisms of the QS system of P. aeruginosa and its effects on this bacterium and the host.
About the authors
Diana Flores-Percino
Department of Medicine, Benemérita Universidad Autónoma de Puebla
Email: info@benthamscience.net
Estefanie Osorio-Llanes
Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla
Email: info@benthamscience.net
Yanireth Sepulveda
Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla
Email: info@benthamscience.net
Jairo Castellar- López
Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla
Email: info@benthamscience.net
Ricardo Madera
Department of Medicine, Faculty of Health Science, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla
Email: info@benthamscience.net
Wendy Rada
Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla
Email: info@benthamscience.net
Carlos Meléndez
Department of Chemistry, Faculty of Basic Sciencies, Grupo de Investigación en Química Orgánica y Biomédica, Universidad del Atlántico
Email: info@benthamscience.net
Evelyn Mendoza-Torres
Department of Medicine, Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla
Author for correspondence.
Email: info@benthamscience.net
References
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433. doi: 10.1128/MMBR.00016-10 PMID: 20805405
- Worldwide country situation analysis: Antimicrobial resistance: fact sheet. World Health Organization. World Health Organization. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (cited 2023 Mar)
- antibacterial agents in clinical and preclinical development: An overview and analysis. World Health Organization. World Health Organization. 2020. Available from: https://www.who.int/publications-detail-redirect/9789240021303 (cited 2023 Mar 9)
- Resistencia a Los Antimicrobianos. World Health Organization. World Health Organization. 2021. Available from: www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance (cited 2023 Mar)
- Qin, B.; Bassler, B.L. Quorum-sensing control of matrix protein production drives fractal wrinkling and interfacial localization of Vibrio cholerae pellicles. Nat. Commun., 2022, 13(1), 6063. doi: 10.1038/s41467-022-33816-6 PMID: 36229546
- Waters, C.M.; Bassler, B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol., 2005, 21(1), 319-346. doi: 10.1146/annurev.cellbio.21.012704.131001 PMID: 16212498
- Smith, R.; Iglewski, B.H. P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol., 2003, 6(1), 56-60. doi: 10.1016/S1369-5274(03)00008-0 PMID: 12615220
- Yadav, V.K.; Singh, P.K.; Kalia, M.; Sharma, D.; Singh, S.K.; Agarwal, V. Pseudomonas aeruginosa quorum sensing molecule N-3-oxo-dodecanoyl-l-homoserine lactone activates human platelets through intracellular calcium-mediated ROS generation. Int. J. Med. Microbiol., 2018, 308(7), 858-864. doi: 10.1016/j.ijmm.2018.07.009 PMID: 30098883
- Botelho, J.; Grosso, F.; Peixe, L. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms, epidemiology and evolution. Drug Resist. Updat., 2019, 44, 100640. doi: 10.1016/j.drup.2019.07.002 PMID: 31492517
- Tashiro, Y.; Yawata, Y.; Toyofuku, M.; Uchiyama, H.; Nomura, N. Interspecies interaction between Pseudomonas aeruginosa and other microorganisms. Microbes Environ., 2013, 28(1), 13-24. doi: 10.1264/jsme2.ME12167 PMID: 23363620
- Mielko, K.A.; Jabłoński, S.J.; Milczewska, J.; Sands, D.; Łukaszewicz, M.; Młynarz, P. Metabolomic studies of Pseudomonas aeruginosa. World J. Microbiol. Biotechnol., 2019, 35(11), 178. doi: 10.1007/s11274-019-2739-1 PMID: 31701321
- Gellatly, S.L.; Hancock, R.E.W. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis., 2013, 67(3), 159-173. doi: 10.1111/2049-632X.12033 PMID: 23620179
- Sawa, T.; Momiyama, K.; Mihara, T.; Kainuma, A.; Kinoshita, M.; Moriyama, K. Molecular epidemiology of clinically high-risk Pseudomonas aeruginosa strains: Practical overview. Microbiol. Immunol., 2020, 64(5), 331-344. doi: 10.1111/1348-0421.12776 PMID: 31965613
- García-Betancur, J.C.; Appel, T.M.; Esparza, G.; Gales, A.C.; Levy-Hara, G.; Cornistein, W.; Vega, S.; Nuñez, D.; Cuellar, L.; Bavestrello, L.; Castañeda-Méndez, P.F.; Villalobos-Vindas, J.M.; Villegas, M.V. Update on the epidemiology of carbapenemases in latin America and the Caribbean. Expert Rev. Anti Infect. Ther., 2021, 19(2), 197-213. doi: 10.1080/14787210.2020.1813023 PMID: 32813566
- Pragasam, A.K.; Veeraraghavan, B.; Nalini, E.; Anandan, S.; Kaye, K.S. An update on antimicrobial resistance and the role of newer antimicrobial agents for Pseudomonas aeruginosa. Indian J. Med. Microbiol., 2018, 36(3), 303-316. doi: 10.4103/ijmm.IJMM_18_334 PMID: 30429381
- Miyoshi, T. Emergence and spread of epidemic multidrug: Resistant Pseudomonas aeruginosa. Genome Biol. Evol., 2017, 9(12), 3228-3245.
- Abisado, R.G.; Benomar, S.; Klaus, J.R.; Dandekar, A.A.; Chandler, J.R. Bacterial quorum sensing and microbial community interactions. MBio, 2018, 9(3), e02331-17. doi: 10.1128/mBio.02331-17 PMID: 29789364
- Silpe, J.E.; Bassler, B.L. A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell, 2019, 176(1-2), 268-280.e13. doi: 10.1016/j.cell.2018.10.059 PMID: 30554875
- Yi, L.; Dong, X.; Grenier, D.; Wang, K.; Wang, Y. Research progress of bacterial quorum sensing receptors: Classification, structure, function and characteristics. Sci. Total Environ., 2021, 763, 143031. doi: 10.1016/j.scitotenv.2020.143031 PMID: 33129525
- Papenfort, K.; Bassler, B.L. Quorum sensing signalresponse systems in gram-negative bacteria. Nat. Rev. Microbiol., 2016, 14(9), 576-588. doi: 10.1038/nrmicro.2016.89 PMID: 27510864
- Saipriya, K.; Swathi, C.H.; Ratnakar, K.S.; Sritharan, V. Quorum-sensing system in Acinetobacter baumannii : A potential target for new drug development. J. Appl. Microbiol., 2020, 128(1), 15-27. doi: 10.1111/jam.14330 PMID: 31102552
- Banerjee, G.; Ray, A.K. Quorum-sensing network-associated gene regulation in gram-positive bacteria. Acta Microbiol. Immunol. Hung., 2017, 64(4), 439-453. doi: 10.1556/030.64.2017.040 PMID: 29243493
- Xie, Z.; Meng, K.; Yang, X.; Liu, J.; Yu, J.; Zheng, C.; Cao, W.; Liu, H. Identification of a quorum sensing system regulating capsule polysaccharide production and biofilm formation in Streptococcus zooepidemicus. Front. Cell. Infect. Microbiol., 2019, 9, 121. doi: 10.3389/fcimb.2019.00121 PMID: 31058104
- Thoendel, M.; Horswill, A.R. Biosynthesis of peptide signals in gram-positive bacteria. Adv. Appl. Microbiol., 2010, 71, 91-112. doi: 10.1016/S0065-2164(10)71004-2 PMID: 20378052
- Verbeke, F.; De Craemer, S.; Debunne, N.; Janssens, Y.; Wynendaele, E.; Van de Wiele, C.; De Spiegeleer, B. Peptides as quorum sensing molecules: Measurement techniques and obtained levels In vitro and In vivo. Front. Neurosci., 2017, 11(11), 183. doi: 10.3389/fnins.2017.00183 PMID: 28446863
- Jiménez Amador, H.; Casan Clarà, P. Bacterial communication and human communication: what can we learn from quorum sensing? Arch. Bronconeumol., 2012, 48(9), 305-307. doi: 10.1016/j.arbr.2012.06.011 PMID: 22520726
- Li, Y.H.; Tang, N.; Aspiras, M.B.; Lau, P.C.Y.; Lee, J.H.; Ellen, R.P.; Cvitkovitch, D.G. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol., 2002, 184(10), 2699-2708. doi: 10.1128/JB.184.10.2699-2708.2002 PMID: 11976299
- Gardan, R.; Besset, C.; Guillot, A.; Gitton, C.; Monnet, V. The oligopeptide transport system is essential for the development of natural competence in Streptococcus thermophilus strain LMD-9. J. Bacteriol., 2009, 191(14), 4647-4655. doi: 10.1128/JB.00257-09 PMID: 19447907
- Della Sala, G.; Teta, R.; Esposito, G.; Costantino, V. The chemical language of gram-negative bacteria. Quorum Sensing; Academic Press, 2019, pp. 3-28.
- Li, Z.; Nair, S.K. Quorum sensing: How bacteria can coordinate activity and synchronize their response to external signals? Protein Sci., 2012, 21(10), 1403-1417. doi: 10.1002/pro.2132 PMID: 22825856
- Geske, G.D.; ONeill, J.C.; Blackwell, H.E. Expanding dialogues: From natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria. Chem. Soc. Rev., 2008, 37(7), 1432-1447. doi: 10.1039/b703021p PMID: 18568169
- Turkina, M.V.; Vikström, E. Bacteria-host crosstalk: Sensing of the quorum in the context of Pseudomonas aeruginosa infections. J. Innate Immun., 2019, 11(3), 263-279. doi: 10.1159/000494069 PMID: 30428481
- Duddy, O.P.; Bassler, B.L. Quorum sensing across bacterial and viral domains. PLoS Pathog., 2021, 17(1), e1009074. doi: 10.1371/journal.ppat.1009074 PMID: 33411743
- Venturi, V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol. Rev., 2006, 30(2), 274-291. doi: 10.1111/j.1574-6976.2005.00012.x PMID: 16472307
- Mulcahy, L.R.; Isabella, V.M.; Lewis, K. Pseudomonas aeruginosa biofilms in disease. Microb. Ecol., 2014, 68(1), 1-12. doi: 10.1007/s00248-013-0297-x PMID: 24096885
- Peters, G.; Locci, R.; Pulverer, G. Microbial colonization of prosthetic devices. II. Scanning electron microscopy of naturally infected intravenous catheters. Zentralbl. Bakteriol. Mikrobiol. Hyg. B, 1981, 173(5), 293-299. PMID: 6792814
- Cross, C. Quorum sensing in beneficial plant : Bacteria associations. Rev. Colomb. Biotecnologia, 2011, 13(2), 135-143.
