The Mechanisms of miRNAs on Target Regulation and their Recent Advances in Atherosclerosis


Cite item

Full Text

Abstract

:miRNAs are crucial regulators in a variety of physiological and pathological processes, while their regulation mechanisms were usually described as negatively regulating gene expression by targeting the 3’-untranslated region(3’-UTR) of target gene miRNAs through seed sequence in tremendous studies. However, recent evidence indicated the existence of non-canonical mechanisms mediated by binding other molecules besides mRNAs. Additionally, accumulating evidence showed that functions of intracellular and intercellular miRNAs exhibited spatiotemporal patterns. Considering that detailed knowledge of the miRNA regulating mechanism is essential for understanding the roles and further clinical applications associated with their dysfunction and dysregulation, which is complicated and not fully clarified. Based on that, we summarized the recently reported regulation mechanisms of miRNAs, including recognitions, patterns of actions, and chemical modifications. And we also highlight the novel findings of miRNAs in atherosclerosis progression researches to provide new insights for non-coding RNA-based therapy in intractable diseases.

About the authors

Runting Yin

School of Pharmacy, Jiangsu University

Author for correspondence.
Email: info@benthamscience.net

Hongyu Lu

School of Pharmacy, Jiangsu University

Email: info@benthamscience.net

Yixin Cao

Department of Medical Oncology, Affiliated Hospital of Jiangsu University

Email: info@benthamscience.net

Jia Zhang

School of Pharmacy, Jiangsu University

Email: info@benthamscience.net

Geng Liu

School of Pharmacy, Jiangsu University

Email: info@benthamscience.net

Qian Guo

School of Pharmacy, Jiangsu University

Email: info@benthamscience.net

Xinyu Kai

School of Pharmacy, Jiangsu University

Email: info@benthamscience.net

Jiemin Zhao

School of Pharmacy, Jiangsu University

Email: info@benthamscience.net

Yuan Wei

School of Pharmacy, Jiangsu University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet., 2010, 11(9), 597-610. doi: 10.1038/nrg2843 PMID: 20661255
  2. O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol., 2018, 9, 402. doi: 10.3389/fendo.2018.00402 PMID: 30123182
  3. Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol., 2019, 234(5), 5451-5465. doi: 10.1002/jcp.27486 PMID: 30471116
  4. Rivera, J.; Gangwani, L.; Kumar, S. Mitochondria localized microRNAs: An unexplored miRNA niche in Alzheimer’s disease and aging. Cells, 2023, 12(5), 742. doi: 10.3390/cells12050742 PMID: 36899879
  5. Duarte, F.V.; Palmeira, C.M.; Rolo, A.P. The emerging role of MitomiRs in the pathophysiology of human disease. Adv. Exp. Med. Biol., 2015, 888, 123-154. doi: 10.1007/978-3-319-22671-2_8 PMID: 26663182
  6. Gibcus, J.H.; Tan, L.P.; Harms, G.; Schakel, R.N.; de Jong, D.; Blokzijl, T.; Möller, P.; Poppema, S.; Kroesen, B.J.; van den Berg, A. Hodgkin lymphoma cell lines are characterized by a specific miRNA expression profile. Neoplasia, 2009, 11(2), 167-IN9. doi: 10.1593/neo.08980 PMID: 19177201
  7. Dezfuli, N.K.; Alipoor, S.D.; Dalil Roofchayee, N.; Seyfi, S.; Salimi, B.; Adcock, I.M.; Mortaz, E. Evaluation expression of miR-146a and miR-155 in non-small-cell lung cancer patients. Front. Oncol., 2021, 11, 715677. doi: 10.3389/fonc.2021.715677 PMID: 34790566
  8. He, Q.; Wang, F.; Honda, T.; Greis, K.D.; Redington, A.N. Ablation of miR-144 increases vimentin expression and atherosclerotic plaque formation. Sci. Rep., 2020, 10(1), 6127. doi: 10.1038/s41598-020-63335-7 PMID: 32273567
  9. Wang, H.; Song, Y.; Wu, Y.; Kumar, V.; Mahato, R.I.; Su, Q. Activation of dsRNA-dependent protein kinase R by miR-378 sustains metabolic inflammation in hepatic insulin resistance. Diabetes, 2021, 70(3), 710-719. doi: 10.2337/db20-0181 PMID: 33419758
  10. Juźwik, C.A.; S Drake, S.; Zhang, Y.; Paradis-Isler, N.; Sylvester, A.; Amar-Zifkin, A.; Douglas, C.; Morquette, B.; Moore, C.S.; Fournier, A.E. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog. Neurobiol., 2019, 182, 101664. doi: 10.1016/j.pneurobio.2019.101664 PMID: 31356849
  11. Reinsborough, C.W.; Ipas, H.; Abell, N.S.; Nottingham, R.M.; Yao, J.; Devanathan, S.K.; Shelton, S.B.; Lambowitz, A.M.; Xhemalçe, B. BCDIN3D regulates tRNAHis 3′ fragment processing. PLoS Genet., 2019, 15(7), e1008273. doi: 10.1371/journal.pgen.1008273 PMID: 31329584
  12. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215-233. doi: 10.1016/j.cell.2009.01.002 PMID: 19167326
  13. van der Kwast, R.V.C.T.; Woudenberg, T.; Quax, P.H.A.; Nossent, A.Y. MicroRNA-411 and Its 5′-IsomiR have distinct targets and functions and are differentially regulated in the vasculature under ischemia. Mol. Ther., 2020, 28(1), 157-170. doi: 10.1016/j.ymthe.2019.10.002 PMID: 31636041
  14. Helwak, A.; Kudla, G.; Dudnakova, T.; Tollervey, D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell, 2013, 153(3), 654-665. doi: 10.1016/j.cell.2013.03.043 PMID: 23622248
  15. McGeary, S.E.; Lin, K.S.; Shi, C.Y.; Pham, T.M.; Bisaria, N.; Kelley, G.M.; Bartel, D.P. The biochemical basis of microRNA targeting efficacy. SCIENCE, 2019, 366(6472) doi: 10.1126/science.aav1741
  16. Kudla, G.; Granneman, S.; Hahn, D.; Beggs, J.D.; Tollervey, D. Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast. Proc. Natl. Acad. Sci., 2011, 108(24), 10010-10015. doi: 10.1073/pnas.1017386108 PMID: 21610164
  17. Talukder, A.; Li, X.; Hu, H. Position-wise binding preference is important for miRNA target site prediction. Bioinformatics, 2020, 36(12), 3680-3686. doi: 10.1093/bioinformatics/btaa195 PMID: 32186709
  18. Polioudakis, D.; Abell, N.S.; Iyer, V.R. miR-503 represses human cell proliferation and directly targets the oncogene DDHD2 by non-canonical target pairing. BMC Genomics, 2015, 16(1), 40. doi: 10.1186/s12864-015-1279-9 PMID: 25653011
  19. Yang, A.; Bofill-De Ros, X.; Shao, T.J.; Jiang, M.; Li, K.; Villanueva, P.; Dai, L.; Gu, S. 3′ uridylation confers miRNAs with non-canonical target repertoires. Mol. Cell, 2019, 75(3), 511-522.e4. doi: 10.1016/j.molcel.2019.05.014 PMID: 31178353
  20. Sheu-Gruttadauria, J.; Xiao, Y.; Gebert, L.F.R.; MacRae, I.J. Beyond the seed: structural basis for supplementary micro RNA targeting by human Argonaute2. EMBO J., 2019, 38(13), e101153. doi: 10.15252/embj.2018101153 PMID: 31268608
  21. Kim, H.; Kim, J.; Yu, S.; Lee, Y.Y.; Park, J.; Choi, R.J.; Yoon, S.J.; Kang, S.G.; Kim, V.N. A mechanism for microRNA arm switching regulated by uridylation. Mol. Cell, 2020, 78(6), 1224-1236.e5. doi: 10.1016/j.molcel.2020.04.030 PMID: 32442398
  22. Yang, A.; Shao, T.J.; Bofill-De Ros, X.; Lian, C.; Villanueva, P.; Dai, L.; Gu, S. AGO-bound mature miRNAs are oligouridylated by TUTs and subsequently degraded by DIS3L2. Nat. Commun., 2020, 11(1), 2765. doi: 10.1038/s41467-020-16533-w PMID: 32488030
  23. Vieux, K.F.; Prothro, K.P.; Kelley, L.H.; Palmer, C.; Maine, E.M.; Veksler-Lublinsky, I.; McJunkin, K. Screening by deep sequencing reveals mediators of microRNA tailing in C. elegans. Nucleic Acids Res., 2021, 49(19), 11167-11180. doi: 10.1093/nar/gkab840 PMID: 34586415
