Mechanisms of the Quorum Sensing Systems of Pseudomonas aeruginosa: Host and Bacteria


Cite item

Full Text

Abstract

:Quorum-sensing is a communication mechanism between bacteria with the ability to activate signaling pathways in the bacterium and in the host cells. Pseudomonas aeruginosa is a pathogen with high clinical relevance due to its vast virulence factors repertory and wide antibiotic resistance mechanisms. Due to this, it has become a pathogen of interest for developing new antimicrobial agents in recent years. P. aeruginosa has three major QS systems that regulate a wide gene range linked with virulence factors, metabolic regulation, and environment adaption. Consequently, inhibiting this communication mechanism would be a strategy to prevent the pathologic progression of the infections caused by this bacterium. In this review, we aim to overview the current studies about the signaling mechanisms of the QS system of P. aeruginosa and its effects on this bacterium and the host.

About the authors

Diana Flores-Percino

Department of Medicine, Benemérita Universidad Autónoma de Puebla

Email: info@benthamscience.net

Estefanie Osorio-Llanes

Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla

Email: info@benthamscience.net

Yanireth Sepulveda

Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla

Email: info@benthamscience.net

Jairo Castellar- López

Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla

Email: info@benthamscience.net

Ricardo Madera

Department of Medicine, Faculty of Health Science, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla

Email: info@benthamscience.net

Wendy Rada

Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla

Email: info@benthamscience.net

Carlos Meléndez

Department of Chemistry, Faculty of Basic Sciencies, Grupo de Investigación en Química Orgánica y Biomédica, Universidad del Atlántico

Email: info@benthamscience.net

Evelyn Mendoza-Torres

Department of Medicine, Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla

Author for correspondence.
Email: info@benthamscience.net

References

  1. Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433. doi: 10.1128/MMBR.00016-10 PMID: 20805405
  2. Worldwide country situation analysis: Antimicrobial resistance: fact sheet. World Health Organization. World Health Organization. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (cited 2023 Mar)
  3. antibacterial agents in clinical and preclinical development: An overview and analysis. World Health Organization. World Health Organization. 2020. Available from: https://www.who.int/publications-detail-redirect/9789240021303 (cited 2023 Mar 9)
  4. Resistencia a Los Antimicrobianos. World Health Organization. World Health Organization. 2021. Available from: www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance (cited 2023 Mar)
  5. Qin, B.; Bassler, B.L. Quorum-sensing control of matrix protein production drives fractal wrinkling and interfacial localization of Vibrio cholerae pellicles. Nat. Commun., 2022, 13(1), 6063. doi: 10.1038/s41467-022-33816-6 PMID: 36229546
  6. Waters, C.M.; Bassler, B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol., 2005, 21(1), 319-346. doi: 10.1146/annurev.cellbio.21.012704.131001 PMID: 16212498
  7. Smith, R.; Iglewski, B.H. P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol., 2003, 6(1), 56-60. doi: 10.1016/S1369-5274(03)00008-0 PMID: 12615220
  8. Yadav, V.K.; Singh, P.K.; Kalia, M.; Sharma, D.; Singh, S.K.; Agarwal, V. Pseudomonas aeruginosa quorum sensing molecule N-3-oxo-dodecanoyl-l-homoserine lactone activates human platelets through intracellular calcium-mediated ROS generation. Int. J. Med. Microbiol., 2018, 308(7), 858-864. doi: 10.1016/j.ijmm.2018.07.009 PMID: 30098883
  9. Botelho, J.; Grosso, F.; Peixe, L. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms, epidemiology and evolution. Drug Resist. Updat., 2019, 44, 100640. doi: 10.1016/j.drup.2019.07.002 PMID: 31492517
  10. Tashiro, Y.; Yawata, Y.; Toyofuku, M.; Uchiyama, H.; Nomura, N. Interspecies interaction between Pseudomonas aeruginosa and other microorganisms. Microbes Environ., 2013, 28(1), 13-24. doi: 10.1264/jsme2.ME12167 PMID: 23363620
  11. Mielko, K.A.; Jabłoński, S.J.; Milczewska, J.; Sands, D.; Łukaszewicz, M.; Młynarz, P. Metabolomic studies of Pseudomonas aeruginosa. World J. Microbiol. Biotechnol., 2019, 35(11), 178. doi: 10.1007/s11274-019-2739-1 PMID: 31701321
  12. Gellatly, S.L.; Hancock, R.E.W. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis., 2013, 67(3), 159-173. doi: 10.1111/2049-632X.12033 PMID: 23620179
  13. Sawa, T.; Momiyama, K.; Mihara, T.; Kainuma, A.; Kinoshita, M.; Moriyama, K. Molecular epidemiology of clinically high-risk Pseudomonas aeruginosa strains: Practical overview. Microbiol. Immunol., 2020, 64(5), 331-344. doi: 10.1111/1348-0421.12776 PMID: 31965613
  14. García-Betancur, J.C.; Appel, T.M.; Esparza, G.; Gales, A.C.; Levy-Hara, G.; Cornistein, W.; Vega, S.; Nuñez, D.; Cuellar, L.; Bavestrello, L.; Castañeda-Méndez, P.F.; Villalobos-Vindas, J.M.; Villegas, M.V. Update on the epidemiology of carbapenemases in latin America and the Caribbean. Expert Rev. Anti Infect. Ther., 2021, 19(2), 197-213. doi: 10.1080/14787210.2020.1813023 PMID: 32813566
  15. Pragasam, A.K.; Veeraraghavan, B.; Nalini, E.; Anandan, S.; Kaye, K.S. An update on antimicrobial resistance and the role of newer antimicrobial agents for Pseudomonas aeruginosa. Indian J. Med. Microbiol., 2018, 36(3), 303-316. doi: 10.4103/ijmm.IJMM_18_334 PMID: 30429381
  16. Miyoshi, T. Emergence and spread of epidemic multidrug: Resistant Pseudomonas aeruginosa. Genome Biol. Evol., 2017, 9(12), 3228-3245.
  17. Abisado, R.G.; Benomar, S.; Klaus, J.R.; Dandekar, A.A.; Chandler, J.R. Bacterial quorum sensing and microbial community interactions. MBio, 2018, 9(3), e02331-17. doi: 10.1128/mBio.02331-17 PMID: 29789364
  18. Silpe, J.E.; Bassler, B.L. A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell, 2019, 176(1-2), 268-280.e13. doi: 10.1016/j.cell.2018.10.059 PMID: 30554875
  19. Yi, L.; Dong, X.; Grenier, D.; Wang, K.; Wang, Y. Research progress of bacterial quorum sensing receptors: Classification, structure, function and characteristics. Sci. Total Environ., 2021, 763, 143031. doi: 10.1016/j.scitotenv.2020.143031 PMID: 33129525
  20. Papenfort, K.; Bassler, B.L. Quorum sensing signal–response systems in gram-negative bacteria. Nat. Rev. Microbiol., 2016, 14(9), 576-588. doi: 10.1038/nrmicro.2016.89 PMID: 27510864
  21. Saipriya, K.; Swathi, C.H.; Ratnakar, K.S.; Sritharan, V. Quorum-sensing system in Acinetobacter baumannii : A potential target for new drug development. J. Appl. Microbiol., 2020, 128(1), 15-27. doi: 10.1111/jam.14330 PMID: 31102552
  22. Banerjee, G.; Ray, A.K. Quorum-sensing network-associated gene regulation in gram-positive bacteria. Acta Microbiol. Immunol. Hung., 2017, 64(4), 439-453. doi: 10.1556/030.64.2017.040 PMID: 29243493
  23. Xie, Z.; Meng, K.; Yang, X.; Liu, J.; Yu, J.; Zheng, C.; Cao, W.; Liu, H. Identification of a quorum sensing system regulating capsule polysaccharide production and biofilm formation in Streptococcus zooepidemicus. Front. Cell. Infect. Microbiol., 2019, 9, 121. doi: 10.3389/fcimb.2019.00121 PMID: 31058104
  24. Thoendel, M.; Horswill, A.R. Biosynthesis of peptide signals in gram-positive bacteria. Adv. Appl. Microbiol., 2010, 71, 91-112. doi: 10.1016/S0065-2164(10)71004-2 PMID: 20378052
  25. Verbeke, F.; De Craemer, S.; Debunne, N.; Janssens, Y.; Wynendaele, E.; Van de Wiele, C.; De Spiegeleer, B. Peptides as quorum sensing molecules: Measurement techniques and obtained levels In vitro and In vivo. Front. Neurosci., 2017, 11(11), 183. doi: 10.3389/fnins.2017.00183 PMID: 28446863
  26. Jiménez Amador, H.; Casan Clarà, P. Bacterial communication and human communication: what can we learn from quorum sensing? Arch. Bronconeumol., 2012, 48(9), 305-307. doi: 10.1016/j.arbr.2012.06.011 PMID: 22520726
  27. Li, Y.H.; Tang, N.; Aspiras, M.B.; Lau, P.C.Y.; Lee, J.H.; Ellen, R.P.; Cvitkovitch, D.G. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol., 2002, 184(10), 2699-2708. doi: 10.1128/JB.184.10.2699-2708.2002 PMID: 11976299
  28. Gardan, R.; Besset, C.; Guillot, A.; Gitton, C.; Monnet, V. The oligopeptide transport system is essential for the development of natural competence in Streptococcus thermophilus strain LMD-9. J. Bacteriol., 2009, 191(14), 4647-4655. doi: 10.1128/JB.00257-09 PMID: 19447907
  29. Della Sala, G.; Teta, R.; Esposito, G.; Costantino, V. The chemical language of gram-negative bacteria. Quorum Sensing; Academic Press, 2019, pp. 3-28.
  30. Li, Z.; Nair, S.K. Quorum sensing: How bacteria can coordinate activity and synchronize their response to external signals? Protein Sci., 2012, 21(10), 1403-1417. doi: 10.1002/pro.2132 PMID: 22825856
  31. Geske, G.D.; O’Neill, J.C.; Blackwell, H.E. Expanding dialogues: From natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria. Chem. Soc. Rev., 2008, 37(7), 1432-1447. doi: 10.1039/b703021p PMID: 18568169
  32. Turkina, M.V.; Vikström, E. Bacteria-host crosstalk: Sensing of the quorum in the context of Pseudomonas aeruginosa infections. J. Innate Immun., 2019, 11(3), 263-279. doi: 10.1159/000494069 PMID: 30428481
  33. Duddy, O.P.; Bassler, B.L. Quorum sensing across bacterial and viral domains. PLoS Pathog., 2021, 17(1), e1009074. doi: 10.1371/journal.ppat.1009074 PMID: 33411743
  34. Venturi, V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol. Rev., 2006, 30(2), 274-291. doi: 10.1111/j.1574-6976.2005.00012.x PMID: 16472307
  35. Mulcahy, L.R.; Isabella, V.M.; Lewis, K. Pseudomonas aeruginosa biofilms in disease. Microb. Ecol., 2014, 68(1), 1-12. doi: 10.1007/s00248-013-0297-x PMID: 24096885
  36. Peters, G.; Locci, R.; Pulverer, G. Microbial colonization of prosthetic devices. II. Scanning electron microscopy of naturally infected intravenous catheters. Zentralbl. Bakteriol. Mikrobiol. Hyg. B, 1981, 173(5), 293-299. PMID: 6792814
  37. Cross, C. Quorum sensing in beneficial plant : Bacteria associations. Rev. Colomb. Biotecnologia, 2011, 13(2), 135-143.
  38. Raad, I.; Hanna, H. Intravascular catheters impregnated with antimicrobial agents: A milestone in the prevention of bloodstream infections. Support. Care Cancer, 1999, 7(6), 386-390. doi: 10.1007/s005200050297 PMID: 10541979
  39. Antibiotic resistance threats in the United States, 2019. Centers for Disease Control and Prevention (U.S.). 2019. Available from: https://stacks.cdc.gov/view/cdc/82532/cdc 82532 DS1.pdf (cited 2023 Mar)
  40. Horinouchi, S.; Ueda, K.; Nakayama, J.; Ikeda, T. Cell to-cell communications among microorganisms. Comprehensive Natural Products II: Chemistry and Biology; Liu, H-W.; Lew, M., Eds.; Elsevier Ltd: Amsterdam, 2010. doi: 10.1016/B978-008045382-8.00098-8
  41. Juhas, M.; Wiehlmann, L.; Huber, B.; Jordan, D.; Lauber, J.; Salunkhe, P.; Limpert, A.S.; von Götz, F.; Steinmetz, I.; Eberl, L.; Tümmler, B. Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology, 2004, 150(4), 831-841. doi: 10.1099/mic.0.26906-0 PMID: 15073293
  42. Ueda, A.; Wood, T.K. Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog., 2009, 5(6), e1000483. doi: 10.1371/journal.ppat.1000483 PMID: 19543378
  43. Becerra, C.; García, A.M.P.; Reyes, M.Y.D.; Huertas, M.G. Bacterial biofilms in chronic wounds. For. Heal. Magaz., 2019, 9(1)
  44. Deng, Y.; Wu, J.; Tao, F.; Zhang, L.H. Listening to a new language: DSF-based quorum sensing in gram-negative bacteria. Chem. Rev., 2011, 111(1), 160-173. doi: 10.1021/cr100354f PMID: 21166386
  45. Kostylev, M.; Kim, D.Y.; Smalley, N.E.; Salukhe, I.; Greenberg, E.P.; Dandekar, A.A. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proc. Natl. Acad. Sci., 2019, 116(14), 7027-7032. doi: 10.1073/pnas.1819796116 PMID: 30850547
  46. Lee, J.; Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein &. Cell, 2014, 6(1), 26-41. PMID: 24679524
  47. Pesci, E.C.; Milbank, J.B.J.; Pearson, J.P.; McKnight, S.; Kende, A.S.; Greenberg, E.P.; Iglewski, B.H. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci., 1999, 96(20), 11229-11234. doi: 10.1073/pnas.96.20.11229 PMID: 10500159
  48. Collier, D.N.; Anderson, L.; McKnight, S.L.; Noah, T.L.; Knowles, M.; Boucher, R.; Schwab, U.; Gilligan, P.; Pesci, E.C. A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol. Lett., 2002, 215(1), 41-46. doi: 10.1111/j.1574-6968.2002.tb11367.x PMID: 12393198
  49. Schafhauser, J.; Lepine, F.; McKay, G.; Ahlgren, H.G.; Khakimova, M.; Nguyen, D. The stringent response modulates 4-hydroxy-2-alkylquinoline biosynthesis and quorum-sensing hierarchy in Pseudomonas aeruginosa. J. Bacteriol., 2014, 196(9), 1641-1650. doi: 10.1128/JB.01086-13 PMID: 24509318
  50. Lee, J.; Wu, J.; Deng, Y.; Wang, J.; Wang, C.; Wang, J.; Chang, C.; Dong, Y.; Williams, P.; Zhang, L.H. A cell-cell communication signal integrates quorum sensing and stress response. Nat. Chem. Biol., 2013, 9(5), 339-343. doi: 10.1038/nchembio.1225 PMID: 23542643
  51. Holm, A.; Vikström, E. Quorum sensing communication between bacteria and human cells: Signals, targets, and functions. Front. Plant Sci., 2014, 5, 309. doi: 10.3389/fpls.2014.00309 PMID: 25018766
  52. Holm, A.; Magnusson, K.E.; Vikström, E. Pseudomonas aeruginosa n-3-oxo-dodecanoyl-homoserine lactone elicits changes in cell volume, Morphology, and AQP9 characteristics in macrophages. Front. Cell. Infect. Microbiol., 2016, 6, 32. doi: 10.3389/fcimb.2016.00032 PMID: 27047801
  53. Diggle, S.P.; Winzer, K.; Chhabra, S.R.; Worrall, K.E.; Cámara, M.; Williams, P. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol. Microbiol., 2003, 50(1), 29-43. doi: 10.1046/j.1365-2958.2003.03672.x PMID: 14507361
  54. He, Q.; Feng, Z.; Wang, Y.; Wang, K.; Zhang, K.; Kai, L.; Hao, X.; Yu, Z.; Chen, L.; Ge, Y. LasR might act as an intermediate in overproduction of Phenaz in the absence of rpos in Pseudomonas aeruginosa. J. Microbiol. Biotechnol., 2019, 29(8), 1299-1309. doi: 10.4014/jmb.1904.04029 PMID: 31387340
  55. Duplantier, M.; Lohou, E.; Sonnet, P. Quorum sensing inhibitors to quench P. aeruginosa pathogenicity. Pharmaceuticals, 2021, 14(12), 1262. doi: 10.3390/ph14121262 PMID: 34959667
  56. Høyland-Kroghsbo, N.M.; Paczkowski, J.; Mukherjee, S.; Broniewski, J.; Westra, E.; Bondy-Denomy, J.; Bassler, B.L. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. Proc. Natl. Acad. Sci., 2017, 114(1), 131-135. doi: 10.1073/pnas.1617415113 PMID: 27849583
  57. Feltner, J.B.; Wolter, D.J.; Pope, C.E.; Groleau, M.C.; Smalley, N.E.; Greenberg, E.P.; Mayer-Hamblett, N.; Burns, J.; Déziel, E.; Hoffman, L.R.; Dandekar, A.A. LASR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa. MBio, 2016, 7(5), e01513-16. doi: 10.1128/mBio.01513-16 PMID: 27703072
  58. Clay, M.E.; Hammond, J.H.; Zhong, F.; Chen, X.; Kowalski, C.H.; Lee, A.J.; Porter, M.S.; Hampton, T.H.; Greene, C.S.; Pletneva, E.V.; Hogan, D.A. Pseudomonas aeruginosa lasR mutant fitness in microoxia is supported by an Anr-regulated oxygen-binding hemerythrin. Proc. Natl. Acad. Sci., 2020, 117(6), 3167-3173. doi: 10.1073/pnas.1917576117 PMID: 31980538
  59. Sandoz, K.M.; Mitzimberg, S.M.; Schuster, M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc. Natl. Acad. Sci., 2007, 104(40), 15876-15881. doi: 10.1073/pnas.0705653104 PMID: 17898171
  60. Hammond, J.H.; Hebert, W.P.; Naimie, A.; Ray, K.; Van Gelder, R.D.; DiGiandomenico, A.; Lalitha, P.; Srinivasan, M.; Acharya, N.R.; Lietman, T.; Hogan, D.A.; Zegans, M.E. Environmentally endemic Pseudomonas aeruginosa strains with mutations in lasr are associated with increased disease severity in corneal ulcers. MSphere, 2016, 1(5), e00140-16. doi: 10.1128/mSphere.00140-16 PMID: 27631025
  61. Heurlier, K.; Dénervaud, V.; Haenni, M.; Guy, L.; Krishnapillai, V.; Haas, D. Quorum-sensing-negative (lasR) mutants of Pseudomonas aeruginosa avoid cell lysis and death. J. Bacteriol., 2005, 187(14), 4875-4883. doi: 10.1128/JB.187.14.4875-4883.2005 PMID: 15995202
  62. Tombolini, R.; Unge, A.; Davey, M.E.; Bruijn, F.J.; Jansson, J.K. Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiol. Ecol., 1997, 22(1), 17-28. doi: 10.1111/j.1574-6941.1997.tb00352.x
  63. Sergé, A. The molecular architecture of cell adhesion: Dynamic remodeling revealed by videonanoscopy. Front. Cell Dev. Biol., 2016, 4, 36. doi: 10.3389/fcell.2016.00036 PMID: 27200348
  64. Moura, P.; Puyskens, A.; Stinn, A.; Klemm, M.; Guhlich, U.; Dorhoi, A. Host monitoring of quorum sensing during Pseudomonas aeruginosa infection. Science, 2019, 66(6472), eaaw1629.
  65. Curutiu, C.; Iordache, F.; Lazar, V.; Pisoschi, A.M.; Pop, A.; Chifiriuc, M.C.; Hoban, A.M. Impact of Pseudomonas aeruginosa quorum sensing signaling molecules on adhesion and inflammatory markers in endothelial cells. Beilstein J. Org. Chem., 2018, 14, 2580-2588. doi: 10.3762/bjoc.14.235 PMID: 30410619
  66. Feng, L.; Xiang, Q.; Ai, Q.; Wang, Z.; Zhang, Y.; Lu, Q. Effects of quorum sensing systems on regulatory T cells in catheter-related Pseudomonas aeruginosa biofilm infection rat models. Mediators Inflamm., 2016, 2016, 1-7. doi: 10.1155/2016/4012912 PMID: 27069314
  67. Guo, J.; Yoshida, K.; Ikegame, M.; Okamura, H. Quorum sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone: An all-rounder in mammalian cell modification. J. Oral Biosci./ JAOB, Jpn. Assoc. Oral Biol., 2020, 62(1), 16-29. doi: 10.1016/j.job.2020.01.001 PMID: 31982630
  68. Bandyopadhaya, A.; Tzika, A.A.; Rahme, L.G. Pseudomonas aeruginosa quorum sensing molecule alters skeletal muscle protein homeostasis by perturbing the antioxidant defense system. MBio, 2019, 10(5), e02211-19. doi: 10.1128/mBio.02211-19 PMID: 31575771
  69. Chhabra, S.R.; Harty, C.; Hooi, D.S.W.; Daykin, M.; Williams, P.; Telford, G.; Pritchard, D.I.; Bycroft, B.W. Synthetic analogues of the bacterial signal (quorum sensing) molecule N-(3-oxododecanoyl)-L-homoserine lactone as immune modulators. J. Med. Chem., 2003, 46(1), 97-104. doi: 10.1021/jm020909n PMID: 12502363
  70. Gaida, M.M.; Mayer, C.; Dapunt, U.; Stegmaier, S.; Schirmacher, P.; Wabnitz, G.H.; Hänsch, G.M. Expression of the bitter receptor T2R38 in pancreatic cancer: Localization in lipid droplets and activation by a bacteria-derived quorum-sensing molecule. Oncotarget, 2016, 7(11), 12623-12632. doi: 10.18632/oncotarget.7206 PMID: 26862855
  71. Maurer, S.; Wabnitz, G.H.; Kahle, N.A.; Stegmaier, S.; Prior, B.; Giese, T.; Gaida, M.M.; Samstag, Y.; Hänsch, G.M. Tasting Pseudomonas aeruginosa biofilms: Human neutrophils express the bitter receptor T2R38 as sensor for the quorum sensing molecule N-(3-Oxododecanoyl)-L-homoserine lactone. Front. Immunol., 2015, 6, 369. doi: 10.3389/fimmu.2015.00369 PMID: 26257736
  72. Bedi, B.; Maurice, N.M.; Ciavatta, V.T.; Lynn, K.S.; Yuan, Z.; Molina, S.A.; Joo, M.; Tyor, W.R.; Goldberg, J.B.; Koval, M.; Hart, C.M.; Sadikot, R.T. Peroxisome proliferator-activated receptor-γ agonists attenuate biofilm formation by Pseudomonas aeruginosa. FASEB J., 2017, 31(8), 3608-3621. doi: 10.1096/fj.201700075R PMID: 28442545
  73. Telford, G.; Wheeler, D.; Williams, P.; Tomkins, P.T.; Appleby, P.; Sewell, H.; Stewart, G.S.A.B.; Bycroft, B.W.; Pritchard, D.I. The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity. Infect. Immun., 1998, 66(1), 36-42. doi: 10.1128/IAI.66.1.36-42.1998 PMID: 9423836
  74. Kravchenko, V.V.; Kaufmann, G.F.; Mathison, J.C.; Scott, D.A.; Katz, A.Z.; Grauer, D.C.; Lehmann, M.; Meijler, M.M.; Janda, K.D.; Ulevitch, R.J. Modulation of gene expression via disruption of NF-kappaB signaling by a bacterial small molecule. Science, 2008, 321(5886), 259-263. doi: 10.1126/science.1156499 PMID: 18566250
  75. Kushwaha, A.; Verma, R.S.; Agarwal, V. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone induces calcium signaling-dependent crosstalk between autophagy and apoptosis in human macrophages. Cell. Signal., 2022, 99, 110441. doi: 10.1016/j.cellsig.2022.110441 PMID: 35995303
  76. Halling, J.F.; Pilegaard, H. PGC-1α-mediated regulation of mitochondrial function and physiological implications. Appl. Physiol. Nutr. Metab., 2020, 45(9), 927-936. doi: 10.1139/apnm-2020-0005 PMID: 32516539
  77. Zhang, J.; Gong, F.; Li, L.; Zhao, M.; Song, J. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone attenuates lipopolysaccharide-induced inflammation by activating the unfolded protein response. Biomed. Rep., 2014, 2(2), 233-238. doi: 10.3892/br.2014.225 PMID: 24649102
  78. Maurice, N.M.; Bedi, B.; Yuan, Z.; Goldberg, J.B.; Koval, M.; Hart, C.M.; Sadikot, R.T. Pseudomonas aeruginosa induced host epithelial cell mitochondrial dysfunction. Sci. Rep., 2019, 9(1), 11929. doi: 10.1038/s41598-019-47457-1 PMID: 31417101
  79. Josephson, H.; Ntzouni, M.; Skoglund, C.; Linder, S.; Turkina, M.V.; Vikström, E. Pseudomonas aeruginosa N-3-oxo-dodecanoyl-homoserine lactone impacts mitochondrial networks morphology, energetics, and proteome in host cells. Front. Microbiol., 2020, 11, 1069. doi: 10.3389/fmicb.2020.01069 PMID: 32523583
  80. Wang, J.; Wang, C.; Yu, H.B.; Dela Ahator, S.; Wu, X.; Lv, S.; Zhang, L.H. Bacterial quorum-sensing signal IQS induces host cell apoptosis by targeting POT1–p53 signalling pathway. Cell. Microbiol., 2019, 21(10), e13076. doi: 10.1111/cmi.13076 PMID: 31254473
  81. Liu, Y.; Liu, J.; Johnson, B.A.; Xia, H.; Ku, Z.; Schindewolf, C.; Widen, S.G.; An, Z.; Weaver, S.C.; Menachery, V.D.; Xie, X.; Shi, P.Y. Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. Cell Rep., 2022, 39(7), 110829. doi: 10.1016/j.celrep.2022.110829 PMID: 35550680
  82. Bandyopadhaya, A.; Tsurumi, A.; Maura, D.; Jeffrey, K.L.; Rahme, L.G. A quorum-sensing signal promotes host tolerance training through HDAC1-mediated epigenetic reprogramming. Nat. Microbiol., 2016, 1(12), 16174. doi: 10.1038/nmicrobiol.2016.174 PMID: 27694949
  83. Hennemann, L.C.; LaFayette, S.L.; Malet, J.K.; Bortolotti, P.; Yang, T.; McKay, G.A.; Houle, D.; Radzioch, D.; Rousseau, S.; Nguyen, D. LasR-deficient Pseudomonas aeruginosa variants increase airway epithelial mICAM-1 expression and enhance neutrophilic lung inflammation. PLoS Pathog., 2021, 17(3), e1009375. doi: 10.1371/journal.ppat.1009375 PMID: 33690714
  84. Twigg, M.S.; Brockbank, S.; Lowry, P.; FitzGerald, S.P.; Taggart, C.; Weldon, S. The role of serine proteases and antiproteases in the cystic fibrosis lung. Mediators Inflamm., 2015, 2015, 1-10. doi: 10.1155/2015/293053 PMID: 26185359

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers