The Potential Therapeutic Applications of CRISPR/Cas9 in Colorectal Cancer


Cite item

Full Text

Abstract

:The application of the CRISPR-associated nuclease 9 (Cas9) system in tumor studies has led to the discovery of several new treatment strategies for colorectal cancer (CRC), including the recognition of novel target genes, the construction of animal mass models, and the identification of genes related to chemotherapy resistance. CRISPR/Cas9 can be applied to genome therapy for CRC, particularly regarding molecular-targeted medicines and suppressors. This review summarizes some aspects of using CRISPR/- Cas9 in treating CRC. Further in-depth and systematic research is required to fully realize the potential of CRISPR/Cas9 in CRC treatment and integrate it into clinical practice.

About the authors

Ghazaleh Pourali

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Mina Maftooh

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Hamed Akbarzade

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Seyed Hassanian

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Majid Mobarhan

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Gordon Ferns

Brighton & Sussex Medical School,, Division of Medical Education

Email: info@benthamscience.net

Majid Khazaei

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Amir Avan

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Toktam Sahranavard

Faculty of Medicine, Mashhad University of Medical Science

Email: info@benthamscience.net

Shima Mehrabadi

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

References

  1. Kim, B.G.; Malek, E.; Choi, S.H.; Ignatz-Hoover, J.J.; Driscoll, J.J. Novel therapies emerging in oncology to target the TGF-β pathway. J. Hematol. Oncol., 2021, 14(1), 55-55. doi: 10.1186/s13045-021-01053-x PMID: 33823905
  2. Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; Hau, P.; Brandes, A.A.; Gijtenbeek, J.; Marosi, C.; Vecht, C.J.; Mokhtari, K.; Wesseling, P.; Villa, S.; Eisenhauer, E.; Gorlia, T.; Weller, M.; Lacombe, D.; Cairncross, J.G.; Mirimanoff, R.O. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol., 2009, 10(5), 459-466. doi: 10.1016/S1470-2045(09)70025-7 PMID: 19269895
  3. Garraway, L.A.; Lander, E.S. Lessons from the cancer genome. Cell, 2013, 153(1), 17-37. doi: 10.1016/j.cell.2013.03.002 PMID: 23540688
  4. Zafari, N.; Velayati, M.; Damavandi, S.; Pourali, G.; Mobarhan, M.G.; Nassiri, M.; Hassanian, S.M.; Khazaei, M.; Ferns, G.A.; Avan, A. Metabolic pathways regulating colorectal cancer: A potential therapeutic approach. Curr. Pharm. Des., 2022, 28(36), 2995-3009. doi: 10.2174/1381612828666220922111342 PMID: 36154599
  5. Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.J.R.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.L.; Boyault, S.; Burkhardt, B.; Butler, A.P.; Caldas, C.; Davies, H.R.; Desmedt, C.; Eils, R.; Eyfjörd, J.E.; Foekens, J.A.; Greaves, M.; Hosoda, F.; Hutter, B.; Ilicic, T.; Imbeaud, S.; Imielinski, M.; Jäger, N.; Jones, D.T.W.; Jones, D.; Knappskog, S.; Kool, M.; Lakhani, S.R.; López-Otín, C.; Martin, S.; Munshi, N.C.; Nakamura, H.; Northcott, P.A.; Pajic, M.; Papaemmanuil, E.; Paradiso, A.; Pearson, J.V.; Puente, X.S.; Raine, K.; Ramakrishna, M.; Richardson, A.L.; Richter, J.; Rosenstiel, P.; Schlesner, M.; Schumacher, T.N.; Span, P.N.; Teague, J.W.; Totoki, Y.; Tutt, A.N.J.; Valdés-Mas, R.; van Buuren, M.M.; van ’t Veer, L.; Vincent-Salomon, A.; Waddell, N.; Yates, L.R.; Zucman-Rossi, J.; Andrew Futreal, P.; McDermott, U.; Lichter, P.; Meyerson, M.; Grimmond, S.M.; Siebert, R.; Campo, E.; Shibata, T.; Pfister, S.M.; Campbell, P.J.; Stratton, M.R. Signatures of mutational processes in human cancer. Nature, 2013, 500(7463), 415-421. doi: 10.1038/nature12477 PMID: 23945592
  6. Palmer, D.H.; Chen, M.J.; Kerr, D.J. Gene therapy for colorectal cancer. Br. Med. Bull., 2002, 64(1), 201-225. doi: 10.1093/bmb/64.1.201 PMID: 12421734
  7. Jiang, C.; Meng, L.; Yang, B.; Luo, X. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment. Clin. Genet., 2020, 97(1), 73-88. doi: 10.1111/cge.13589 PMID: 31231788
  8. Ceasar, S.A.; Rajan, V.; Prykhozhij, S.V.; Berman, J.N.; Ignacimuthu, S. Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(9), 2333-2344. doi: 10.1016/j.bbamcr.2016.06.009 PMID: 27350235
  9. a) Marraffini, L.A. CRISPR-Cas immunity against phages: Its effects on the evolution and survival of bacterial pathogens. PLoS pathogens., 2013, 9(12), e1003765.; b) Deveau, H.; Garneau, J.E.; Moineau, S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol., 2010, 64, 475-493.
  10. Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. science, 2012, 337(6096), 816-821.
  11. Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature, 2009, 461(7267), 1071-1078. doi: 10.1038/nature08467 PMID: 19847258
  12. Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc., 2013, 8(11), 2281-2308. doi: 10.1038/nprot.2013.143 PMID: 24157548
  13. Estêvão, D.; Rios Costa, N.; da Costa, R.G.; Medeiros, R. CRISPR-Cas9 therapies in experimental mouse models of cancer. Future Oncol., 2018, 14(20), 2083-2095. doi: 10.2217/fon-2018-0028 PMID: 30027767
  14. Koo, T.; Yoon, A.R.; Cho, H.Y.; Bae, S.; Yun, C.O.; Kim, J.S. Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic Acids Res., 2017, 45(13), 7897-7908. doi: 10.1093/nar/gkx490 PMID: 28575452
  15. Meng, H.; Nan, M.; Li, Y.; Ding, Y.; Yin, Y.; Zhang, M. Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Front. Endocrinol., 2023, 14, 1148412. doi: 10.3389/fendo.2023.1148412 PMID: 37020597
  16. Zhang, H.; Qin, C.; An, C.; Zheng, X.; Wen, S.; Chen, W.; Liu, X.; Lv, Z.; Yang, P.; Xu, W.; Gao, W.; Wu, Y. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol. Cancer, 2021, 20(1), 126. doi: 10.1186/s12943-021-01431-6 PMID: 34598686
  17. Jiang, C.; Lin, X.; Zhao, Z. Applications of CRISPR/Cas9 technology in the treatment of lung cancer. Trends Mol. Med., 2019, 25(11), 1039-1049. doi: 10.1016/j.molmed.2019.07.007 PMID: 31422862
  18. Lan, B.; Zeng, S.; Zhang, S.; Ren, X.; Xing, Y.; Kutschick, I.; Pfeffer, S.; Frey, B.; Britzen-Laurent, N.; Grützmann, R.; Cordes, N.; Pilarsky, C. CRISPR-Cas9 screen identifies DYRK1A as a target for radiotherapy sensitization in pancreatic cancer. Cancers., 2022, 14(2), 326. doi: 10.3390/cancers14020326 PMID: 35053488
  19. Lee, S.; Kim, Y.Y.; Ahn, H.J. Systemic delivery of CRISPR/Cas9 to hepatic tumors for cancer treatment using altered tropism of lentiviral vector. Biomaterials, 2021, 272, 120793. doi: 10.1016/j.biomaterials.2021.120793 PMID: 33836291
  20. Dong, Y.; Zhang, S.; Gao, X.; Yin, D.; Wang, T.; Li, Z.; Wan, Z.; Wei, M.; Luo, Y.; Yang, G.; Liu, L. HIF1α epigenetically repressed macrophages via CRISPR/Cas9-EZH2 system for enhanced cancer immunotherapy. Bioact. Mater., 2021, 6(9), 2870-2880. doi: 10.1016/j.bioactmat.2021.02.008 PMID: 33718668
  21. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
  22. White, M.K.; Khalili, K. CRISPR/Cas9 and cancer targets: Future possibilities and present challenges. Oncotarget, 2016, 7(11), 12305-12317. doi: 10.18632/oncotarget.7104 PMID: 26840090
  23. Yan, F.; Ying, L.; Li, X.; Qiao, B.; Meng, Q.; Yu, L.; Yuan, X.; Ren, S.T.; Chan, D.W.; Shi, L.; Ni, P.; Wang, X.; Xu, D.; Hu, Y. Overexpression of the transcription factor ATF3 with a regulatory molecular signature associates with the pathogenic development of colorectal cancer. Oncotarget, 2017, 8(29), 47020-47036. doi: 10.18632/oncotarget.16638 PMID: 28402947
  24. Joo, J.H.; Oh, H.; Kim, M.; An, E.J.; Kim, R.K.; Lee, S.Y.; Kang, D.H.; Kang, S.W.; Keun Park, C.; Kim, H.; Lee, S.J.; Lee, D.; Seol, J.H.; Bae, Y.S. NADPH oxidase 1 activity and ROS generation are regulated by Grb2/Cbl-mediated proteasomal degradation of NoxO1 in colon cancer cells. Cancer Res., 2016, 76(4), 855-865. doi: 10.1158/0008-5472.CAN-15-1512 PMID: 26781991
  25. Xia, D.; Ji, W.; Xu, C.; Lin, X.; Wang, X.; Xia, Y.; Lv, P.; Song, Q.; Ma, D.; Chen, Y. Knockout of MARCH2 inhibits the growth of HCT116 colon cancer cells by inducing endoplasmic reticulum stress. Cell Death Dis., 2017, 8(7), e2957-e2957. doi: 10.1038/cddis.2017.347 PMID: 28749466
  26. Oh, S.; You, E.; Ko, P.; Jeong, J.; Keum, S.; Rhee, S. Genetic disruption of tubulin acetyltransferase, αTAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/β-catenin signaling. Biochem. Biophys. Res. Commun., 2017, 482(1), 8-14. doi: 10.1016/j.bbrc.2016.11.039 PMID: 27836544
  27. Wan, C.; Mahara, S.; Sun, C.; Doan, A.; Chua, H.K.; Xu, D.; Bian, J.; Li, Y.; Zhu, D.; Sooraj, D.; Cierpicki, T.; Grembecka, J.; Firestein, R. Genome-scale CRISPR-Cas9 screen of Wnt/β-catenin signaling identifies therapeutic targets for colorectal cancer. Sci. Adv., 2021, 7(21), eabf2567. doi: 10.1126/sciadv.abf2567 PMID: 34138730
  28. Lautz, Z. A. The Significance of CRISPR/Cas9-Directed CUL3 Knockout on Human Colorectal Cancer Cells; Spring, 2015.
  29. Takei, N.; Yoneda, A.; Sakai-Sawada, K.; Kosaka, M.; Minomi, K.; Tamura, Y. Hypoxia-inducible ERO1α promotes cancer progression through modulation of integrin-β1 modification and signalling in HCT116 colorectal cancer cells. Sci. Rep., 2017, 7(1), 9389. doi: 10.1038/s41598-017-09976-7 PMID: 28127051