  24. Burroughs, A.M.; Ando, Y.; de Hoon, M.J.L.; Tomaru, Y.; Nishibu, T.; Ukekawa, R.; Funakoshi, T.; Kurokawa, T.; Suzuki, H.; Hayashizaki, Y.; Daub, C.O. A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Res., 2010, 20(10), 1398-1410. doi: 10.1101/gr.106054.110 PMID: 20719920
  25. Boele, J.; Persson, H.; Shin, J.W.; Ishizu, Y.; Newie, I.S.; Søkilde, R.; Hawkins, S.M.; Coarfa, C.; Ikeda, K.; Takayama, K.; Horie-Inoue, K.; Ando, Y.; Burroughs, A.M.; Sasaki, C.; Suzuki, C.; Sakai, M.; Aoki, S.; Ogawa, A.; Hasegawa, A.; Lizio, M.; Kaida, K.; Teusink, B.; Carninci, P.; Suzuki, H.; Inoue, S.; Gunaratne, P.H.; Rovira, C.; Hayashizaki, Y.; de Hoon, M.J.L. PAPD5-mediated 3′ adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease. Proc. Natl. Acad. Sci., 2014, 111(31), 11467-11472. doi: 10.1073/pnas.1317751111 PMID: 25049417
  26. D’Ambrogio, A.; Gu, W.; Udagawa, T.; Mello, C.C.; Richter, J.D. Specific miRNA stabilization by Gld2-catalyzed monoadenylation. Cell Rep., 2012, 2(6), 1537-1545. doi: 10.1016/j.celrep.2012.10.023 PMID: 23200856
  27. Morsiani, C.; Terlecki-Zaniewicz, L.; Skalicky, S.; Bacalini, M.G.; Collura, S.; Conte, M.; Sevini, F.; Garagnani, P.; Salvioli, S.; Hackl, M.; Grillari, J.; Franceschi, C.; Capri, M. Circulating miR-19a-3p and miR-19b-3p characterize the human aging process and their isomiRs associate with healthy status at extreme ages. Aging Cell, 2021, 20(7), e13409. doi: 10.1111/acel.13409 PMID: 34160893
  28. Ibuki, Y.; Nishiyama, Y.; Tsutani, Y.; Emi, M.; Hamai, Y.; Okada, M.; Tahara, H. Circulating microRNA/isomiRs as novel biomarkers of esophageal squamous cell carcinoma. PLoS One, 2020, 15(4), e0231116. doi: 10.1371/journal.pone.0231116 PMID: 32251457
  29. Dika, E.; Broseghini, E.; Porcellini, E.; Lambertini, M.; Riefolo, M.; Durante, G.; Loher, P.; Roncarati, R.; Bassi, C.; Misciali, C.; Negrini, M.; Rigoutsos, I.; Londin, E.; Patrizi, A.; Ferracin, M. Unraveling the role of microRNA/isomiR network in multiple primary melanoma pathogenesis. Cell Death Dis., 2021, 12(5), 473. doi: 10.1038/s41419-021-03764-y PMID: 33980826
  30. Natarelli, L.; Weber, C. A non-canonical link between non-coding RNAs and cardiovascular diseases. Biomedicines, 2022, 10(2), 445. doi: 10.3390/biomedicines10020445 PMID: 35203652
  31. Mayr, C. Regulation by 3′-untranslated regions. Annu. Rev. Genet., 2017, 51(1), 171-194. doi: 10.1146/annurev-genet-120116-024704 PMID: 28853924
  32. Gu, S.; Jin, L.; Zhang, F.; Sarnow, P.; Kay, M.A. Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat. Struct. Mol. Biol., 2009, 16(2), 144-150. doi: 10.1038/nsmb.1552 PMID: 19182800
  33. Jia, Q.; Xie, B.; Zhao, Z.; Huang, L.; Wei, G.; Ni, T. Lung cancer cells expressing a shortened CDK16 3′UTR escape senescence through impaired miR-485-5p targeting. Mol. Oncol., 2022, 16(6), 1347-1364. doi: 10.1002/1878-0261.13125 PMID: 34687270
  34. Urena, F.; Ma, C.; Hoffmann, F.W.; Nunes, L.G.A.; Urschitz, J.; Moisyadi, S.; Khadka, V.S.; Deng, Y.; Hoffmann, P.R. T-cell activation decreases miRNA-15a/16 levels to promote MEK1–ERK1/2–Elk1 signaling and proliferative capacity. J. Biol. Chem., 2022, 298(3), 101634. doi: 10.1016/j.jbc.2022.101634 PMID: 35085550
  35. Liu, S.; Hu, C.; Li, M.; An, J.; Zhou, W.; Guo, J.; Xiao, Y. Estrogen receptor beta promotes lung cancer invasion via increasing CXCR4 expression. Cell Death Dis., 2022, 13(1), 70. doi: 10.1038/s41419-022-04514-4 PMID: 35064116
  36. Fang, Z.; Rajewsky, N. The impact of miRNA target sites in coding sequences and in 3'UTRs. PLoS One, 2011, 6(3), e18067. doi: 10.1371/journal.pone.0018067 PMID: 21445367
  37. Hausser, J.; Syed, A.P.; Bilen, B.; Zavolan, M. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res., 2013, 23(4), 604-615. doi: 10.1101/gr.139758.112 PMID: 23335364
  38. Besnier, M.; Shantikumar, S.; Anwar, M.; Dixit, P.; Chamorro-Jorganes, A.; Sweaad, W.; Sala-Newby, G.; Madeddu, P.; Thomas, A.C.; Howard, L.; Mushtaq, S.; Petretto, E.; Caporali, A.; Emanueli, C. MiR-15a/-16 Inhibit angiogenesis by targeting the Tie2 coding sequence: therapeutic potential of a miR-15a/16 decoy system in limb ischemia. Mol. Ther. Nucleic Acids, 2019, 17, 49-62. doi: 10.1016/j.omtn.2019.05.002 PMID: 31220779
  39. Shin, E.; Jin, H.; Suh, D.S.; Luo, Y.; Ha, H.J.; Kim, T.H.; Hahn, Y.; Hyun, S.; Lee, K.; Bae, J. An alternative miRISC targets a cancer-associated coding sequence mutation in FOXL2. EMBO J., 2020, 39(24), e104719. doi: 10.15252/embj.2020104719 PMID: 33215742
  40. Tonouchi, E.; Gen, Y.; Muramatsu, T.; Hiramoto, H.; Tanimoto, K.; Inoue, J.; Inazawa, J. miR-3140 suppresses tumor cell growth by targeting BRD4 via its coding sequence and downregulates the BRD4-NUT fusion oncoprotein. Sci. Rep., 2018, 8(1), 4482. doi: 10.1038/s41598-018-22767-y PMID: 29540837
  41. Friedrich, M.; Vaxevanis, C.K.; Biehl, K.; Mueller, A.; Seliger, B. Targeting the coding sequence: Opposing roles in regulating classical and non-classical MHC class I molecules by miR-16 and miR-744. J. Immunother. Cancer, 2020, 8(1), e000396. doi: 10.1136/jitc-2019-000396 PMID: 32571994
  42. Mayr, C.; Bartel, D.P. Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 2009, 138(4), 673-684. doi: 10.1016/j.cell.2009.06.016 PMID: 19703394
  43. Desi, N.; Teh, V.; Tong, Q.Y.; Lim, C.Y.; Tabatabaeian, H.; Chew, X.H.; Sanchez-Mejias, A.; Chan, J.J.; Zhang, B.; Pitcheshwar, P.; Siew, B.E.; Wang, S.; Lee, K.C.; Chong, C.S.; Cheong, W.K.; Lieske, B.; Tan, I.J.W.; Tan, K.K.; Tay, Y. MiR-138 is a potent regulator of the heterogenous MYC transcript population in cancers. Oncogene, 2022, 41(8), 1178-1189. doi: 10.1038/s41388-021-02084-x PMID: 34937878
  44. Lytle, J.R., Jr; Yario, T.A.; Steitz, J.A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl. Acad. Sci., 2007, 104(23), 9667-9672. doi: 10.1073/pnas.0703820104 PMID: 17535905
  45. Meng, W.; Xiao, T.; Liang, X.; Wen, J.; Peng, X.; Wang, J.; Zou, Y.; Liu, J.; Bialowas, C.; Luo, H.; Zhang, Y.; Liu, B.; Zhang, J.; Hu, F.; Liu, M.; Dong, L.Q.; Zhou, Z.; Liu, F.; Bai, J. The miR-182-5p/FGF21/acetylcholine axis mediates the crosstalk between adipocytes and macrophages to promote beige fat thermogenesis. JCI Insight, 2021, 6(17), e150249. doi: 10.1172/jci.insight.150249 PMID: 34264867
  46. Xu, K.; Han, B.; Bai, Y.; Ma, X.Y.; Ji, Z.N.; Xiong, Y.; Miao, S.K.; Zhang, Y.Y.; Zhou, L.M. MiR-451a suppressing BAP31 can inhibit proliferation and increase apoptosis through inducing ER stress in colorectal cancer. Cell Death Dis., 2019, 10(3), 152. doi: 10.1038/s41419-019-1403-x PMID: 30770794
  47. Kamenova, S.; Aralbayeva, A.; Kondybayeva, A.; Akimniyazova, A.; Pyrkova, A.; Ivashchenko, A. Evolutionary changes in the interaction of miRNA With mRNA of candidate genes for Parkinson’s disease. Front. Genet., 2021, 12, 647288. doi: 10.3389/fgene.2021.647288 PMID: 33859673
  48. Liu, H.; Bi, J.; Dong, W.; Yang, M.; Shi, J.; Jiang, N.; Lin, T.; Huang, J. Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Mol. Cancer, 2018, 17(1), 161. doi: 10.1186/s12943-018-0908-8 PMID: 30458784
  49. Long, J.M.; Maloney, B.; Rogers, J.T.; Lahiri, D.K. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5′-untranslated region: Implications in Alzheimer’s disease. Mol. Psychiatry, 2019, 24(3), 345-363. doi: 10.1038/s41380-018-0266-3 PMID: 30470799
  50. Machlin, E.S.; Sarnow, P.; Sagan, S.M. Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc. Natl. Acad. Sci., 2011, 108(8), 3193-3198. doi: 10.1073/pnas.1012464108 PMID: 21220300
  51. Ono, C.; Fukuhara, T.; Li, S.; Wang, J.; Sato, A.; Izumi, T.; Fauzyah, Y.; Yamamoto, T.; Morioka, Y.; Dokholyan, N.V.; Standley, D.M.; Matsuura, Y. Various miRNAs compensate the role of miR-122 on HCV replication. PLoS Pathog., 2020, 16(6), e1008308. doi: 10.1371/journal.ppat.1008308 PMID: 32574204
  52. Sakamoto, A.; Terui, Y.; Uemura, T.; Igarashi, K.; Kashiwagi, K. Polyamines regulate gene expression by stimulating translation of histone acetyltransferase mRNAs. J. Biol. Chem., 2020, 295(26), 8736-8745. doi: 10.1074/jbc.RA120.013833 PMID: 32376690
  53. Baldassarre, A.; Paolini, A.; Bruno, S.P.; Felli, C.; Tozzi, A.E.; Masotti, A. Potential use of noncoding RNAs and innovative therapeutic strategies to target the 5’UTR of SARS-CoV-2. Epigenomics, 2020, 12(15), 1349-1361. doi: 10.2217/epi-2020-0162 PMID: 32875809
  54. Grimson, A.; Farh, K.K.H.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell, 2007, 27(1), 91-105. doi: 10.1016/j.molcel.2007.06.017 PMID: 17612493
  55. Sætrom, P.; Heale, B.S.E.; Snøve, O., Jr; Aagaard, L.; Alluin, J.; Rossi, J.J. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res., 2007, 35(7), 2333-2342. doi: 10.1093/nar/gkm133 PMID: 17389647
  56. Briskin, D.; Wang, P.Y.; Bartel, D.P. The biochemical basis for the cooperative action of microRNAs. Proc. Natl. Acad. Sci., 2020, 117(30), 17764-17774. doi: 10.1073/pnas.1920404117 PMID: 32661162
  57. Shao, S.; Hu, Q.; Wu, W.; Wang, M.; Huang, J.; Zhao, X.; Tang, G.; Liang, T. Tumor-triggered personalized microRNA cocktail therapy for hepatocellular carcinoma. Biomater. Sci., 2020, 8(23), 6579-6591. doi: 10.1039/D0BM00794C PMID: 33231584
  58. Feinberg, M.W.; Moore, K.J. MicroRNA regulation of atherosclerosis. Circ. Res., 2016, 118(4), 703-720. doi: 10.1161/CIRCRESAHA.115.306300 PMID: 26892968
  59. Rossi, J.J. A novel nuclear miRNA mediated modulation of a non-coding antisense RNA and its cognate sense coding mRNA. EMBO J., 2011, 30(21), 4340-4341. doi: 10.1038/emboj.2011.373 PMID: 22048334
  60. Chen, B.; Zhang, B.; Luo, H.; Yuan, J.; Skogerbø, G.; Chen, R. Distinct microRNA subcellular size and expression patterns in human cancer cells. Int. J. Cell Biol., 2012, 2012, 1-9. doi: 10.1155/2012/672462 PMID: 22505932
  61. Das, S.; Ferlito, M.; Kent, O.A.; Fox-Talbot, K.; Wang, R.; Liu, D.; Raghavachari, N.; Yang, Y.; Wheelan, S.J.; Murphy, E.; Steenbergen, C. Nuclear miRNA regulates the mitochondrial genome in the heart. Circ. Res., 2012, 110(12), 1596-1603. doi: 10.1161/CIRCRESAHA.112.267732 PMID: 22518031
  62. Khan, A.W. Nuclear functions of microRNAs relevant to the cardiovascular system. Transl. Res., 2021, 230, 151-163. doi: 10.1016/j.trsl.2020.11.004 PMID: 33186782
  63. Akiyoshi, K.; Boersma, G.J.; Johnson, M.D.; Velasquez, F.C.; Dunkerly-Eyring, B.; O’Brien, S.; Yamaguchi, A.; Steenbergen, C.; Tamashiro, K.L.K.; Das, S. Role of miR-181c in diet-induced obesity through regulation of lipid synthesis in liver. PLoS One, 2021, 16(12), e0256973. doi: 10.1371/journal.pone.0256973 PMID: 34879063
  64. Wu, C.; Liu, X.; Zheng, Y.; He, W.; Yang, G.; Wu, P.; Cai, C. Fluorescence activation imaging of localization, distribution, and level of miRNA in various organelles inside cells. Talanta, 2018, 186, 406-412. doi: 10.1016/j.talanta.2018.04.080 PMID: 29784380
  65. Hu, J.F.; Yim, D.; Ma, D.; Huber, S.M.; Davis, N.; Bacusmo, J.M.; Vermeulen, S.; Zhou, J.; Begley, T.J.; DeMott, M.S.; Levine, S.S.; de Crécy-Lagard, V.; Dedon, P.C.; Cao, B. Quantitative mapping of the cellular small RNA landscape with AQRNA-seq. Nat. Biotechnol., 2021, 39(8), 978-988. doi: 10.1038/s41587-021-00874-y PMID: 33859402
  66. Borralho, P.M.; Rodrigues, C.M.P.; Steer, C.J. microRNAs in mitochondria: An unexplored niche. Adv. Exp. Med. Biol., 2015, 887, 31-51. doi: 10.1007/978-3-319-22380-3_3 PMID: 26662985
  67. Fan, S.; Tian, T.; Chen, W.; Lv, X.; Lei, X.; Zhang, H.; Sun, S.; Cai, L.; Pan, G.; He, L.; Ou, Z.; Lin, X.; Wang, X.; Perez, M.F.; Tu, Z.; Ferrone, S.; Tannous, B.A.; Li, J. Mitochondrial miRNA determines chemoresistance by reprogramming metabolism and regulating mitochondrial transcription. Cancer Res., 2019, 79(6), 1069-1084. doi: 10.1158/0008-5472.CAN-18-2505 PMID: 30659020
  68. Liao, J.; Li, Q.; Hu, Z.; Yu, W.; Zhang, K.; Ma, F.; Han, Q.; Zhang, H.; Guo, J.; Hu, L.; Pan, J.; Li, Y.; Tang, Z. Mitochondrial miR-1285 regulates copper-induced mitochondrial dysfunction and mitophagy by impairing IDH2 in pig jejunal epithelial cells. J. Hazard. Mater., 2022, 422, 126899. doi: 10.1016/j.jhazmat.2021.126899 PMID: 34418838
  69. Hu, Z.; Linn, N.; Li, Q.; Zhang, K.; Liao, J.; Han, Q.; Zhang, H.; Guo, J.; Hu, L.; Pan, J.; Li, Y.; Tang, Z. MitomiR-504 alleviates the copper-induced mitochondria-mediated apoptosis by suppressing Bak1 expression in porcine jejunal epithelial cells. Sci. Total Environ., 2023, 858(Pt 3), 160157. doi: 10.1016/j.scitotenv.2022.160157 PMID: 36379340
  70. Wang, W.X.; Prajapati, P.; Nelson, P.T.; Springer, J.E. The mitochondria-associated ER membranes are novel subcellular locations enriched for inflammatory-responsive microRNAs. Mol. Neurobiol., 2020, 57(7), 2996-3013. doi: 10.1007/s12035-020-01937-y PMID: 32451872
  71. Wang, W.X.; Springer, J.E.; Prajapati, P.; Vekaria, H.J.; Spry, M.; Cloud, A.L.; Sullivan, P.G. Temporal changes in inflammatory mitochondria-enriched microRNAs following traumatic brain injury and effects of miR-146a nanoparticle delivery. Neural Regen. Res., 2021, 16(3), 514-522. doi: 10.4103/1673-5374.293149 PMID: 32985480
  72. Guo, Q.Q.; Gao, J.; Wang, X.W.; Yin, X.L.; Zhang, S.C.; Li, X.; Chi, L.L.; Zhou, X.M.; Wang, Z.; Zhang, Q.Y. RNA-binding protein MSI2 binds to miR-301a-3p and facilitates its distribution in mitochondria of endothelial cells. Front. Mol. Biosci., 2021, 7, 609828. doi: 10.3389/fmolb.2020.609828 PMID: 33553241
  73. Guo, Q.; Yin, X.; Gao, J.; Wang, X.; Zhang, S.; Zhou, X.; Wang, Z.; Zhang, Q. MiR-381-3p redistributes between cytosol and mitochondria and aggravates endothelial cell injury induced by reactive oxygen species. Tissue Cell, 2020, 67, 101451. doi: 10.1016/j.tice.2020.101451 PMID: 33137708
  74. Li, J.; Kong, D.; Gao, X.; Tian, Z.; Wang, X.; Guo, Q.; Wang, Z.; Zhang, Q. TSH attenuates fatty acid oxidation in hepatocytes by reducing the mitochondrial distribution of miR-449a/449b-5p/5194. Mol. Cell. Endocrinol., 2021, 530, 111280. doi: 10.1016/j.mce.2021.111280 PMID: 33862186
  75. Zhang, X.; Zuo, X.; Yang, B.; Li, Z.; Xue, Y.; Zhou, Y.; Huang, J.; Zhao, X.; Zhou, J.; Yan, Y.; Zhang, H.; Guo, P.; Sun, H.; Guo, L.; Zhang, Y.; Fu, X.D. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell, 2014, 158(3), 607-619. doi: 10.1016/j.cell.2014.05.047 PMID: 25083871
  76. Bukong, T.N.; Hou, W.; Kodys, K.; Szabo, G. Ethanol facilitates hepatitis C virus replication via up-regulation of GW182 and heat shock protein 90 in human hepatoma cells. Hepatology, 2013, 57(1), 70-80. doi: 10.1002/hep.26010 PMID: 22898980
  77. Turunen, T.A.; Roberts, T.C.; Laitinen, P.; Väänänen, M.A.; Korhonen, P.; Malm, T.; Ylä-Herttuala, S.; Turunen, M.P. Changes in nuclear and cytoplasmic microRNA distribution in response to hypoxic stress. Sci. Rep., 2019, 9(1), 10332. doi: 10.1038/s41598-019-46841-1 PMID: 31316122
