The Mechanisms of miRNAs on Target Regulation and their Recent Advances in Atherosclerosis
- Authors: Yin R.1, Lu H.1, Cao Y.2, Zhang J.1, Liu G.1, Guo Q.1, Kai X.1, Zhao J.1, Wei Y.1
-
Affiliations:
- School of Pharmacy, Jiangsu University
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University
- Issue: Vol 31, No 35 (2024)
- Pages: 5779-5804
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645076
- DOI: https://doi.org/10.2174/0109298673253678230920054220
- ID: 645076
Cite item
Full Text
Abstract
:miRNAs are crucial regulators in a variety of physiological and pathological processes, while their regulation mechanisms were usually described as negatively regulating gene expression by targeting the 3-untranslated region(3-UTR) of target gene miRNAs through seed sequence in tremendous studies. However, recent evidence indicated the existence of non-canonical mechanisms mediated by binding other molecules besides mRNAs. Additionally, accumulating evidence showed that functions of intracellular and intercellular miRNAs exhibited spatiotemporal patterns. Considering that detailed knowledge of the miRNA regulating mechanism is essential for understanding the roles and further clinical applications associated with their dysfunction and dysregulation, which is complicated and not fully clarified. Based on that, we summarized the recently reported regulation mechanisms of miRNAs, including recognitions, patterns of actions, and chemical modifications. And we also highlight the novel findings of miRNAs in atherosclerosis progression researches to provide new insights for non-coding RNA-based therapy in intractable diseases.
About the authors
Runting Yin
School of Pharmacy, Jiangsu University
Author for correspondence.
Email: info@benthamscience.net
Hongyu Lu
School of Pharmacy, Jiangsu University
Email: info@benthamscience.net
Yixin Cao
Department of Medical Oncology, Affiliated Hospital of Jiangsu University
Email: info@benthamscience.net
Jia Zhang
School of Pharmacy, Jiangsu University
Email: info@benthamscience.net
Geng Liu
School of Pharmacy, Jiangsu University
Email: info@benthamscience.net
Qian Guo
School of Pharmacy, Jiangsu University
Email: info@benthamscience.net
Xinyu Kai
School of Pharmacy, Jiangsu University
Email: info@benthamscience.net
Jiemin Zhao
School of Pharmacy, Jiangsu University
Email: info@benthamscience.net
Yuan Wei
School of Pharmacy, Jiangsu University
Author for correspondence.
Email: info@benthamscience.net
References
- Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet., 2010, 11(9), 597-610. doi: 10.1038/nrg2843 PMID: 20661255
- OBrien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol., 2018, 9, 402. doi: 10.3389/fendo.2018.00402 PMID: 30123182
- Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol., 2019, 234(5), 5451-5465. doi: 10.1002/jcp.27486 PMID: 30471116
- Rivera, J.; Gangwani, L.; Kumar, S. Mitochondria localized microRNAs: An unexplored miRNA niche in Alzheimers disease and aging. Cells, 2023, 12(5), 742. doi: 10.3390/cells12050742 PMID: 36899879
- Duarte, F.V.; Palmeira, C.M.; Rolo, A.P. The emerging role of MitomiRs in the pathophysiology of human disease. Adv. Exp. Med. Biol., 2015, 888, 123-154. doi: 10.1007/978-3-319-22671-2_8 PMID: 26663182
- Gibcus, J.H.; Tan, L.P.; Harms, G.; Schakel, R.N.; de Jong, D.; Blokzijl, T.; Möller, P.; Poppema, S.; Kroesen, B.J.; van den Berg, A. Hodgkin lymphoma cell lines are characterized by a specific miRNA expression profile. Neoplasia, 2009, 11(2), 167-IN9. doi: 10.1593/neo.08980 PMID: 19177201
- Dezfuli, N.K.; Alipoor, S.D.; Dalil Roofchayee, N.; Seyfi, S.; Salimi, B.; Adcock, I.M.; Mortaz, E. Evaluation expression of miR-146a and miR-155 in non-small-cell lung cancer patients. Front. Oncol., 2021, 11, 715677. doi: 10.3389/fonc.2021.715677 PMID: 34790566
- He, Q.; Wang, F.; Honda, T.; Greis, K.D.; Redington, A.N. Ablation of miR-144 increases vimentin expression and atherosclerotic plaque formation. Sci. Rep., 2020, 10(1), 6127. doi: 10.1038/s41598-020-63335-7 PMID: 32273567
- Wang, H.; Song, Y.; Wu, Y.; Kumar, V.; Mahato, R.I.; Su, Q. Activation of dsRNA-dependent protein kinase R by miR-378 sustains metabolic inflammation in hepatic insulin resistance. Diabetes, 2021, 70(3), 710-719. doi: 10.2337/db20-0181 PMID: 33419758
- Juźwik, C.A.; S Drake, S.; Zhang, Y.; Paradis-Isler, N.; Sylvester, A.; Amar-Zifkin, A.; Douglas, C.; Morquette, B.; Moore, C.S.; Fournier, A.E. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog. Neurobiol., 2019, 182, 101664. doi: 10.1016/j.pneurobio.2019.101664 PMID: 31356849
- Reinsborough, C.W.; Ipas, H.; Abell, N.S.; Nottingham, R.M.; Yao, J.; Devanathan, S.K.; Shelton, S.B.; Lambowitz, A.M.; Xhemalçe, B. BCDIN3D regulates tRNAHis 3′ fragment processing. PLoS Genet., 2019, 15(7), e1008273. doi: 10.1371/journal.pgen.1008273 PMID: 31329584
- Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215-233. doi: 10.1016/j.cell.2009.01.002 PMID: 19167326
- van der Kwast, R.V.C.T.; Woudenberg, T.; Quax, P.H.A.; Nossent, A.Y. MicroRNA-411 and Its 5′-IsomiR have distinct targets and functions and are differentially regulated in the vasculature under ischemia. Mol. Ther., 2020, 28(1), 157-170. doi: 10.1016/j.ymthe.2019.10.002 PMID: 31636041
- Helwak, A.; Kudla, G.; Dudnakova, T.; Tollervey, D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell, 2013, 153(3), 654-665. doi: 10.1016/j.cell.2013.03.043 PMID: 23622248
- McGeary, S.E.; Lin, K.S.; Shi, C.Y.; Pham, T.M.; Bisaria, N.; Kelley, G.M.; Bartel, D.P. The biochemical basis of microRNA targeting efficacy. SCIENCE, 2019, 366(6472) doi: 10.1126/science.aav1741
- Kudla, G.; Granneman, S.; Hahn, D.; Beggs, J.D.; Tollervey, D. Cross-linking, ligation, and sequencing of hybrids reveals RNARNA interactions in yeast. Proc. Natl. Acad. Sci., 2011, 108(24), 10010-10015. doi: 10.1073/pnas.1017386108 PMID: 21610164
- Talukder, A.; Li, X.; Hu, H. Position-wise binding preference is important for miRNA target site prediction. Bioinformatics, 2020, 36(12), 3680-3686. doi: 10.1093/bioinformatics/btaa195 PMID: 32186709
- Polioudakis, D.; Abell, N.S.; Iyer, V.R. miR-503 represses human cell proliferation and directly targets the oncogene DDHD2 by non-canonical target pairing. BMC Genomics, 2015, 16(1), 40. doi: 10.1186/s12864-015-1279-9 PMID: 25653011
- Yang, A.; Bofill-De Ros, X.; Shao, T.J.; Jiang, M.; Li, K.; Villanueva, P.; Dai, L.; Gu, S. 3′ uridylation confers miRNAs with non-canonical target repertoires. Mol. Cell, 2019, 75(3), 511-522.e4. doi: 10.1016/j.molcel.2019.05.014 PMID: 31178353
- Sheu-Gruttadauria, J.; Xiao, Y.; Gebert, L.F.R.; MacRae, I.J. Beyond the seed: structural basis for supplementary micro RNA targeting by human Argonaute2. EMBO J., 2019, 38(13), e101153. doi: 10.15252/embj.2018101153 PMID: 31268608
- Kim, H.; Kim, J.; Yu, S.; Lee, Y.Y.; Park, J.; Choi, R.J.; Yoon, S.J.; Kang, S.G.; Kim, V.N. A mechanism for microRNA arm switching regulated by uridylation. Mol. Cell, 2020, 78(6), 1224-1236.e5. doi: 10.1016/j.molcel.2020.04.030 PMID: 32442398
- Yang, A.; Shao, T.J.; Bofill-De Ros, X.; Lian, C.; Villanueva, P.; Dai, L.; Gu, S. AGO-bound mature miRNAs are oligouridylated by TUTs and subsequently degraded by DIS3L2. Nat. Commun., 2020, 11(1), 2765. doi: 10.1038/s41467-020-16533-w PMID: 32488030
- Vieux, K.F.; Prothro, K.P.; Kelley, L.H.; Palmer, C.; Maine, E.M.; Veksler-Lublinsky, I.; McJunkin, K. Screening by deep sequencing reveals mediators of microRNA tailing in C. elegans. Nucleic Acids Res., 2021, 49(19), 11167-11180. doi: 10.1093/nar/gkab840 PMID: 34586415
- Burroughs, A.M.; Ando, Y.; de Hoon, M.J.L.; Tomaru, Y.; Nishibu, T.; Ukekawa, R.; Funakoshi, T.; Kurokawa, T.; Suzuki, H.; Hayashizaki, Y.; Daub, C.O. A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Res., 2010, 20(10), 1398-1410. doi: 10.1101/gr.106054.110 PMID: 20719920
- Boele, J.; Persson, H.; Shin, J.W.; Ishizu, Y.; Newie, I.S.; Søkilde, R.; Hawkins, S.M.; Coarfa, C.; Ikeda, K.; Takayama, K.; Horie-Inoue, K.; Ando, Y.; Burroughs, A.M.; Sasaki, C.; Suzuki, C.; Sakai, M.; Aoki, S.; Ogawa, A.; Hasegawa, A.; Lizio, M.; Kaida, K.; Teusink, B.; Carninci, P.; Suzuki, H.; Inoue, S.; Gunaratne, P.H.; Rovira, C.; Hayashizaki, Y.; de Hoon, M.J.L. PAPD5-mediated 3′ adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease. Proc. Natl. Acad. Sci., 2014, 111(31), 11467-11472. doi: 10.1073/pnas.1317751111 PMID: 25049417
- DAmbrogio, A.; Gu, W.; Udagawa, T.; Mello, C.C.; Richter, J.D. Specific miRNA stabilization by Gld2-catalyzed monoadenylation. Cell Rep., 2012, 2(6), 1537-1545. doi: 10.1016/j.celrep.2012.10.023 PMID: 23200856
- Morsiani, C.; Terlecki-Zaniewicz, L.; Skalicky, S.; Bacalini, M.G.; Collura, S.; Conte, M.; Sevini, F.; Garagnani, P.; Salvioli, S.; Hackl, M.; Grillari, J.; Franceschi, C.; Capri, M. Circulating miR-19a-3p and miR-19b-3p characterize the human aging process and their isomiRs associate with healthy status at extreme ages. Aging Cell, 2021, 20(7), e13409. doi: 10.1111/acel.13409 PMID: 34160893
- Ibuki, Y.; Nishiyama, Y.; Tsutani, Y.; Emi, M.; Hamai, Y.; Okada, M.; Tahara, H. Circulating microRNA/isomiRs as novel biomarkers of esophageal squamous cell carcinoma. PLoS One, 2020, 15(4), e0231116. doi: 10.1371/journal.pone.0231116 PMID: 32251457
- Dika, E.; Broseghini, E.; Porcellini, E.; Lambertini, M.; Riefolo, M.; Durante, G.; Loher, P.; Roncarati, R.; Bassi, C.; Misciali, C.; Negrini, M.; Rigoutsos, I.; Londin, E.; Patrizi, A.; Ferracin, M. Unraveling the role of microRNA/isomiR network in multiple primary melanoma pathogenesis. Cell Death Dis., 2021, 12(5), 473. doi: 10.1038/s41419-021-03764-y PMID: 33980826
- Natarelli, L.; Weber, C. A non-canonical link between non-coding RNAs and cardiovascular diseases. Biomedicines, 2022, 10(2), 445. doi: 10.3390/biomedicines10020445 PMID: 35203652
- Mayr, C. Regulation by 3′-untranslated regions. Annu. Rev. Genet., 2017, 51(1), 171-194. doi: 10.1146/annurev-genet-120116-024704 PMID: 28853924
- Gu, S.; Jin, L.; Zhang, F.; Sarnow, P.; Kay, M.A. Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat. Struct. Mol. Biol., 2009, 16(2), 144-150. doi: 10.1038/nsmb.1552 PMID: 19182800
- Jia, Q.; Xie, B.; Zhao, Z.; Huang, L.; Wei, G.; Ni, T. Lung cancer cells expressing a shortened CDK16 3′UTR escape senescence through impaired miR-485-5p targeting. Mol. Oncol., 2022, 16(6), 1347-1364. doi: 10.1002/1878-0261.13125 PMID: 34687270
- Urena, F.; Ma, C.; Hoffmann, F.W.; Nunes, L.G.A.; Urschitz, J.; Moisyadi, S.; Khadka, V.S.; Deng, Y.; Hoffmann, P.R. T-cell activation decreases miRNA-15a/16 levels to promote MEK1ERK1/2Elk1 signaling and proliferative capacity. J. Biol. Chem., 2022, 298(3), 101634. doi: 10.1016/j.jbc.2022.101634 PMID: 35085550
- Liu, S.; Hu, C.; Li, M.; An, J.; Zhou, W.; Guo, J.; Xiao, Y. Estrogen receptor beta promotes lung cancer invasion via increasing CXCR4 expression. Cell Death Dis., 2022, 13(1), 70. doi: 10.1038/s41419-022-04514-4 PMID: 35064116
- Fang, Z.; Rajewsky, N. The impact of miRNA target sites in coding sequences and in 3'UTRs. PLoS One, 2011, 6(3), e18067. doi: 10.1371/journal.pone.0018067 PMID: 21445367
- Hausser, J.; Syed, A.P.; Bilen, B.; Zavolan, M. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res., 2013, 23(4), 604-615. doi: 10.1101/gr.139758.112 PMID: 23335364
- Besnier, M.; Shantikumar, S.; Anwar, M.; Dixit, P.; Chamorro-Jorganes, A.; Sweaad, W.; Sala-Newby, G.; Madeddu, P.; Thomas, A.C.; Howard, L.; Mushtaq, S.; Petretto, E.; Caporali, A.; Emanueli, C. MiR-15a/-16 Inhibit angiogenesis by targeting the Tie2 coding sequence: therapeutic potential of a miR-15a/16 decoy system in limb ischemia. Mol. Ther. Nucleic Acids, 2019, 17, 49-62. doi: 10.1016/j.omtn.2019.05.002 PMID: 31220779
- Shin, E.; Jin, H.; Suh, D.S.; Luo, Y.; Ha, H.J.; Kim, T.H.; Hahn, Y.; Hyun, S.; Lee, K.; Bae, J. An alternative miRISC targets a cancer-associated coding sequence mutation in FOXL2. EMBO J., 2020, 39(24), e104719. doi: 10.15252/embj.2020104719 PMID: 33215742
- Tonouchi, E.; Gen, Y.; Muramatsu, T.; Hiramoto, H.; Tanimoto, K.; Inoue, J.; Inazawa, J. miR-3140 suppresses tumor cell growth by targeting BRD4 via its coding sequence and downregulates the BRD4-NUT fusion oncoprotein. Sci. Rep., 2018, 8(1), 4482. doi: 10.1038/s41598-018-22767-y PMID: 29540837
- Friedrich, M.; Vaxevanis, C.K.; Biehl, K.; Mueller, A.; Seliger, B. Targeting the coding sequence: Opposing roles in regulating classical and non-classical MHC class I molecules by miR-16 and miR-744. J. Immunother. Cancer, 2020, 8(1), e000396. doi: 10.1136/jitc-2019-000396 PMID: 32571994
- Mayr, C.; Bartel, D.P. Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 2009, 138(4), 673-684. doi: 10.1016/j.cell.2009.06.016 PMID: 19703394
- Desi, N.; Teh, V.; Tong, Q.Y.; Lim, C.Y.; Tabatabaeian, H.; Chew, X.H.; Sanchez-Mejias, A.; Chan, J.J.; Zhang, B.; Pitcheshwar, P.; Siew, B.E.; Wang, S.; Lee, K.C.; Chong, C.S.; Cheong, W.K.; Lieske, B.; Tan, I.J.W.; Tan, K.K.; Tay, Y. MiR-138 is a potent regulator of the heterogenous MYC transcript population in cancers. Oncogene, 2022, 41(8), 1178-1189. doi: 10.1038/s41388-021-02084-x PMID: 34937878
- Lytle, J.R., Jr; Yario, T.A.; Steitz, J.A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl. Acad. Sci., 2007, 104(23), 9667-9672. doi: 10.1073/pnas.0703820104 PMID: 17535905
- Meng, W.; Xiao, T.; Liang, X.; Wen, J.; Peng, X.; Wang, J.; Zou, Y.; Liu, J.; Bialowas, C.; Luo, H.; Zhang, Y.; Liu, B.; Zhang, J.; Hu, F.; Liu, M.; Dong, L.Q.; Zhou, Z.; Liu, F.; Bai, J. The miR-182-5p/FGF21/acetylcholine axis mediates the crosstalk between adipocytes and macrophages to promote beige fat thermogenesis. JCI Insight, 2021, 6(17), e150249. doi: 10.1172/jci.insight.150249 PMID: 34264867
- Xu, K.; Han, B.; Bai, Y.; Ma, X.Y.; Ji, Z.N.; Xiong, Y.; Miao, S.K.; Zhang, Y.Y.; Zhou, L.M. MiR-451a suppressing BAP31 can inhibit proliferation and increase apoptosis through inducing ER stress in colorectal cancer. Cell Death Dis., 2019, 10(3), 152. doi: 10.1038/s41419-019-1403-x PMID: 30770794
- Kamenova, S.; Aralbayeva, A.; Kondybayeva, A.; Akimniyazova, A.; Pyrkova, A.; Ivashchenko, A. Evolutionary changes in the interaction of miRNA With mRNA of candidate genes for Parkinsons disease. Front. Genet., 2021, 12, 647288. doi: 10.3389/fgene.2021.647288 PMID: 33859673
- Liu, H.; Bi, J.; Dong, W.; Yang, M.; Shi, J.; Jiang, N.; Lin, T.; Huang, J. Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Mol. Cancer, 2018, 17(1), 161. doi: 10.1186/s12943-018-0908-8 PMID: 30458784
- Long, J.M.; Maloney, B.; Rogers, J.T.; Lahiri, D.K. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5′-untranslated region: Implications in Alzheimers disease. Mol. Psychiatry, 2019, 24(3), 345-363. doi: 10.1038/s41380-018-0266-3 PMID: 30470799
- Machlin, E.S.; Sarnow, P.; Sagan, S.M. Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc. Natl. Acad. Sci., 2011, 108(8), 3193-3198. doi: 10.1073/pnas.1012464108 PMID: 21220300
- Ono, C.; Fukuhara, T.; Li, S.; Wang, J.; Sato, A.; Izumi, T.; Fauzyah, Y.; Yamamoto, T.; Morioka, Y.; Dokholyan, N.V.; Standley, D.M.; Matsuura, Y. Various miRNAs compensate the role of miR-122 on HCV replication. PLoS Pathog., 2020, 16(6), e1008308. doi: 10.1371/journal.ppat.1008308 PMID: 32574204
- Sakamoto, A.; Terui, Y.; Uemura, T.; Igarashi, K.; Kashiwagi, K. Polyamines regulate gene expression by stimulating translation of histone acetyltransferase mRNAs. J. Biol. Chem., 2020, 295(26), 8736-8745. doi: 10.1074/jbc.RA120.013833 PMID: 32376690
- Baldassarre, A.; Paolini, A.; Bruno, S.P.; Felli, C.; Tozzi, A.E.; Masotti, A. Potential use of noncoding RNAs and innovative therapeutic strategies to target the 5UTR of SARS-CoV-2. Epigenomics, 2020, 12(15), 1349-1361. doi: 10.2217/epi-2020-0162 PMID: 32875809
- Grimson, A.; Farh, K.K.H.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell, 2007, 27(1), 91-105. doi: 10.1016/j.molcel.2007.06.017 PMID: 17612493
- Sætrom, P.; Heale, B.S.E.; Snøve, O., Jr; Aagaard, L.; Alluin, J.; Rossi, J.J. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res., 2007, 35(7), 2333-2342. doi: 10.1093/nar/gkm133 PMID: 17389647
- Briskin, D.; Wang, P.Y.; Bartel, D.P. The biochemical basis for the cooperative action of microRNAs. Proc. Natl. Acad. Sci., 2020, 117(30), 17764-17774. doi: 10.1073/pnas.1920404117 PMID: 32661162
- Shao, S.; Hu, Q.; Wu, W.; Wang, M.; Huang, J.; Zhao, X.; Tang, G.; Liang, T. Tumor-triggered personalized microRNA cocktail therapy for hepatocellular carcinoma. Biomater. Sci., 2020, 8(23), 6579-6591. doi: 10.1039/D0BM00794C PMID: 33231584
- Feinberg, M.W.; Moore, K.J. MicroRNA regulation of atherosclerosis. Circ. Res., 2016, 118(4), 703-720. doi: 10.1161/CIRCRESAHA.115.306300 PMID: 26892968
- Rossi, J.J. A novel nuclear miRNA mediated modulation of a non-coding antisense RNA and its cognate sense coding mRNA. EMBO J., 2011, 30(21), 4340-4341. doi: 10.1038/emboj.2011.373 PMID: 22048334
- Chen, B.; Zhang, B.; Luo, H.; Yuan, J.; Skogerbø, G.; Chen, R. Distinct microRNA subcellular size and expression patterns in human cancer cells. Int. J. Cell Biol., 2012, 2012, 1-9. doi: 10.1155/2012/672462 PMID: 22505932
- Das, S.; Ferlito, M.; Kent, O.A.; Fox-Talbot, K.; Wang, R.; Liu, D.; Raghavachari, N.; Yang, Y.; Wheelan, S.J.; Murphy, E.; Steenbergen, C. Nuclear miRNA regulates the mitochondrial genome in the heart. Circ. Res., 2012, 110(12), 1596-1603. doi: 10.1161/CIRCRESAHA.112.267732 PMID: 22518031
- Khan, A.W. Nuclear functions of microRNAs relevant to the cardiovascular system. Transl. Res., 2021, 230, 151-163. doi: 10.1016/j.trsl.2020.11.004 PMID: 33186782
- Akiyoshi, K.; Boersma, G.J.; Johnson, M.D.; Velasquez, F.C.; Dunkerly-Eyring, B.; OBrien, S.; Yamaguchi, A.; Steenbergen, C.; Tamashiro, K.L.K.; Das, S. Role of miR-181c in diet-induced obesity through regulation of lipid synthesis in liver. PLoS One, 2021, 16(12), e0256973. doi: 10.1371/journal.pone.0256973 PMID: 34879063
- Wu, C.; Liu, X.; Zheng, Y.; He, W.; Yang, G.; Wu, P.; Cai, C. Fluorescence activation imaging of localization, distribution, and level of miRNA in various organelles inside cells. Talanta, 2018, 186, 406-412. doi: 10.1016/j.talanta.2018.04.080 PMID: 29784380
- Hu, J.F.; Yim, D.; Ma, D.; Huber, S.M.; Davis, N.; Bacusmo, J.M.; Vermeulen, S.; Zhou, J.; Begley, T.J.; DeMott, M.S.; Levine, S.S.; de Crécy-Lagard, V.; Dedon, P.C.; Cao, B. Quantitative mapping of the cellular small RNA landscape with AQRNA-seq. Nat. Biotechnol., 2021, 39(8), 978-988. doi: 10.1038/s41587-021-00874-y PMID: 33859402
- Borralho, P.M.; Rodrigues, C.M.P.; Steer, C.J. microRNAs in mitochondria: An unexplored niche. Adv. Exp. Med. Biol., 2015, 887, 31-51. doi: 10.1007/978-3-319-22380-3_3 PMID: 26662985
- Fan, S.; Tian, T.; Chen, W.; Lv, X.; Lei, X.; Zhang, H.; Sun, S.; Cai, L.; Pan, G.; He, L.; Ou, Z.; Lin, X.; Wang, X.; Perez, M.F.; Tu, Z.; Ferrone, S.; Tannous, B.A.; Li, J. Mitochondrial miRNA determines chemoresistance by reprogramming metabolism and regulating mitochondrial transcription. Cancer Res., 2019, 79(6), 1069-1084. doi: 10.1158/0008-5472.CAN-18-2505 PMID: 30659020
- Liao, J.; Li, Q.; Hu, Z.; Yu, W.; Zhang, K.; Ma, F.; Han, Q.; Zhang, H.; Guo, J.; Hu, L.; Pan, J.; Li, Y.; Tang, Z. Mitochondrial miR-1285 regulates copper-induced mitochondrial dysfunction and mitophagy by impairing IDH2 in pig jejunal epithelial cells. J. Hazard. Mater., 2022, 422, 126899. doi: 10.1016/j.jhazmat.2021.126899 PMID: 34418838
- Hu, Z.; Linn, N.; Li, Q.; Zhang, K.; Liao, J.; Han, Q.; Zhang, H.; Guo, J.; Hu, L.; Pan, J.; Li, Y.; Tang, Z. MitomiR-504 alleviates the copper-induced mitochondria-mediated apoptosis by suppressing Bak1 expression in porcine jejunal epithelial cells. Sci. Total Environ., 2023, 858(Pt 3), 160157. doi: 10.1016/j.scitotenv.2022.160157 PMID: 36379340
- Wang, W.X.; Prajapati, P.; Nelson, P.T.; Springer, J.E. The mitochondria-associated ER membranes are novel subcellular locations enriched for inflammatory-responsive microRNAs. Mol. Neurobiol., 2020, 57(7), 2996-3013. doi: 10.1007/s12035-020-01937-y PMID: 32451872
- Wang, W.X.; Springer, J.E.; Prajapati, P.; Vekaria, H.J.; Spry, M.; Cloud, A.L.; Sullivan, P.G. Temporal changes in inflammatory mitochondria-enriched microRNAs following traumatic brain injury and effects of miR-146a nanoparticle delivery. Neural Regen. Res., 2021, 16(3), 514-522. doi: 10.4103/1673-5374.293149 PMID: 32985480
- Guo, Q.Q.; Gao, J.; Wang, X.W.; Yin, X.L.; Zhang, S.C.; Li, X.; Chi, L.L.; Zhou, X.M.; Wang, Z.; Zhang, Q.Y. RNA-binding protein MSI2 binds to miR-301a-3p and facilitates its distribution in mitochondria of endothelial cells. Front. Mol. Biosci., 2021, 7, 609828. doi: 10.3389/fmolb.2020.609828 PMID: 33553241
- Guo, Q.; Yin, X.; Gao, J.; Wang, X.; Zhang, S.; Zhou, X.; Wang, Z.; Zhang, Q. MiR-381-3p redistributes between cytosol and mitochondria and aggravates endothelial cell injury induced by reactive oxygen species. Tissue Cell, 2020, 67, 101451. doi: 10.1016/j.tice.2020.101451 PMID: 33137708
- Li, J.; Kong, D.; Gao, X.; Tian, Z.; Wang, X.; Guo, Q.; Wang, Z.; Zhang, Q. TSH attenuates fatty acid oxidation in hepatocytes by reducing the mitochondrial distribution of miR-449a/449b-5p/5194. Mol. Cell. Endocrinol., 2021, 530, 111280. doi: 10.1016/j.mce.2021.111280 PMID: 33862186
- Zhang, X.; Zuo, X.; Yang, B.; Li, Z.; Xue, Y.; Zhou, Y.; Huang, J.; Zhao, X.; Zhou, J.; Yan, Y.; Zhang, H.; Guo, P.; Sun, H.; Guo, L.; Zhang, Y.; Fu, X.D. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell, 2014, 158(3), 607-619. doi: 10.1016/j.cell.2014.05.047 PMID: 25083871
- Bukong, T.N.; Hou, W.; Kodys, K.; Szabo, G. Ethanol facilitates hepatitis C virus replication via up-regulation of GW182 and heat shock protein 90 in human hepatoma cells. Hepatology, 2013, 57(1), 70-80. doi: 10.1002/hep.26010 PMID: 22898980
- Turunen, T.A.; Roberts, T.C.; Laitinen, P.; Väänänen, M.A.; Korhonen, P.; Malm, T.; Ylä-Herttuala, S.; Turunen, M.P. Changes in nuclear and cytoplasmic microRNA distribution in response to hypoxic stress. Sci. Rep., 2019, 9(1), 10332. doi: 10.1038/s41598-019-46841-1 PMID: 31316122
- Zaccagnini, G.; Greco, S.; Longo, M.; Maimone, B.; Voellenkle, C.; Fuschi, P.; Carrara, M.; Creo, P.; Maselli, D.; Tirone, M.; Mazzone, M.; Gaetano, C.; Spinetti, G.; Martelli, F. Hypoxia-induced miR-210 modulates the inflammatory response and fibrosis upon acute ischemia. Cell Death Dis., 2021, 12(5), 435. doi: 10.1038/s41419-021-03713-9 PMID: 33934122
- Santovito, D.; Egea, V.; Bidzhekov, K.; Natarelli, L.; Mourão, A.; Blanchet, X.; Wichapong, K.; Aslani, M.; Brunßen, C.; Horckmans, M.; Hristov, M.; Geerlof, A.; Lutgens, E.; Daemen, M.J.A.P.; Hackeng, T.; Ries, C.; Chavakis, T.; Morawietz, H.; Naumann, R.; von Hundelshausen, P.; Steffens, S.; Duchêne, J.; Megens, R.T.A.; Sattler, M.; Weber, C. Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis. Sci. Transl. Med., 2020, 12(546), eaaz2294. doi: 10.1126/scitranslmed.aaz2294 PMID: 32493793
- Bologna, N.G.; Iselin, R.; Abriata, L.A.; Sarazin, A.; Pumplin, N.; Jay, F.; Grentzinger, T.; Dal Peraro, M.; Voinnet, O. Nucleo-cytosolic shuttling of argonaute1 prompts a revised model of the plant MicroRNA pathway. Mol. Cell, 2018, 69(4), 709-719.e5. doi: 10.1016/j.molcel.2018.01.007 PMID: 29398448
- Wei, Y.; Li, L.; Wang, D.; Zhang, C.Y.; Zen, K. Importin 8 regulates the transport of mature microRNAs into the cell nucleus. J. Biol. Chem., 2014, 289(15), 10270-10275. doi: 10.1074/jbc.C113.541417 PMID: 24596094
- Schraivogel, D.; Schindler, S.G.; Danner, J.; Kremmer, E.; Pfaff, J.; Hannus, S.; Depping, R.; Meister, G. Importin-β facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels. Nucleic Acids Res., 2015, 43(15), 7447-7461. doi: 10.1093/nar/gkv705 PMID: 26170235
- Castanotto, D.; Zhang, X.; Alluin, J.; Zhang, X.; Rüger, J.; Armstrong, B.; Rossi, J.; Riggs, A.; Stein, C.A. A stress-induced response complex (SIRC) shuttles miRNAs, siRNAs, and oligonucleotides to the nucleus. Proc. Natl. Acad. Sci., 2018, 115(25), E5756-E5765. doi: 10.1073/pnas.1721346115 PMID: 29866826
- Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; Tait, J.F.; Tewari, M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci., 2011, 108(12), 5003-5008. doi: 10.1073/pnas.1019055108 PMID: 21383194
- Garcia-Martin, R.; Wang, G.; Brandão, B.B.; Zanotto, T.M.; Shah, S.; Kumar Patel, S.; Schilling, B.; Kahn, C.R. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature, 2022, 601(7893), 446-451. doi: 10.1038/s41586-021-04234-3 PMID: 34937935
- Robinson, H.; Ruelcke, J.E.; Lewis, A.; Bond, C.S.; Fox, A.H.; Bharti, V.; Wani, S.; Cloonan, N.; Lai, A.; Margolin, D.; Li, L.; Salomon, C.; Richards, R.S.; Farrell, A.; Gardiner, R.A.; Parton, R.G.; Cristino, A.S.; Hill, M.M. Caveolin-1-driven membrane remodelling regulates hnRNPK-mediated exosomal microRNA sorting in cancer. Clin. Transl. Med., 2021, 11(4), e381. doi: 10.1002/ctm2.381 PMID: 33931969
- Liu, D.; Liu, F.; Li, Z.; Pan, S.; Xie, J.; Zhao, Z.; Liu, Z.; Zhang, J.; Liu, Z. HNRNPA1-mediated exosomal sorting of miR-483-5p out of renal tubular epithelial cells promotes the progression of diabetic nephropathy-induced renal interstitial fibrosis. Cell Death Dis., 2021, 12(3), 255. doi: 10.1038/s41419-021-03460-x PMID: 33692334
- Zhang, H.; Deng, T.; Liu, R.; Ning, T.; Yang, H.; Liu, D.; Zhang, Q.; Lin, D.; Ge, S.; Bai, M.; Wang, X.; Zhang, L.; Li, H.; Yang, Y.; Ji, Z.; Wang, H.; Ying, G.; Ba, Y. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol. Cancer, 2020, 19(1), 43. doi: 10.1186/s12943-020-01168-8 PMID: 32106859
- Qiu, W.; Guo, X.; Li, B.; Wang, J.; Qi, Y.; Chen, Z.; Zhao, R.; Deng, L.; Qian, M.; Wang, S.; Zhang, Z.; Guo, Q.; Zhang, S.; Pan, Z.; Zhao, S.; Xue, H.; Li, G. Exosomal miR-1246 from glioma patient body fluids drives the differentiation and activation of myeloid-derived suppressor cells. Mol. Ther., 2021, 29(12), 3449-3464. doi: 10.1016/j.ymthe.2021.06.023 PMID: 34217892
- Pérez-Boza, J.; Boeckx, A.; Lion, M.; Dequiedt, F.; Struman, I. hnRNPA2B1 inhibits the exosomal export of miR-503 in endothelial cells. Cell. Mol. Life Sci., 2020, 77(21), 4413-4428. doi: 10.1007/s00018-019-03425-6 PMID: 31894362
- Schreiner, S.; Didio, A.; Hung, L.H.; Bindereif, A. Design and application of circular RNAs with protein-sponge function. Nucleic Acids Res., 2020, 48(21), 12326-12335. doi: 10.1093/nar/gkaa1085 PMID: 33231682
- Xue, Y.C.; Ng, C.S.; Xiang, P.; Liu, H.; Zhang, K.; Mohamud, Y.; Luo, H. Dysregulation of RNA-binding proteins in amyotrophic lateral sclerosis. Front. Mol. Neurosci., 2020, 13, 78. doi: 10.3389/fnmol.2020.00078 PMID: 32547363
- Choi, S.Y.; Hong, S.H.; Lee, H.J. Differential expression and sorting of exosomal microRNAs upon activation of the human monocyte-like cell line U937. Biochem. Biophys. Res. Commun., 2022, 610, 147-153. doi: 10.1016/j.bbrc.2022.04.048 PMID: 35462096
- Fu, C.; Zhang, Q.; Wang, A.; Yang, S.; Jiang, Y.; Bai, L.; Wei, Q. EWI-2 controls nucleocytoplasmic shuttling of EGFR signaling molecules and miRNA sorting in exosomes to inhibit prostate cancer cell metastasis. Mol. Oncol., 2021, 15(5), 1543-1565. doi: 10.1002/1878-0261.12930 PMID: 33605506
- Zhou, C.; Bei, J.; Qiu, Y.; Chang, Q.; Nyong, E.; Vasilakis, N.; Yang, J.; Krishnan, B.; Khanipov, K.; Jin, Y.; Fang, X.; Gaitas, A.; Gong, B. Exosomally targeting microRNA23a ameliorates microvascular endothelial barrier dysfunction following rickettsial infection. Front. Immunol., 2022, 13, 904679. doi: 10.3389/fimmu.2022.904679 PMID: 35812423
- Li, T.; Liang, Y.; Li, J.; Yu, Y.; Xiao, M.M.; Ni, W.; Zhang, Z.; Zhang, G.J. Carbon nanotube field-effect transistor biosensor for ultrasensitive and label-free detection of breast cancer exosomal miRNA21. Anal. Chem., 2021, 93(46), 15501-15507. doi: 10.1021/acs.analchem.1c03573 PMID: 34747596
- Aday, S.; Hazan-Halevy, I.; Chamorro-Jorganes, A.; Anwar, M.; Goldsmith, M.; Beazley-Long, N.; Sahoo, S.; Dogra, N.; Sweaad, W.; Catapano, F.; Ozaki-Tan, S.; Angelini, G.D.; Madeddu, P.; Benest, A.V.; Peer, D.; Emanueli, C. Bioinspired artificial exosomes based on lipid nanoparticles carrying let-7b-5p promote angiogenesis in vitro and in vivo. Mol. Ther., 2021, 29(7), 2239-2252. doi: 10.1016/j.ymthe.2021.03.015 PMID: 33744469
- Li, Y.J.; Wu, J.Y.; Liu, J.; Xu, W.; Qiu, X.; Huang, S.; Hu, X.B.; Xiang, D.X. Artificial exosomes for translational nanomedicine. J. Nanobiotechnology, 2021, 19(1), 242. doi: 10.1186/s12951-021-00986-2 PMID: 34384440
- Stavast, C.; Erkeland, S. The non-canonical aspects of microRNAs: Many roads to gene gegulation. Cells, 2019, 8(11), 1465. doi: 10.3390/cells8111465 PMID: 31752361
- Müller, V.; Oliveira-Ferrer, L.; Steinbach, B.; Pantel, K.; Schwarzenbach, H. Interplay of lncRNA H19/miR-675 and lncRNA NEAT1/miR-204 in breast cancer. Mol. Oncol., 2019, 13(5), 1137-1149. doi: 10.1002/1878-0261.12472 PMID: 30803129
- Li, H.; Zhan, J.; Zhao, Y.; Fan, J.; Yuan, S.; Yin, Z.; Dai, B.; Chen, C.; Wang, D.W. Identification of ncRNA-mediated functions of nucleus-localized miR-320 in cardiomyocytes. Mol. Ther. Nucleic Acids, 2020, 19, 132-143. doi: 10.1016/j.omtn.2019.11.006 PMID: 31837603
- Luo, Y.; Liang, C.; Xu, Y.; Zhang, T. MiR-466h-5p induces expression of myocardin with complementary promoter sequences. Biochem. Biophys. Res. Commun., 2019, 514(1), 187-193. doi: 10.1016/j.bbrc.2019.04.133 PMID: 31029421
- Xiao, M.; Li, J.; Li, W.; Wang, Y.; Wu, F.; Xi, Y.; Zhang, L.; Ding, C.; Luo, H.; Li, Y.; Peng, L.; Zhao, L.; Peng, S.; Xiao, Y.; Dong, S.; Cao, J.; Yu, W. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol., 2017, 14(10), 1326-1334. doi: 10.1080/15476286.2015.1112487 PMID: 26853707
- Liang, Y.; Lu, Q.; Li, W.; Zhang, D.; Zhang, F.; Zou, Q.; Chen, L.; Tong, Y.; Liu, M.; Wang, S.; Li, W.; Ren, X.; Xu, P.; Yang, Z.; Dong, S.; Zhang, B.; Huang, Y.; Li, D.; Wang, H.; Yu, W. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res., 2021, 49(15), 8556-8572. doi: 10.1093/nar/gkab626 PMID: 34329471
- Bai, Y.; Pan, B.; Zhan, X.; Silver, H.; Li, J. MicroRNA 195-5p targets Foxo3 promoter region to regulate its expression in granulosa cells. Int. J. Mol. Sci., 2021, 22(13), 6721. doi: 10.3390/ijms22136721 PMID: 34201585
- Fan, J.; Zhang, X.; Nie, X.; Li, H.; Yuan, S.; Dai, B.; Zhan, J.; Wen, Z.; Jiang, J.; Chen, C.; Wang, D. Nuclear miR-665 aggravates heart failure via suppressing phosphatase and tensin homolog transcription. Sci. China Life Sci., 2020, 63(5), 724-736. doi: 10.1007/s11427-018-9515-1 PMID: 31664601
- Zhou, C.; Wei, W.; Ma, J.; Yang, Y.; Liang, L.; Zhang, Y.; Wang, Z.; Chen, X.; Huang, L.; Wang, W.; Wu, S. Cancer-secreted exosomal miR-1468-5p promotes tumor immune escape via the immunosuppressive reprogramming of lymphatic vessels. Mol. Ther., 2021, 29(4), 1512-1528. doi: 10.1016/j.ymthe.2020.12.034 PMID: 33388421
- Di Mauro, V.; Crasto, S.; Colombo, F.S.; Di Pasquale, E.; Catalucci, D. Wnt signalling mediates miR-133a nuclear re-localization for the transcriptional control of Dnmt3b in cardiac cells. Sci. Rep., 2019, 9(1), 9320. doi: 10.1038/s41598-019-45818-4 PMID: 31249372
- Sardiello, M. A gene network regulating lysosomal biogenesis and function. Science, 2009, 325(5939), 473-477.
- Guo, H.; Pu, M.; Tai, Y.; Chen, Y.; Lu, H.; Qiao, J.; Wang, G.; Chen, J.; Qi, X.; Huang, R.; Tao, Z.; Ren, J. Nuclear miR-30b-5p suppresses TFEB-mediated lysosomal biogenesis and autophagy. Cell Death Differ., 2021, 28(1), 320-336. doi: 10.1038/s41418-020-0602-4 PMID: 32764647
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta stone of a hidden RNA language? Cell, 2011, 146(3), 353-358. doi: 10.1016/j.cell.2011.07.014 PMID: 21802130
- Thomson, D.W.; Dinger, M.E. Endogenous microRNA sponges: Evidence and controversy. Nat. Rev. Genet., 2016, 17(5), 272-283. doi: 10.1038/nrg.2016.20 PMID: 27040487
- Qi, X.; Zhang, D.H.; Wu, N.; Xiao, J.H.; Wang, X.; Ma, W. ceRNA in cancer: Possible functions and clinical implications. J. Med. Genet., 2015, 52(10), 710-718. doi: 10.1136/jmedgenet-2015-103334 PMID: 26358722
- Zheng, L.; Li, X.; Gu, Y.; Lv, X.; Xi, T. The 3′UTR of the pseudogene CYP4Z2P promotes tumor angiogenesis in breast cancer by acting as a ceRNA for CYP4Z1. Breast Cancer Res. Treat., 2015, 150(1), 105-118. doi: 10.1007/s10549-015-3298-2 PMID: 25701119
- Chu, Y.; Kilikevicius, A.; Liu, J.; Johnson, K.C.; Yokota, S.; Corey, D.R. Argonaute binding within 3′-untranslated regions poorly predicts gene repression. Nucleic Acids Res., 2020, 48(13), gkaa478. doi: 10.1093/nar/gkaa478 PMID: 32501500
- Fan, Z.; Kim, S.; Bai, Y.; Diergaarde, B.; Park, H.J. 3′-UTR shortening contributes to subtype-specific cancer growth by breaking stable ceRNA crosstalk of housekeeping genes. Front. Bioeng. Biotechnol., 2020, 8, 334. doi: 10.3389/fbioe.2020.00334 PMID: 32411683
- Kristensen, L.S.; Ebbesen, K.K.; Sokol, M.; Jakobsen, T.; Korsgaard, U.; Eriksen, A.C.; Hansen, T.B.; Kjems, J.; Hager, H. Spatial expression analyses of the putative oncogene ciRS-7 in cancer reshape the microRNA sponge theory. Nat. Commun., 2020, 11(1), 4551. doi: 10.1038/s41467-020-18355-2 PMID: 32917870
- Martens-de Kemp, S.R.; Komor, M.A.; Hegi, R.; Bolijn, A.S.; Tijssen, M.; de Groen, F.L.M.; Depla, A.; van Leerdam, M.; Meijer, G.A.; Fijneman, R.J.A.; Carvalho, B. Overexpression of the miR-17-92 cluster in colorectal adenoma organoids causes a carcinoma-like gene expression signature. Neoplasia, 2022, 32, 100820. doi: 10.1016/j.neo.2022.100820 PMID: 35872559
- Lee, W.J.; Ji, H.; Jeong, S.D.; Pandey, P.R.; Gorospe, M.; Kim, H.H. LINC00162 regulates cell proliferation and apoptosis by sponging PAQR4 -targeting miR-485-5p. J. Cell. Physiol., 2022, 237(7), 2943-2960. doi: 10.1002/jcp.30758 PMID: 35491694
- Lavenniah, A.; Luu, T.D.A.; Li, Y.P.; Lim, T.B.; Jiang, J.; Ackers-Johnson, M.; Foo, R.S.Y. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy. Mol. Ther., 2020, 28(6), 1506-1517. doi: 10.1016/j.ymthe.2020.04.006 PMID: 32304667
- Wang, Z.; Ma, K.; Cheng, Y.; Abraham, J.M.; Liu, X.; Ke, X.; Wang, Z.; Meltzer, S.J. Synthetic circular multi-miR sponge simultaneously inhibits miR-21 and miR-93 in esophageal carcinoma. Lab. Invest., 2019, 99(10), 1442-1453. doi: 10.1038/s41374-019-0273-2 PMID: 31217510
- Konno, M.; Koseki, J.; Asai, A.; Yamagata, A.; Shimamura, T.; Motooka, D.; Okuzaki, D.; Kawamoto, K.; Mizushima, T.; Eguchi, H.; Takiguchi, S.; Satoh, T.; Mimori, K.; Ochiya, T.; Doki, Y.; Ofusa, K.; Mori, M.; Ishii, H. Distinct methylation levels of mature microRNAs in gastrointestinal cancers. Nat. Commun., 2019, 10(1), 3888. doi: 10.1038/s41467-019-11826-1 PMID: 31467274
- Ji, L.; Chen, X. Regulation of small RNA stability: Methylation and beyond. Cell Res., 2012, 22(4), 624-636. doi: 10.1038/cr.2012.36 PMID: 22410795
- Liang, H.; Jiao, Z.; Rong, W.; Qu, S.; Liao, Z.; Sun, X.; Wei, Y.; Zhao, Q.; Wang, J.; Liu, Y.; Chen, X.; Wang, T.; Zhang, C.Y.; Zen, K. 3′-Terminal 2′-O-methylation of lung cancer miR-21-5p enhances its stability and association with Argonaute 2. Nucleic Acids Res., 2020, 48(13), gkaa504. doi: 10.1093/nar/gkaa504 PMID: 32542340
- Backes, S.; Shapiro, J.S.; Sabin, L.R.; Pham, A.M.; Reyes, I.; Moss, B.; Cherry, S.; tenOever, B.R. Degradation of host microRNAs by poxvirus poly(A) polymerase reveals terminal RNA methylation as a protective antiviral mechanism. Cell Host Microbe, 2012, 12(2), 200-210. doi: 10.1016/j.chom.2012.05.019 PMID: 22901540
- Abe, M.; Naqvi, A.; Hendriks, G.J.; Feltzin, V.; Zhu, Y.; Grigoriev, A.; Bonini, N.M. Impact of age-associated increase in 2′- O -methylation of miRNAs on aging and neurodegeneration in Drosophila. Genes Dev., 2014, 28(1), 44-57. doi: 10.1101/gad.226654.113 PMID: 24395246
- Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirsch, J.; Amariglio, N.; Kupiec, M.; Sorek, R.; Rechavi, G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 2012, 485(7397), 201-206. doi: 10.1038/nature11112 PMID: 22575960
- Carissimi, C.; Laudadio, I.; Lorefice, E.; Azzalin, G.; De Paolis, V.; Fulci, V. Bisulphite miRNA-seq reveals widespread CpG and non-CpG 5-(hydroxy)methyl-Cytosine in human microRNAs. RNA Biol., 2021, 18(12), 2226-2235. doi: 10.1080/15476286.2021.1927423 PMID: 33980133
- Pandolfini, L.; Barbieri, I.; Bannister, A.J.; Hendrick, A.; Andrews, B.; Webster, N.; Murat, P.; Mach, P.; Brandi, R.; Robson, S.C.; Migliori, V.; Alendar, A.; dOnofrio, M.; Balasubramanian, S.; Kouzarides, T. METTL1 promotes let-7 MicroRNA processing via m7G methylation. Mol. Cell, 2019, 74(6), 1278-1290.e9. doi: 10.1016/j.molcel.2019.03.040 PMID: 31031083
- Wong, J.M.; Eirin-Lopez, J.M. Evolution of methyltransferase-like (METTL) proteins in metazoa: A complex gene family involved in epitranscriptomic regulation and other epigenetic processes. Mol. Biol. Evol., 2021, 38(12), 5309-5327. doi: 10.1093/molbev/msab267 PMID: 34480573
- Liu, N.; Dai, Q.; Zheng, G.; He, C.; Parisien, M.; Pan, T. N6-methyladenosine-dependent RNA structural switches regulate RNAprotein interactions. Nature, 2015, 518(7540), 560-564. doi: 10.1038/nature14234 PMID: 25719671
- Han, J.; Wang, J.; Yang, X.; Yu, H.; Zhou, R.; Lu, H.C.; Yuan, W.B.; Lu, J.; Zhou, Z.; Lu, Q.; Wei, J.F.; Yang, H. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol. Cancer, 2019, 18(1), 110. doi: 10.1186/s12943-019-1036-9 PMID: 31228940
- Zhang, J.; Bai, R.; Li, M.; Ye, H.; Wu, C.; Wang, C.; Li, S.; Tan, L.; Mai, D.; Li, G.; Pan, L.; Zheng, Y.; Su, J.; Ye, Y.; Fu, Z.; Zheng, S.; Zuo, Z.; Liu, Z.; Zhao, Q.; Che, X.; Xie, D.; Jia, W.; Zeng, M.S.; Tan, W.; Chen, R.; Xu, R.H.; Zheng, J.; Lin, D. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat. Commun., 2019, 10(1), 1858. doi: 10.1038/s41467-019-09712-x PMID: 31015415
- Sun, L.; Wan, A.; Zhou, Z.; Chen, D.; Liang, H.; Liu, C.; Yan, S.; Niu, Y.; Lin, Z.; Zhan, S.; Wang, S.; Bu, X.; He, W.; Lu, X.; Xu, A.; Wan, G. RNA-binding protein RALY reprogrammes mitochondrial metabolism via mediating miRNA processing in colorectal cancer. Gut, 2021, 70(9), 1698-1712. doi: 10.1136/gutjnl-2020-320652 PMID: 33219048
- Liu, Y.; Yang, C.; Zhao, Y.; Chi, Q.; Wang, Z.; Sun, B. Overexpressed methyltransferase-like 1 (METTL1) increased chemosensitivity of colon cancer cells to cisplatin by regulating miR-149-3p/S100A4/p53 axis. Aging., 2019, 11(24), 12328-12344. doi: 10.18632/aging.102575 PMID: 31866582
- Lee, J.H.; Wang, R.; Xiong, F.; Krakowiak, J.; Liao, Z.; Nguyen, P.T.; Moroz-Omori, E.V.; Shao, J.; Zhu, X.; Bolt, M.J.; Wu, H.; Singh, P.K.; Bi, M.; Shi, C.J.; Jamal, N.; Li, G.; Mistry, R.; Jung, S.Y.; Tsai, K.L.; Ferreon, J.C.; Stossi, F.; Caflisch, A.; Liu, Z.; Mancini, M.A.; Li, W. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol. Cell, 2021, 81(16), 3368-3385.e9. doi: 10.1016/j.molcel.2021.07.024 PMID: 34375583
- Cheray, M.; Etcheverry, A.; Jacques, C.; Pacaud, R.; Bougras-Cartron, G.; Aubry, M.; Denoual, F.; Peterlongo, P.; Nadaradjane, A.; Briand, J.; Akcha, F.; Heymann, D.; Vallette, F.M.; Mosser, J.; Ory, B.; Cartron, P.F. Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Mol. Cancer, 2020, 19(1), 36. doi: 10.1186/s12943-020-01155-z PMID: 32098627
- Seok, H.; Lee, H.; Lee, S.; Ahn, S.H.; Lee, H.S.; Kim, G.W.D.; Peak, J.; Park, J.; Cho, Y.K.; Jeong, Y.; Gu, D.; Jeong, Y.; Eom, S.; Jang, E.S.; Chi, S.W. Position-specific oxidation of miR-1 encodes cardiac hypertrophy. Nature, 2020, 584(7820), 279-285. doi: 10.1038/s41586-020-2586-0 PMID: 32760005
- van den Homberg, D.A.L.; van der Kwast, R.V.C.T.; Quax, P.H.A.; Nossent, A.Y. N-6-Methyladenosine in vasoactive microRNAs during Hypoxia; A novel role for METTL4. Int. J. Mol. Sci., 2022, 23(3), 1057. doi: 10.3390/ijms23031057 PMID: 35162982
- Nance, K.D.; Meier, J.L. Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Cent. Sci., 2021, 7(5), 748-756. doi: 10.1021/acscentsci.1c00197 PMID: 34075344
- Parr, C.J.C.; Wada, S.; Kotake, K.; Kameda, S.; Matsuura, S.; Sakashita, S.; Park, S.; Sugiyama, H.; Kuang, Y.; Saito, H. N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells. Nucleic Acids Res., 2020, 48(6), e35. doi: 10.1093/nar/gkaa070 PMID: 32090264
- Luo, X.; Li, H.; Liang, J.; Zhao, Q.; Xie, Y.; Ren, J.; Zuo, Z. RMVar: An updated database of functional variants involved in RNA modifications. Nucleic Acids Res., 2021, 49(D1), D1405-D1412. doi: 10.1093/nar/gkaa811 PMID: 33021671
- Hansson, G.K.; Libby, P.; Tabas, I. Inflammation and plaque vulnerability. J. Intern. Med., 2015, 278(5), 483-493. doi: 10.1111/joim.12406 PMID: 26260307
- Mushenkova, N.V.; Summerhill, V.I.; Zhang, D.; Romanenko, E.B.; Grechko, A.V.; Orekhov, A.N. Current advances in the diagnostic imaging of atherosclerosis: Insights into the pathophysiology of vulnerable plaque. Int. J. Mol. Sci., 2020, 21(8), 2992. doi: 10.3390/ijms21082992 PMID: 32340284
- Shaukat, A.; Levin, T.R. Current and future colorectal cancer screening strategies. Nat. Rev. Gastroenterol. Hepatol., 2022, 19(8), 521-531. doi: 10.1038/s41575-022-00612-y PMID: 35505243
- Brown, W.V. Cholesterol lowering in atherosclerosis. Am. J. Cardiol., 2000, 86(4), 29H-34H. doi: 10.1016/S0002-9149(00)01097-3 PMID: 11021253
- Almeida, S.O.; Budoff, M. Effect of statins on atherosclerotic plaque. Trends Cardiovasc. Med., 2019, 29(8), 451-455. doi: 10.1016/j.tcm.2019.01.001 PMID: 30642643
- Hansson, G.K.; Robertson, A.K.L.; Söderberg-Nauclér, C. Inflammation and atherosclerosis. Annu. Rev. Pathol., 2006, 1(1), 297-329. doi: 10.1146/annurev.pathol.1.110304.100100 PMID: 18039117
- Zhang, S.; Liu, Y.; Cao, Y.; Zhang, S.; Sun, J.; Wang, Y.; Song, S.; Zhang, H. Targeting the microenvironment of vulnerable atherosclerotic plaques: An emerging diagnosis and therapy strategy for atherosclerosis. Adv. Mater., 2022, 34(29), 2110660. doi: 10.1002/adma.202110660 PMID: 35238081
- Meng, H.; Ruan, J.; Yan, Z.; Chen, Y.; Liu, J.; Li, X.; Meng, F. New progress in early diagnosis of atherosclerosis. Int. J. Mol. Sci., 2022, 23(16), 8939. doi: 10.3390/ijms23168939 PMID: 36012202
- Chen, J.; Zhang, X.; Millican, R.; Sherwood, J.; Martin, S.; Jo, H.; Yoon, Y.; Brott, B.C.; Jun, H.W. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv. Drug Deliv. Rev., 2021, 170, 142-199. doi: 10.1016/j.addr.2021.01.005 PMID: 33428994
- Libby, P. The changing landscape of atherosclerosis. Nature, 2021, 592(7855), 524-533. doi: 10.1038/s41586-021-03392-8 PMID: 33883728
- de Yébenes, V.G.; Briones, A.M.; Martos-Folgado, I.; Mur, S.M.; Oller, J.; Bilal, F.; González-Amor, M.; Méndez-Barbero, N.; Silla-Castro, J.C.; Were, F.; Jiménez-Borreguero, L.J.; Sánchez-Cabo, F.; Bueno, H.; Salaices, M.; Redondo, J.M.; Ramiro, A.R. Aging-associated miR-217 aggravates atherosclerosis and promotes cardiovascular dysfunction. Arterioscler. Thromb. Vasc. Biol., 2020, 40(10), 2408-2424. doi: 10.1161/ATVBAHA.120.314333 PMID: 32847388
- Escate, R.; Padró, T.; Suades, R.; Camino, S.; Muñiz, O.; Diaz-Diaz, J.L.; Sionis, A.; Mata, P.; Badimon, L. High miR-133a levels in the circulation anticipates presentation of clinical events in familial hypercholesterolaemia patients. Cardiovasc. Res., 2021, 117(1), 109-122. doi: 10.1093/cvr/cvaa039 PMID: 32061123
- Linna-Kuosmanen, S.; Tomas Bosch, V.; Moreau, P.R.; Bouvy-Liivrand, M.; Niskanen, H.; Kansanen, E.; Kivelä, A.; Hartikainen, J.; Hippeläinen, M.; Kokki, H.; Tavi, P.; Levonen, A.L.; Kaikkonen, M.U. NRF2 is a key regulator of endothelial microRNA expression under proatherogenic stimuli. Cardiovasc. Res., 2021, 117(5), 1339-1357. doi: 10.1093/cvr/cvaa219 PMID: 32683448
- Zhelankin, A.V.; Stonogina, D.A.; Vasiliev, S.V.; Babalyan, K.A.; Sharova, E.I.; Doludin, Y.V.; Shchekochikhin, D.Y.; Generozov, E.V.; Akselrod, A.S. Circulating extracellular miRNA analysis in patients with stable CAD and acute coronary syndromes. Biomolecules, 2021, 11(7), 962. doi: 10.3390/biom11070962 PMID: 34209965
- Ma, X.; Liao, X.; Liu, J.; Wang, Y.; Wang, X.; Chen, Y.; Yin, X.; Pan, Q. Circulating endothelial microvesicles and their carried miR-125a-5p: Potential biomarkers for ischaemic stroke. Stroke Vasc. Neurol., 2023, 8(2), 89-102. doi: 10.1136/svn-2021-001476 PMID: 36109098
- Niu, M.; Li, H.; Li, X.; Yan, X.; Ma, A.; Pan, X.; Zhu, X. Circulating exosomal miRNAs as novel biomarkers perform superior diagnostic efficiency compared with plasma miRNAs for large-artery atherosclerosis stroke. Front. Pharmacol., 2021, 12, 791644. doi: 10.3389/fphar.2021.791644 PMID: 34899352
- Guo, W.; Li, X.N.; Li, J.; Lu, J.; Wu, J.; Zhu, W.F.; Qin, P.; Xu, N.Z.; Zhang, Q. Increased plasma miR-146a levels are associated with subclinical atherosclerosis in newly diagnosed type 2 diabetes mellitus. J. Diabetes Complications, 2020, 34(12), 107725. doi: 10.1016/j.jdiacomp.2020.107725 PMID: 32981813
- Xu, Y.; Gao, J.; Gong, Y.; Chen, M.; Chen, J.; Zhao, W.; Tan, S. Hsa-miR-140-5p down-regulates LDL receptor and attenuates LDL-C uptake in human hepatocytes. Atherosclerosis, 2020, 297, 111-119. doi: 10.1016/j.atherosclerosis.2020.02.004 PMID: 32109664
- Dong, J.; He, M.; Li, J.; Pessentheiner, A.; Wang, C.; Zhang, J.; Sun, Y.; Wang, W.T.; Zhang, Y.; Liu, J.; Wang, S.C.; Huang, P.H.; Gordts, P.L.S.M.; Yuan, Z.Y.; Tsimikas, S.; Shyy, J.Y.J. microRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production. JCI Insight, 2020, 5(23), e143812. doi: 10.1172/jci.insight.143812 PMID: 33119548
- Huang, S.F.; Zhao, G.; Peng, X.F.; Ye, W.C. The pathogenic role of long non-coding RNA H19 in atherosclerosis via the miR-146a-5p/ANGPTL4 pathway. Front. Cardiovasc. Med., 2021, 8, 770163. doi: 10.3389/fcvm.2021.770163 PMID: 34820432
- Xu, Y.; Xu, Y.; Zhu, Y.; Sun, H.; Juguilon, C.; Li, F.; Fan, D.; Yin, L.; Zhang, Y. Macrophage miR-34a is a key regulator of cholesterol efflux and atherosclerosis. Mol. Ther., 2020, 28(1), 202-216. doi: 10.1016/j.ymthe.2019.09.008 PMID: 31604677
- Chang, Y.J.; Li, Y.S.; Wu, C.C.; Wang, K.C.; Huang, T.C.; Chen, Z.; Chien, S. Extracellular microRNA-92a mediates endothelial cell-macrophage communication. Arterioscler. Thromb. Vasc. Biol., 2019, 39(12), 2492-2504. doi: 10.1161/ATVBAHA.119.312707 PMID: 31597449
- Tang, X.; Yin, R.; Shi, H.; Wang, X.; Shen, D.; Wang, X.; Pan, C. LncRNA ZFAS1 confers inflammatory responses and reduces cholesterol efflux in atherosclerosis through regulating miR-654-3p-ADAM10/RAB22A axis. Int. J. Cardiol., 2020, 315, 72-80. doi: 10.1016/j.ijcard.2020.03.056 PMID: 32349937
- Lu, X.; Yang, B.; Yang, H.; Wang, L.; Li, H.; Chen, S.; Lu, X.; Gu, D. MicroRNA-320b modulates cholesterol efflux and atherosclerosis. J. Atheroscler. Thromb., 2022, 29(2), 200-220. doi: 10.5551/jat.57125 PMID: 33536383
- Wang, Y.; Smith, W.; Hao, D.; He, B.; Kong, L. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int. Immunopharmacol., 2019, 70, 459-466. doi: 10.1016/j.intimp.2019.02.050 PMID: 30861466
- Zhang, X.; Rotllan, N.; Canfrán-Duque, A.; Sun, J.; Toczek, J.; Moshnikova, A.; Malik, S.; Price, N.L.; Araldi, E.; Zhong, W.; Sadeghi, M.M.; Andreev, O.A.; Bahal, R.; Reshetnyak, Y.K.; Suárez, Y.; Fernández-Hernando, C. Targeted suppression of miRNA-33 using pHLIP improves atherosclerosis regression. Circ. Res., 2022, 131(1), 77-90. doi: 10.1161/CIRCRESAHA.121.320296 PMID: 35534923
- Jiang, T.; Xu, L.; Zhao, M.; Kong, F.; Lu, X.; Tang, C.; Yin, C. Dual targeted delivery of statins and nucleic acids by chitosan-based nanoparticles for enhanced antiatherosclerotic efficacy. Biomaterials, 2022, 280, 121324. doi: 10.1016/j.biomaterials.2021.121324 PMID: 34933253
- Rayner, K.J.; Sheedy, F.J.; Esau, C.C.; Hussain, F.N.; Temel, R.E.; Parathath, S.; van Gils, J.M.; Rayner, A.J.; Chang, A.N.; Suarez, Y.; Fernandez-Hernando, C.; Fisher, E.A.; Moore, K.J. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest., 2011, 121(7), 2921-2931. doi: 10.1172/JCI57275 PMID: 21646721
- Wang, C.; Liu, C.; Shi, J.; Li, H.; Jiang, S.; Zhao, P.; Zhang, M.; Du, G.; Fu, S.; Li, S.; Wang, Z.; Wang, X.; Gao, F.; Sun, P.; Tian, J. Nicotine exacerbates endothelial dysfunction and drives atherosclerosis via extracellular vesicle-miRNA. Cardiovasc. Res., 2023, 119(3), 729-742. doi: 10.1093/cvr/cvac140 PMID: 36006370
- Gomez, I.; Ward, B.; Souilhol, C.; Recarti, C.; Ariaans, M.; Johnston, J.; Burnett, A.; Mahmoud, M.; Luong, L.A.; West, L.; Long, M.; Parry, S.; Woods, R.; Hulston, C.; Benedikter, B.; Niespolo, C.; Bazaz, R.; Francis, S.; Kiss-Toth, E.; van Zandvoort, M.; Schober, A.; Hellewell, P.; Evans, P.C.; Ridger, V. Neutrophil microvesicles drive atherosclerosis by delivering miR-155 to atheroprone endothelium. Nat. Commun., 2020, 11(1), 214. doi: 10.1038/s41467-019-14043-y PMID: 31924781
- Wang, J.; Xu, X.; Li, P.; Zhang, B.; Zhang, J. HDAC3 protects against atherosclerosis through inhibition of inflammation via the microRNA-19b/PPARγ/NF-κB axis. Atherosclerosis, 2021, 323, 1-12. doi: 10.1016/j.atherosclerosis.2021.02.013 PMID: 33756273
- Jiang, F.; Chen, Q.; Wang, W.; Ling, Y.; Yan, Y.; Xia, P. Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1. J. Hepatol., 2020, 72(1), 156-166. doi: 10.1016/j.jhep.2019.09.014 PMID: 31568800
- Yin, Q.; He, M.; Huang, L.; Zhang, X.; Zhan, J.; Hu, J. lncRNA ZFAS1 promotes ox-LDL induced EndMT through miR-150-5p/Notch3 signaling axis. Microvasc. Res., 2021, 134, 104118. doi: 10.1016/j.mvr.2020.104118 PMID: 33278458
- Vanchin, B.; Offringa, E.; Friedrich, J.; Brinker, M.G.L.; Kiers, B.; Pereira, A.C.; Harmsen, M.C.; Moonen, J.R.A.J.; Krenning, G. MicroRNA-374b induces endothelial-to-mesenchymal transition and early lesion formation through the inhibition of MAPK7 signaling. J. Pathol., 2019, 247(4), 456-470. doi: 10.1002/path.5204 PMID: 30565701
- Souilhol, C.; Harmsen, M.C.; Evans, P.C.; Krenning, G. Endothelialmesenchymal transition in atherosclerosis. Cardiovasc. Res., 2018, 114(4), 565-577. doi: 10.1093/cvr/cvx253 PMID: 29309526
- Zhou, Z.; Yeh, C.F.; Mellas, M.; Oh, M.J.; Zhu, J.; Li, J.; Huang, R.T.; Harrison, D.L.; Shentu, T.P.; Wu, D.; Lueckheide, M.; Carver, L.; Chung, E.J.; Leon, L.; Yang, K.C.; Tirrell, M.V.; Fang, Y. Targeted polyelectrolyte complex micelles treat vascular complications in vivo. Proc. Natl. Acad. Sci., 2021, 118(50), e2114842118. doi: 10.1073/pnas.2114842118 PMID: 34880134
- Dosta, P.; Tamargo, I.; Ramos, V.; Kumar, S.; Kang, D.W.; Borrós, S.; Jo, H. Delivery of anti-microRNA-712 to inflamed endothelial cells using poly(beta-amino ester) nanoparticles conjugated with VCAM-1 targeting peptide. Adv. Healthc. Mater., 2021, 10(15), 2001894. doi: 10.1002/adhm.202001894 PMID: 33448151
- Landskroner-Eiger, S.; Moneke, I.; Sessa, W.C. miRNAs as modulators of angiogenesis. Cold Spring Harb. Perspect. Med., 2013, 3(2), a006643. doi: 10.1101/cshperspect.a006643 PMID: 23169571
- Farina, F.M.; Hall, I.F.; Serio, S.; Zani, S.; Climent, M.; Salvarani, N.; Carullo, P.; Civilini, E.; Condorelli, G.; Elia, L.; Quintavalle, M. MiR-128-3p is a novel regulator of vascular smooth muscle cell phenotypic switch and vascular diseases. Circ. Res., 2020, 126(12), e120-e135. doi: 10.1161/CIRCRESAHA.120.316489 PMID: 32216529
- Wang, J.; Hu, X.; Hu, X.; Gao, F.; Li, M.; Cui, Y.; Wei, X.; Qin, Y.; Zhang, C.; Zhao, Y.; Gao, Y. MicroRNA-520c-3p targeting of RelA/p65 suppresses atherosclerotic plaque formation. Int. J. Biochem. Cell Biol., 2021, 131, 105873. doi: 10.1016/j.biocel.2020.105873 PMID: 33166679
- Chin, D.D.; Poon, C.; Wang, J.; Joo, J.; Ong, V.; Jiang, Z.; Cheng, K.; Plotkin, A.; Magee, G.A.; Chung, E.J. miR-145 micelles mitigate atherosclerosis by modulating vascular smooth muscle cell phenotype. Biomaterials, 2021, 273, 120810. doi: 10.1016/j.biomaterials.2021.120810 PMID: 33892346
- Zhang, Y.; Xie, B.; Sun, L.; Chen, W.; Jiang, S.L.; Liu, W.; Bian, F.; Tian, H.; Li, R.K. Phenotypic switching of vascular smooth muscle cells in the normal region of aorta from atherosclerosis patients is regulated by miR-145. J. Cell. Mol. Med., 2016, 20(6), 1049-1061. doi: 10.1111/jcmm.12825 PMID: 26992033
- Peng, M.; Sun, R.; Hong, Y.; Wang, J.; Xie, Y.; Zhang, X.; Li, J.; Guo, H.; Xu, P.; Li, Y.; Wang, X.; Wan, T.; Zhao, Y.; Huang, F.; Wang, Y.; Ye, R.; Liu, Q.; Liu, G.; Liu, X.; Xu, G. Extracellular vesicles carrying proinflammatory factors may spread atherosclerosis to remote locations. Cell. Mol. Life Sci., 2022, 79(8), 430. doi: 10.1007/s00018-022-04464-2 PMID: 35851433
- Vallejo, J.; Cochain, C.; Zernecke, A.; Ley, K. Heterogeneity of immune cells in human atherosclerosis revealed by scRNA-Seq. Cardiovasc. Res., 2021, 117(13), cvab260. doi: 10.1093/cvr/cvab260 PMID: 34343272
- Afonso, M.S.; Sharma, M.; Schlegel, M.; van Solingen, C.; Koelwyn, G.J.; Shanley, L.C.; Beckett, L.; Peled, D.; Rahman, K.; Giannarelli, C.; Li, H.; Brown, E.J.; Khodadadi-Jamayran, A.; Fisher, E.A.; Moore, K.J. MiR-33 silencing reprograms the immune cell landscape in atherosclerotic plaques. Circ. Res., 2021, 128(8), 1122-1138. doi: 10.1161/CIRCRESAHA.120.317914 PMID: 33593073
- Saigusa, R.; Winkels, H.; Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol., 2020, 17(7), 387-401. doi: 10.1038/s41569-020-0352-5 PMID: 32203286
- Bu, T.; Li, Z.; Hou, Y.; Sun, W.; Zhang, R.; Zhao, L.; Wei, M.; Yang, G.; Yuan, L. Exosome-mediated delivery of inflammation-responsive Il-10 mRNA for controlled atherosclerosis treatment. Theranostics, 2021, 11(20), 9988-10000. doi: 10.7150/thno.64229 PMID: 34815799
- Karshovska, E.; Wei, Y.; Subramanian, P.; Mohibullah, R.; Geißler, C.; Baatsch, I.; Popal, A.; Corbalán Campos, J.; Exner, N.; Schober, A. HIF-1α (Hypoxia-Inducible Factor-1α) promotes macrophage necroptosis by regulating miR-210 and miR-383. Arterioscler. Thromb. Vasc. Biol., 2020, 40(3), 583-596. doi: 10.1161/ATVBAHA.119.313290 PMID: 31996026
- Li, Y.; Yang, C.; Zhang, L.; Yang, P. MicroRNA-210 induces endothelial cell apoptosis by directly targeting PDK1 in the setting of atherosclerosis. Cell. Mol. Biol. Lett., 2017, 22(1), 3. doi: 10.1186/s11658-017-0033-5 PMID: 28536634
- Abplanalp, W.T.; Fischer, A.; John, D.; Zeiher, A.M.; Gosgnach, W.; Darville, H.; Montgomery, R.; Pestano, L.; Allée, G.; Paty, I.; Fougerousse, F.; Dimmeler, S. Efficiency and target derepression of anti-miR-92a: results of a first in human study. Nucleic Acid Ther., 2020, 30(6), 335-345. doi: 10.1089/nat.2020.0871 PMID: 32707001
- Täubel, J.; Hauke, W.; Rump, S.; Viereck, J.; Batkai, S.; Poetzsch, J.; Rode, L.; Weigt, H.; Genschel, C.; Lorch, U.; Theek, C.; Levin, A.A.; Bauersachs, J.; Solomon, S.D.; Thum, T. Novel antisense therapy targeting microRNA-132 in patients with heart failure: Results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J., 2021, 42(2), 178-188. doi: 10.1093/eurheartj/ehaa898 PMID: 33245749
- Son, D.J.; Kumar, S.; Takabe, W.; Woo Kim, C.; Ni, C.W.; Alberts-Grill, N.; Jang, I.H.; Kim, S.; Kim, W.; Won Kang, S.; Baker, A.H.; Woong Seo, J.; Ferrara, K.W.; Jo, H. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat. Commun., 2013, 4(1), 3000. doi: 10.1038/ncomms4000 PMID: 24346612
- Wang, Z.; Zhang, J.; Zhang, S.; Yan, S.; Wang, Z.; Wang, C.; Zhang, X. MiR-30e and miR-92a are related to atherosclerosis by targeting ABCA1. Mol. Med. Rep., 2019, 19(4), 3298-3304. doi: 10.3892/mmr.2019.9983 PMID: 30816508
- Yang, L.; Li, T. LncRNA TUG1 regulates ApoM to promote atherosclerosis progression through miR-92a/FXR1 axis. J. Cell. Mol. Med., 2020, 24(15), 8836-8848. doi: 10.1111/jcmm.15521 PMID: 32597038
- Guo, X.; Li, D.; Chen, M.; Chen, L.; Zhang, B.; Wu, T.; Guo, R. miRNA-145 inhibits VSMC proliferation by targeting CD40. Sci. Rep., 2016, 6(1), 35302. doi: 10.1038/srep35302 PMID: 27731400
- Nakaoka, H.; Hirono, K.; Yamamoto, S.; Takasaki, I.; Takahashi, K.; Kinoshita, K.; Takasaki, A.; Nishida, N.; Okabe, M.; Ce, W.; Miyao, N.; Saito, K.; Ibuki, K.; Ozawa, S.; Adachi, Y.; Ichida, F. MicroRNA-145-5p and microRNA-320a encapsulated in endothelial microparticles contribute to the progression of vasculitis in acute Kawasaki disease. Sci. Rep., 2018, 8(1), 1016. doi: 10.1038/s41598-018-19310-4 PMID: 29343815
- Lv, Y.; Fu, L.; Zhang, Z.; Gu, W.; Luo, X.; Zhong, Y.; Xu, S.; Wang, Y.; Yan, L.; Li, M.; Du, L. Increased expression of microRNA-206 inhibits potassium voltage-gated channel subfamily a member 5 in pulmonary arterial smooth muscle cells and is related to exaggerated pulmonary artery hypertension following intrauterine growth retardation in rats. J. Am. Heart Assoc., 2019, 8(2), e010456. doi: 10.1161/JAHA.118.010456 PMID: 30636484
- Jalali, S.; Ramanathan, G.K.; Parthasarathy, P.T.; Aljubran, S.; Galam, L.; Yunus, A.; Garcia, S.; Cox, R.R., Jr; Lockey, R.F.; Kolliputi, N. Mir-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation. PLoS One, 2012, 7(10), e46808. doi: 10.1371/journal.pone.0046808 PMID: 23071643
- He, M.; Chen, Z.; Martin, M.; Zhang, J.; Sangwung, P.; Woo, B.; Tremoulet, A.H.; Shimizu, C.; Jain, M.K.; Burns, J.C.; Shyy, J.Y.J. miR-483 targeting of CTGF suppresses endothelial-to-mesenchymal transition. Circ. Res., 2017, 120(2), 354-365. doi: 10.1161/CIRCRESAHA.116.310233 PMID: 27923814
- Lei, Z.; Wahlquist, C.; el Azzouzi, H.; Deddens, J.C.; Kuster, D.; van Mil, A.; Rojas-Munoz, A.; Huibers, M.M.; Mercola, M.; de Weger, R.; Van der Velden, J.; Xiao, J.; Doevendans, P.A.; Sluijter, J.P.G. miR-132/212 impairs cardiomyocytes contractility in the failing heart by suppressing SERCA2a. Front. Cardiovasc. Med., 2021, 8, 592362. doi: 10.3389/fcvm.2021.592362 PMID: 33816571
- Rencelj, A.; Gvozdenovic, N.; Cemazar, M. MitomiRs: their roles in mitochondria and importance in cancer cell metabolism. Radiol. Oncol., 2021, 55(4), 379-392. doi: 10.2478/raon-2021-0042 PMID: 34821131
- Zheng, H.; Liu, J.; Yu, J.; McAlinden, A. Expression profiling of mitochondria-associated microRNAs during osteogenic differentiation of human MSCs. Bone, 2021, 151, 116058. doi: 10.1016/j.bone.2021.116058 PMID: 34144232
- Liang, H.; Liu, J.; Su, S.; Zhao, Q. Mitochondrial noncoding RNAs: new wine in an old bottle. RNA Biol., 2021, 18(12), 2168-2182. doi: 10.1080/15476286.2021.1935572 PMID: 34110970
Supplementary files
