The Role of the Vagus Nerve in the Microbiome and Digestive System in Relation to Epilepsy
- Authors: Rubio C.1, Ochoa E.1, Gatica F.1, Portilla A.1, Vázquez D.1, Rubio-Osornio M.2
-
Affiliations:
- Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía
- Issue: Vol 31, No 37 (2024)
- Pages: 6018-6031
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645089
- DOI: https://doi.org/10.2174/0109298673260479231010044020
- ID: 645089
Cite item
Full Text
Abstract
:The Enteric Nervous System (ENS) is described as a division of the Peripheral Nervous System (PNS), located within the gut wall and it is formed by two main plexuses: the myenteric plexus (Auerbach's) and the submucosal plexus (Meissner's). The contribution of the ENS to the pathophysiology of various neurological diseases such as Parkinson's or Alzheimer's disease has been described in the literature, while some other studies have found a connection between epilepsy and the gastrointestinal tract. The above could be explained by cholinergic neurons and neurotransmission systems in the myenteric and submucosal plexuses, regulating the vagal excitability effect. It is also understandable, as the discharges arising in the amygdala are transmitted to the intestine through projections the dorsal motor nucleus of the vagus, giving rise to efferent fibers that stimulate the gastrointestinal tract and consequently the symptoms at this level. Therefore, this review's main objective is to argue in favor of the existing relationship of the ENS with the Central Nervous System (CNS) as a facilitator of epileptogenic or ictogenic mechanisms. The gut microbiota also participates in this interaction; however, it depends on many individual factors of each human being. The link between the ENS and the CNS is a poorly studied epileptogenic site with a big impact on one of the most prevalent neurological conditions such as epilepsy.
Keywords
About the authors
Carmen Rubio
Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía
Email: info@benthamscience.net
Ernesto Ochoa
Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía
Email: info@benthamscience.net
Fernando Gatica
Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía
Email: info@benthamscience.net
Alonso Portilla
Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía
Email: info@benthamscience.net
David Vázquez
Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía
Email: info@benthamscience.net
Moisés Rubio-Osornio
Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía
Author for correspondence.
Email: info@benthamscience.net
References
- Rao, M.; Gershon, M.D. The bowel and beyond: The enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(9), 517-528. doi: 10.1038/nrgastro.2016.107 PMID: 27435372
- Camilleri, M. Disorders of gastrointestinal motility in neurologic diseases. Mayo Clin. Proc., 1990, 65(6), 825-846. doi: 10.1016/S0025-6196(12)62574-9 PMID: 2164123
- Benarroch, E.E. Enteric nervous system: Functional organization and neurologic implications. Neurology, 2007, 69(20), 1953-1957. doi: 10.1212/01.wnl.0000281999.56102.b5 PMID: 17998487
- Horoupian, D.S.; Kim, Y. Encephalomyeloneuropathy with ganglionitis of the myenteric plexuses in the absence of cancer. Ann. Neurol., 1982, 11(6), 628-632. doi: 10.1002/ana.410110613 PMID: 7114813
- Ghosh, S. Mechanism of intestinal entry of infectious prion protein in the pathogenesis of variant CreutzfeldtJakob disease. Adv. Drug Deliv. Rev., 2004, 56(6), 915-920. doi: 10.1016/j.addr.2003.10.035 PMID: 15063598
- McElhanon, B.O.; McCracken, C.; Karpen, S.; Sharp, W.G. Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics, 2014, 133(5), 872-883. doi: 10.1542/peds.2013-3995 PMID: 24777214
- Chang, L.; Wei, Y.; Hashimoto, K. Braingutmicrobiota axis in depression: A historical overview and future directions. Brain Res. Bull., 2022, 182, 44-56. doi: 10.1016/j.brainresbull.2022.02.004 PMID: 35151796
- Socała, K.; Doboszewska, U.; Szopa, A.; Serefko, A.; Włodarczyk, M.; Zielińska, A.; Poleszak, E.; Fichna, J.; Wlaź, P. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res., 2021, 172, 105840. doi: 10.1016/j.phrs.2021.105840 PMID: 34450312
- Stokholm, M.G.; Danielsen, E.H.; Hamilton-Dutoit, S.J.; Borghammer, P. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann. Neurol., 2016, 79(6), 940-949. doi: 10.1002/ana.24648 PMID: 27015771
- Puig, K.L.; Lutz, B.M.; Urquhart, S.A.; Rebel, A.A.; Zhou, X.; Manocha, G.D.; Sens, M.; Tuteja, A.K.; Foster, N.L.; Combs, C.K. Overexpression of mutant amyloid-β protein precursor and presenilin 1 modulates enteric nervous system. J. Alzheimers Dis., 2015, 44(4), 1263-1278. doi: 10.3233/JAD-142259 PMID: 25408221
- Naveed, M.; Zhou, Q.G.; Xu, C.; Taleb, A.; Meng, F.; Ahmed, B.; Zhang, Y.; Fukunaga, K.; Han, F. Gut-brain axis: A matter of concern in neuropsychiatric disorders ! Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 104, 110051. doi: 10.1016/j.pnpbp.2020.110051 PMID: 32758517
- Kundu, S.; Nayak, S.; Rakshit, D.; Singh, T.; Shukla, R.; Khatri, D.K.; Mishra, A. The microbiomegutbrain axis in epilepsy: Pharmacotherapeutic target from bench evidence for potential bedside applications. Eur. J. Neurol., 2023, 2023, 15767. doi: 10.1111/ene.15767 PMID: 36880679
- Pitkänen, A.; Lukasiuk, K.; Dudek, F.E.; Staley, K.J. Epileptogenesis. Cold Spring Harb. Perspect. Med., 2015, 5(10), a022822. doi: 10.1101/cshperspect.a022822 PMID: 26385090
- Papathanasiou, E.S.; Pantzaris, M.; Myrianthopoulou, P.; Kkolou, E.; Papacostas, S.S. Brainstem lesions may be important in the development of epilepsy in multiple sclerosis patients: An evoked potential study. Clin. Neurophysiol., 2010, 121(12), 2104-2110. doi: 10.1016/j.clinph.2010.05.017 PMID: 20542465
- Streng, M.L.; Krook-Magnuson, E. The cerebellum and epilepsy. Epilepsy Behav., 2021, 121(Pt B), 106909. doi: 10.1016/j.yebeh.2020.106909 PMID: 32035793
- Cloix, J.F.; Hévor, T. Epilepsy, regulation of brain energy metabolism and neurotransmission. Curr. Med. Chem., 2009, 16(7), 841-853. doi: 10.2174/092986709787549316 PMID: 19275597
- Avoli, M.; DAntuono, M.; Louvel, J.; Köhling, R.; Biagini, G.; Pumain, R.; DArcangelo, G.; Tancredi, V. Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog. Neurobiol., 2002, 68(3), 167-207. doi: 10.1016/S0301-0082(02)00077-1 PMID: 12450487
- Sarlo, G.L.; Holton, K.F. Brain concentrations of glutamate and GABA in human epilepsy: A review. Seizure, 2021, 91, 213-227. doi: 10.1016/j.seizure.2021.06.028 PMID: 34233236
- Lascano, A.M.; Korff, C.M.; Picard, F. Seizures and epilepsies due to channelopathies and neurotransmitter receptor dysfunction: A parallel between genetic and immune aspects. Mol. Syndromol., 2016, 7(4), 197-209. doi: 10.1159/000447707 PMID: 27781030
- Devinsky, O.; Vezzani, A.; Najjar, S.; De Lanerolle, N.C.; Rogawski, M.A. Glia and epilepsy: Excitability and inflammation. Trends Neurosci., 2013, 36(3), 174-184. doi: 10.1016/j.tins.2012.11.008 PMID: 23298414
- Curia, G.; Lucchi, C.; Vinet, J.; Gualtieri, F.; Marinelli, C.; Torsello, A.; Costantino, L.; Biagini, G. Pathophysiogenesis of mesial temporal lobe epilepsy: Is prevention of damage antiepileptogenic? Curr. Med. Chem., 2014, 21(6), 663-688. doi: 10.2174/0929867320666131119152201 PMID: 24251566
- Azevedo, F.A.C.; Carvalho, L.R.B.; Grinberg, L.T.; Farfel, J.M.; Ferretti, R.E.L.; Leite, R.E.P.; Filho, W.J.; Lent, R.; Herculano-Houzel, S. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol., 2009, 513(5), 532-541. doi: 10.1002/cne.21974 PMID: 19226510
- Clasadonte, J.; Haydon, P.G. Astrocytes and epilepsy. In: Jaspers Basic Mechanisms of the Epilepsies, 4th ed.; Noebels, J.L.; Avoli, M.; Rogawski, M.A., Eds.; National Center for Biotechnology Information (US): Bethesda, MD, 2012. doi: 10.1093/med/9780199746545.003.0046
- Nikolic, L.; Shen, W.; Nobili, P.; Virenque, A.; Ulmann, L.; Audinat, E. Blocking TNFα-driven astrocyte purinergic signaling restores normal synaptic activity during epileptogenesis. Glia, 2018, 66(12), 2673-2683. doi: 10.1002/glia.23519 PMID: 30394583
- Wang, G.; Wang, J.; Xin, C.; Xiao, J.; Liang, J.; Wu, X. Inflammatory response in epilepsy is mediated by glial cell gap junction pathway (Review). Mol. Med. Rep., 2021, 24(1), 493. doi: 10.3892/mmr.2021.12132 PMID: 33955516
- Jabs, R.; Seifert, G.; Steinhäuser, C. Astrocytic function and its alteration in the epileptic brain. Epilepsia, 2008, 49(2), 3-12. doi: 10.1111/j.1528-1167.2008.01488.x PMID: 18226167
- Bauer, J.; Elger, C.E.; Hans, V.H.; Schramm, J.; Urbach, H.; Lassmann, H.; Bien, C.G. Astrocytes are a specific immunological target in Rasmussens encephalitis. Ann. Neurol., 2007, 62(1), 67-80. doi: 10.1002/ana.21148 PMID: 17503512
- Wetherington, J.; Serrano, G.; Dingledine, R. Astrocytes in the epileptic brain. Neuron, 2008, 58(2), 168-178. doi: 10.1016/j.neuron.2008.04.002 PMID: 18439402
- Rubio, C.; López-López, F.; Rojas-Hernández, D.; Moreno, W.; Rodríguez-Quintero, P.; Rubio-Osornio, M. Caloric restriction: Anti-inflammatory and antioxidant mechanisms against epileptic seizures. Epilepsy Res., 2022, 186, 107012. doi: 10.1016/j.eplepsyres.2022.107012 PMID: 36027691
- Boer, K.; Spliet, W.G.M.; van Rijen, P.C.; Redeker, S.; Troost, D.; Aronica, E. Evidence of activated microglia in focal cortical dysplasia. J. Neuroimmunol., 2006, 173(1-2), 188-195. doi: 10.1016/j.jneuroim.2006.01.002 PMID: 16483671
- Ravizza, T.; Boer, K.; Redeker, S.; Spliet, W.G.M.; van Rijen, P.C.; Troost, D.; Vezzani, A.; Aronica, E. The IL-1β system in epilepsy-associated malformations of cortical development. Neurobiol. Dis., 2006, 24(1), 128-143. doi: 10.1016/j.nbd.2006.06.003 PMID: 16860990
- Akyuz, E.; Polat, A.K.; Eroglu, E.; Kullu, I.; Angelopoulou, E.; Paudel, Y.N. Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci., 2021, 265, 118826. doi: 10.1016/j.lfs.2020.118826 PMID: 33259863
- Rubio, C.; Rubio-Osornio, M.; Retana-Márquez, S.; Lopez, M.; Custodio, V.; Paz, C. In vivo experimental models of epilepsy. Cent. Nerv. Syst. Agents Med. Chem., 2010, 10(4), 298-309. doi: 10.2174/187152410793429746 PMID: 20868357
- Sibarov, D.A.; Antonov, S.M. Calcium-dependent desensitization of NMDA receptors. Biochemistry, 2018, 83(10), 1173-1183. doi: 10.1134/S0006297918100036 PMID: 30472955
- Conn, P.J.; Pin, J.P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol., 1997, 37(1), 205-237. doi: 10.1146/annurev.pharmtox.37.1.205 PMID: 9131252
- Tanaka, K.; Watase, K.; Manabe, T.; Yamada, K.; Watanabe, M.; Takahashi, K.; Iwama, H.; Nishikawa, T.; Ichihara, N.; Kikuchi, T.; Okuyama, S.; Kawashima, N.; Hori, S.; Takimoto, M.; Wada, K. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science, 1997, 276(5319), 1699-1702. doi: 10.1126/science.276.5319.1699 PMID: 9180080
- Mahmoud, S.; Gharagozloo, M.; Simard, C.; Gris, D. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells, 2019, 8(2), 184. doi: 10.3390/cells8020184 PMID: 30791579
- Schousboe, A.; Barker-Haliski, M.; Steve White, H. Modulation of excitability via glutamate and gaba transporters. Curated Ref. Collect Neurosci. Biobehav. Psychol., 2018, 397-401. doi: 10.1016/B978-0-12-809324-5.22709-0
- Lorigados, L.; Orozco, S.; Morales, L.; Estupiñán, B.; García, I.; Rocha, L. Excitotoxicidad y muerte neuronal en la epilepsia. Biotecnol. Apl., 2013, 30, 1-8.
- Shih, A.Y.; Erb, H.; Sun, X.; Toda, S.; Kalivas, P.W.; Murphy, T.H. Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation. J. Neurosci., 2006, 26(41), 10514-10523. doi: 10.1523/JNEUROSCI.3178-06.2006 PMID: 17035536
- Liang, L.P.; Patel, M. Plasma cysteine/cystine redox couple disruption in animal models of temporal lobe epilepsy. Redox Biol., 2016, 9, 45-49. doi: 10.1016/j.redox.2016.05.004 PMID: 27285054
- Uttara, B.; Singh, A.; Zamboni, P.; Mahajan, R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74. doi: 10.2174/157015909787602823 PMID: 19721819
- Pearson-Smith, J.; Patel, M. Metabolic dysfunction and oxidative stress in epilepsy. Int. J. Mol. Sci., 2017, 18(11), 2365. doi: 10.3390/ijms18112365 PMID: 29117123
- Vezzani, A.; French, J.; Bartfai, T.; Baram, T.Z. The role of inflammation in epilepsy. Nat. Rev. Neurol., 2011, 7(1), 31-40. doi: 10.1038/nrneurol.2010.178 PMID: 21135885
- Iori, V.; Frigerio, F.; Vezzani, A. Modulation of neuronal excitability by immune mediators in epilepsy. Curr. Opin. Pharmacol., 2016, 26, 118-123. doi: 10.1016/j.coph.2015.11.002 PMID: 26629681
- Galic, M.A.; Riazi, K.; Pittman, Q.J. Cytokines and brain excitability. Front. Neuroendocrinol., 2012, 33(1), 116-125. doi: 10.1016/j.yfrne.2011.12.002 PMID: 22214786
- Bradford, H.F. Glutamate, GABA and epilepsy. Prog. Neurobiol., 1995, 47(6), 477-511. doi: 10.1016/0301-0082(95)00030-5 PMID: 8787032
- Guerriero, R.M.; Giza, C.C.; Rotenberg, A. Glutamate and GABA imbalance following traumatic brain injury. Curr. Neurol. Neurosci. Rep., 2015, 15(5), 27. doi: 10.1007/s11910-015-0545-1 PMID: 25796572
- Devinsky, O.; Vezzani, A.; OBrien, T.J.; Jette, N.; Scheffer, I.E.; de Curtis, M.; Perucca, P. Epilepsy. Nat. Rev. Dis. Primers, 2018, 4(1), 18024. doi: 10.1038/nrdp.2018.24 PMID: 29722352
- Furness, J.B.; Callaghan, B.P.; Rivera, L.R.; Cho, H.J. The enteric nervous system and gastrointestinal innervation: Integrated local and central control. Adv. Exp. Med. Biol., 2014, 817, 39-71. doi: 10.1007/978-1-4939-0897-4_3 PMID: 24997029
- Herculano-Houzel, S. The human brain in numbers: A linearly scaled-up primate brain. Front. Hum. Neurosci., 2009, 3, 31. doi: 10.3389/neuro.09.031.2009 PMID: 19915731
- Furness, J.B.; Rivera, L.R.; Cho, H.J.; Bravo, D.M.; Callaghan, B. The gut as a sensory organ. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(12), 729-740. doi: 10.1038/nrgastro.2013.180 PMID: 24061204
- Furness, J.B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol., 2012, 9(5), 286-294. doi: 10.1038/nrgastro.2012.32 PMID: 22392290
- Yoo, B.B.; Mazmanian, S.K. The enteric network: Interactions between the immune and nervous systems of the Gut. Immunity, 2017, 46(6), 910-926. doi: 10.1016/j.immuni.2017.05.011 PMID: 28636959
- Spencer, N.J.; Hu, H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(6), 338-351. doi: 10.1038/s41575-020-0271-2 PMID: 32152479
- Ren, J.; Hu, H-Z.; Liu, S.; Xia, Y.; Wood, J.D. Glutamate receptors in the enteric nervous system: Ionotropic or metabotropic? Neurogastroenterol. Motil., 2000, 12(3), 257-264. doi: 10.1046/j.1365-2982.2000.00207.x PMID: 10867623
- Liu, M.T.; Rothstein, J.D.; Gershon, M.D.; Kirchgessner, A.L. Glutamatergic enteric neurons. J. Neurosci., 1997, 17(12), 4764-4784. doi: 10.1523/JNEUROSCI.17-12-04764.1997 PMID: 9169536
- Giaroni, C.; Zanetti, E.; Chiaravalli, A.M.; Albarello, L.; Dominioni, L.; Capella, C.; Lecchini, S.; Frigo, G. Evidence for a glutamatergic modulation of the cholinergic function in the human enteric nervous system via NMDA receptors. Eur. J. Pharmacol., 2003, 476(1-2), 63-69. doi: 10.1016/S0014-2999(03)02147-2 PMID: 12969750
- Wiley, J.W.; Lu, Y.X.; Owyang, C. Evidence for a glutamatergic neural pathway in the myenteric plexus. Am. J. Physiol., 1991, 261(4 Pt 1), G693-G700. PMID: 1681738
- Gwynne, R.; Bornstein, J. Synaptic transmission at functionally identified synapses in the enteric nervous system: Roles for both ionotropic and metabotropic receptors. Curr. Neuropharmacol., 2007, 5(1), 1-17. doi: 10.2174/157015907780077141 PMID: 18615154
- Kirchgessner, A.L.; Liu, M.T.; Alcantara, F. Excitotoxicity in the enteric nervous system. J. Neurosci., 1997, 17(22), 8804-8816. doi: 10.1523/JNEUROSCI.17-22-08804.1997 PMID: 9348349
- Beyak, M.J. Visceral afferents - Determinants and modulation of excitability. Auton. Neurosci., 2010, 153(1-2), 69-78. doi: 10.1016/j.autneu.2009.07.019 PMID: 19674942
- rühl Glial cells in the gut. Neurogastroenterol. Motil., 2005, 17(6), 777-790. doi: 10.1111/j.1365-2982.2005.00687.x PMID: 16336493
- Obrenovitch, T.P.; Urenjak, J. Altered glutamatergic transmission in neurological disorders: From high extracellular glutamate to excessive synaptic efficacy. Prog. Neurobiol., 1997, 51(1), 39-87. doi: 10.1016/S0301-0082(96)00049-4 PMID: 9044428
- Bornstein, J.C.; Costa, M.; Furness, J.B. Synaptic inputs to immunohistochemically identified neurones in the submucous plexus of the guinea-pig small intestine. J. Physiol., 1986, 381(1), 465-482. doi: 10.1113/jphysiol.1986.sp016339 PMID: 3305874
- Koussoulas, K.; Swaminathan, M.; Fung, C.; Bornstein, J.C.; Foong, J.P.P. Neurally released GABA acts via GABAC receptors to modulate Ca2+ transients evoked by trains of synaptic inputs, but not responses evoked by single stimuli, in myenteric neurons of mouse ileum. Front. Physiol., 2018, 9, 97. doi: 10.3389/fphys.2018.00097 PMID: 29487540
- Jessen, K.R.; Mirsky, R.; Hills, J.M. GABA as an autonomic neurotransmitter: Studies on intrinsic GABAergic neurons in the myenteric plexus of the gut. Trends Neurosci., 1987, 10(6), 255-262. doi: 10.1016/0166-2236(87)90169-X
- Krantis, A. GABA in the mammalian enteric nervous system. Physiology, 2000, 15(6), 284-290. doi: 10.1152/physiologyonline.2000.15.6.284 PMID: 11390928
- Mayer, E.A.; Knight, R.; Mazmanian, S.K.; Cryan, J.F.; Tillisch, K. Gut microbes and the brain: Paradigm shift in neuroscience. J. Neurosci., 2014, 34(46), 15490-15496. doi: 10.1523/JNEUROSCI.3299-14.2014 PMID: 25392516
- Mitrea, L.; Nemeş, S.A.; Szabo, K.; Teleky, B.E.; Vodnar, D.C. Guts imbalance imbalances the brain: A review of gut microbiota association with neurological and psychiatric disorders. Front. Med., 2022, 9, 813204. doi: 10.3389/fmed.2022.813204 PMID: 35433746
- Ding, M.; Lang, Y.; Shu, H.; Shao, J.; Cui, L. Microbiota-gut-brain axis and epilepsy: A review on mechanisms and potential therapeutics. Front. Immunol., 2021, 12, 742449. doi: 10.3389/fimmu.2021.742449 PMID: 34707612
- Peng, A.; Qiu, X.; Lai, W.; Li, W.; Zhang, L.; Zhu, X.; He, S.; Duan, J.; Chen, L. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res., 2018, 147, 102-107. doi: 10.1016/j.eplepsyres.2018.09.013 PMID: 30291996
- Lum, G.R.; Olson, C.A.; Hsiao, E.Y. Emerging roles for the intestinal microbiome in epilepsy. Neurobiol. Dis., 2020, 135, 104576. doi: 10.1016/j.nbd.2019.104576 PMID: 31445165
- McCoy, K.D.; Ronchi, F.; Geuking, M.B. Host-microbiota interactions and adaptive immunity. Immunol. Rev., 2017, 279(1), 63-69. doi: 10.1111/imr.12575 PMID: 28856735
- Ceccarani, C.; Viganò, I.; Ottaviano, E.; Redaelli, M.G.; Severgnini, M.; Vignoli, A.; Borghi, E. Is gut microbiota a key player in epilepsy onset? A longitudinal study in drug-naive children. Front. Cell. Infect. Microbiol., 2021, 11, 749509. doi: 10.3389/fcimb.2021.749509 PMID: 34926315
- Li, L.; Acioglu, C.; Heary, R.F.; Elkabes, S. Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain Behav. Immun., 2021, 91, 740-755. doi: 10.1016/j.bbi.2020.10.007 PMID: 33039660
- De Caro, C.; Leo, A.; Nesci, V.; Ghelardini, C.; di Cesare Mannelli, L.; Striano, P.; Avagliano, C.; Calignano, A.; Mainardi, P.; Constanti, A.; Citraro, R.; De Sarro, G.; Russo, E. Intestinal inflammation increases convulsant activity and reduces antiepileptic drug efficacy in a mouse model of epilepsy. Sci. Rep., 2019, 9(1), 13983. doi: 10.1038/s41598-019-50542-0 PMID: 31562378
- Matin, N.; Tabatabaie, O.; Falsaperla, R.; Lubrano, R.; Pavone, P.; Mahmood, F.; Gullotta, M.; Serra, A.; Mauro, P.D.; Cocuzza, S.; Vitaliti, G. Epilepsy and innate immune system: A possible immunogenic predisposition and related therapeutic implications. Hum. Vaccin. Immunother., 2015, 11(8), 2021-2029. doi: 10.1080/21645515.2015.1034921 PMID: 26260962
- Dicks, L.M.T. Gut bacteria and neurotransmitters. Microorganisms, 2022, 10(9), 1838. doi: 10.3390/microorganisms10091838 PMID: 36144440
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res., 2018, 1693((Pt B)), 128-133. doi: 10.1016/j.brainres.2018.03.015
- Javdan, B.; Lopez, J.G.; Chankhamjon, P.; Lee, Y.C.J.; Hull, R.; Wu, Q.; Wang, X.; Chatterjee, S.; Donia, M.S. Personalized mapping of drug metabolism by the human gut microbiome. Cell, 2020, 181(7), 1661-1679.e22. doi: 10.1016/j.cell.2020.05.001 PMID: 32526207
- Sorboni, S.G.; Moghaddam, H.S.; Jafarzadeh-Esfehani, R.; Soleimanpour, S. A comprehensive review on the role of the gut microbiome in human neurological disorders. Clin. Microbiol. Rev., 2022, 35(1), e00338-20. doi: 10.1128/CMR.00338-20 PMID: 34985325
- Zhang, Y.; Zhou, S.; Zhou, Y.; Yu, L.; Zhang, L.; Wang, Y. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res., 2018, 145, 163-168. doi: 10.1016/j.eplepsyres.2018.06.015 PMID: 30007242
- Olson, C.A.; Vuong, H.E.; Yano, J.M.; Liang, Q.Y.; Nusbaum, D.J.; Hsiao, E.Y. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell, 2018, 173(7), 1728-1741.e13. doi: 10.1016/j.cell.2018.04.027 PMID: 29804833
- Makievskaya, C.I.; Popkov, V.A.; Andrianova, N.V.; Liao, X.; Zorov, D.B.; Plotnikov, E.Y. Ketogenic diet and ketone bodies against ischemic injury: targets, mechanisms, and therapeutic potential. Int. J. Mol. Sci., 2023, 24(3), 2576. doi: 10.3390/ijms24032576 PMID: 36768899
- Rubio, C.; Luna, R.; Rosiles, A.; Rubio-Osornio, M. Caloric restriction and ketogenic diet therapy for epilepsy: A molecular approach involving Wnt pathway and KATP channels. Front. Neurol., 2020, 11, 584298. doi: 10.3389/fneur.2020.584298 PMID: 33250850
- Dahlin, M.; Prast-Nielsen, S. The gut microbiome and epilepsy. EBioMedicine, 2019, 44, 741-746. doi: 10.1016/j.ebiom.2019.05.024 PMID: 31160269
- Bagheri, S.; Heydari, A.; Alinaghipour, A.; Salami, M. Effect of probiotic supplementation on seizure activity and cognitive performance in PTZ-induced chemical kindling. Epilepsy Behav., 2019, 95, 43-50. doi: 10.1016/j.yebeh.2019.03.038 PMID: 31026781
- Jakobsson, H.E.; Jernberg, C.; Andersson, A.F.; Sjölund-Karlsson, M.; Jansson, J.K.; Engstrand, L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One, 2010, 5(3), e9836. doi: 10.1371/journal.pone.0009836 PMID: 20352091
- Vrieze, A.; Out, C.; Fuentes, S.; Jonker, L.; Reuling, I.; Kootte, R.S.; van Nood, E.; Holleman, F.; Knaapen, M.; Romijn, J.A.; Soeters, M.R.; Blaak, E.E.; Dallinga-Thie, G.M.; Reijnders, D.; Ackermans, M.T.; Serlie, M.J.; Knop, F.K.; Holst, J.J.; van der Ley, C.; Kema, I.P.; Zoetendal, E.G.; de Vos, W.M.; Hoekstra, J.B.L.; Stroes, E.S.; Groen, A.K.; Nieuwdorp, M. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J. Hepatol., 2014, 60(4), 824-831. doi: 10.1016/j.jhep.2013.11.034 PMID: 24316517
- Imani, S.; Buscher, H.; Marriott, D.; Gentili, S.; Sandaradura, I. Too much of a good thing: A retrospective study of β-lactam concentrationtoxicity relationships. J. Antimicrob. Chemother., 2017, 72(10), 2891-2897. doi: 10.1093/jac/dkx209 PMID: 29091190
- Kitamura, S.; Sugihara, K.; Kuwasako, M.; Tatsumi, K. The role of mammalian intestinal bacteria in the reductive metabolism of zonisamide. J. Pharm. Pharmacol., 2011, 49(3), 253-256. doi: 10.1111/j.2042-7158.1997.tb06790.x PMID: 9231340
- Stokes, J.M.; Davis, J.H.; Mangat, C.S.; Williamson, J.R.; Brown, E.D. Discovery of a small molecule that inhibits bacterial ribosome biogenesis. ELife, 2014, 3, e03574. doi: 10.7554/eLife.03574 PMID: 25233066
- Medel-Matus, J.S.; Shin, D.; Dorfman, E.; Sankar, R.; Mazarati, A. Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome. Epilepsia Open, 2018, 3(2), 290-294. doi: 10.1002/epi4.12114 PMID: 29881810
- De Caro, C.; Iannone, L.F.; Citraro, R.; Striano, P.; De Sarro, G.; Constanti, A.; Cryan, J.F.; Russo, E. Can we seize the gut microbiota to treat epilepsy? Neurosci. Biobehav. Rev., 2019, 107, 750-764. doi: 10.1016/j.neubiorev.2019.10.002 PMID: 31626816
- Brookes, S.J.H.; Spencer, N.J.; Costa, M.; Zagorodnyuk, V.P. Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(5), 286-296. doi: 10.1038/nrgastro.2013.29 PMID: 23438947
- Mengoni, F.; Salari, V.; Kosenkova, I.; Tsenov, G.; Donadelli, M.; Malerba, G.; Bertini, G.; Del Gallo, F.; Fabene, P.F. Gut microbiota modulates seizure susceptibility. Epilepsia, 2021, 62(9), e153-e157. doi: 10.1111/epi.17009 PMID: 34324703
- Zubareva, O.E.; Dyomina, A.V.; Kovalenko, A.A.; Roginskaya, A.I.; Melik-Kasumov, T.B.; Korneeva, M.A.; Chuprina, A.V.; Zhabinskaya, A.A.; Kolyhan, S.A.; Zakharova, M.V.; Gryaznova, M.O.; Zaitsev, A.V. Beneficial effects of probiotic Bifidobacterium longum in a lithiumpilocarpine model of temporal lobe epilepsy in rats. Int. J. Mol. Sci., 2023, 24(9), 8451. doi: 10.3390/ijms24098451 PMID: 37176158
- Hawton, K.; Hilliard, T.; Langton-Hewer, S.C.; Burren, C.; Crowne, E.C.; Hamilton-Shield, J.P.; Giri, D. Rapid-onset obesity, hypothalamic dysfunction, hypoventilation, and autonomic dysregulation syndrome neuro-endocrine tumours (ROHHAD-NET): Case series and learning points. J. Pediatr. Endocrinol. Metab., 2023, 0(0), 418-423. doi: 10.1515/jpem-2022-0376 PMID: 36696572
- Cryan, J.F.; ORiordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; Guzzetta, K.E.; Jaggar, M.; Long-Smith, C.M.; Lyte, J.M.; Martin, J.A.; Molinero-Perez, A.; Moloney, G.; Morelli, E.; Morillas, E.; OConnor, R.; Cruz-Pereira, J.S.; Peterson, V.L.; Rea, K.; Ritz, N.L.; Sherwin, E.; Spichak, S.; Teichman, E.M.; van de Wouw, M.; Ventura-Silva, A.P.; Wallace-Fitzsimons, S.E.; Hyland, N.; Clarke, G.; Dinan, T.G. The microbiota-gut-brain axis. Physiol. Rev., 2019, 99(4), 1877-2013. doi: 10.1152/physrev.00018.2018 PMID: 31460832
- Maniscalco, J.W.; Rinaman, L. Vagal interoceptive modulation of motivated behavior. Physiology, 2018, 33(2), 151-167. doi: 10.1152/physiol.00036.2017 PMID: 29412062
- Keezer, M.R.; Sisodiya, S.M.; Sander, J.W. Comorbidities of epilepsy: Current concepts and future perspectives. Lancet Neurol., 2016, 15(1), 106-115. doi: 10.1016/S1474-4422(15)00225-2 PMID: 26549780
- Virta, L.J.; Kolho, K.L. The risk of contracting pediatric inflammatory bowel disease in children with celiac disease, epilepsy, juvenile arthritis and type 1 diabetes-a nationwide study. J. Crohns Colitis, 2013, 7(1), 53-57. doi: 10.1016/j.crohns.2012.02.021 PMID: 22445838
- Wills, A.; Hovell, C.J. Neurological complications of enteric disease. Gut, 1996, 39(4), 501-504. doi: 10.1136/gut.39.4.501 PMID: 8944555
- Yeh, C.C.; Wang, H.H.; Chou, Y.C.; Hu, C.J.; Chou, W.H.; Chen, T.L.; Liao, C.C. High risk of gastrointestinal hemorrhage in patients with epilepsy: A nationwide cohort study. Mayo Clin. Proc., 2013, 88(10), 1091-1098. doi: 10.1016/j.mayocp.2013.06.024 PMID: 24012412
- Camara-Lemarroy, C.R.; Escobedo-Zúñiga, N.; Ortiz-Zacarias, D.; Peña-Avendaño, J.; Villarreal-Garza, E.; Díaz-Torres, M.A. Prevalence and impact of irritable bowel syndrome in people with epilepsy. Epilepsy Behav., 2016, 63, 29-33. doi: 10.1016/j.yebeh.2016.05.041 PMID: 27552483
- Chen, C.H.; Lin, C.L.; Kao, C.H. Irritable bowel syndrome increases the risk of epilepsy. Medicine, 2015, 94(36), e1497. doi: 10.1097/MD.0000000000001497 PMID: 26356716
- Gil-López, F.; Boget, T.; Manzanares, I.; Donaire, A.; Conde-Blanco, E.; Baillés, E.; Pintor, L.; Setoaín, X.; Bargalló, N.; Navarro, J.; Casanova, J.; Valls, J.; Roldán, P.; Rumià, J.; Casanovas, G.; Domenech, G.; Torres, F.; Carreño, M. External trigeminal nerve stimulation for drug resistant epilepsy: A randomized controlled trial. Brain Stimul., 2020, 13(5), 1245-1253. doi: 10.1016/j.brs.2020.06.005 PMID: 32534250
- Mercante, B.; Nuvoli, S.; Sotgiu, M.A.; Manca, A.; Todesco, S.; Melis, F.; Spanu, A.; Deriu, F. SPECT imaging of cerebral blood flow changes induced by acute trigeminal nerve stimulation in drug-resistant epilepsy. A pilot study. Clin. Neurophysiol., 2021, 132(6), 1274-1282. doi: 10.1016/j.clinph.2021.01.033 PMID: 33867259
- Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature, 2000, 405(6785), 458-462. doi: 10.1038/35013070 PMID: 10839541
- Giordano, C.; Marchiò, M.; Timofeeva, E.; Biagini, G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front. Neurol., 2014, 5, 63. doi: 10.3389/fneur.2014.00063 PMID: 24808888
- Kshirsagar, V.Y.; Nagarsenkar, S.; Wingkar, K.C.; Ahmed, M.; Colaco, S. Abdominal epilepsy in chronic recurrent abdominal pain. J. Pediatr. Neurosci., 2012, 7(3), 163-166. doi: 10.4103/1817-1745.106468 PMID: 23559997
- Pitra, S.; Smith, B.N. Musings on the wanderer: Whats new in our understanding of vago-vagal reflexes? VI. Central vagal circuits that control glucose metabolism. Am. J. Physiol. Gastrointest. Liver Physiol., 2021, 320(2), G175-G182. doi: 10.1152/ajpgi.00368.2020 PMID: 33205998
- Sasselli, V.; Pachnis, V.; Burns, A.J. The enteric nervous system. Dev. Biol., 2012, 366(1), 64-73. doi: 10.1016/j.ydbio.2012.01.012 PMID: 22290331
- Agostoni, E.; Chinnock, J.E.; Daly, M.D.B.; Murray, J.G. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J. Physiol., 1957, 135(1), 182-205. doi: 10.1113/jphysiol.1957.sp005703 PMID: 13398974
- Rush, A.J.; George, M.S.; Sackeim, H.A.; Marangell, L.B.; Husain, M.M.; Giller, C.; Nahas, Z.; Haines, S.; Simpson, R.K., Jr; Goodman, R. Vagus nerve stimulation (VNS) for treatment-resistant depressions: A multicenter study. See accompanying Editorial, in this issue. Biol. Psychiatry, 2000, 47(4), 276-286. doi: 10.1016/S0006-3223(99)00304-2 PMID: 10686262
- Young, V.R.; Ajami, A.M. Glutamate: An amino acid of particular distinction. J. Nutr., 2000, 130(4), 892S-900S. doi: 10.1093/jn/130.4.892S PMID: 10736349
- Kitamura, A.; Tsurugizawa, T.; Uematsu, A.; Torii, K.; Uneyama, H. New therapeutic strategy for amino acid medicine: Effects of dietary glutamate on gut and brain function. J. Pharmacol. Sci., 2012, 118(2), 138-144. doi: 10.1254/jphs.11R06FM PMID: 22293294
- Tsurugizawa, T.; Uematsu, A.; Nakamura, E.; Hasumura, M.; Hirota, M.; Kondoh, T.; Uneyama, H.; Torii, K. Mechanisms of neural response to gastrointestinal nutritive stimuli: The gut-brain axis. Gastroenterology, 2009, 137(1), 262-273. doi: 10.1053/j.gastro.2009.02.057 PMID: 19248781
- San Gabriel, A.; Uneyama, H. Amino acid sensing in the gastrointestinal tract. Amino Acids, 2013, 45(3), 451-461. doi: 10.1007/s00726-012-1371-2 PMID: 22865248
- Sawchenko, P.E. Central connections of the sensory and motor nuclei of the vagus nerve. J. Auton. Nerv. Syst., 1983, 9(1), 13-26. doi: 10.1016/0165-1838(83)90129-7 PMID: 6319474
- Dibué-Adjei, M.; Kamp, M.A.; Vonck, K. 30 years of vagus nerve stimulation trials in epilepsy: Do we need neuromodulation-specific trial designs? Epilepsy Res., 2019, 153, 71-75. doi: 10.1016/j.eplepsyres.2019.02.004 PMID: 30824370
- Penry, J.K.; Dean, J.C. Prevention of intractable partial seizures by intermittent vagal stimulation in humans: {reliminary results. Epilepsia, 1990, 31(s2), S40-S43. doi: 10.1111/j.1528-1157.1990.tb05848.x PMID: 2121469
- FineSmith, R.B.; Zampella, E.; Devinsky, O. Vagal nerve stimulator: A new approach to medically refractory epilepsy. N. J. Med., 1999, 96(6), 37-40. PMID: 10384766
- Beekwilder, J.P.; Beems, T. Overview of the clinical applications of vagus nerve stimulation. J. Clin. Neurophysiol., 2010, 27(2), 130-138. doi: 10.1097/WNP.0b013e3181d64d8a PMID: 20505378
- van der Kooy, D.; Koda, L.Y.; McGinty, J.F.; Gerfen, C.R.; Bloom, F.E. The organization of projections from the cortes, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J. Comp. Neurol., 1984, 224(1), 1-24. doi: 10.1002/cne.902240102 PMID: 6715573
- Krahl, S.E.; Clark, K.B.; Smith, D.C.; Browning, R.A. Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia, 1998, 39(7), 709-714. doi: 10.1111/j.1528-1157.1998.tb01155.x PMID: 9670898
- Raedt, R.; Clinckers, R.; Mollet, L.; Vonck, K.; El Tahry, R.; Wyckhuys, T.; De Herdt, V.; Carrette, E.; Wadman, W.; Michotte, Y.; Smolders, I.; Boon, P.; Meurs, A. Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. J. Neurochem., 2011, 117(3), 461-469. doi: 10.1111/j.1471-4159.2011.07214.x PMID: 21323924
- McMillin, D.L.; Richards, D.G.; Mein, E.A.; Nelson, C.D. The abdominal brain and enteric nervous system. J. Altern. Complement. Med., 1999, 5(6), 575-586. doi: 10.1089/acm.1999.5.575 PMID: 10630351
Supplementary files