- Raad, I.; Hanna, H. Intravascular catheters impregnated with antimicrobial agents: A milestone in the prevention of bloodstream infections. Support. Care Cancer, 1999, 7(6), 386-390. doi: 10.1007/s005200050297 PMID: 10541979
- Antibiotic resistance threats in the United States, 2019. Centers for Disease Control and Prevention (U.S.). 2019. Available from: https://stacks.cdc.gov/view/cdc/82532/cdc 82532 DS1.pdf (cited 2023 Mar)
- Horinouchi, S.; Ueda, K.; Nakayama, J.; Ikeda, T. Cell to-cell communications among microorganisms. Comprehensive Natural Products II: Chemistry and Biology; Liu, H-W.; Lew, M., Eds.; Elsevier Ltd: Amsterdam, 2010. doi: 10.1016/B978-008045382-8.00098-8
- Juhas, M.; Wiehlmann, L.; Huber, B.; Jordan, D.; Lauber, J.; Salunkhe, P.; Limpert, A.S.; von Götz, F.; Steinmetz, I.; Eberl, L.; Tümmler, B. Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology, 2004, 150(4), 831-841. doi: 10.1099/mic.0.26906-0 PMID: 15073293
- Ueda, A.; Wood, T.K. Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog., 2009, 5(6), e1000483. doi: 10.1371/journal.ppat.1000483 PMID: 19543378
- Becerra, C.; García, A.M.P.; Reyes, M.Y.D.; Huertas, M.G. Bacterial biofilms in chronic wounds. For. Heal. Magaz., 2019, 9(1)
- Deng, Y.; Wu, J.; Tao, F.; Zhang, L.H. Listening to a new language: DSF-based quorum sensing in gram-negative bacteria. Chem. Rev., 2011, 111(1), 160-173. doi: 10.1021/cr100354f PMID: 21166386
- Kostylev, M.; Kim, D.Y.; Smalley, N.E.; Salukhe, I.; Greenberg, E.P.; Dandekar, A.A. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proc. Natl. Acad. Sci., 2019, 116(14), 7027-7032. doi: 10.1073/pnas.1819796116 PMID: 30850547
- Lee, J.; Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein &. Cell, 2014, 6(1), 26-41. PMID: 24679524
- Pesci, E.C.; Milbank, J.B.J.; Pearson, J.P.; McKnight, S.; Kende, A.S.; Greenberg, E.P.; Iglewski, B.H. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci., 1999, 96(20), 11229-11234. doi: 10.1073/pnas.96.20.11229 PMID: 10500159
- Collier, D.N.; Anderson, L.; McKnight, S.L.; Noah, T.L.; Knowles, M.; Boucher, R.; Schwab, U.; Gilligan, P.; Pesci, E.C. A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol. Lett., 2002, 215(1), 41-46. doi: 10.1111/j.1574-6968.2002.tb11367.x PMID: 12393198
- Schafhauser, J.; Lepine, F.; McKay, G.; Ahlgren, H.G.; Khakimova, M.; Nguyen, D. The stringent response modulates 4-hydroxy-2-alkylquinoline biosynthesis and quorum-sensing hierarchy in Pseudomonas aeruginosa. J. Bacteriol., 2014, 196(9), 1641-1650. doi: 10.1128/JB.01086-13 PMID: 24509318
- Lee, J.; Wu, J.; Deng, Y.; Wang, J.; Wang, C.; Wang, J.; Chang, C.; Dong, Y.; Williams, P.; Zhang, L.H. A cell-cell communication signal integrates quorum sensing and stress response. Nat. Chem. Biol., 2013, 9(5), 339-343. doi: 10.1038/nchembio.1225 PMID: 23542643
- Holm, A.; Vikström, E. Quorum sensing communication between bacteria and human cells: Signals, targets, and functions. Front. Plant Sci., 2014, 5, 309. doi: 10.3389/fpls.2014.00309 PMID: 25018766
- Holm, A.; Magnusson, K.E.; Vikström, E. Pseudomonas aeruginosa n-3-oxo-dodecanoyl-homoserine lactone elicits changes in cell volume, Morphology, and AQP9 characteristics in macrophages. Front. Cell. Infect. Microbiol., 2016, 6, 32. doi: 10.3389/fcimb.2016.00032 PMID: 27047801
- Diggle, S.P.; Winzer, K.; Chhabra, S.R.; Worrall, K.E.; Cámara, M.; Williams, P. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol. Microbiol., 2003, 50(1), 29-43. doi: 10.1046/j.1365-2958.2003.03672.x PMID: 14507361
- He, Q.; Feng, Z.; Wang, Y.; Wang, K.; Zhang, K.; Kai, L.; Hao, X.; Yu, Z.; Chen, L.; Ge, Y. LasR might act as an intermediate in overproduction of Phenaz in the absence of rpos in Pseudomonas aeruginosa. J. Microbiol. Biotechnol., 2019, 29(8), 1299-1309. doi: 10.4014/jmb.1904.04029 PMID: 31387340
- Duplantier, M.; Lohou, E.; Sonnet, P. Quorum sensing inhibitors to quench P. aeruginosa pathogenicity. Pharmaceuticals, 2021, 14(12), 1262. doi: 10.3390/ph14121262 PMID: 34959667
- Høyland-Kroghsbo, N.M.; Paczkowski, J.; Mukherjee, S.; Broniewski, J.; Westra, E.; Bondy-Denomy, J.; Bassler, B.L. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. Proc. Natl. Acad. Sci., 2017, 114(1), 131-135. doi: 10.1073/pnas.1617415113 PMID: 27849583
- Feltner, J.B.; Wolter, D.J.; Pope, C.E.; Groleau, M.C.; Smalley, N.E.; Greenberg, E.P.; Mayer-Hamblett, N.; Burns, J.; Déziel, E.; Hoffman, L.R.; Dandekar, A.A. LASR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa. MBio, 2016, 7(5), e01513-16. doi: 10.1128/mBio.01513-16 PMID: 27703072
- Clay, M.E.; Hammond, J.H.; Zhong, F.; Chen, X.; Kowalski, C.H.; Lee, A.J.; Porter, M.S.; Hampton, T.H.; Greene, C.S.; Pletneva, E.V.; Hogan, D.A. Pseudomonas aeruginosa lasR mutant fitness in microoxia is supported by an Anr-regulated oxygen-binding hemerythrin. Proc. Natl. Acad. Sci., 2020, 117(6), 3167-3173. doi: 10.1073/pnas.1917576117 PMID: 31980538
- Sandoz, K.M.; Mitzimberg, S.M.; Schuster, M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc. Natl. Acad. Sci., 2007, 104(40), 15876-15881. doi: 10.1073/pnas.0705653104 PMID: 17898171
- Hammond, J.H.; Hebert, W.P.; Naimie, A.; Ray, K.; Van Gelder, R.D.; DiGiandomenico, A.; Lalitha, P.; Srinivasan, M.; Acharya, N.R.; Lietman, T.; Hogan, D.A.; Zegans, M.E. Environmentally endemic Pseudomonas aeruginosa strains with mutations in lasr are associated with increased disease severity in corneal ulcers. MSphere, 2016, 1(5), e00140-16. doi: 10.1128/mSphere.00140-16 PMID: 27631025
- Heurlier, K.; Dénervaud, V.; Haenni, M.; Guy, L.; Krishnapillai, V.; Haas, D. Quorum-sensing-negative (lasR) mutants of Pseudomonas aeruginosa avoid cell lysis and death. J. Bacteriol., 2005, 187(14), 4875-4883. doi: 10.1128/JB.187.14.4875-4883.2005 PMID: 15995202
- Tombolini, R.; Unge, A.; Davey, M.E.; Bruijn, F.J.; Jansson, J.K. Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiol. Ecol., 1997, 22(1), 17-28. doi: 10.1111/j.1574-6941.1997.tb00352.x
- Sergé, A. The molecular architecture of cell adhesion: Dynamic remodeling revealed by videonanoscopy. Front. Cell Dev. Biol., 2016, 4, 36. doi: 10.3389/fcell.2016.00036 PMID: 27200348
- Moura, P.; Puyskens, A.; Stinn, A.; Klemm, M.; Guhlich, U.; Dorhoi, A. Host monitoring of quorum sensing during Pseudomonas aeruginosa infection. Science, 2019, 66(6472), eaaw1629.