  78. Zaccagnini, G.; Greco, S.; Longo, M.; Maimone, B.; Voellenkle, C.; Fuschi, P.; Carrara, M.; Creo, P.; Maselli, D.; Tirone, M.; Mazzone, M.; Gaetano, C.; Spinetti, G.; Martelli, F. Hypoxia-induced miR-210 modulates the inflammatory response and fibrosis upon acute ischemia. Cell Death Dis., 2021, 12(5), 435. doi: 10.1038/s41419-021-03713-9 PMID: 33934122
  79. Santovito, D.; Egea, V.; Bidzhekov, K.; Natarelli, L.; Mourão, A.; Blanchet, X.; Wichapong, K.; Aslani, M.; Brunßen, C.; Horckmans, M.; Hristov, M.; Geerlof, A.; Lutgens, E.; Daemen, M.J.A.P.; Hackeng, T.; Ries, C.; Chavakis, T.; Morawietz, H.; Naumann, R.; von Hundelshausen, P.; Steffens, S.; Duchêne, J.; Megens, R.T.A.; Sattler, M.; Weber, C. Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis. Sci. Transl. Med., 2020, 12(546), eaaz2294. doi: 10.1126/scitranslmed.aaz2294 PMID: 32493793
  80. Bologna, N.G.; Iselin, R.; Abriata, L.A.; Sarazin, A.; Pumplin, N.; Jay, F.; Grentzinger, T.; Dal Peraro, M.; Voinnet, O. Nucleo-cytosolic shuttling of argonaute1 prompts a revised model of the plant MicroRNA pathway. Mol. Cell, 2018, 69(4), 709-719.e5. doi: 10.1016/j.molcel.2018.01.007 PMID: 29398448
  81. Wei, Y.; Li, L.; Wang, D.; Zhang, C.Y.; Zen, K. Importin 8 regulates the transport of mature microRNAs into the cell nucleus. J. Biol. Chem., 2014, 289(15), 10270-10275. doi: 10.1074/jbc.C113.541417 PMID: 24596094
  82. Schraivogel, D.; Schindler, S.G.; Danner, J.; Kremmer, E.; Pfaff, J.; Hannus, S.; Depping, R.; Meister, G. Importin-β facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels. Nucleic Acids Res., 2015, 43(15), 7447-7461. doi: 10.1093/nar/gkv705 PMID: 26170235
  83. Castanotto, D.; Zhang, X.; Alluin, J.; Zhang, X.; Rüger, J.; Armstrong, B.; Rossi, J.; Riggs, A.; Stein, C.A. A stress-induced response complex (SIRC) shuttles miRNAs, siRNAs, and oligonucleotides to the nucleus. Proc. Natl. Acad. Sci., 2018, 115(25), E5756-E5765. doi: 10.1073/pnas.1721346115 PMID: 29866826
  84. Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; Tait, J.F.; Tewari, M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci., 2011, 108(12), 5003-5008. doi: 10.1073/pnas.1019055108 PMID: 21383194
  85. Garcia-Martin, R.; Wang, G.; Brandão, B.B.; Zanotto, T.M.; Shah, S.; Kumar Patel, S.; Schilling, B.; Kahn, C.R. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature, 2022, 601(7893), 446-451. doi: 10.1038/s41586-021-04234-3 PMID: 34937935
  86. Robinson, H.; Ruelcke, J.E.; Lewis, A.; Bond, C.S.; Fox, A.H.; Bharti, V.; Wani, S.; Cloonan, N.; Lai, A.; Margolin, D.; Li, L.; Salomon, C.; Richards, R.S.; Farrell, A.; Gardiner, R.A.; Parton, R.G.; Cristino, A.S.; Hill, M.M. Caveolin-1-driven membrane remodelling regulates hnRNPK-mediated exosomal microRNA sorting in cancer. Clin. Transl. Med., 2021, 11(4), e381. doi: 10.1002/ctm2.381 PMID: 33931969
  87. Liu, D.; Liu, F.; Li, Z.; Pan, S.; Xie, J.; Zhao, Z.; Liu, Z.; Zhang, J.; Liu, Z. HNRNPA1-mediated exosomal sorting of miR-483-5p out of renal tubular epithelial cells promotes the progression of diabetic nephropathy-induced renal interstitial fibrosis. Cell Death Dis., 2021, 12(3), 255. doi: 10.1038/s41419-021-03460-x PMID: 33692334
  88. Zhang, H.; Deng, T.; Liu, R.; Ning, T.; Yang, H.; Liu, D.; Zhang, Q.; Lin, D.; Ge, S.; Bai, M.; Wang, X.; Zhang, L.; Li, H.; Yang, Y.; Ji, Z.; Wang, H.; Ying, G.; Ba, Y. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol. Cancer, 2020, 19(1), 43. doi: 10.1186/s12943-020-01168-8 PMID: 32106859
  89. Qiu, W.; Guo, X.; Li, B.; Wang, J.; Qi, Y.; Chen, Z.; Zhao, R.; Deng, L.; Qian, M.; Wang, S.; Zhang, Z.; Guo, Q.; Zhang, S.; Pan, Z.; Zhao, S.; Xue, H.; Li, G. Exosomal miR-1246 from glioma patient body fluids drives the differentiation and activation of myeloid-derived suppressor cells. Mol. Ther., 2021, 29(12), 3449-3464. doi: 10.1016/j.ymthe.2021.06.023 PMID: 34217892
  90. Pérez-Boza, J.; Boeckx, A.; Lion, M.; Dequiedt, F.; Struman, I. hnRNPA2B1 inhibits the exosomal export of miR-503 in endothelial cells. Cell. Mol. Life Sci., 2020, 77(21), 4413-4428. doi: 10.1007/s00018-019-03425-6 PMID: 31894362
  91. Schreiner, S.; Didio, A.; Hung, L.H.; Bindereif, A. Design and application of circular RNAs with protein-sponge function. Nucleic Acids Res., 2020, 48(21), 12326-12335. doi: 10.1093/nar/gkaa1085 PMID: 33231682
  92. Xue, Y.C.; Ng, C.S.; Xiang, P.; Liu, H.; Zhang, K.; Mohamud, Y.; Luo, H. Dysregulation of RNA-binding proteins in amyotrophic lateral sclerosis. Front. Mol. Neurosci., 2020, 13, 78. doi: 10.3389/fnmol.2020.00078 PMID: 32547363
  93. Choi, S.Y.; Hong, S.H.; Lee, H.J. Differential expression and sorting of exosomal microRNAs upon activation of the human monocyte-like cell line U937. Biochem. Biophys. Res. Commun., 2022, 610, 147-153. doi: 10.1016/j.bbrc.2022.04.048 PMID: 35462096
  94. Fu, C.; Zhang, Q.; Wang, A.; Yang, S.; Jiang, Y.; Bai, L.; Wei, Q. EWI-2 controls nucleocytoplasmic shuttling of EGFR signaling molecules and miRNA sorting in exosomes to inhibit prostate cancer cell metastasis. Mol. Oncol., 2021, 15(5), 1543-1565. doi: 10.1002/1878-0261.12930 PMID: 33605506
  95. Zhou, C.; Bei, J.; Qiu, Y.; Chang, Q.; Nyong, E.; Vasilakis, N.; Yang, J.; Krishnan, B.; Khanipov, K.; Jin, Y.; Fang, X.; Gaitas, A.; Gong, B. Exosomally targeting microRNA23a ameliorates microvascular endothelial barrier dysfunction following rickettsial infection. Front. Immunol., 2022, 13, 904679. doi: 10.3389/fimmu.2022.904679 PMID: 35812423
  96. Li, T.; Liang, Y.; Li, J.; Yu, Y.; Xiao, M.M.; Ni, W.; Zhang, Z.; Zhang, G.J. Carbon nanotube field-effect transistor biosensor for ultrasensitive and label-free detection of breast cancer exosomal miRNA21. Anal. Chem., 2021, 93(46), 15501-15507. doi: 10.1021/acs.analchem.1c03573 PMID: 34747596
  97. Aday, S.; Hazan-Halevy, I.; Chamorro-Jorganes, A.; Anwar, M.; Goldsmith, M.; Beazley-Long, N.; Sahoo, S.; Dogra, N.; Sweaad, W.; Catapano, F.; Ozaki-Tan, S.; Angelini, G.D.; Madeddu, P.; Benest, A.V.; Peer, D.; Emanueli, C. Bioinspired artificial exosomes based on lipid nanoparticles carrying let-7b-5p promote angiogenesis in vitro and in vivo. Mol. Ther., 2021, 29(7), 2239-2252. doi: 10.1016/j.ymthe.2021.03.015 PMID: 33744469
  98. Li, Y.J.; Wu, J.Y.; Liu, J.; Xu, W.; Qiu, X.; Huang, S.; Hu, X.B.; Xiang, D.X. Artificial exosomes for translational nanomedicine. J. Nanobiotechnology, 2021, 19(1), 242. doi: 10.1186/s12951-021-00986-2 PMID: 34384440
  99. Stavast, C.; Erkeland, S. The non-canonical aspects of microRNAs: Many roads to gene gegulation. Cells, 2019, 8(11), 1465. doi: 10.3390/cells8111465 PMID: 31752361
  100. Müller, V.; Oliveira-Ferrer, L.; Steinbach, B.; Pantel, K.; Schwarzenbach, H. Interplay of lncRNA H19/miR-675 and lncRNA NEAT1/miR-204 in breast cancer. Mol. Oncol., 2019, 13(5), 1137-1149. doi: 10.1002/1878-0261.12472 PMID: 30803129
  101. Li, H.; Zhan, J.; Zhao, Y.; Fan, J.; Yuan, S.; Yin, Z.; Dai, B.; Chen, C.; Wang, D.W. Identification of ncRNA-mediated functions of nucleus-localized miR-320 in cardiomyocytes. Mol. Ther. Nucleic Acids, 2020, 19, 132-143. doi: 10.1016/j.omtn.2019.11.006 PMID: 31837603
  102. Luo, Y.; Liang, C.; Xu, Y.; Zhang, T. MiR-466h-5p induces expression of myocardin with complementary promoter sequences. Biochem. Biophys. Res. Commun., 2019, 514(1), 187-193. doi: 10.1016/j.bbrc.2019.04.133 PMID: 31029421
  103. Xiao, M.; Li, J.; Li, W.; Wang, Y.; Wu, F.; Xi, Y.; Zhang, L.; Ding, C.; Luo, H.; Li, Y.; Peng, L.; Zhao, L.; Peng, S.; Xiao, Y.; Dong, S.; Cao, J.; Yu, W. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol., 2017, 14(10), 1326-1334. doi: 10.1080/15476286.2015.1112487 PMID: 26853707
  104. Liang, Y.; Lu, Q.; Li, W.; Zhang, D.; Zhang, F.; Zou, Q.; Chen, L.; Tong, Y.; Liu, M.; Wang, S.; Li, W.; Ren, X.; Xu, P.; Yang, Z.; Dong, S.; Zhang, B.; Huang, Y.; Li, D.; Wang, H.; Yu, W. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res., 2021, 49(15), 8556-8572. doi: 10.1093/nar/gkab626 PMID: 34329471
  105. Bai, Y.; Pan, B.; Zhan, X.; Silver, H.; Li, J. MicroRNA 195-5p targets Foxo3 promoter region to regulate its expression in granulosa cells. Int. J. Mol. Sci., 2021, 22(13), 6721. doi: 10.3390/ijms22136721 PMID: 34201585
  106. Fan, J.; Zhang, X.; Nie, X.; Li, H.; Yuan, S.; Dai, B.; Zhan, J.; Wen, Z.; Jiang, J.; Chen, C.; Wang, D. Nuclear miR-665 aggravates heart failure via suppressing phosphatase and tensin homolog transcription. Sci. China Life Sci., 2020, 63(5), 724-736. doi: 10.1007/s11427-018-9515-1 PMID: 31664601
  107. Zhou, C.; Wei, W.; Ma, J.; Yang, Y.; Liang, L.; Zhang, Y.; Wang, Z.; Chen, X.; Huang, L.; Wang, W.; Wu, S. Cancer-secreted exosomal miR-1468-5p promotes tumor immune escape via the immunosuppressive reprogramming of lymphatic vessels. Mol. Ther., 2021, 29(4), 1512-1528. doi: 10.1016/j.ymthe.2020.12.034 PMID: 33388421
  108. Di Mauro, V.; Crasto, S.; Colombo, F.S.; Di Pasquale, E.; Catalucci, D. Wnt signalling mediates miR-133a nuclear re-localization for the transcriptional control of Dnmt3b in cardiac cells. Sci. Rep., 2019, 9(1), 9320. doi: 10.1038/s41598-019-45818-4 PMID: 31249372
  109. Sardiello, M. A gene network regulating lysosomal biogenesis and function. Science, 2009, 325(5939), 473-477.
  110. Guo, H.; Pu, M.; Tai, Y.; Chen, Y.; Lu, H.; Qiao, J.; Wang, G.; Chen, J.; Qi, X.; Huang, R.; Tao, Z.; Ren, J. Nuclear miR-30b-5p suppresses TFEB-mediated lysosomal biogenesis and autophagy. Cell Death Differ., 2021, 28(1), 320-336. doi: 10.1038/s41418-020-0602-4 PMID: 32764647
  111. Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta stone of a hidden RNA language? Cell, 2011, 146(3), 353-358. doi: 10.1016/j.cell.2011.07.014 PMID: 21802130
  112. Thomson, D.W.; Dinger, M.E. Endogenous microRNA sponges: Evidence and controversy. Nat. Rev. Genet., 2016, 17(5), 272-283. doi: 10.1038/nrg.2016.20 PMID: 27040487
  113. Qi, X.; Zhang, D.H.; Wu, N.; Xiao, J.H.; Wang, X.; Ma, W. ceRNA in cancer: Possible functions and clinical implications. J. Med. Genet., 2015, 52(10), 710-718. doi: 10.1136/jmedgenet-2015-103334 PMID: 26358722
  114. Zheng, L.; Li, X.; Gu, Y.; Lv, X.; Xi, T. The 3′UTR of the pseudogene CYP4Z2P promotes tumor angiogenesis in breast cancer by acting as a ceRNA for CYP4Z1. Breast Cancer Res. Treat., 2015, 150(1), 105-118. doi: 10.1007/s10549-015-3298-2 PMID: 25701119
  115. Chu, Y.; Kilikevicius, A.; Liu, J.; Johnson, K.C.; Yokota, S.; Corey, D.R. Argonaute binding within 3′-untranslated regions poorly predicts gene repression. Nucleic Acids Res., 2020, 48(13), gkaa478. doi: 10.1093/nar/gkaa478 PMID: 32501500
  116. Fan, Z.; Kim, S.; Bai, Y.; Diergaarde, B.; Park, H.J. 3′-UTR shortening contributes to subtype-specific cancer growth by breaking stable ceRNA crosstalk of housekeeping genes. Front. Bioeng. Biotechnol., 2020, 8, 334. doi: 10.3389/fbioe.2020.00334 PMID: 32411683
  117. Kristensen, L.S.; Ebbesen, K.K.; Sokol, M.; Jakobsen, T.; Korsgaard, U.; Eriksen, A.C.; Hansen, T.B.; Kjems, J.; Hager, H. Spatial expression analyses of the putative oncogene ciRS-7 in cancer reshape the microRNA sponge theory. Nat. Commun., 2020, 11(1), 4551. doi: 10.1038/s41467-020-18355-2 PMID: 32917870
  118. Martens-de Kemp, S.R.; Komor, M.A.; Hegi, R.; Bolijn, A.S.; Tijssen, M.; de Groen, F.L.M.; Depla, A.; van Leerdam, M.; Meijer, G.A.; Fijneman, R.J.A.; Carvalho, B. Overexpression of the miR-17-92 cluster in colorectal adenoma organoids causes a carcinoma-like gene expression signature. Neoplasia, 2022, 32, 100820. doi: 10.1016/j.neo.2022.100820 PMID: 35872559
  119. Lee, W.J.; Ji, H.; Jeong, S.D.; Pandey, P.R.; Gorospe, M.; Kim, H.H. LINC00162 regulates cell proliferation and apoptosis by sponging PAQR4 -targeting miR-485-5p. J. Cell. Physiol., 2022, 237(7), 2943-2960. doi: 10.1002/jcp.30758 PMID: 35491694
  120. Lavenniah, A.; Luu, T.D.A.; Li, Y.P.; Lim, T.B.; Jiang, J.; Ackers-Johnson, M.; Foo, R.S.Y. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy. Mol. Ther., 2020, 28(6), 1506-1517. doi: 10.1016/j.ymthe.2020.04.006 PMID: 32304667
  121. Wang, Z.; Ma, K.; Cheng, Y.; Abraham, J.M.; Liu, X.; Ke, X.; Wang, Z.; Meltzer, S.J. Synthetic circular multi-miR sponge simultaneously inhibits miR-21 and miR-93 in esophageal carcinoma. Lab. Invest., 2019, 99(10), 1442-1453. doi: 10.1038/s41374-019-0273-2 PMID: 31217510
  122. Konno, M.; Koseki, J.; Asai, A.; Yamagata, A.; Shimamura, T.; Motooka, D.; Okuzaki, D.; Kawamoto, K.; Mizushima, T.; Eguchi, H.; Takiguchi, S.; Satoh, T.; Mimori, K.; Ochiya, T.; Doki, Y.; Ofusa, K.; Mori, M.; Ishii, H. Distinct methylation levels of mature microRNAs in gastrointestinal cancers. Nat. Commun., 2019, 10(1), 3888. doi: 10.1038/s41467-019-11826-1 PMID: 31467274
  123. Ji, L.; Chen, X. Regulation of small RNA stability: Methylation and beyond. Cell Res., 2012, 22(4), 624-636. doi: 10.1038/cr.2012.36 PMID: 22410795
  124. Liang, H.; Jiao, Z.; Rong, W.; Qu, S.; Liao, Z.; Sun, X.; Wei, Y.; Zhao, Q.; Wang, J.; Liu, Y.; Chen, X.; Wang, T.; Zhang, C.Y.; Zen, K. 3′-Terminal 2′-O-methylation of lung cancer miR-21-5p enhances its stability and association with Argonaute 2. Nucleic Acids Res., 2020, 48(13), gkaa504. doi: 10.1093/nar/gkaa504 PMID: 32542340
  125. Backes, S.; Shapiro, J.S.; Sabin, L.R.; Pham, A.M.; Reyes, I.; Moss, B.; Cherry, S.; tenOever, B.R. Degradation of host microRNAs by poxvirus poly(A) polymerase reveals terminal RNA methylation as a protective antiviral mechanism. Cell Host Microbe, 2012, 12(2), 200-210. doi: 10.1016/j.chom.2012.05.019 PMID: 22901540
  126. Abe, M.; Naqvi, A.; Hendriks, G.J.; Feltzin, V.; Zhu, Y.; Grigoriev, A.; Bonini, N.M. Impact of age-associated increase in 2′- O -methylation of miRNAs on aging and neurodegeneration in Drosophila. Genes Dev., 2014, 28(1), 44-57. doi: 10.1101/gad.226654.113 PMID: 24395246
  127. Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirsch, J.; Amariglio, N.; Kupiec, M.; Sorek, R.; Rechavi, G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 2012, 485(7397), 201-206. doi: 10.1038/nature11112 PMID: 22575960
  128. Carissimi, C.; Laudadio, I.; Lorefice, E.; Azzalin, G.; De Paolis, V.; Fulci, V. Bisulphite miRNA-seq reveals widespread CpG and non-CpG 5-(hydroxy)methyl-Cytosine in human microRNAs. RNA Biol., 2021, 18(12), 2226-2235. doi: 10.1080/15476286.2021.1927423 PMID: 33980133
  129. Pandolfini, L.; Barbieri, I.; Bannister, A.J.; Hendrick, A.; Andrews, B.; Webster, N.; Murat, P.; Mach, P.; Brandi, R.; Robson, S.C.; Migliori, V.; Alendar, A.; d’Onofrio, M.; Balasubramanian, S.; Kouzarides, T. METTL1 promotes let-7 MicroRNA processing via m7G methylation. Mol. Cell, 2019, 74(6), 1278-1290.e9. doi: 10.1016/j.molcel.2019.03.040 PMID: 31031083
  130. Wong, J.M.; Eirin-Lopez, J.M. Evolution of methyltransferase-like (METTL) proteins in metazoa: A complex gene family involved in epitranscriptomic regulation and other epigenetic processes. Mol. Biol. Evol., 2021, 38(12), 5309-5327. doi: 10.1093/molbev/msab267 PMID: 34480573
  131. Liu, N.; Dai, Q.; Zheng, G.; He, C.; Parisien, M.; Pan, T. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature, 2015, 518(7540), 560-564. doi: 10.1038/nature14234 PMID: 25719671
  132. Han, J.; Wang, J.; Yang, X.; Yu, H.; Zhou, R.; Lu, H.C.; Yuan, W.B.; Lu, J.; Zhou, Z.; Lu, Q.; Wei, J.F.; Yang, H. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol. Cancer, 2019, 18(1), 110. doi: 10.1186/s12943-019-1036-9 PMID: 31228940
  133. Zhang, J.; Bai, R.; Li, M.; Ye, H.; Wu, C.; Wang, C.; Li, S.; Tan, L.; Mai, D.; Li, G.; Pan, L.; Zheng, Y.; Su, J.; Ye, Y.; Fu, Z.; Zheng, S.; Zuo, Z.; Liu, Z.; Zhao, Q.; Che, X.; Xie, D.; Jia, W.; Zeng, M.S.; Tan, W.; Chen, R.; Xu, R.H.; Zheng, J.; Lin, D. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat. Commun., 2019, 10(1), 1858. doi: 10.1038/s41467-019-09712-x PMID: 31015415
  134. Sun, L.; Wan, A.; Zhou, Z.; Chen, D.; Liang, H.; Liu, C.; Yan, S.; Niu, Y.; Lin, Z.; Zhan, S.; Wang, S.; Bu, X.; He, W.; Lu, X.; Xu, A.; Wan, G. RNA-binding protein RALY reprogrammes mitochondrial metabolism via mediating miRNA processing in colorectal cancer. Gut, 2021, 70(9), 1698-1712. doi: 10.1136/gutjnl-2020-320652 PMID: 33219048
  135. Liu, Y.; Yang, C.; Zhao, Y.; Chi, Q.; Wang, Z.; Sun, B. Overexpressed methyltransferase-like 1 (METTL1) increased chemosensitivity of colon cancer cells to cisplatin by regulating miR-149-3p/S100A4/p53 axis. Aging., 2019, 11(24), 12328-12344. doi: 10.18632/aging.102575 PMID: 31866582
  136. Lee, J.H.; Wang, R.; Xiong, F.; Krakowiak, J.; Liao, Z.; Nguyen, P.T.; Moroz-Omori, E.V.; Shao, J.; Zhu, X.; Bolt, M.J.; Wu, H.; Singh, P.K.; Bi, M.; Shi, C.J.; Jamal, N.; Li, G.; Mistry, R.; Jung, S.Y.; Tsai, K.L.; Ferreon, J.C.; Stossi, F.; Caflisch, A.; Liu, Z.; Mancini, M.A.; Li, W. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol. Cell, 2021, 81(16), 3368-3385.e9. doi: 10.1016/j.molcel.2021.07.024 PMID: 34375583
  137. Cheray, M.; Etcheverry, A.; Jacques, C.; Pacaud, R.; Bougras-Cartron, G.; Aubry, M.; Denoual, F.; Peterlongo, P.; Nadaradjane, A.; Briand, J.; Akcha, F.; Heymann, D.; Vallette, F.M.; Mosser, J.; Ory, B.; Cartron, P.F. Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Mol. Cancer, 2020, 19(1), 36. doi: 10.1186/s12943-020-01155-z PMID: 32098627
  138. Seok, H.; Lee, H.; Lee, S.; Ahn, S.H.; Lee, H.S.; Kim, G.W.D.; Peak, J.; Park, J.; Cho, Y.K.; Jeong, Y.; Gu, D.; Jeong, Y.; Eom, S.; Jang, E.S.; Chi, S.W. Position-specific oxidation of miR-1 encodes cardiac hypertrophy. Nature, 2020, 584(7820), 279-285. doi: 10.1038/s41586-020-2586-0 PMID: 32760005
  139. van den Homberg, D.A.L.; van der Kwast, R.V.C.T.; Quax, P.H.A.; Nossent, A.Y. N-6-Methyladenosine in vasoactive microRNAs during Hypoxia; A novel role for METTL4. Int. J. Mol. Sci., 2022, 23(3), 1057. doi: 10.3390/ijms23031057 PMID: 35162982
  140. Nance, K.D.; Meier, J.L. Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Cent. Sci., 2021, 7(5), 748-756. doi: 10.1021/acscentsci.1c00197 PMID: 34075344
  141. Parr, C.J.C.; Wada, S.; Kotake, K.; Kameda, S.; Matsuura, S.; Sakashita, S.; Park, S.; Sugiyama, H.; Kuang, Y.; Saito, H. N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells. Nucleic Acids Res., 2020, 48(6), e35. doi: 10.1093/nar/gkaa070 PMID: 32090264
  142. Luo, X.; Li, H.; Liang, J.; Zhao, Q.; Xie, Y.; Ren, J.; Zuo, Z. RMVar: An updated database of functional variants involved in RNA modifications. Nucleic Acids Res., 2021, 49(D1), D1405-D1412. doi: 10.1093/nar/gkaa811 PMID: 33021671
  143. Hansson, G.K.; Libby, P.; Tabas, I. Inflammation and plaque vulnerability. J. Intern. Med., 2015, 278(5), 483-493. doi: 10.1111/joim.12406 PMID: 26260307
  144. Mushenkova, N.V.; Summerhill, V.I.; Zhang, D.; Romanenko, E.B.; Grechko, A.V.; Orekhov, A.N. Current advances in the diagnostic imaging of atherosclerosis: Insights into the pathophysiology of vulnerable plaque. Int. J. Mol. Sci., 2020, 21(8), 2992. doi: 10.3390/ijms21082992 PMID: 32340284
  145. Shaukat, A.; Levin, T.R. Current and future colorectal cancer screening strategies. Nat. Rev. Gastroenterol. Hepatol., 2022, 19(8), 521-531. doi: 10.1038/s41575-022-00612-y PMID: 35505243
  146. Brown, W.V. Cholesterol lowering in atherosclerosis. Am. J. Cardiol., 2000, 86(4), 29H-34H. doi: 10.1016/S0002-9149(00)01097-3 PMID: 11021253
  147. Almeida, S.O.; Budoff, M. Effect of statins on atherosclerotic plaque. Trends Cardiovasc. Med., 2019, 29(8), 451-455. doi: 10.1016/j.tcm.2019.01.001 PMID: 30642643
  148. Hansson, G.K.; Robertson, A.K.L.; Söderberg-Nauclér, C. Inflammation and atherosclerosis. Annu. Rev. Pathol., 2006, 1(1), 297-329. doi: 10.1146/annurev.pathol.1.110304.100100 PMID: 18039117
  149. Zhang, S.; Liu, Y.; Cao, Y.; Zhang, S.; Sun, J.; Wang, Y.; Song, S.; Zhang, H. Targeting the microenvironment of vulnerable atherosclerotic plaques: An emerging diagnosis and therapy strategy for atherosclerosis. Adv. Mater., 2022, 34(29), 2110660. doi: 10.1002/adma.202110660 PMID: 35238081
  150. Meng, H.; Ruan, J.; Yan, Z.; Chen, Y.; Liu, J.; Li, X.; Meng, F. New progress in early diagnosis of atherosclerosis. Int. J. Mol. Sci., 2022, 23(16), 8939. doi: 10.3390/ijms23168939 PMID: 36012202
  151. Chen, J.; Zhang, X.; Millican, R.; Sherwood, J.; Martin, S.; Jo, H.; Yoon, Y.; Brott, B.C.; Jun, H.W. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv. Drug Deliv. Rev., 2021, 170, 142-199. doi: 10.1016/j.addr.2021.01.005 PMID: 33428994
  152. Libby, P. The changing landscape of atherosclerosis. Nature, 2021, 592(7855), 524-533. doi: 10.1038/s41586-021-03392-8 PMID: 33883728
  153. de Yébenes, V.G.; Briones, A.M.; Martos-Folgado, I.; Mur, S.M.; Oller, J.; Bilal, F.; González-Amor, M.; Méndez-Barbero, N.; Silla-Castro, J.C.; Were, F.; Jiménez-Borreguero, L.J.; Sánchez-Cabo, F.; Bueno, H.; Salaices, M.; Redondo, J.M.; Ramiro, A.R. Aging-associated miR-217 aggravates atherosclerosis and promotes cardiovascular dysfunction. Arterioscler. Thromb. Vasc. Biol., 2020, 40(10), 2408-2424. doi: 10.1161/ATVBAHA.120.314333 PMID: 32847388
  154. Escate, R.; Padró, T.; Suades, R.; Camino, S.; Muñiz, O.; Diaz-Diaz, J.L.; Sionis, A.; Mata, P.; Badimon, L. High miR-133a levels in the circulation anticipates presentation of clinical events in familial hypercholesterolaemia patients. Cardiovasc. Res., 2021, 117(1), 109-122. doi: 10.1093/cvr/cvaa039 PMID: 32061123
  155. Linna-Kuosmanen, S.; Tomas Bosch, V.; Moreau, P.R.; Bouvy-Liivrand, M.; Niskanen, H.; Kansanen, E.; Kivelä, A.; Hartikainen, J.; Hippeläinen, M.; Kokki, H.; Tavi, P.; Levonen, A.L.; Kaikkonen, M.U. NRF2 is a key regulator of endothelial microRNA expression under proatherogenic stimuli. Cardiovasc. Res., 2021, 117(5), 1339-1357. doi: 10.1093/cvr/cvaa219 PMID: 32683448
  156. Zhelankin, A.V.; Stonogina, D.A.; Vasiliev, S.V.; Babalyan, K.A.; Sharova, E.I.; Doludin, Y.V.; Shchekochikhin, D.Y.; Generozov, E.V.; Akselrod, A.S. Circulating extracellular miRNA analysis in patients with stable CAD and acute coronary syndromes. Biomolecules, 2021, 11(7), 962. doi: 10.3390/biom11070962 PMID: 34209965
  157. Ma, X.; Liao, X.; Liu, J.; Wang, Y.; Wang, X.; Chen, Y.; Yin, X.; Pan, Q. Circulating endothelial microvesicles and their carried miR-125a-5p: Potential biomarkers for ischaemic stroke. Stroke Vasc. Neurol., 2023, 8(2), 89-102. doi: 10.1136/svn-2021-001476 PMID: 36109098
  158. Niu, M.; Li, H.; Li, X.; Yan, X.; Ma, A.; Pan, X.; Zhu, X. Circulating exosomal miRNAs as novel biomarkers perform superior diagnostic efficiency compared with plasma miRNAs for large-artery atherosclerosis stroke. Front. Pharmacol., 2021, 12, 791644. doi: 10.3389/fphar.2021.791644 PMID: 34899352
  159. Guo, W.; Li, X.N.; Li, J.; Lu, J.; Wu, J.; Zhu, W.F.; Qin, P.; Xu, N.Z.; Zhang, Q. Increased plasma miR-146a levels are associated with subclinical atherosclerosis in newly diagnosed type 2 diabetes mellitus. J. Diabetes Complications, 2020, 34(12), 107725. doi: 10.1016/j.jdiacomp.2020.107725 PMID: 32981813
  160. Xu, Y.; Gao, J.; Gong, Y.; Chen, M.; Chen, J.; Zhao, W.; Tan, S. Hsa-miR-140-5p down-regulates LDL receptor and attenuates LDL-C uptake in human hepatocytes. Atherosclerosis, 2020, 297, 111-119. doi: 10.1016/j.atherosclerosis.2020.02.004 PMID: 32109664
  161. Dong, J.; He, M.; Li, J.; Pessentheiner, A.; Wang, C.; Zhang, J.; Sun, Y.; Wang, W.T.; Zhang, Y.; Liu, J.; Wang, S.C.; Huang, P.H.; Gordts, P.L.S.M.; Yuan, Z.Y.; Tsimikas, S.; Shyy, J.Y.J. microRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production. JCI Insight, 2020, 5(23), e143812. doi: 10.1172/jci.insight.143812 PMID: 33119548
  162. Huang, S.F.; Zhao, G.; Peng, X.F.; Ye, W.C. The pathogenic role of long non-coding RNA H19 in atherosclerosis via the miR-146a-5p/ANGPTL4 pathway. Front. Cardiovasc. Med., 2021, 8, 770163. doi: 10.3389/fcvm.2021.770163 PMID: 34820432
  163. Xu, Y.; Xu, Y.; Zhu, Y.; Sun, H.; Juguilon, C.; Li, F.; Fan, D.; Yin, L.; Zhang, Y. Macrophage miR-34a is a key regulator of cholesterol efflux and atherosclerosis. Mol. Ther., 2020, 28(1), 202-216. doi: 10.1016/j.ymthe.2019.09.008 PMID: 31604677
  164. Chang, Y.J.; Li, Y.S.; Wu, C.C.; Wang, K.C.; Huang, T.C.; Chen, Z.; Chien, S. Extracellular microRNA-92a mediates endothelial cell-macrophage communication. Arterioscler. Thromb. Vasc. Biol., 2019, 39(12), 2492-2504. doi: 10.1161/ATVBAHA.119.312707 PMID: 31597449
  165. Tang, X.; Yin, R.; Shi, H.; Wang, X.; Shen, D.; Wang, X.; Pan, C. LncRNA ZFAS1 confers inflammatory responses and reduces cholesterol efflux in atherosclerosis through regulating miR-654-3p-ADAM10/RAB22A axis. Int. J. Cardiol., 2020, 315, 72-80. doi: 10.1016/j.ijcard.2020.03.056 PMID: 32349937
  166. Lu, X.; Yang, B.; Yang, H.; Wang, L.; Li, H.; Chen, S.; Lu, X.; Gu, D. MicroRNA-320b modulates cholesterol efflux and atherosclerosis. J. Atheroscler. Thromb., 2022, 29(2), 200-220. doi: 10.5551/jat.57125 PMID: 33536383
  167. Wang, Y.; Smith, W.; Hao, D.; He, B.; Kong, L. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int. Immunopharmacol., 2019, 70, 459-466. doi: 10.1016/j.intimp.2019.02.050 PMID: 30861466
  168. Zhang, X.; Rotllan, N.; Canfrán-Duque, A.; Sun, J.; Toczek, J.; Moshnikova, A.; Malik, S.; Price, N.L.; Araldi, E.; Zhong, W.; Sadeghi, M.M.; Andreev, O.A.; Bahal, R.; Reshetnyak, Y.K.; Suárez, Y.; Fernández-Hernando, C. Targeted suppression of miRNA-33 using pHLIP improves atherosclerosis regression. Circ. Res., 2022, 131(1), 77-90. doi: 10.1161/CIRCRESAHA.121.320296 PMID: 35534923
  169. Jiang, T.; Xu, L.; Zhao, M.; Kong, F.; Lu, X.; Tang, C.; Yin, C. Dual targeted delivery of statins and nucleic acids by chitosan-based nanoparticles for enhanced antiatherosclerotic efficacy. Biomaterials, 2022, 280, 121324. doi: 10.1016/j.biomaterials.2021.121324 PMID: 34933253
  170. Rayner, K.J.; Sheedy, F.J.; Esau, C.C.; Hussain, F.N.; Temel, R.E.; Parathath, S.; van Gils, J.M.; Rayner, A.J.; Chang, A.N.; Suarez, Y.; Fernandez-Hernando, C.; Fisher, E.A.; Moore, K.J. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest., 2011, 121(7), 2921-2931. doi: 10.1172/JCI57275 PMID: 21646721
  171. Wang, C.; Liu, C.; Shi, J.; Li, H.; Jiang, S.; Zhao, P.; Zhang, M.; Du, G.; Fu, S.; Li, S.; Wang, Z.; Wang, X.; Gao, F.; Sun, P.; Tian, J. Nicotine exacerbates endothelial dysfunction and drives atherosclerosis via extracellular vesicle-miRNA. Cardiovasc. Res., 2023, 119(3), 729-742. doi: 10.1093/cvr/cvac140 PMID: 36006370
  172. Gomez, I.; Ward, B.; Souilhol, C.; Recarti, C.; Ariaans, M.; Johnston, J.; Burnett, A.; Mahmoud, M.; Luong, L.A.; West, L.; Long, M.; Parry, S.; Woods, R.; Hulston, C.; Benedikter, B.; Niespolo, C.; Bazaz, R.; Francis, S.; Kiss-Toth, E.; van Zandvoort, M.; Schober, A.; Hellewell, P.; Evans, P.C.; Ridger, V. Neutrophil microvesicles drive atherosclerosis by delivering miR-155 to atheroprone endothelium. Nat. Commun., 2020, 11(1), 214. doi: 10.1038/s41467-019-14043-y PMID: 31924781
  173. Wang, J.; Xu, X.; Li, P.; Zhang, B.; Zhang, J. HDAC3 protects against atherosclerosis through inhibition of inflammation via the microRNA-19b/PPARγ/NF-κB axis. Atherosclerosis, 2021, 323, 1-12. doi: 10.1016/j.atherosclerosis.2021.02.013 PMID: 33756273
  174. Jiang, F.; Chen, Q.; Wang, W.; Ling, Y.; Yan, Y.; Xia, P. Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1. J. Hepatol., 2020, 72(1), 156-166. doi: 10.1016/j.jhep.2019.09.014 PMID: 31568800
  175. Yin, Q.; He, M.; Huang, L.; Zhang, X.; Zhan, J.; Hu, J. lncRNA ZFAS1 promotes ox-LDL induced EndMT through miR-150-5p/Notch3 signaling axis. Microvasc. Res., 2021, 134, 104118. doi: 10.1016/j.mvr.2020.104118 PMID: 33278458
  176. Vanchin, B.; Offringa, E.; Friedrich, J.; Brinker, M.G.L.; Kiers, B.; Pereira, A.C.; Harmsen, M.C.; Moonen, J.R.A.J.; Krenning, G. MicroRNA-374b induces endothelial-to-mesenchymal transition and early lesion formation through the inhibition of MAPK7 signaling. J. Pathol., 2019, 247(4), 456-470. doi: 10.1002/path.5204 PMID: 30565701
  177. Souilhol, C.; Harmsen, M.C.; Evans, P.C.; Krenning, G. Endothelial–mesenchymal transition in atherosclerosis. Cardiovasc. Res., 2018, 114(4), 565-577. doi: 10.1093/cvr/cvx253 PMID: 29309526
  178. Zhou, Z.; Yeh, C.F.; Mellas, M.; Oh, M.J.; Zhu, J.; Li, J.; Huang, R.T.; Harrison, D.L.; Shentu, T.P.; Wu, D.; Lueckheide, M.; Carver, L.; Chung, E.J.; Leon, L.; Yang, K.C.; Tirrell, M.V.; Fang, Y. Targeted polyelectrolyte complex micelles treat vascular complications in vivo. Proc. Natl. Acad. Sci., 2021, 118(50), e2114842118. doi: 10.1073/pnas.2114842118 PMID: 34880134
  179. Dosta, P.; Tamargo, I.; Ramos, V.; Kumar, S.; Kang, D.W.; Borrós, S.; Jo, H. Delivery of anti-microRNA-712 to inflamed endothelial cells using poly(beta-amino ester) nanoparticles conjugated with VCAM-1 targeting peptide. Adv. Healthc. Mater., 2021, 10(15), 2001894. doi: 10.1002/adhm.202001894 PMID: 33448151
  180. Landskroner-Eiger, S.; Moneke, I.; Sessa, W.C. miRNAs as modulators of angiogenesis. Cold Spring Harb. Perspect. Med., 2013, 3(2), a006643. doi: 10.1101/cshperspect.a006643 PMID: 23169571
  181. Farina, F.M.; Hall, I.F.; Serio, S.; Zani, S.; Climent, M.; Salvarani, N.; Carullo, P.; Civilini, E.; Condorelli, G.; Elia, L.; Quintavalle, M. MiR-128-3p is a novel regulator of vascular smooth muscle cell phenotypic switch and vascular diseases. Circ. Res., 2020, 126(12), e120-e135. doi: 10.1161/CIRCRESAHA.120.316489 PMID: 32216529
  182. Wang, J.; Hu, X.; Hu, X.; Gao, F.; Li, M.; Cui, Y.; Wei, X.; Qin, Y.; Zhang, C.; Zhao, Y.; Gao, Y. MicroRNA-520c-3p targeting of RelA/p65 suppresses atherosclerotic plaque formation. Int. J. Biochem. Cell Biol., 2021, 131, 105873. doi: 10.1016/j.biocel.2020.105873 PMID: 33166679
  183. Chin, D.D.; Poon, C.; Wang, J.; Joo, J.; Ong, V.; Jiang, Z.; Cheng, K.; Plotkin, A.; Magee, G.A.; Chung, E.J. miR-145 micelles mitigate atherosclerosis by modulating vascular smooth muscle cell phenotype. Biomaterials, 2021, 273, 120810. doi: 10.1016/j.biomaterials.2021.120810 PMID: 33892346
  184. Zhang, Y.; Xie, B.; Sun, L.; Chen, W.; Jiang, S.L.; Liu, W.; Bian, F.; Tian, H.; Li, R.K. Phenotypic switching of vascular smooth muscle cells in the ‘normal region’ of aorta from atherosclerosis patients is regulated by miR-145. J. Cell. Mol. Med., 2016, 20(6), 1049-1061. doi: 10.1111/jcmm.12825 PMID: 26992033
  185. Peng, M.; Sun, R.; Hong, Y.; Wang, J.; Xie, Y.; Zhang, X.; Li, J.; Guo, H.; Xu, P.; Li, Y.; Wang, X.; Wan, T.; Zhao, Y.; Huang, F.; Wang, Y.; Ye, R.; Liu, Q.; Liu, G.; Liu, X.; Xu, G. Extracellular vesicles carrying proinflammatory factors may spread atherosclerosis to remote locations. Cell. Mol. Life Sci., 2022, 79(8), 430. doi: 10.1007/s00018-022-04464-2 PMID: 35851433
  186. Vallejo, J.; Cochain, C.; Zernecke, A.; Ley, K. Heterogeneity of immune cells in human atherosclerosis revealed by scRNA-Seq. Cardiovasc. Res., 2021, 117(13), cvab260. doi: 10.1093/cvr/cvab260 PMID: 34343272
  187. Afonso, M.S.; Sharma, M.; Schlegel, M.; van Solingen, C.; Koelwyn, G.J.; Shanley, L.C.; Beckett, L.; Peled, D.; Rahman, K.; Giannarelli, C.; Li, H.; Brown, E.J.; Khodadadi-Jamayran, A.; Fisher, E.A.; Moore, K.J. MiR-33 silencing reprograms the immune cell landscape in atherosclerotic plaques. Circ. Res., 2021, 128(8), 1122-1138. doi: 10.1161/CIRCRESAHA.120.317914 PMID: 33593073
  188. Saigusa, R.; Winkels, H.; Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol., 2020, 17(7), 387-401. doi: 10.1038/s41569-020-0352-5 PMID: 32203286
  189. Bu, T.; Li, Z.; Hou, Y.; Sun, W.; Zhang, R.; Zhao, L.; Wei, M.; Yang, G.; Yuan, L. Exosome-mediated delivery of inflammation-responsive Il-10 mRNA for controlled atherosclerosis treatment. Theranostics, 2021, 11(20), 9988-10000. doi: 10.7150/thno.64229 PMID: 34815799
  190. Karshovska, E.; Wei, Y.; Subramanian, P.; Mohibullah, R.; Geißler, C.; Baatsch, I.; Popal, A.; Corbalán Campos, J.; Exner, N.; Schober, A. HIF-1α (Hypoxia-Inducible Factor-1α) promotes macrophage necroptosis by regulating miR-210 and miR-383. Arterioscler. Thromb. Vasc. Biol., 2020, 40(3), 583-596. doi: 10.1161/ATVBAHA.119.313290 PMID: 31996026
  191. Li, Y.; Yang, C.; Zhang, L.; Yang, P. MicroRNA-210 induces endothelial cell apoptosis by directly targeting PDK1 in the setting of atherosclerosis. Cell. Mol. Biol. Lett., 2017, 22(1), 3. doi: 10.1186/s11658-017-0033-5 PMID: 28536634
  192. Abplanalp, W.T.; Fischer, A.; John, D.; Zeiher, A.M.; Gosgnach, W.; Darville, H.; Montgomery, R.; Pestano, L.; Allée, G.; Paty, I.; Fougerousse, F.; Dimmeler, S. Efficiency and target derepression of anti-miR-92a: results of a first in human study. Nucleic Acid Ther., 2020, 30(6), 335-345. doi: 10.1089/nat.2020.0871 PMID: 32707001
  193. Täubel, J.; Hauke, W.; Rump, S.; Viereck, J.; Batkai, S.; Poetzsch, J.; Rode, L.; Weigt, H.; Genschel, C.; Lorch, U.; Theek, C.; Levin, A.A.; Bauersachs, J.; Solomon, S.D.; Thum, T. Novel antisense therapy targeting microRNA-132 in patients with heart failure: Results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J., 2021, 42(2), 178-188. doi: 10.1093/eurheartj/ehaa898 PMID: 33245749
  194. Son, D.J.; Kumar, S.; Takabe, W.; Woo Kim, C.; Ni, C.W.; Alberts-Grill, N.; Jang, I.H.; Kim, S.; Kim, W.; Won Kang, S.; Baker, A.H.; Woong Seo, J.; Ferrara, K.W.; Jo, H. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat. Commun., 2013, 4(1), 3000. doi: 10.1038/ncomms4000 PMID: 24346612
  195. Wang, Z.; Zhang, J.; Zhang, S.; Yan, S.; Wang, Z.; Wang, C.; Zhang, X. MiR-30e and miR-92a are related to atherosclerosis by targeting ABCA1. Mol. Med. Rep., 2019, 19(4), 3298-3304. doi: 10.3892/mmr.2019.9983 PMID: 30816508
  196. Yang, L.; Li, T. LncRNA TUG1 regulates ApoM to promote atherosclerosis progression through miR-92a/FXR1 axis. J. Cell. Mol. Med., 2020, 24(15), 8836-8848. doi: 10.1111/jcmm.15521 PMID: 32597038
  197. Guo, X.; Li, D.; Chen, M.; Chen, L.; Zhang, B.; Wu, T.; Guo, R. miRNA-145 inhibits VSMC proliferation by targeting CD40. Sci. Rep., 2016, 6(1), 35302. doi: 10.1038/srep35302 PMID: 27731400
  198. Nakaoka, H.; Hirono, K.; Yamamoto, S.; Takasaki, I.; Takahashi, K.; Kinoshita, K.; Takasaki, A.; Nishida, N.; Okabe, M.; Ce, W.; Miyao, N.; Saito, K.; Ibuki, K.; Ozawa, S.; Adachi, Y.; Ichida, F. MicroRNA-145-5p and microRNA-320a encapsulated in endothelial microparticles contribute to the progression of vasculitis in acute Kawasaki disease. Sci. Rep., 2018, 8(1), 1016. doi: 10.1038/s41598-018-19310-4 PMID: 29343815
  199. Lv, Y.; Fu, L.; Zhang, Z.; Gu, W.; Luo, X.; Zhong, Y.; Xu, S.; Wang, Y.; Yan, L.; Li, M.; Du, L. Increased expression of microRNA-206 inhibits potassium voltage-gated channel subfamily a member 5 in pulmonary arterial smooth muscle cells and is related to exaggerated pulmonary artery hypertension following intrauterine growth retardation in rats. J. Am. Heart Assoc., 2019, 8(2), e010456. doi: 10.1161/JAHA.118.010456 PMID: 30636484
  200. Jalali, S.; Ramanathan, G.K.; Parthasarathy, P.T.; Aljubran, S.; Galam, L.; Yunus, A.; Garcia, S.; Cox, R.R., Jr; Lockey, R.F.; Kolliputi, N. Mir-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation. PLoS One, 2012, 7(10), e46808. doi: 10.1371/journal.pone.0046808 PMID: 23071643
  201. He, M.; Chen, Z.; Martin, M.; Zhang, J.; Sangwung, P.; Woo, B.; Tremoulet, A.H.; Shimizu, C.; Jain, M.K.; Burns, J.C.; Shyy, J.Y.J. miR-483 targeting of CTGF suppresses endothelial-to-mesenchymal transition. Circ. Res., 2017, 120(2), 354-365. doi: 10.1161/CIRCRESAHA.116.310233 PMID: 27923814
  202. Lei, Z.; Wahlquist, C.; el Azzouzi, H.; Deddens, J.C.; Kuster, D.; van Mil, A.; Rojas-Munoz, A.; Huibers, M.M.; Mercola, M.; de Weger, R.; Van der Velden, J.; Xiao, J.; Doevendans, P.A.; Sluijter, J.P.G. miR-132/212 impairs cardiomyocytes contractility in the failing heart by suppressing SERCA2a. Front. Cardiovasc. Med., 2021, 8, 592362. doi: 10.3389/fcvm.2021.592362 PMID: 33816571
  203. Rencelj, A.; Gvozdenovic, N.; Cemazar, M. MitomiRs: their roles in mitochondria and importance in cancer cell metabolism. Radiol. Oncol., 2021, 55(4), 379-392. doi: 10.2478/raon-2021-0042 PMID: 34821131
  204. Zheng, H.; Liu, J.; Yu, J.; McAlinden, A. Expression profiling of mitochondria-associated microRNAs during osteogenic differentiation of human MSCs. Bone, 2021, 151, 116058. doi: 10.1016/j.bone.2021.116058 PMID: 34144232
  205. Liang, H.; Liu, J.; Su, S.; Zhao, Q. Mitochondrial noncoding RNAs: new wine in an old bottle. RNA Biol., 2021, 18(12), 2168-2182. doi: 10.1080/15476286.2021.1935572 PMID: 34110970

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers