The Tao of Copper Metabolism: From Physiology to Pathology
- Authors: Gao S.1, Zhou M.1, Tang Z.2
-
Affiliations:
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University
- Department of Neurology, The Second Xiangya Hospital, Central South University
- Issue: Vol 31, No 35 (2024)
- Pages: 5805-5817
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645077
- DOI: https://doi.org/10.2174/0929867331666230915162405
- ID: 645077
Cite item
Full Text
Abstract
:As a transitional metal, copper plays a crucial role in maintaining the normal physiological activities of mammals. The intracellular copper concentration is meticulously regulated to maintain extremely low levels through homeostatic regulation. Excessive accumulation of free copper in cells can have deleterious effects, as observed in conditions such as Wilsons disease. Moreover, data accumulated over the past few decades have revealed a crucial role of copper imbalance in tumorigenesis, progression and metastasis. Recently, cuproptosis, also known as copper-induced cell death, has been proposed as a novel form of cell death. This discovery offers new prospects for treating copperrelated diseases and provides a promising avenue for developing copper-responsive therapies, particularly in cancer treatment. We present a comprehensive overview of the Yin Yang equilibrium in copper metabolism, particularly emphasising its pathophysiological alterations and their relevance to copper-related diseases and malignancies.
Keywords
About the authors
Shan Gao
Department of Gastroenterology, The Second Xiangya Hospital, Central South University
Email: info@benthamscience.net
Mei Zhou
Department of Gastroenterology, The Second Xiangya Hospital, Central South University
Email: info@benthamscience.net
Zhenchu Tang
Department of Neurology, The Second Xiangya Hospital, Central South University
Author for correspondence.
Email: info@benthamscience.net
References
- Festa, R.A.; Thiele, D.J. Copper: An essential metal in biology. Curr. Biol., 2011, 21(21), R877-R883. doi: 10.1016/j.cub.2011.09.040 PMID: 22075424
- Myint, Z.W.; Oo, T.H.; Thein, K.Z.; Tun, A.M.; Saeed, H. Copper deficiency anemia: Review article. Ann. Hematol., 2018, 97(9), 1527-1534. doi: 10.1007/s00277-018-3407-5 PMID: 29959467
- Tsang, T.; Davis, C.I.; Brady, D.C. Copper biology. Curr. Biol., 2021, 31(9), R421-R427. doi: 10.1016/j.cub.2021.03.054 PMID: 33974864
- Lin, C.; Zhang, Z.; Wang, T.; Chen, C.; James Kang, Y. Copper uptake by DMT1: A compensatory mechanism for CTR1 deficiency in human umbilical vein endothelial cells. Metallomics, 2015, 7(8), 1285-1289. doi: 10.1039/c5mt00097a PMID: 26067577
- Song, I.S.; Chen, H.H.W.; Aiba, I.; Hossain, A.; Liang, Z.D.; Klomp, L.W.J.; Kuo, M.T. Transcription factor Sp1 plays an important role in the regulation of copper homeostasis in mammalian cells. Mol. Pharmacol., 2008, 74(3), 705-713. doi: 10.1124/mol.108.046771 PMID: 18483225
- Liang, Z.D.; Tsai, W.B.; Lee, M.Y.; Savaraj, N.; Kuo, M.T. Specificity protein 1 (sp1) oscillation is involved in copper homeostasis maintenance by regulating human high-affinity copper transporter 1 expression. Mol. Pharmacol., 2012, 81(3), 455-464. doi: 10.1124/mol.111.076422 PMID: 22172574
- Petris, M.J.; Smith, K.; Lee, J.; Thiele, D.J. Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J. Biol. Chem., 2003, 278(11), 9639-9646. doi: 10.1074/jbc.M209455200 PMID: 12501239
- Ohgami, R.S.; Campagna, D.R.; McDonald, A.; Fleming, M.D. The Steap proteins are metalloreductases. Blood, 2006, 108(4), 1388-1394. doi: 10.1182/blood-2006-02-003681 PMID: 16609065
- Batzios, S.; Tal, G.; DiStasio, A.T.; Peng, Y.; Charalambous, C.; Nicolaides, P.; Kamsteeg, E.J.; Korman, S.H.; Mandel, H.; Steinbach, P.J.; Yi, L.; Fair, S.R.; Hester, M.E.; Drousiotou, A.; Kaler, S.G. Newly identified disorder of copper metabolism caused by variants in CTR1, a high-affinity copper transporter. Hum. Mol. Genet., 2022, 31(24), 4121-4130. doi: 10.1093/hmg/ddac156 PMID: 35913762
- Wyman, S.; Simpson, R.J.; McKie, A.T.; Sharp, P.A. Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett., 2008, 582(13), 1901-1906. doi: 10.1016/j.febslet.2008.05.010 PMID: 18498772
- Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Fan, X.; Li, C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch., 2020, 472(10), 1415-1429. doi: 10.1007/s00424-020-02412-2 PMID: 32506322
- Rozensztrauch, A.; Dzien, I.; Śmigiel, R. Health-related quality of life and family functioning of primary caregivers of children with menkes disease. J. Clin. Med., 2023, 12(5), 1769. doi: 10.3390/jcm12051769 PMID: 36902556
- De Feyter, S.; Beyens, A.; Callewaert, B. ATP7A‐related copper transport disorders: A systematic review and definition of the clinical subtypes. J. Inherit. Metab. Dis., 2023, 46(2), 163-173. doi: 10.1002/jimd.12590 PMID: 36692329
- Yang, G.M.; Xu, L.; Wang, R.M.; Tao, X.; Zheng, Z.W.; Chang, S.; Ma, D.; Zhao, C.; Dong, Y.; Wu, S.; Guo, J.; Wu, Z.Y. Structures of the human Wilson disease copper transporter ATP7B. Cell Rep., 2023, 42(5), 112417. doi: 10.1016/j.celrep.2023.112417 PMID: 37074913
- Ge, E.J.; Bush, A.I.; Casini, A.; Cobine, P.A.; Cross, J.R.; DeNicola, G.M.; Dou, Q.P.; Franz, K.J.; Gohil, V.M.; Gupta, S.; Kaler, S.G.; Lutsenko, S.; Mittal, V.; Petris, M.J.; Polishchuk, R.; Ralle, M.; Schilsky, M.L.; Tonks, N.K.; Vahdat, L.T.; Van Aelst, L.; Xi, D.; Yuan, P.; Brady, D.C.; Chang, C.J. Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat. Rev. Cancer, 2022, 22(2), 102-113. doi: 10.1038/s41568-021-00417-2 PMID: 34764459
- Lutsenko, S. Human copper homeostasis: A network of interconnected pathways. Curr. Opin. Chem. Biol., 2010, 14(2), 211-217. doi: 10.1016/j.cbpa.2010.01.003 PMID: 20117961
- Luo, Q.; Song, Y.; Kang, J.; Wu, Y.; Wu, F.; Li, Y.; Dong, Q.; Wang, J.; Song, C.; Guo, H. mtROS-mediated Akt/AMPK/mTOR pathway was involved in Copper-induced autophagy and it attenuates copper-induced apoptosis in RAW264.7 mouse monocytes. Redox Biol., 2021, 41, 101912. doi: 10.1016/j.redox.2021.101912 PMID: 33706171
- Yang, F.; Pei, R.; Zhang, Z.; Liao, J.; Yu, W.; Qiao, N.; Han, Q.; Li, Y.; Hu, L.; Guo, J.; Pan, J.; Tang, Z. Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol. In Vitro, 2019, 54, 310-316. doi: 10.1016/j.tiv.2018.10.017 PMID: 30389602
- Nagai, M.; Vo, N.H.; Shin Ogawa, L.; Chimmanamada, D.; Inoue, T.; Chu, J.; Beaudette-Zlatanova, B.C.; Lu, R.; Blackman, R.K.; Barsoum, J.; Koya, K.; Wada, Y. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic. Biol. Med., 2012, 52(10), 2142-2150. doi: 10.1016/j.freeradbiomed.2012.03.017 PMID: 22542443
- Shimada, K.; Reznik, E.; Stokes, M.E.; Krishnamoorthy, L.; Bos, P.H.; Song, Y.; Quartararo, C.E.; Pagano, N.C.; Carpizo, D.R.; deCarvalho, A.C.; Lo, D.C.; Stockwell, B.R. Copper-binding small molecule induces oxidative stress and cell-cycle arrest in glioblastoma-patient-derived cells. Cell Chem. Biol., 2018, 25(5), 585-594.e7. doi: 10.1016/j.chembiol.2018.02.010 PMID: 29576531
- Yip, N.C.; Fombon, I.S.; Liu, P.; Brown, S.; Kannappan, V.; Armesilla, A.L.; Xu, B.; Cassidy, J.; Darling, J.L.; Wang, W. Disulfiram modulated ROSMAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br. J. Cancer, 2011, 104(10), 1564-1574. doi: 10.1038/bjc.2011.126 PMID: 21487404
- Chen, D.; Cui, Q.C.; Yang, H.; Dou, Q.P. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res., 2006, 66(21), 10425-10433. doi: 10.1158/0008-5472.CAN-06-2126 PMID: 17079463
- Liu, N.; Huang, H.; Dou, Q.P.; Liu, J. Inhibition of 19S proteasome-associated deubiquitinases by metal-containing compounds. Oncoscience, 2015, 2(5), 457-466. doi: 10.18632/oncoscience.167 PMID: 26097878
- Skrott, Z.; Mistrik, M.; Andersen, K.K.; Friis, S.; Majera, D.; Gursky, J.; Ozdian, T.; Bartkova, J.; Turi, Z.; Moudry, P.; Kraus, M.; Michalova, M.; Vaclavkova, J.; Dzubak, P.; Vrobel, I.; Pouckova, P.; Sedlacek, J.; Miklovicova, A.; Kutt, A.; Li, J.; Mattova, J.; Driessen, C.; Dou, Q.P.; Olsen, J.; Hajduch, M.; Cvek, B.; Deshaies, R.J.; Bartek, J. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature, 2017, 552(7684), 194-199. doi: 10.1038/nature25016 PMID: 29211715
- Tsvetkov, P.; Detappe, A.; Cai, K.; Keys, H.R.; Brune, Z.; Ying, W.; Thiru, P.; Reidy, M.; Kugener, G.; Rossen, J.; Kocak, M.; Kory, N.; Tsherniak, A.; Santagata, S.; Whitesell, L.; Ghobrial, I.M.; Markley, J.L.; Lindquist, S.; Golub, T.R. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat. Chem. Biol., 2019, 15(7), 681-689. doi: 10.1038/s41589-019-0291-9 PMID: 31133756
- Tardito, S.; Bassanetti, I.; Bignardi, C.; Elviri, L.; Tegoni, M.; Mucchino, C.; Bussolati, O.; Franchi-Gazzola, R.; Marchiò, L. Copper binding agents acting as copper ionophores lead to caspase inhibition and paraptotic cell death in human cancer cells. J. Am. Chem. Soc., 2011, 133(16), 6235-6242. doi: 10.1021/ja109413c PMID: 21452832
- Tardito, S.; Barilli, A.; Bassanetti, I.; Tegoni, M.; Bussolati, O.; Franchi-Gazzola, R.; Mucchino, C.; Marchiò, L. Copper-dependent cytotoxicity of 8-hydroxyquinoline derivatives correlates with their hydrophobicity and does not require caspase activation. J. Med. Chem., 2012, 55(23), 10448-10459. doi: 10.1021/jm301053a PMID: 23170953
- Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; Eaton, J.K.; Frenkel, E.; Kocak, M.; Corsello, S.M.; Lutsenko, S.; Kanarek, N.; Santagata, S.; Golub, T.R. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 2022, 375(6586), 1254-1261. doi: 10.1126/science.abf0529 PMID: 35298263
- Hunsaker, E.W.; Franz, K.J. Emerging opportunities to manipulate metal trafficking for therapeutic benefit. Inorg. Chem., 2019, 58(20), 13528-13545. doi: 10.1021/acs.inorgchem.9b01029 PMID: 31247859
- Hasinoff, B.B.; Yadav, A.A.; Patel, D.; Wu, X. The cytotoxicity of the anticancer drug elesclomol is due to oxidative stress indirectly mediated through its complex with Cu(II). J. Inorg. Biochem., 2014, 137, 22-30. doi: 10.1016/j.jinorgbio.2014.04.004 PMID: 24798374
- Kirshner, J.R.; He, S.; Balasubramanyam, V.; Kepros, J.; Yang, C.Y.; Zhang, M.; Du, Z.; Barsoum, J.; Bertin, J. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol. Cancer Ther., 2008, 7(8), 2319-2327. doi: 10.1158/1535-7163.MCT-08-0298 PMID: 18723479
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516. doi: 10.1080/01926230701320337 PMID: 17562483
- Dzieżyc-Jaworska, K.; Litwin, T.; Członkowska, A. Clinical manifestations of Wilson disease in organs other than the liver and brain. Ann. Transl. Med., 2019, 7(S2)(Suppl. 2), S62. doi: 10.21037/atm.2019.03.30 PMID: 31179299
- Poujois, A.; Woimant, F. Challenges in the diagnosis of wilson disease. Ann. Transl. Med., 2019, 7(S2)(Suppl. 2), S67. doi: 10.21037/atm.2019.02.10 PMID: 31179304
- Sandahl, T.D.; Laursen, T.L.; Munk, D.E.; Vilstrup, H.; Weiss, K.H.; Ott, P. The prevalence of Wilsons disease: An update. Hepatology, 2020, 71(2), 722-732. doi: 10.1002/hep.30911 PMID: 31449670
- European Association for Study of Liver. EASL clinical practice guidelines: Wilsons disease. J. Hepatol., 2012, 56(3), 671-685. doi: 10.1016/j.jhep.2011.11.007 PMID: 22340672
- Lo, C.; Bandmann, O. Epidemiology and introduction to the clinical presentation of Wilson disease. Handb. Clin. Neurol., 2017, 142, 7-17. doi: 10.1016/B978-0-444-63625-6.00002-1 PMID: 28433111
- Coffey, A.J.; Durkie, M.; Hague, S.; McLay, K.; Emmerson, J.; Lo, C.; Klaffke, S.; Joyce, C.J.; Dhawan, A.; Hadzic, N.; Mieli-Vergani, G.; Kirk, R.; Elizabeth Allen, K.; Nicholl, D.; Wong, S.; Griffiths, W.; Smithson, S.; Giffin, N.; Taha, A.; Connolly, S.; Gillett, G.T.; Tanner, S.; Bonham, J.; Sharrack, B.; Palotie, A.; Rattray, M.; Dalton, A.; Bandmann, O. A genetic study of Wilsons disease in the United Kingdom. Brain, 2013, 136(5), 1476-1487. doi: 10.1093/brain/awt035 PMID: 23518715
- Dong, Y.; Wang, R.M.; Yang, G.M.; Yu, H.; Xu, W.Q.; Xie, J.J.; Zhang, Y.; Chen, Y.C.; Ni, W.; Wu, Z.Y. Role for biochemical assays and kayser-fleischer rings in diagnosis of Wilsons disease. Clin. Gastroenterol. Hepatol., 2021, 19(3), 590-596. doi: 10.1016/j.cgh.2020.05.044 PMID: 32485301
- Wu, Z.Y.; Wang, N.; Lin, M.T.; Fang, L.; Murong, S.X.; Yu, L. Mutation analysis and the correlation between genotype and phenotype of Arg778Leu mutation in chinese patients with Wilson disease. Arch. Neurol., 2001, 58(6), 971-976. doi: 10.1001/archneur.58.6.971 PMID: 11405812
- Cheng, N.; Wang, H.; Wu, W.; Yang, R.; Liu, L.; Han, Y.; Guo, L.; Hu, J.; Xu, L.; Zhao, J.; Han, Y.; Liu, Q.; Li, K.; Wang, X.; Chen, W. Spectrum of ATP7B mutations and genotype-phenotype correlation in large-scale Chinese patients with Wilson disease. Clin. Genet., 2017, 92(1), 69-79. doi: 10.1111/cge.12951 PMID: 27982432
- Dong, Y.; Ni, W.; Chen, W.J.; Wan, B.; Zhao, G.X.; Shi, Z.Q.; Zhang, Y.; Wang, N.; Yu, L.; Xu, J.F.; Wu, Z.Y. Spectrum and classification of ATP7B variants in a large cohort of Chinese patients with Wilsons disease guides genetic diagnosis. Theranostics, 2016, 6(5), 638-649. doi: 10.7150/thno.14596 PMID: 27022412
- Li, X.; Lu, Z.; Lin, Y.; Lu, X.; Xu, Y.; Cheng, J.; Shao, Y.; Su, X.; Liu, Z.; Sheng, H.; Cai, Y.; Li, T.; Zhou, Z.; Tan, J.; Liu, H.; Huang, Y.; Liu, L.; Zeng, C. Clinical features and mutational analysis in 114 young children with Wilson disease from South China. Am. J. Med. Genet. A., 2019, 179(8), ajmg.a.61254. doi: 10.1002/ajmg.a.61254 PMID: 31172689
- Merle, U.; Weiss, K.H.; Eisenbach, C.; Tuma, S.; Ferenci, P.; Stremmel, W. Truncating mutations in the Wilson disease gene ATP7B are associated with very low serum ceruloplasmin oxidase activity and an early onset of Wilson disease. BMC Gastroenterol., 2010, 10(1), 8. doi: 10.1186/1471-230X-10-8 PMID: 20082719
- Okada, T.; Shiono, Y.; Kaneko, Y.; Miwa, K.; Hasatani, K.; Hayashi, Y.; Mibayashi, H.; Aoyagi, H.; Tsuji, S.; Yoshimitsu, M.; Hayashi, H.; Yamagishi, M. High prevalence of fulminant hepatic failure among patients with mutant alleles for truncation of ATP7B in Wilsons disease. Scand. J. Gastroenterol., 2010, 45(10), 1232-1237. doi: 10.3109/00365521.2010.492527 PMID: 20491539
- Kluska, A.; Kulecka, M.; Litwin, T.; Dziezyc, K.; Balabas, A.; Piatkowska, M.; Paziewska, A.; Dabrowska, M.; Mikula, M.; Kaminska, D.; Wiernicka, A.; Socha, P.; Czlonkowska, A.; Ostrowski, J. Whole-exome sequencing identifies novel pathogenic variants across the ATP7B gene and some modifiers of Wilsons disease phenotype. Liver Int., 2019, 39(1), 177-186. doi: 10.1111/liv.13967 PMID: 30230192
- Litwin, T.; Gromadzka, G.; Członkowska, A. Apolipoprotein E gene (APOE) genotype in Wilsons disease: Impact on clinical presentation. Parkinsonism Relat. Disord., 2012, 18(4), 367-369. doi: 10.1016/j.parkreldis.2011.12.005 PMID: 22221592
- Członkowska, A.; Litwin, T.; Dusek, P.; Ferenci, P.; Lutsenko, S.; Medici, V.; Rybakowski, J.K.; Weiss, K.H.; Schilsky, M.L. Wilson disease. Nat. Rev. Dis. Primers, 2018, 4(1), 21. doi: 10.1038/s41572-018-0018-3 PMID: 30190489
- Ferenci, P.; Stremmel, W.; Członkowska, A.; Szalay, F.; Viveiros, A.; Stättermayer, A.F.; Bruha, R.; Houwen, R.; Pop, T.L.; Stauber, R.; Gschwantler, M.; Pfeiffenberger, J.; Yurdaydin, C.; Aigner, E.; Steindl-Munda, P.; Dienes, H.P.; Zoller, H.; Weiss, K.H. Age and sex but not ATP7B genotype effectively influence the clinical phenotype of wilson disease. Hepatology, 2019, 69(4), 1464-1476. doi: 10.1002/hep.30280 PMID: 30232804
- Członkowska, A.; Gromadzka, G.; Chabik, G. Monozygotic female twins discordant for phenotype of Wilsons disease. Mov. Disord., 2009, 24(7), 1066-1069. doi: 10.1002/mds.22474 PMID: 19306278
- Kegley, K.M.; Sellers, M.A.; Ferber, M.J.; Johnson, M.W.; Joelson, D.W.; Shrestha, R. Fulminant Wilsons disease requiring liver transplantation in one monozygotic twin despite identical genetic mutation. Am. J. Transplant., 2010, 10(5), 1325-1329. doi: 10.1111/j.1600-6143.2010.03071.x PMID: 20346064
- Takeshita, Y.; Shimizu, N.; Yamaguchi, Y.; Nakazono, H.; Saitou, M.; Fujikawa, Y.; Aoki, T. Two families with Wilson disease in which siblings showed different phenotypes. J. Hum. Genet., 2002, 47(10), 0543-0547. doi: 10.1007/s100380200082 PMID: 12376745
- Medici, V.; Shibata, N.M.; Kharbanda, K.K.; LaSalle, J.M.; Woods, R.; Liu, S.; Engelberg, J.A.; Devaraj, S.; Török, N.J.; Jiang, J.X.; Havel, P.J.; Lönnerdal, B.; Kim, K.; Halsted, C.H. Wilsons disease: Changes in methionine metabolism and inflammation affect global DNA methylation in early liver disease. Hepatology, 2013, 57(2), 555-565. doi: 10.1002/hep.26047 PMID: 22945834
- Guo, X.; Schrag, M.; Ghoshal, S.; Schilsky, M.; Beslow, L.; Schindler, E. Neuropsychiatric presentation of wilson disease in an adolescent male. Neuropediatrics, 2016, 47(5), 346-347. doi: 10.1055/s-0036-1586225 PMID: 27490186
- Ye, X.N.; Mao, L.P.; Lou, Y.J.; Tong, H.Y. Hemolytic anemia as first presentation of Wilsons disease with uncommon ATP7B mutation. Int. J. Clin. Exp. Med., 2015, 8(3), 4708-4711. PMID: 26064408
- Cleymaet, S.; Nagayoshi, K.; Gettings, E.; Faden, J. A review and update on the diagnosis and treatment of neuropsychiatric Wilson disease. Expert Rev. Neurother., 2019, 19(11), 1117-1126. doi: 10.1080/14737175.2019.1645009 PMID: 31314605
- Antos, A.; Litwin, T.; Skowrońska, M.; Kurkowska-Jastrzębska, I.; Członkowska, A. Pitfalls in diagnosing Wilsons Disease by genetic testing alone: The case of a 47-year-old woman with two pathogenic variants of the ATP7B gene. Neurol. Neurochir. Pol., 2020, 54(5), 478-480. doi: 10.5603/PJNNS.a2020.0063 PMID: 32808274
- Tümer, Z.; Møller, L.B. Menkes disease. Eur. J. Hum. Genet., 2010, 18(5), 511-518. doi: 10.1038/ejhg.2009.187 PMID: 19888294
- Vairo, F.P.; Chwal, B.C.; Perini, S.; Ferreira, M.A.P.; de Freitas Lopes, A.C.; Saute, J.A.M. A systematic review and evidence-based guideline for diagnosis and treatment of Menkes disease. Mol. Genet. Metab., 2019, 126(1), 6-13. doi: 10.1016/j.ymgme.2018.12.005 PMID: 30594472
- Boullata, J.; Muthukumaran, G.; Piarulli, A.; Labarre, J.; Compher, C. Oral copper absorption in men with morbid obesity. J. Trace Elem. Med. Biol., 2017, 44, 146-150. doi: 10.1016/j.jtemb.2017.07.005 PMID: 28965570
- Choi, E.H.; Strum, W. Hypocupremia-related myeloneuropathy following gastrojejunal bypass surgery. Ann. Nutr. Metab., 2010, 57(3-4), 190-192. doi: 10.1159/000321519 PMID: 21088385
- Yarandi, S.S.; Griffith, D.P.; Sharma, R.; Mohan, A.; Zhao, V.M.; Ziegler, T.R. Optic neuropathy, myelopathy, anemia, and neutropenia caused by acquired copper deficiency after gastric bypass surgery. J. Clin. Gastroenterol., 2014, 48(10), 862-865. doi: 10.1097/MCG.0000000000000092 PMID: 24583748
- Tisato, F.; Marzano, C.; Porchia, M.; Pellei, M.; Santini, C. Copper in diseases and treatments, and copper-based anticancer strategies. Med. Res. Rev., 2010, 30(4), 708-749. PMID: 19626597
- Prohaska, J.R. Impact of copper deficiency in humans. Ann. N. Y. Acad. Sci., 2014, 1314(1), 1-5. doi: 10.1111/nyas.12354 PMID: 24517364
- Lopez, J.; Ramchandani, D.; Vahdat, L. Copper depletion as a therapeutic strategy in cancer. Met. Ions Life Sci., 2019, 19, 303-330. doi: 10.1515/9783110527872-012 PMID: 30855113
- Ishida, S.; Andreux, P.; Poitry-Yamate, C.; Auwerx, J.; Hanahan, D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl. Acad. Sci. USA, 2013, 110(48), 19507-19512. doi: 10.1073/pnas.1318431110 PMID: 24218578
- Wooton-Kee, C.R.; Robertson, M.; Zhou, Y.; Dong, B.; Sun, Z.; Kim, K.H.; Liu, H.; Xu, Y.; Putluri, N.; Saha, P.; Coarfa, C.; Moore, D.D.; Nuotio-Antar, A.M. Metabolic dysregulation in the Atp7b−/− Wilsons disease mouse model. Proc. Natl. Acad. Sci. USA, 2020, 117(4), 2076-2083. doi: 10.1073/pnas.1914267117 PMID: 31924743
- Hao, Y.N.; Zhang, W.X.; Gao, Y.R.; Wei, Y.N.; Shu, Y.; Wang, J.H. State-of-the-art advances of copper-based nanostructures in the enhancement of chemodynamic therapy. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(2), 250-266. doi: 10.1039/D0TB02360D PMID: 33237121
- Ngamchuea, K.; Batchelor-McAuley, C.; Compton, R.G. The Copper(II)-catalyzed oxidation of glutathione. Chemistry, 2016, 22(44), 15937-15944. doi: 10.1002/chem.201603366 PMID: 27649691
- Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol., 2018, 217(7), 2291-2298. doi: 10.1083/jcb.201804161 PMID: 29915025
- Laws, K.; Bineva-Todd, G.; Eskandari, A.; Lu, C.; OReilly, N.; Suntharalingam, K.A. Copper(II) phenanthroline metallopeptide that targets and disrupts mitochondrial function in breast cancer stem cells. Angew. Chem. Int. Ed., 2018, 57(1), 287-291. doi: 10.1002/anie.201710910 PMID: 29144008
- Rochford, G.; Molphy, Z.; Kavanagh, K.; McCann, M.; Devereux, M.; Kellett, A.; Howe, O. Cu(II) phenanthrolinephenazine complexes dysregulate mitochondrial function and stimulate apoptosis. Metallomics, 2020, 12(1), 65-78. doi: 10.1039/c9mt00187e PMID: 31720645
- Angelé-Martínez, C.; Nguyen, K.V.T.; Ameer, F.S.; Anker, J.N.; Brumaghim, J.L. Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology, 2017, 11(2), 278-288. doi: 10.1080/17435390.2017.1293750 PMID: 28248593
- Jomova, K.; Hudecova, L.; Lauro, P.; Simunková, M.; Barbierikova, Z.; Malcek, M.; Alwasel, S.H.; Alhazza, I.M.; Rhodes, C.J.; Valko, M. The effect of luteolin on DNA damage mediated by a copper catalyzed fenton reaction. J. Inorg. Biochem., 2022, 226, 111635. doi: 10.1016/j.jinorgbio.2021.111635 PMID: 34717250
- Tsang, T.; Posimo, J.M.; Gudiel, A.A.; Cicchini, M.; Feldser, D.M.; Brady, D.C. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat. Cell Biol., 2020, 22(4), 412-424. doi: 10.1038/s41556-020-0481-4 PMID: 32203415
- Santoro, A.M.; Monaco, I.; Attanasio, F.; Lanza, V.; Pappalardo, G.; Tomasello, M.F.; Cunsolo, A.; Rizzarelli, E.; De Luigi, A.; Salmona, M.; Milardi, D. Copper(II) ions affect the gating dynamics of the 20S proteasome: A molecular and in cell study. Sci. Rep., 2016, 6(1), 33444. doi: 10.1038/srep33444 PMID: 27633879
- Zhang, Z.; Wang, H.; Yan, M.; Wang, H.; Zhang, C. Novel copper complexes as potential proteasome inhibitors for cancer treatment. Mol. Med. Rep., 2017, 15(1), 3-11. doi: 10.3892/mmr.2016.6022 PMID: 27959411
- Antoniades, V.; Sioga, A.; Dietrich, E.M.; Meditskou, S.; Ekonomou, L.; Antoniades, K. Is copper chelation an effective anti-angiogenic strategy for cancer treatment? Med. Hypotheses, 2013, 81(6), 1159-1163. doi: 10.1016/j.mehy.2013.09.035 PMID: 24210000
- Cucci, L.M.; Satriano, C.; Marzo, T.; La Mendola, D. Angiogenin and copper crossing in wound healing. Int. J. Mol. Sci., 2021, 22(19), 10704. doi: 10.3390/ijms221910704 PMID: 34639045
- Brewer, G.J.; Dick, R.D.; Grover, D.K.; LeClaire, V.; Tseng, M.; Wicha, M.; Pienta, K.; Redman, B.G.; Jahan, T.; Sondak, V.K.; Strawderman, M.; LeCarpentier, G.; Merajver, S.D. Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: Phase I study. Clin. Cancer Res., 2000, 6(1), 1-10. PMID: 10656425
- Sen, C.K.; Khanna, S.; Venojarvi, M.; Trikha, P.; Ellison, E.C.; Hunt, T.K.; Roy, S. Copper-induced vascular endothelial growth factor expression and wound healing. Am. J. Physiol. Heart Circ. Physiol., 2002, 282(5), H1821-H1827. doi: 10.1152/ajpheart.01015.2001 PMID: 11959648
- Das, A.; Ash, D.; Fouda, A.Y.; Sudhahar, V.; Kim, Y.M.; Hou, Y.; Hudson, F.Z.; Stansfield, B.K.; Caldwell, R.B.; McMenamin, M.; Littlejohn, R.; Su, H.; Regan, M.R.; Merrill, B.J.; Poole, L.B.; Kaplan, J.H.; Fukai, T.; Ushio-Fukai, M. Cysteine oxidation of copper transporter CTR1 drives VEGFR2 signalling and angiogenesis. Nat. Cell Biol., 2022, 24(1), 35-50. doi: 10.1038/s41556-021-00822-7 PMID: 35027734
- Chan, N.; Willis, A.; Kornhauser, N.; Ward, M.M.; Lee, S.B.; Nackos, E.; Seo, B.R.; Chuang, E.; Cigler, T.; Moore, A.; Donovan, D.; Vallee Cobham, M.; Fitzpatrick, V.; Schneider, S.; Wiener, A.; Guillaume-Abraham, J.; Aljom, E.; Zelkowitz, R.; Warren, J.D.; Lane, M.E.; Fischbach, C.; Mittal, V.; Vahdat, L. Influencing the tumor microenvironment: A phase II study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases. Clin. Cancer Res., 2017, 23(3), 666-676. doi: 10.1158/1078-0432.CCR-16-1326 PMID: 27769988
- Jiao, Y.; Hannafon, B.N.; Ding, W.Q. Disulfirams anticancer activity: Evidence and mechanisms. Anticancer. Agents Med. Chem., 2016, 16(11), 1378-1384. doi: 10.2174/1871520615666160504095040 PMID: 27141876
- Huang, J.; Campian, J.L.; Gujar, A.D.; Tran, D.D.; Lockhart, A.C.; DeWees, T.A.; Tsien, C.I.; Kim, A.H. A phase I study to repurpose disulfiram in combination with temozolomide to treat newly diagnosed glioblastoma after chemoradiotherapy. J. Neurooncol., 2016, 128(2), 259-266. doi: 10.1007/s11060-016-2104-2 PMID: 26966095
- ODay, S.; Gonzalez, R.; Lawson, D.; Weber, R.; Hutchins, L.; Anderson, C.; Haddad, J.; Kong, S.; Williams, A.; Jacobson, E. Phase II, randomized, controlled, double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxel alone for stage IV metastatic melanoma. J. Clin. Oncol., 2009, 27(32), 5452-5458. doi: 10.1200/JCO.2008.17.1579 PMID: 19826135
- ODay, S.J.; Eggermont, A.M.M.; Chiarion-Sileni, V.; Kefford, R.; Grob, J.J.; Mortier, L.; Robert, C.; Schachter, J.; Testori, A.; Mackiewicz, J.; Friedlander, P.; Garbe, C.; Ugurel, S.; Collichio, F.; Guo, W.; Lufkin, J.; Bahcall, S.; Vukovic, V.; Hauschild, A. Final results of phase III SYMMETRY study: Randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. J. Clin. Oncol., 2013, 31(9), 1211-1218. doi: 10.1200/JCO.2012.44.5585 PMID: 23401447
- Gohil, V.M. Repurposing elesclomol, an investigational drug for the treatment of copper metabolism disorders. Expert Opin. Investig. Drugs, 2021, 30(1), 1-4. doi: 10.1080/13543784.2021.1840550 PMID: 33081534
- Krishnamoorthy, L.; Cotruvo, J.A., Jr; Chan, J.; Kaluarachchi, H.; Muchenditsi, A.; Pendyala, V.S.; Jia, S.; Aron, A.T.; Ackerman, C.M.; Wal, M.N.V.; Guan, T.; Smaga, L.P.; Farhi, S.L.; New, E.J.; Lutsenko, S.; Chang, C.J. Copper regulates cyclic-AMP-dependent lipolysis. Nat. Chem. Biol., 2016, 12(8), 586-592. doi: 10.1038/nchembio.2098 PMID: 27272565
- Michniewicz, F.; Saletta, F.; Rouaen, J.R.C.; Hewavisenti, R.V.; Mercatelli, D.; Cirillo, G.; Giorgi, F.M.; Trahair, T.; Ziegler, D.; Vittorio, O. Copper: An intracellular achilles heel allowing the targeting of epigenetics, kinase pathways, and cell metabolism in cancer therapeutics. ChemMedChem, 2021, 16(15), 2315-2329. doi: 10.1002/cmdc.202100172 PMID: 33890721
- He, F.; Chang, C.; Liu, B.; Li, Z.; Li, H.; Cai, N.; Wang, H.H. Copper (II) ions activate ligand-independent receptor tyrosine kinase (RTK) signaling pathway. BioMed Res. Int., 2019, 2019, 1-8. doi: 10.1155/2019/4158415 PMID: 31218225
- Turski, M.L.; Brady, D.C.; Kim, H.J.; Kim, B.E.; Nose, Y.; Counter, C.M.; Winge, D.R.; Thiele, D.J. A novel role for copper in Ras/mitogen-activated protein kinase signaling. Mol. Cell. Biol., 2012, 32(7), 1284-1295. doi: 10.1128/MCB.05722-11 PMID: 22290441
- Brady, D.C.; Crowe, M.S.; Turski, M.L.; Hobbs, G.A.; Yao, X.; Chaikuad, A.; Knapp, S.; Xiao, K.; Campbell, S.L.; Thiele, D.J.; Counter, C.M. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature, 2014, 509(7501), 492-496. doi: 10.1038/nature13180 PMID: 24717435
- Aubert, L.; Nandagopal, N.; Steinhart, Z.; Lavoie, G.; Nourreddine, S.; Berman, J.; Saba-El-Leil, M.K.; Papadopoli, D.; Lin, S.; Hart, T.; Macleod, G.; Topisirovic, I.; Gaboury, L.; Fahrni, C.J.; Schramek, D.; Meloche, S.; Angers, S.; Roux, P.P. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat. Commun., 2020, 11(1), 3701. doi: 10.1038/s41467-020-17549-y PMID: 32709883
- Blockhuys, S.; Celauro, E.; Hildesjö, C.; Feizi, A.; Stål, O.; Fierro-González, J.C.; Wittung-Stafshede, P. Defining the human copper proteome and analysis of its expression variation in cancers. Metallomics, 2017, 9(2), 112-123. doi: 10.1039/C6MT00202A PMID: 27942658
- Kamiya, T. Copper in the tumor microenvironment and tumor metastasis. J. Clin. Biochem. Nutr., 2022, 71(1), 22-28. doi: 10.3164/jcbn.22-9 PMID: 35903604
- Polishchuk, E.V.; Merolla, A.; Lichtmannegger, J.; Romano, A.; Indrieri, A.; Ilyechova, E.Y.; Concilli, M.; De Cegli, R.; Crispino, R.; Mariniello, M.; Petruzzelli, R.; Ranucci, G.; Iorio, R.; Pietrocola, F.; Einer, C.; Borchard, S.; Zibert, A.; Schmidt, H.H.; Di Schiavi, E.; Puchkova, L.V.; Franco, B.; Kroemer, G.; Zischka, H.; Polishchuk, R.S. Activation of autophagy, observed in liver tissues from patients with wilson disease and from ATP7B-deficient animals, protects hepatocytes from copper-induced apoptosis. Gastroenterology, 2019, 156(4), 1173-1189.e5. doi: 10.1053/j.gastro.2018.11.032 PMID: 30452922
- Kang, J.; Lin, C.; Chen, J.; Liu, Q. Copper induces histone hypoacetylation through directly inhibiting histone acetyltransferase activity. Chem. Biol. Interact., 2004, 148(3), 115-123. doi: 10.1016/j.cbi.2004.05.003 PMID: 15276868
Supplementary files