- Curutiu, C.; Iordache, F.; Lazar, V.; Pisoschi, A.M.; Pop, A.; Chifiriuc, M.C.; Hoban, A.M. Impact of Pseudomonas aeruginosa quorum sensing signaling molecules on adhesion and inflammatory markers in endothelial cells. Beilstein J. Org. Chem., 2018, 14, 2580-2588. doi: 10.3762/bjoc.14.235 PMID: 30410619
- Feng, L.; Xiang, Q.; Ai, Q.; Wang, Z.; Zhang, Y.; Lu, Q. Effects of quorum sensing systems on regulatory T cells in catheter-related Pseudomonas aeruginosa biofilm infection rat models. Mediators Inflamm., 2016, 2016, 1-7. doi: 10.1155/2016/4012912 PMID: 27069314
- Guo, J.; Yoshida, K.; Ikegame, M.; Okamura, H. Quorum sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone: An all-rounder in mammalian cell modification. J. Oral Biosci./ JAOB, Jpn. Assoc. Oral Biol., 2020, 62(1), 16-29. doi: 10.1016/j.job.2020.01.001 PMID: 31982630
- Bandyopadhaya, A.; Tzika, A.A.; Rahme, L.G. Pseudomonas aeruginosa quorum sensing molecule alters skeletal muscle protein homeostasis by perturbing the antioxidant defense system. MBio, 2019, 10(5), e02211-19. doi: 10.1128/mBio.02211-19 PMID: 31575771
- Chhabra, S.R.; Harty, C.; Hooi, D.S.W.; Daykin, M.; Williams, P.; Telford, G.; Pritchard, D.I.; Bycroft, B.W. Synthetic analogues of the bacterial signal (quorum sensing) molecule N-(3-oxododecanoyl)-L-homoserine lactone as immune modulators. J. Med. Chem., 2003, 46(1), 97-104. doi: 10.1021/jm020909n PMID: 12502363
- Gaida, M.M.; Mayer, C.; Dapunt, U.; Stegmaier, S.; Schirmacher, P.; Wabnitz, G.H.; Hänsch, G.M. Expression of the bitter receptor T2R38 in pancreatic cancer: Localization in lipid droplets and activation by a bacteria-derived quorum-sensing molecule. Oncotarget, 2016, 7(11), 12623-12632. doi: 10.18632/oncotarget.7206 PMID: 26862855
- Maurer, S.; Wabnitz, G.H.; Kahle, N.A.; Stegmaier, S.; Prior, B.; Giese, T.; Gaida, M.M.; Samstag, Y.; Hänsch, G.M. Tasting Pseudomonas aeruginosa biofilms: Human neutrophils express the bitter receptor T2R38 as sensor for the quorum sensing molecule N-(3-Oxododecanoyl)-L-homoserine lactone. Front. Immunol., 2015, 6, 369. doi: 10.3389/fimmu.2015.00369 PMID: 26257736
- Bedi, B.; Maurice, N.M.; Ciavatta, V.T.; Lynn, K.S.; Yuan, Z.; Molina, S.A.; Joo, M.; Tyor, W.R.; Goldberg, J.B.; Koval, M.; Hart, C.M.; Sadikot, R.T. Peroxisome proliferator-activated receptor-γ agonists attenuate biofilm formation by Pseudomonas aeruginosa. FASEB J., 2017, 31(8), 3608-3621. doi: 10.1096/fj.201700075R PMID: 28442545
- Telford, G.; Wheeler, D.; Williams, P.; Tomkins, P.T.; Appleby, P.; Sewell, H.; Stewart, G.S.A.B.; Bycroft, B.W.; Pritchard, D.I. The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity. Infect. Immun., 1998, 66(1), 36-42. doi: 10.1128/IAI.66.1.36-42.1998 PMID: 9423836
- Kravchenko, V.V.; Kaufmann, G.F.; Mathison, J.C.; Scott, D.A.; Katz, A.Z.; Grauer, D.C.; Lehmann, M.; Meijler, M.M.; Janda, K.D.; Ulevitch, R.J. Modulation of gene expression via disruption of NF-kappaB signaling by a bacterial small molecule. Science, 2008, 321(5886), 259-263. doi: 10.1126/science.1156499 PMID: 18566250
- Kushwaha, A.; Verma, R.S.; Agarwal, V. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone induces calcium signaling-dependent crosstalk between autophagy and apoptosis in human macrophages. Cell. Signal., 2022, 99, 110441. doi: 10.1016/j.cellsig.2022.110441 PMID: 35995303
- Halling, J.F.; Pilegaard, H. PGC-1α-mediated regulation of mitochondrial function and physiological implications. Appl. Physiol. Nutr. Metab., 2020, 45(9), 927-936. doi: 10.1139/apnm-2020-0005 PMID: 32516539
- Zhang, J.; Gong, F.; Li, L.; Zhao, M.; Song, J. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone attenuates lipopolysaccharide-induced inflammation by activating the unfolded protein response. Biomed. Rep., 2014, 2(2), 233-238. doi: 10.3892/br.2014.225 PMID: 24649102
- Maurice, N.M.; Bedi, B.; Yuan, Z.; Goldberg, J.B.; Koval, M.; Hart, C.M.; Sadikot, R.T. Pseudomonas aeruginosa induced host epithelial cell mitochondrial dysfunction. Sci. Rep., 2019, 9(1), 11929. doi: 10.1038/s41598-019-47457-1 PMID: 31417101
- Josephson, H.; Ntzouni, M.; Skoglund, C.; Linder, S.; Turkina, M.V.; Vikström, E. Pseudomonas aeruginosa N-3-oxo-dodecanoyl-homoserine lactone impacts mitochondrial networks morphology, energetics, and proteome in host cells. Front. Microbiol., 2020, 11, 1069. doi: 10.3389/fmicb.2020.01069 PMID: 32523583
- Wang, J.; Wang, C.; Yu, H.B.; Dela Ahator, S.; Wu, X.; Lv, S.; Zhang, L.H. Bacterial quorum-sensing signal IQS induces host cell apoptosis by targeting POT1p53 signalling pathway. Cell. Microbiol., 2019, 21(10), e13076. doi: 10.1111/cmi.13076 PMID: 31254473
- Liu, Y.; Liu, J.; Johnson, B.A.; Xia, H.; Ku, Z.; Schindewolf, C.; Widen, S.G.; An, Z.; Weaver, S.C.; Menachery, V.D.; Xie, X.; Shi, P.Y. Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. Cell Rep., 2022, 39(7), 110829. doi: 10.1016/j.celrep.2022.110829 PMID: 35550680
- Bandyopadhaya, A.; Tsurumi, A.; Maura, D.; Jeffrey, K.L.; Rahme, L.G. A quorum-sensing signal promotes host tolerance training through HDAC1-mediated epigenetic reprogramming. Nat. Microbiol., 2016, 1(12), 16174. doi: 10.1038/nmicrobiol.2016.174 PMID: 27694949
- Hennemann, L.C.; LaFayette, S.L.; Malet, J.K.; Bortolotti, P.; Yang, T.; McKay, G.A.; Houle, D.; Radzioch, D.; Rousseau, S.; Nguyen, D. LasR-deficient Pseudomonas aeruginosa variants increase airway epithelial mICAM-1 expression and enhance neutrophilic lung inflammation. PLoS Pathog., 2021, 17(3), e1009375. doi: 10.1371/journal.ppat.1009375 PMID: 33690714
- Twigg, M.S.; Brockbank, S.; Lowry, P.; FitzGerald, S.P.; Taggart, C.; Weldon, S. The role of serine proteases and antiproteases in the cystic fibrosis lung. Mediators Inflamm., 2015, 2015, 1-10. doi: 10.1155/2015/293053 PMID: 26185359
Supplementary files