  30. Dai, C.; Zhang, X.; Xie, D.; Tang, P.; Li, C.; Zuo, Y.; Jiang, B.; Xue, C. Targeting PP2A activates AMPK signaling to inhibit colorectal cancer cells. Oncotarget, 2017, 8(56), 95810-95823. doi: 10.18632/oncotarget.21336 PMID: 29221169
  31. Zhao, L.h.; Li, Q.; Huang, Z.J.; Sun, M.X.; Lu, J.j.; Zhang, X.h.; Li, G.; Wu, F.J.C.D. Identification of histone methyltransferase NSD2 as an important oncogenic gene in colorectal cancer. Cell Death Dis, 2021, 12(11), 1-10.
  32. Zhang, J.; Lee, Y.-R.; Dang, F.; Gan, W.; Menon, A. V.; Katon, J. M.; Hsu, C.-H.; Asara, J. M.; Tibarewal, P.; Leslie, N. R. J. C. d. PTEN Methylation by NSD2 controls cellular sensitivity to DNA DamagePTEN methylation governs DNA damage response. Cancer Discov., 2019, 9(9), 1306-1323.
  33. Yoshida, K.; Toden, S.; Weng, W.; Shigeyasu, K.; Miyoshi, J.; Turner, J.; Nagasaka, T.; Ma, Y.; Takayama, T.; Fujiwara, T. J. E. SNORA21–an oncogenic small nucleolar RNA, with a prognostic biomarker potential in human colorectal cancer. 2017, 22, 68.77)
  34. Yu, C.; Luo, D.; Yu, J.; Zhang, M.; Zheng, X.; Xu, G.; Wang, J.; Wang, H.; Xu, Y.; Jiang, K. J. O. Genome-wide CRISPR-cas9 knockout screening identifies GRB7 as a driver for MEK inhibitor resistance in KRAS mutant colon cancer. Oncogene., 2022, 41(2), 191-203. doi: 10.1038/s41388-021-02077-w
  35. Biagioni, A.; Chillà, A.; Del Rosso, M.; Fibbi, G.; Scavone, F.; Andreucci, E.; Peppicelli, S.; Bianchini, F.; Calorini, L.; Li, Santi CRISPR/Cas9 uPAR gene knockout results in tumor growth inhibition, EGFR downregulation and induction of stemness markers in melanoma and colon carcinoma cell lines. Front Oncol., 2021, 11, 663225. doi: 10.3389/fonc.2021.663225
  36. Kontomanolis, E.N.; Koutras, A.; Syllaios, A.; Schizas, D.; Mastoraki, A.; Garmpis, N.; Diakosavvas, M.; Angelou, K.; Tsatsaris, G.; Pagkalos, A.; Ntounis, T.; Fasoulakis, Z. Role of oncogenes and tumor-suppressor genes in carcinogenesis: a review. Anticancer Res., 2020, 40(11), 6009-6015. doi: 10.21873/anticanres.14622 PMID: 33109539
  37. Xu, K.; Chen, G.; Li, X.; Wu, X.; Chang, Z.; Xu, J.; Zhu, Y.; Yin, P.; Liang, X.; Dong, L. MFN2 suppresses cancer progression through inhibition of mTORC2/Akt signaling. Sci. Rep., 2017, 7(1), 41718. doi: 10.1038/srep41718 PMID: 28176801
  38. Kline, C.L.B.; Ralff, M.D.; Lulla, A.R.; Wagner, J.M.; Abbosh, P.H.; Dicker, D.T.; Allen, J.E.; El-Deiry, W.S. Role of dopamine receptors in the anticancer activity of ONC201. Neoplasia, 2018, 20(1), 80-91. doi: 10.1016/j.neo.2017.10.002 PMID: 29216597
  39. Novellasdemunt, L.; Foglizzo, V.; Cuadrado, L.; Antas, P.; Kucharska, A.; Encheva, V.; Snijders, A.P.; Li, V.S.W. USP7 is a tumor-specific WNT activator for APC-mutated colorectal cancer by mediating β-catenin deubiquitination. Cell Rep., 2017, 21(3), 612-627. doi: 10.1016/j.celrep.2017.09.072 PMID: 29045831
  40. Takeda, H.; Kataoka, S.; Nakayama, M.; Ali, M.A.E.; Oshima, H.; Yamamoto, D.; Park, J.W.; Takegami, Y.; An, T.; Jenkins, N.A.; Copeland, N.G.; Oshima, M. CRISPR-Cas9–mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc. Natl. Acad. Sci., 2019, 116(31), 15635-15644. doi: 10.1073/pnas.1904714116 PMID: 31300537
  41. Blatner, P. Genetic Editing out the Tumor Growth Supressor Gene TRM9L in Colorectal Cancer Models Using CRISPR-Cas9. University at Albany, State University of New York 2017.
  42. Matano, M.; Shimokawa, M.; Takano, A.; Fujii, M.; Ohta, Y.; Watanabe, T.; Kanai, T.; Sato, T. J. N. m. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat Med., 2015, 21(3), 256-262. doi: 10.1038/nm.3802
  43. Michels, B. E.; Mosa, M. H.; Streibl, B. I.; Zhan, T.; Menche, C.; Abou-El-Ardat, K.; Darvishi, T.; Członka, E.; Wagner, S.; Winter, J. J. C. S. C. Pooled in vitro and in vivo CRISPR-Cas9 screening identifies tumor suppressors in human colon organoids. Cell Stem Cell, 2020, 26(5), 782-792.e7. doi: 10.1016/j.stem.2020.04.003
  44. Chen, Y.; Zhang, Y. Application of the CRISPR/Cas9 system to drug resistance in breast cancer. Adv. Sci., 2018, 5(6), 1700964. doi: 10.1002/advs.201700964 PMID: 29938175
  45. Lei, Z.N.; Teng, Q.X.; Wu, Z.X.; Ping, F.F.; Song, P.; Wurpel, J.N.D.; Chen, Z.S. Overcoming multidrug resistance by knockout of ABCB1 gene using CRISPR/Cas9 system in SW620/Ad300 colorectal cancer cells. MedComm, 2021, 2(4), 765-777. doi: 10.1002/mco2.106 PMID: 34977876
  46. Yang, Y.; Qiu, J-G.; Li, Y.; Di, J-M.; Zhang, W-J.; Jiang, Q-W.; Zheng, D-W.; Chen, Y.; Wei, M-N.; Huang, J-R.; Wang, K.; Shi, Z. Targeting ABCB1-mediated tumor multidrug resistance by CRISPR/Cas9-based genome editing. Am. J. Transl. Res., 2016, 8(9), 3986-3994. PMID: 27725879
  47. Hu, T.; Yang, J.; Yan, Y.; Chen, Y.; Xue, H.; Xiang, Y.; Ye, L. Detection of genes responsible for cetuximab sensitization in colorectal cancer cells using CRISPR-Cas9. Biosci. Rep., 2020, 40(10), BSR20201125. doi: 10.1042/BSR20201125 PMID: 33048115
  48. Sun, X.; Hou, W.; Liu, X.; Chai, J.; Guo, H.; Yu, J. Targeting REV7 effectively reverses 5-FU and oxaliplatin resistance in colorectal cancer. Cancer Cell Int., 2020, 20(1), 580. doi: 10.1186/s12935-020-01668-z PMID: 33292253
  49. Satapathy, S.R.; Sjölander, A. Cysteinyl leukotriene receptor 1 promotes 5-fluorouracil resistance and resistance-derived stemness in colon cancer cells. Cancer Lett., 2020, 488, 50-62. doi: 10.1016/j.canlet.2020.05.023 PMID: 32474153
  50. Izumi, D.; Toden, S.; Ureta, E.; Ishimoto, T.; Baba, H.; Goel, A. TIAM1 promotes chemoresistance and tumor invasiveness in colorectal cancer. Cell Death Dis., 2019, 10(4), 267. doi: 10.1038/s41419-019-1493-5 PMID: 30890693
  51. Xie, C.; Li, K.; Li, Y.; Peng, X.; Teng, B.; He, K.; Jin, A.; Wang, W.; Wei, Z. CRISPR-based knockout screening identifies the loss of MIEF2 to enhance oxaliplatin resistance in colorectal cancer through inhibiting the mitochondrial apoptosis pathway. Front. Oncol., 2022, 12, 881487. doi: 10.3389/fonc.2022.881487 PMID: 36106106
  52. Ashrafizadeh, M.; Zarrabi, A.; Hushmandi, K.; Hashemi, F.; Hashemi, F.; Samarghandian, S.; Najafi, M. MicroRNAs in cancer therapy: Their involvement in oxaliplatin sensitivity/resistance of cancer cells with a focus on colorectal cancer. Life Sci., 2020, 256, 117973. doi: 10.1016/j.lfs.2020.117973 PMID: 32569779
  53. Qiu, X.Y.; Zhu, L.Y.; Zhu, C.S.; Ma, J.X.; Hou, T.; Wu, X.M.; Xie, S.S.; Min, L.; Tan, D.A.; Zhang, D.Y.; Zhu, L. Highly effective and low-cost microRNA detection with CRISPR-Cas9. ACS Synth. Biol., 2018, 7(3), 807-813. doi: 10.1021/acssynbio.7b00446 PMID: 29486117
  54. Chang, H.; Yi, B.; Ma, R.; Zhang, X.; Zhao, H.; Xi, Y. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci. Rep., 2016, 6(1), 22312. doi: 10.1038/srep22312 PMID: 26924382
  55. Ou, X.; Ma, Q.; Yin, W.; Ma, X.; He, Z. CRISPR/Cas9 gene-editing in cancer immunotherapy: promoting the present revolution in cancer therapy and exploring more. Front. Cell Dev. Biol., 2021, 9, 674467. doi: 10.3389/fcell.2021.674467 PMID: 34095145
  56. Feng, M.; Zhao, Z.; Yang, M.; Ji, J.; Zhu, D. T-cell-based immunotherapy in colorectal cancer. Cancer Lett., 2021, 498, 201-209. doi: 10.1016/j.canlet.2020.10.040 PMID: 33129958
  57. Fathi, M.; Pustokhina, I.; Kuznetsov, S.V.; Khayrullin, M.; Hojjat-Farsangi, M.; Karpisheh, V.; Jalili, A.; Jadidi-Niaragh, F. T-cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer. IUBMB Life, 2021, 73(5), 726-738. doi: 10.1002/iub.2461 PMID: 33686787
  58. Potenza, A.; Balestrieri, C.; Albarello, L.; Pedica, F.; Stasi, L.; Manfredi, F.; Spiga, M.; Tassi, E.; Cianciotti, B. C.; Abbati, D. Abstract ND08: NXP800: A first-in-class orally active, small-molecule HSF1 pathway inhibitor. Cancer Res, 2022, 82(S12), ND08. doi: 10.1158/1538-7445.AM2022-567
  59. Gao, L.; Yang, L.; Zhang, S.; Ge, Z.; Su, M.; Shi, Y.; Wang, X.; Huang, C. Engineering NK-92 cell by upregulating CXCR2 and IL-2 Via CRISPR-Cas9 improves its antitumor effects as cellular immunotherapy for human colon cancer. J. Interferon Cytokine Res., 2021, 41(12), 450-460. doi: 10.1089/jir.2021.0078 PMID: 34935484
  60. Wan, T.; Chen, Y.; Pan, Q.; Xu, X.; Kang, Y.; Gao, X.; Huang, F.; Wu, C.; Ping, Y. Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy. J. Control. Release, 2020, 322, 236-247. doi: 10.1016/j.jconrel.2020.03.015 PMID: 32169537
  61. Cornelissen, L.A.M.; Blanas, A.; Zaal, A.; van der Horst, J.C.; Kruijssen, L.J.W.; O’Toole, T.; van Kooyk, Y.; van Vliet, S.J. Tn antigen expression contributes to an immune suppressive microenvironment and drives tumor growth in colorectal cancer. Front. Oncol., 2020, 10, 1622. doi: 10.3389/fonc.2020.01622 PMID: 33014816
  62. Drost, J.; van Jaarsveld, R.H.; Ponsioen, B.; Zimberlin, C.; van Boxtel, R.; Buijs, A.; Sachs, N.; Overmeer, R.M.; Offerhaus, G.J.; Begthel, H.; Korving, J.; van de Wetering, M.; Schwank, G.; Logtenberg, M.; Cuppen, E.; Snippert, H.J.; Medema, J.P.; Kops, G.J.P.L.; Clevers, H. Sequential cancer mutations in cultured human intestinal stem cells. Nature, 2015, 521(7550), 43-47. doi: 10.1038/nature14415 PMID: 25924068

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers