Exosomal Non-coding RNAs: A New Approach to Melanoma Diagnosis and Therapeutic Strategy
- Authors: Liu J.1, Hu X.1, Xin W.2, Wang X.3
-
Affiliations:
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital
- Department of Neurology, University Medical Center Göttingen
- Department of Emergency Medicine, The Second Affiliated Hospital of Baotou Medical College
- Issue: Vol 31, No 37 (2024)
- Pages: 6084-6109
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645092
- DOI: https://doi.org/10.2174/0109298673267553231017053329
- ID: 645092
Cite item
Full Text
Abstract
:Malignant melanoma (MM) is a highly aggressive cancer with a poor prognosis. Currently, although a variety of therapies are available for treating melanoma, MM is still a serious threat to the patients life due to numerous factors, such as the recurrence of tumors, the emergence of drug resistance, and the lack of effective therapeutic agents. Exosomes are biologically active lipid-bilayer extracellular vesicles secreted by diverse cell types that mediate intercellular signal communication. Studies found that exosomes are involved in cancer by carrying multiple bioactive molecules, including non-- coding RNAs (ncRNAs). The ncRNAs have been reported to play an important role in regulating proliferation, angiogenesis, immune regulation, invasion, metastasis, and treatment resistance of tumors. However, the functional role of exosomal ncRNAs in MM remains unknown. Therefore, this review summarizes the current state of melanoma diagnosis, treatment, and the application of exosomal ncRNAs in MM patients, which may provide new insights into the mechanisms involved in melanoma progression and serve as biomarkers for diagnosis and therapeutic targets.
Keywords
About the authors
Jie Liu
Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital
Email: info@benthamscience.net
Xiaoping Hu
Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital
Email: info@benthamscience.net
Wenqiang Xin
Department of Neurology, University Medical Center Göttingen
Email: info@benthamscience.net
Xianbin Wang
Department of Emergency Medicine, The Second Affiliated Hospital of Baotou Medical College
Author for correspondence.
Email: info@benthamscience.net
References
- Karimkhani, C.; Green, A.C.; Nijsten, T.; Weinstock, M.A.; Dellavalle, R.P.; Naghavi, M.; Fitzmaurice, C. The global burden of melanoma: Results from the global burden of disease study 2015. Br. J. Dermatol., 2017, 177(1), 134-140. doi: 10.1111/bjd.15510 PMID: 28369739
- Conforti, C.; Zalaudek, I. Epidemiology and risk factors of melanoma: A review. Dermatol. Pract. Concept., 2021, 11(Suppl. 1), 2021161S. doi: 10.5826/dpc.11S1a161S PMID: 34447610
- Fonseca, A.; Xia, C.; Lorenzo, A.J.; Krailo, M.; Olson, T.A.; Pashankar, F.; Malogolowkin, M.H.; Amatruda, J.F.; Billmire, D.F.; Rodriguez-Galindo, C.; Frazier, A.L.; Shaikh, F. Detection of relapse by tumor markers versus imaging in children and adolescents with nongerminomatous malignant germ cell tumors: A report from the childrens oncology group. J. Clin. Oncol., 2019, 37(5), 396-402. doi: 10.1200/JCO.18.00790 PMID: 30576269
- Quinodoz, S.; Guttman, M. Long noncoding RNAs: An emerging link between gene regulation and nuclear organization. Trends Cell Biol., 2014, 24(11), 651-663. doi: 10.1016/j.tcb.2014.08.009 PMID: 25441720
- Wang, J.; Zhu, S.; Meng, N.; He, Y.; Lu, R.; Yan, G.R. ncRNA-encoded peptides or proteins and cancer. Mol. Ther., 2019, 27(10), 1718-1725. doi: 10.1016/j.ymthe.2019.09.001 PMID: 31526596
- Rebecca, V.W.; Sondak, V.K.; Smalley, K.S.M. A brief history of melanoma. Melanoma Res., 2012, 22(2), 114-122. doi: 10.1097/CMR.0b013e328351fa4d PMID: 22395415
- Saranga-Perry, V.; Ambe, C.; Zager, J.S.; Kudchadkar, R.R. Recent developments in the medical and surgical treatment of melanoma. CA Cancer J. Clin., 2014, 64(3), 171-185. doi: 10.3322/caac.21224 PMID: 24676837
- Curtin, J.A.; Fridlyand, J.; Kageshita, T.; Patel, H.N.; Busam, K.J.; Kutzner, H.; Cho, K.H.; Aiba, S.; Bröcker, E.B.; LeBoit, P.E.; Pinkel, D.; Bastian, B.C. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med., 2005, 353(20), 2135-2147. doi: 10.1056/NEJMoa050092 PMID: 16291983
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Picconi, O.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur. J. Cancer, 2005, 41(1), 45-60. doi: 10.1016/j.ejca.2004.10.016 PMID: 15617990
- Bataille, V.; Bykov, V.J.; Sasieni, P.; Harulow, S.; Cuzick, J.; Hemminki, K. Photoadaptation to ultraviolet (UV) radiation in vivo : Photoproducts in epidermal cells following UVB therapy for psoriasis. Br. J. Dermatol., 2000, 143(3), 477-483. doi: 10.1111/j.1365-2133.2000.03698.x PMID: 10971317
- Newton-Bishop, J.A.; Chang, Y.M.; Elliott, F.; Chan, M.; Leake, S.; Karpavicius, B.; Haynes, S.; Fitzgibbon, E.; Kukalizch, K.; Randerson-Moor, J.; Elder, D.E.; Bishop, D.T.; Barrett, J.H. Relationship between sun exposure and melanoma risk for tumours in different body sites in a large case-control study in a temperate climate. Eur. J. Cancer, 2011, 47(5), 732-741. doi: 10.1016/j.ejca.2010.10.008 PMID: 21084183
- Joshua, A.M. Melanoma prevention: Are we doing enough? A Canadian perspective. Curr. Oncol., 2012, 19(6), 462-467. doi: 10.3747/co.19.1222 PMID: 23300369
- Bevona, C.; Goggins, W.; Quinn, T.; Fullerton, J.; Tsao, H. Cutaneous melanomas associated with nevi. Arch. Dermatol., 2003, 139(12), 1620-1624. doi: 10.1001/archderm.139.12.1620 PMID: 14676081
- Holly, E.A.; Kelly, J.W.; Shpall, S.N.; Chiu, S.H. Number of melanocytic nevi as a major risk factor for malignant melanoma. J. Am. Acad. Dermatol., 1987, 17(3), 459-468. doi: 10.1016/S0190-9622(87)70230-8 PMID: 3655025
- Grob, J.J.; Gouvernet, J.; Aymar, D.; Mostaque, A.; Romano, M.H.; Collet, A.M.; Noe, M.C.; Diconstanzo, M.P.; Bonerandi, J.J. Count of benign melanocytic nevi as a major indicator of risk for nonfamilial nodular and superficial spreading melanoma. Cancer, 1990, 66(2), 387-395. doi: 10.1002/1097-0142(19900715)66:23.0.CO;2-J PMID: 2369719
- Halpern, A.C.; Guerry, D., IV; Elder, D.E.; Clark, W.H., Jr; Synnestvedt, M.; Norman, S.; Ayerle, R. Dysplastic nevi as risk markers of sporadic (nonfamilial) melanoma. A case-control study. Arch. Dermatol., 1991, 127(7), 995-999. doi: 10.1001/archderm.1991.01680060069006 PMID: 2064418
- Ford, D.; Bliss, J.M.; Swerdlow, A.J.; Armstrong, B.K.; Franceschi, S.; Green, A.; Holly, E.A.; Mack, T.; Mackie, R.M.; Østerlind, A.; Walter, S.D.; Peto, J.; Easton, D.F. Risk of cutaneous melanoma associated with a family history of the disease. Int. J. Cancer, 1995, 62(4), 377-381. doi: 10.1002/ijc.2910620403 PMID: 7635561
- Hahn, A.W.; Menk, A.V.; Rivadeneira, D.B.; Augustin, R.C.; Xu, M.; Li, J.; Wu, X.; Mishra, A.K.; Gide, T.N.; Quek, C.; Zang, Y.; Spencer, C.N.; Menzies, A.M.; Daniel, C.R.; Hudgens, C.W.; Nowicki, T.; Haydu, L.E.; Khan, M.A.W.; Gopalakrishnan, V.; Burton, E.M.; Malke, J.; Simon, J.M.; Bernatchez, C.; Putluri, N.; Woodman, S.E.; Vashisht Gopal, Y.N.; Guerrieri, R.; Fischer, G.M.; Wang, J.; Wani, K.M.; Thompson, J.F.; Lee, J.E.; Hwu, P.; Ajami, N.; Gershenwald, J.E.; Long, G.V.; Scolyer, R.A.; Tetzlaff, M.T.; Lazar, A.J.; Schadendorf, D.; Wargo, J.A.; Kirkwood, J.M.; DeBerardinis, R.J.; Liang, H.; Futreal, A.; Zhang, J.; Wilmott, J.S.; Peng, W.; Davies, M.A.; Delgoffe, G.M.; Najjar, Y.G.; McQuade, J.L. Obesity is associated with altered tumor metabolism in metastatic melanoma. Clin. Cancer Res., 2023, 29(1), 154-164. doi: 10.1158/1078-0432.CCR-22-2661 PMID: 36166093
- Dobrică, E.C.; Banciu, M.L.; Kipkorir, V.; Khazeei Tabari, M.A.; Cox, M.J.; Simhachalam Kutikuppala, L.V.; Găman, M.A. Diabetes and skin cancers: Risk factors, molecular mechanisms and impact on prognosis. World J. Clin. Cases, 2022, 10(31), 11214-11225. doi: 10.12998/wjcc.v10.i31.11214 PMID: 36387789
- Rollan, M.P.; Cabrera, R.; Schwartz, R.A. Current knowledge of immunosuppression as a risk factor for skin cancer development. Crit. Rev. Oncol. Hematol., 2022, 177, 103754. doi: 10.1016/j.critrevonc.2022.103754 PMID: 35803453
- Asgari, M.M.; Warton, E.M.; Whittemore, A.S. Family history of skin cancer is associated with increased risk of cutaneous squamous cell carcinoma. Dermatol. Surg., 2015, 41(4), 481-486. doi: 10.1097/DSS.0000000000000292 PMID: 25760557
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B.A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G.J.; Bigner, D.D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J.W.C.; Leung, S.Y.; Yuen, S.T.; Weber, B.L.; Seigler, H.F.; Darrow, T.L.; Paterson, H.; Marais, R.; Marshall, C.J.; Wooster, R.; Stratton, M.R.; Futreal, P.A. Mutations of the BRAF gene in human cancer. Nature, 2002, 417(6892), 949-954. doi: 10.1038/nature00766 PMID: 12068308
- Pratilas, C.A.; Taylor, B.S.; Ye, Q.; viale, A.; Sander, C.; Solit, D.B.; Rosen, N. V600E BRAF is associated with disabled feedback inhibition of RAFMEK signaling and elevated transcriptional output of the pathway. Proc. Natl. Acad. Sci. USA, 2009, 106(11), 4519-4524. doi: 10.1073/pnas.0900780106 PMID: 19251651
- Turski, M.L.; Vidwans, S.J.; Janku, F.; Garrido-Laguna, I.; Munoz, J.; Schwab, R.; Subbiah, V.; Rodon, J.; Kurzrock, R. Genomically driven tumors and actionability across histologies: BRAF -mutant cancers as a paradigm. Mol. Cancer Ther., 2016, 15(4), 533-547. doi: 10.1158/1535-7163.MCT-15-0643 PMID: 27009213
- Bauer, J.; Büttner, P.; Murali, R.; Okamoto, I.; Kolaitis, N.A.; Landi, M.T.; Scolyer, R.A.; Bastian, B.C. BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res., 2011, 24(2), 345-351. doi: 10.1111/j.1755-148X.2011.00837.x PMID: 21324100
- Heppt, M.V.; Siepmann, T.; Engel, J.; Schubert-Fritschle, G.; Eckel, R.; Mirlach, L.; Kirchner, T.; Jung, A.; Gesierich, A.; Ruzicka, T.; Flaig, M.J.; Berking, C. Prognostic significance of BRAF and NRAS mutations in melanoma: A German study from routine care. BMC Cancer, 2017, 17(1), 536. doi: 10.1186/s12885-017-3529-5 PMID: 28797232
- Shtivelman, E.; Davies, M.A.; Hwu, P.; Yang, J.; Lotem, M.; Oren, M.; Flaherty, K.T.; Fisher, D.E. Pathways and therapeutic targets in melanoma. Oncotarget, 2014, 5(7), 1701-1752. doi: 10.18632/oncotarget.1892 PMID: 24743024
- He, J.; Huang, W.; Li, X.; Wang, J.; Nie, Y.; Li, G.; Wang, X.; Cao, H.; Chen, X.; Wang, X. A new ferroptosis-related genetic mutation risk model predicts the prognosis of skin cutaneous melanoma. Front. Genet., 2023, 13, 988909. doi: 10.3389/fgene.2022.988909 PMID: 36685905
- Smalley, K.S.M.; Xiao, M.; Villanueva, J.; Nguyen, T.K.; Flaherty, K.T.; Letrero, R.; Van Belle, P.; Elder, D.E.; Wang, Y.; Nathanson, K.L.; Herlyn, M. CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene, 2009, 28(1), 85-94. doi: 10.1038/onc.2008.362 PMID: 18794803
- Wang, W.; Wang, S. The prognostic value of immune-related genes AZGP1, SLCO5A1, and CTF1 in Uveal melanoma. Front. Oncol., 2022, 12, 918230. doi: 10.3389/fonc.2022.918230 PMID: 36052234
- Prade, M.; Sancho-Garnier, H.; Cesarini, J.P.; Cochran, A. Difficulties encountered in the application of clark classification and the Breslow thickness measurement in cutaneous malignant melanoma. Int. J. Cancer, 1980, 26(2), 159-163. doi: 10.1002/ijc.2910260206 PMID: 7009438
- Gerami, P.; Busam, K.; Cochran, A.; Cook, M.G.; Duncan, L.M.; Elder, D.E.; Fullen, D.R.; Guitart, J.; LeBoit, P.E.; Mihm, M.C., Jr; Prieto, V.G.; Rabkin, M.S.; Scolyer, R.A.; Xu, X.; Yun, S.J.; Obregon, R.; Yazdan, P.; Cooper, C.; Weitner, B.B.; Rademaker, A.; Barnhill, R.L. Histomorphologic assessment and interobserver diagnostic reproducibility of atypical spitzoid melanocytic neoplasms with long-term follow-up. Am. J. Surg. Pathol., 2014, 38(7), 934-940. doi: 10.1097/PAS.0000000000000198 PMID: 24618612
- Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther., 2019, 20(11), 1366-1379. doi: 10.1080/15384047.2019.1640032 PMID: 31366280
- Kucher, C.; Zhang, P.J.; Pasha, T.; Elenitsas, R.; Wu, H.; Ming, M.E.; Elder, D.E.; Xu, X. Expression of Melan-A and Ki-67 in desmoplastic melanoma and desmoplastic nevi. Am. J. Dermatopathol., 2004, 26(6), 452-457. doi: 10.1097/00000372-200412000-00002 PMID: 15618925
- Willis, B.C.; Johnson, G.; Wang, J.; Cohen, C. SOX10: A useful marker for identifying metastatic melanoma in sentinel lymph nodes. Appl. Immunohistochem. Mol. Morphol., 2015, 23(2), 109-112. doi: 10.1097/PAI.0000000000000097 PMID: 25356946
- Nielsen, P.S.; Riber-Hansen, R.; Steiniche, T. Immunohistochemical double stains against Ki67/MART1 and HMB45/MITF: Promising diagnostic tools in melanocytic lesions. Am. J. Dermatopathol., 2011, 33(4), 361-370. doi: 10.1097/DAD.0b013e3182120173 PMID: 21610457
- Biernacka, A.; Linos, K.D.; DeLong, P.A.; Suriawinata, A.A.; Padmanabhan, V.; Liu, X. A case of S-100 negative melanoma: A diagnostic pitfall in the workup of a poorly differentiated metastatic tumor of unknown origin. Cytojournal, 2016, 13, 21. doi: 10.4103/1742-6413.190914 PMID: 27729935
- Muzumdar, S.; Argraves, M.; Kristjansson, A.; Ferenczi, K.; Dadras, S.S. A quantitative comparison between SOX10 and MART-1 immunostaining to detect melanocytic hyperplasia in chronically sun-damaged skin. J. Cutan. Pathol., 2018, 45(4), 263-268. doi: 10.1111/cup.13115 PMID: 29377259
- Harpio, R.; Einarsson, R. S100 proteins as cancer biomarkers with focus on S100B in malignant melanoma. Clin. Biochem., 2004, 37(7), 512-518. doi: 10.1016/j.clinbiochem.2004.05.012 PMID: 15234232
- Desai, A.D.; Chinta, S.; Yeh, C.; Shah, V.P.; Shah, R.; Paskhover, B.; Schwartz, R.A. An analysis of lactate dehydrogenase (LDH) levels in advanced stage IV melanoma of the skin: Prognostic capabilities and demographic variability. Arch. Dermatol. Res., 2022, 315(4), 799-806. doi: 10.1007/s00403-022-02425-0 PMID: 36318305
- Strojan, P. Role of radiotherapy in melanoma management. Radiol. Oncol., 2010, 44(1), 1-12. doi: 10.2478/v10019-010-0008-x PMID: 22933884
- Amaria, R.N.; Reddy, S.M.; Tawbi, H.A.; Davies, M.A.; Ross, M.I.; Glitza, I.C.; Cormier, J.N.; Lewis, C.; Hwu, W.J.; Hanna, E.; Diab, A.; Wong, M.K.; Royal, R.; Gross, N.; Weber, R.; Lai, S.Y.; Ehlers, R.; Blando, J.; Milton, D.R.; Woodman, S.; Kageyama, R.; Wells, D.K.; Hwu, P.; Patel, S.P.; Lucci, A.; Hessel, A.; Lee, J.E.; Gershenwald, J.; Simpson, L.; Burton, E.M.; Posada, L.; Haydu, L.; Wang, L.; Zhang, S.; Lazar, A.J.; Hudgens, C.W.; Gopalakrishnan, V.; Reuben, A.; Andrews, M.C.; Spencer, C.N.; Prieto, V.; Sharma, P.; Allison, J.; Tetzlaff, M.T.; Wargo, J.A. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat. Med., 2018, 24(11), 1649-1654. doi: 10.1038/s41591-018-0197-1 PMID: 30297909
- Bhatia, S.; Tykodi, S.S.; Thompson, J.A. Treatment of metastatic melanoma: An overview. Oncology, 2009, 23(6), 488-496. PMID: 19544689
- Rooney, M.S.; Shukla, S.A.; Wu, C.J.; Getz, G.; Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell, 2015, 160(1-2), 48-61. doi: 10.1016/j.cell.2014.12.033 PMID: 25594174
- Beermann, J.; Piccoli, M.T.; Viereck, J.; Thum, T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol. Rev., 2016, 96(4), 1297-1325. doi: 10.1152/physrev.00041.2015 PMID: 27535639
- Stachowiak, Z.; Narożna, B.; Szczepankiewicz, A. Non-Coding RNAs in pulmonary diseases: Comparison of different airway-derived biosamples. Int. J. Mol. Sci., 2023, 24(3), 2006. doi: 10.3390/ijms24032006 PMID: 36768329
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854. doi: 10.1016/0092-8674(93)90529-Y PMID: 8252621
- Vishnoi, A.; Rani, S. MiRNA biogenesis and regulation of diseases: An overview. Methods Mol. Biol., 2017, 1509, 1-10. doi: 10.1007/978-1-4939-6524-3_1 PMID: 27826912
- Carthew, R.W.; Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4), 642-655. doi: 10.1016/j.cell.2009.01.035 PMID: 19239886
- Bonasio, R.; Shiekhattar, R. Regulation of transcription by long noncoding RNAs. Annu. Rev. Genet., 2014, 48(1), 433-455. doi: 10.1146/annurev-genet-120213-092323 PMID: 25251851
- Okazaki, Y.; Furuno, M.; Kasukawa, T.; Adachi, J.; Bono, H.; Kondo, S.; Nikaido, I.; Osato, N.; Saito, R.; Suzuki, H.; Yamanaka, I.; Kiyosawa, H.; Yagi, K.; Tomaru, Y.; Hasegawa, Y.; Nogami, A.; Schönbach, C.; Gojobori, T.; Baldarelli, R.; Hill, D.P.; Bult, C.; Hume, D.A.; Quackenbush, J.; Schriml, L.M.; Kanapin, A.; Matsuda, H.; Batalov, S.; Beisel, K.W.; Blake, J.A.; Bradt, D.; Brusic, V.; Chothia, C.; Corbani, L.E.; Cousins, S.; Dalla, E.; Dragani, T.A.; Fletcher, C.F.; Forrest, A.; Frazer, K.S.; Gaasterland, T.; Gariboldi, M.; Gissi, C.; Godzik, A.; Gough, J.; Grimmond, S.; Gustincich, S.; Hirokawa, N.; Jackson, I.J.; Jarvis, E.D.; Kanai, A.; Kawaji, H.; Kawasawa, Y.; Kedzierski, R.M.; King, B.L.; Konagaya, A.; Kurochkin, I.V.; Lee, Y.; Lenhard, B.; Lyons, P.A.; Maglott, D.R.; Maltais, L.; Marchionni, L.; McKenzie, L.; Miki, H.; Nagashima, T.; Numata, K.; Okido, T.; Pavan, W.J.; Pertea, G.; Pesole, G.; Petrovsky, N.; Pillai, R.; Pontius, J.U.; Qi, D.; Ramachandran, S.; Ravasi, T.; Reed, J.C.; Reed, D.J.; Reid, J.; Ring, B.Z.; Ringwald, M.; Sandelin, A.; Schneider, C.; Semple, C.A.; Setou, M.; Shimada, K.; Sultana, R.; Takenaka, Y.; Taylor, M.S.; Teasdale, R.D.; Tomita, M.; Verardo, R.; Wagner, L.; Wahlestedt, C.; Wang, Y.; Watanabe, Y.; Wells, C.; Wilming, L.G.; Wynshaw-Boris, A.; Yanagisawa, M.; Yang, I.; Yang, L.; Yuan, Z.; Zavolan, M.; Zhu, Y.; Zimmer, A.; Carninci, P.; Hayatsu, N.; Hirozane-Kishikawa, T.; Konno, H.; Nakamura, M.; Sakazume, N.; Sato, K.; Shiraki, T.; Waki, K.; Kawai, J.; Aizawa, K.; Arakawa, T.; Fukuda, S.; Hara, A.; Hashizume, W.; Imotani, K.; Ishii, Y.; Itoh, M.; Kagawa, I.; Miyazaki, A.; Sakai, K.; Sasaki, D.; Shibata, K.; Shinagawa, A.; Yasunishi, A.; Yoshino, M.; Waterston, R.; Lander, E.S.; Rogers, J.; Birney, E.; Hayashizaki, Y.; Consortium, F. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 2002, 420(6915), 563-573. doi: 10.1038/nature01266 PMID: 12466851
- Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4), 629-641. doi: 10.1016/j.cell.2009.02.006 PMID: 19239885
- Wierzbicki, A.T.; Haag, J.R.; Pikaard, C.S. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell, 2008, 135(4), 635-648. doi: 10.1016/j.cell.2008.09.035 PMID: 19013275
- Wierzbicki, A.T.; Ream, T.S.; Haag, J.R.; Pikaard, C.S. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat. Genet., 2009, 41(5), 630-634. doi: 10.1038/ng.365 PMID: 19377477
- McKinlay, A.; Podicheti, R.; Wendte, J.M.; Cocklin, R.; Rusch, D.B. RNA polymerases IV and V influence the 3′ boundaries of Polymerase II transcription units in Arabidopsis. RNA Biol., 2018, 15(2), 269-279. doi: 10.1080/15476286.2017.1409930 PMID: 29199514
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; Loewer, A.; Ziebold, U.; Landthaler, M.; Kocks, C.; le Noble, F.; Rajewsky, N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441), 333-338. doi: 10.1038/nature11928 PMID: 23446348
- Abu, N.; Jamal, R. Circular RNAs as promising biomarkers: A mini-review. Front. Physiol., 2016, 7, 355. doi: 10.3389/fphys.2016.00355 PMID: 27588005
- Li, R.; Jiang, J.; Shi, H.; Qian, H.; Zhang, X.; Xu, W. CircRNA: A rising star in gastric cancer. Cell. Mol. Life Sci., 2020, 77(9), 1661-1680. doi: 10.1007/s00018-019-03345-5 PMID: 31659415
- Dong, Y.; He, D.; Peng, Z.; Peng, W.; Shi, W.; Wang, J.; Li, B.; Zhang, C.; Duan, C. Circular RNAs in cancer: An emerging key player. J. Hematol. Oncol., 2017, 10(1), 2. doi: 10.1186/s13045-016-0370-2 PMID: 28049499
- Tan, S.; Gou, Q.; Pu, W.; Guo, C.; Yang, Y.; Wu, K.; Liu, Y.; Liu, L.; Wei, Y.Q.; Peng, Y. Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer. Cell Res., 2018, 28(6), 693-695. doi: 10.1038/s41422-018-0033-7 PMID: 29628502
- Herranz, H.; Cohen, S.M. MicroRNAs and gene regulatory networks: Managing the impact of noise in biological systems. Genes Dev., 2010, 24(13), 1339-1344. doi: 10.1101/gad.1937010 PMID: 20595229
- Providing a comprehensive district psychiatric service for the adult mentally ill. Appendix 1. Syndicate A discussion paper. Rep. Health Soc. Subj., 1974, (8), 15-17. PMID: 4463426
- Guarnerio, J.; Bezzi, M.; Jeong, J.C.; Paffenholz, S.V.; Berry, K.; Naldini, M.M.; Lo-Coco, F.; Tay, Y.; Beck, A.H.; Pandolfi, P.P. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell, 2016, 166(4), 1055-1056. doi: 10.1016/j.cell.2016.07.035 PMID: 27518567
- Xu, R.; Greening, D.W.; Rai, A.; Ji, H.; Simpson, R.J. Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods, 2015, 87, 11-25. doi: 10.1016/j.ymeth.2015.04.008 PMID: 25890246
- Livshits, M.A.; Khomyakova, E.; Evtushenko, E.G.; Lazarev, V.N.; Kulemin, N.A.; Semina, S.E.; Generozov, E.V.; Govorun, V.M. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Sci. Rep., 2015, 5(1), 17319. doi: 10.1038/srep17319 PMID: 26616523
- Shu, S.L.; Allen, C.L.; Benjamin-Davalos, S.; Koroleva, M.; MacFarland, D.; Minderman, H.; Ernstoff, M.S. A Rapid Exosome Isolation Using Ultrafiltration and Size Exclusion Chromatography (REIUS) method for exosome isolation from melanoma cell lines. Methods Mol. Biol., 2021, 2265, 289-304. doi: 10.1007/978-1-0716-1205-7_22 PMID: 33704723
- Van Deun, J.; Jo, A.; Li, H.; Lin, H.Y.; Weissleder, R.; Im, H.; Lee, H. Integrated dual-mode chromatography to enrich extracellular vesicles from plasma. Adv. Biosyst., 2020, 4(12), 1900310. doi: 10.1002/adbi.201900310 PMID: 32351054
- Mizutani, K.; Terazawa, R.; Kameyama, K.; Kato, T.; Horie, K.; Tsuchiya, T.; Seike, K.; Ehara, H.; Fujita, Y.; Kawakami, K.; Ito, M.; Deguchi, T. Isolation of prostate cancer-related exosomes. Anticancer Res., 2014, 34(7), 3419-3423. PMID: 24982349
- Ding, M.; Wang, C.; Lu, X.; Zhang, C.; Zhou, Z.; Chen, X.; Zhang, C.Y.; Zen, K.; Zhang, C. Comparison of commercial exosome isolation kits for circulating exosomal microRNA profiling. Anal. Bioanal. Chem., 2018, 410(16), 3805-3814. doi: 10.1007/s00216-018-1052-4 PMID: 29671027
- Guo, S.C.; Tao, S.C.; Dawn, H. Microfluidics-based on-a-chip systems for isolating and analysing extracellular vesicles. J. Extracell. Vesicles, 2018, 7(1), 1508271. doi: 10.1080/20013078.2018.1508271 PMID: 30151077
- Gao, Z.; Pang, B.; Li, J.; Gao, N.; Fan, T.; Li, Y. Emerging role of exosomes in liquid biopsy for monitoring prostate cancer invasion and metastasis. Front. Cell Dev. Biol., 2021, 9, 679527. doi: 10.3389/fcell.2021.679527 PMID: 34017837
- Thery, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell. Biol., 2006, Chapter 3, 22. doi: 10.1002/0471143030.cb0322s30
- Li, Y.; Zhang, Z.; Chen, J.; Liu, W.; Lai, W.; Liu, B.; Li, X.; Liu, L.; Xu, S.; Dong, Q.; Wang, M.; Duan, X.; Tan, J.; Zheng, Y.; Zhang, P.; Fan, G.; Wong, J.; Xu, G.L.; Wang, Z.; Wang, H.; Gao, S.; Zhu, B. Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature, 2018, 564(7734), 136-140. doi: 10.1038/s41586-018-0751-5 PMID: 30487604
- Arraud, N.; Linares, R.; Tan, S.; Gounou, C.; Pasquet, J.M.; Mornet, S.; Brisson, A.R. Extracellular vesicles from blood plasma: Determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost., 2014, 12(5), 614-627. doi: 10.1111/jth.12554 PMID: 24618123
- Kashkanova, A.D.; Blessing, M.; Gemeinhardt, A.; Soulat, D.; Sandoghdar, V. Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nat. Methods, 2022, 19(5), 586-593. doi: 10.1038/s41592-022-01460-z PMID: 35534632
- Inglis, H.; Norris, P.; Danesh, A. Techniques for the analysis of extracellular vesicles using flow cytometry. J. Vis. Exp., 2015, 97
- Tiruvayipati, S.; Wolfgeher, D.; Yue, M.; Duan, F.; Andrade, J.; Jiang, H.; Schuger, L. Variability in protein cargo detection in technical and biological replicates of exosome-enriched extracellular vesicles. PLoS One, 2020, 15(3), e0228871. doi: 10.1371/journal.pone.0228871 PMID: 32119684
- Skliar, M.; Chernyshev, V.S. Imaging of extracellular vesicles by atomic force microscopy. J. Vis. Exp., 2019, 151
- Sung, B.H.; von Lersner, A.; Guerrero, J.; Krystofiak, E.S.; Inman, D.; Pelletier, R.; Zijlstra, A.; Ponik, S.M.; Weaver, A.M. A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nat. Commun., 2020, 11(1), 2092. doi: 10.1038/s41467-020-15747-2 PMID: 32350252
- Di Leva, G.; Piovan, C.; Gasparini, P.; Ngankeu, A.; Taccioli, C.; Briskin, D.; Cheung, D.G.; Bolon, B.; Anderlucci, L.; Alder, H.; Nuovo, G.; Li, M.; Iorio, M.V.; Galasso, M.; Ramasamy, S.; Marcucci, G.; Perrotti, D.; Powell, K.A.; Bratasz, A.; Garofalo, M.; Nephew, K.P.; Croce, C.M. Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status. PLoS Genet., 2013, 9(3), e1003311. doi: 10.1371/journal.pgen.1003311 PMID: 23505378
- Felicetti, F.; De Feo, A.; Coscia, C.; Puglisi, R.; Pedini, F.; Pasquini, L.; Bellenghi, M.; Errico, M.C.; Pagani, E.; Carè, A. Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma. J. Transl. Med., 2016, 14(1), 56. doi: 10.1186/s12967-016-0811-2 PMID: 26912358
- Que, R.; Lin, C.; Ding, G.; Wu, Z.; Cao, L. Increasing the immune activity of exosomes: The effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer. J. Zhejiang Univ. Sci. B, 2016, 17(5), 352-360. doi: 10.1631/jzus.B1500305 PMID: 27143262
- Fabbri, M.; Paone, A.; Calore, F.; Galli, R.; Gaudio, E.; Santhanam, R.; Lovat, F.; Fadda, P.; Mao, C.; Nuovo, G.J.; Zanesi, N.; Crawford, M.; Ozer, G.H.; Wernicke, D.; Alder, H.; Caligiuri, M.A.; Nana-Sinkam, P.; Perrotti, D.; Croce, C.M. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci., 2012, 109(31), E2110-E2116. doi: 10.1073/pnas.1209414109 PMID: 22753494
- Li, X.; Liu, D.; Chen, H.; Zeng, B.; Zhao, Q.; Zhang, Y.; Chen, Y.; Wang, J.; Xing, H.R. Melanoma stem cells promote metastasis via exosomal miR-1268a inactivation of autophagy. Biol. Res., 2022, 55(1), 29. doi: 10.1186/s40659-022-00397-z PMID: 36182945
- Sun, X.; Li, J.; Sun, Y.; Zhang, Y.; Dong, L.; Shen, C.; Yang, L.; Yang, M.; Li, Y.; Shen, G.; Tu, Y.; Tao, J. miR-7 reverses the resistance to BRAFi in melanoma by targeting EGFR/IGF-1R/CRAF and inhibiting the MAPK and PI3K/AKT signaling pathways. Oncotarget, 2016, 7(33), 53558-53570. doi: 10.18632/oncotarget.10669 PMID: 27448964
- Ma, Y.; Wang, N.; Yang, S. Skin cutaneous melanoma properties of immune-related lncRNAs identifying potential prognostic biomarkers. Aging, 2022, 14(7), 3030-3048. doi: 10.18632/aging.203982 PMID: 35361740
- Chen, L.; Ma, D.; Li, Y.; Li, X.; Zhao, L.; Zhang, J.; Song, Y. Effect of long non-coding RNA PVT1 on cell proliferation and migration in melanoma. Int. J. Mol. Med., 2018, 41(3), 1275-1282. PMID: 29286144
- Luan, W.; Li, R.; Liu, L.; Ni, X.; Shi, Y.; Xia, Y.; Wang, J.; Lu, F.; Xu, B. Long non-coding RNA HOTAIR acts as a competing endogenous RNA to promote malignant melanoma progression by sponging miR-152-3p. Oncotarget, 2017, 8(49), 85401-85414. doi: 10.18632/oncotarget.19910 PMID: 29156728
- Wu, L.; Zhu, L.; Li, Y.; Zheng, Z.; Lin, X.; Yang, C. LncRNA MEG3 promotes melanoma growth, metastasis and formation through modulating miR-21/E-cadherin axis. Cancer Cell Int., 2020, 20(1), 12. doi: 10.1186/s12935-019-1087-4 PMID: 31938020
- Zhu, L.; Wang, Y.; Yang, C.; Li, Y.; Zheng, Z.; Wu, L.; Zhou, H. RETRACTED ARTICLE: Long non-coding RNA MIAT promotes the growth of melanoma via targeting miR-150. Hum. Cell, 2020, 33(3), 819-829. doi: 10.1007/s13577-020-00340-y PMID: 32300960
- Tuo, B.; Chen, Z.; Dang, Q.; Chen, C.; Zhang, H.; Hu, S.; Sun, Z. Roles of exosomal circRNAs in tumour immunity and cancer progression. Cell Death Dis., 2022, 13(6), 539. doi: 10.1038/s41419-022-04949-9 PMID: 35676257
- Yanagisawa, S.; Baker, J.R.; Vuppusetty, C.; Fenwick, P.; Donnelly, L.E.; Ito, K.; Barnes, P.J. Decreased phosphatase PTEN amplifies PI3K signaling and enhances proinflammatory cytokine release in COPD. Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, 313(2), L230-L239. doi: 10.1152/ajplung.00382.2016 PMID: 28522564
- Wang, J.; Zhao, X.; Wang, Y.; Ren, F.; Sun, D.; Yan, Y.; Kong, X.; Bu, J.; Liu, M.; Xu, S. circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis., 2020, 11(1), 32. doi: 10.1038/s41419-020-2230-9 PMID: 31949130
- Díaz-Lagares, A.; Alegre, E.; Arroyo, A.; González-Cao, M.; Zudaire, M.E.; Viteri, S.; Martín-Algarra, S.; González, A. Evaluation of multiple serum markers in advanced melanoma. Tumour Biol., 2011, 32(6), 1155-1161. doi: 10.1007/s13277-011-0218-x PMID: 21858537
- Alegre, E.; Sammamed, M.; Fernández-Landázuri, S.; Zubiri, L.; González, Á. Circulating biomarkers in malignant melanoma. Adv. Clin. Chem., 2015, 69, 47-89. doi: 10.1016/bs.acc.2014.12.002 PMID: 25934359
- Egberts, F.; Hitschler, W.N.; Weichenthal, M.; Hauschild, A. Prospective monitoring of adjuvant treatment in high-risk melanoma patients: Lactate dehydrogenase and protein S-100B as indicators of relapse. Melanoma Res., 2009, 19(1), 31-35. doi: 10.1097/CMR.0b013e32831993cc PMID: 19104452
- Wevers, K.P.; Kruijff, S.; Speijers, M.J.; Bastiaannet, E.; Muller Kobold, A.C.; Hoekstra, H.J. S-100B: A stronger prognostic biomarker than LDH in stage IIIB-C melanoma. Ann. Surg. Oncol., 2013, 20(8), 2772-2779. doi: 10.1245/s10434-013-2949-y PMID: 23512078
- Kucharzewska, P.; Belting, M. Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress. J. Extracell. Vesicles, 2013, 2(1), 20304. doi: 10.3402/jev.v2i0.20304 PMID: 24009895
- Wendler, F.; Bota-Rabassedas, N.; Franch-Marro, X. Cancer becomes wasteful: Emerging roles of exosomes in cell-fate determination. J. Extracell. Vesicles, 2013, 2(1), 22390. doi: 10.3402/jev.v2i0.22390 PMID: 24223259
- Wang, Z.; Chen, J.Q.; Liu, J.; Tian, L. Exosomes in tumor microenvironment: Novel transporters and biomarkers. J. Transl. Med., 2016, 14(1), 297. doi: 10.1186/s12967-016-1056-9 PMID: 27756426
- Teng, Y.; Ren, Y.; Hu, X.; Mu, J.; Samykutty, A.; Zhuang, X.; Deng, Z.; Kumar, A.; Zhang, L.; Merchant, M.L.; Yan, J.; Miller, D.M.; Zhang, H.G. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat. Commun., 2017, 8(1), 14448. doi: 10.1038/ncomms14448 PMID: 28211508
- Li, Y.; Yin, Z.; Fan, J.; Zhang, S.; Yang, W. The roles of exosomal miRNAs and lncRNAs in lung diseases. Signal Transduct. Target. Ther., 2019, 4(1), 47. doi: 10.1038/s41392-019-0080-7 PMID: 31728212
- Desmond, B.J.; Dennett, E.R.; Danielson, K.M. Circulating extracellular vesicle MicroRNA as diagnostic biomarkers in early colorectal cancer-A review. Cancers, 2019, 12(1), 52. doi: 10.3390/cancers12010052 PMID: 31878015
- Kumata, Y.; Iinuma, H.; Suzuki, Y.; Tsukahara, D.; Midorikawa, H.; Igarashi, Y.; Soeda, N.; Kiyokawa, T.; Horikawa, M.; Fukushima, R. Exosome-encapsulated microRNA-23b as a minimally invasive liquid biomarker for the prediction of recurrence and prognosis of gastric cancer patients in each tumor stage. Oncol. Rep., 2018, 40(1), 319-330. doi: 10.3892/or.2018.6418 PMID: 29749537
- Tengda, L.; Shuping, L.; Mingli, G.; Jie, G.; Yun, L.; Weiwei, Z.; Anmei, D. Serum exosomal microRNAs as potent circulating biomarkers for melanoma. Melanoma Res., 2018, 28(4), 295-303. doi: 10.1097/CMR.0000000000000450 PMID: 29750752
- Lunavat, T.R.; Cheng, L.; Einarsdottir, B.O.; Olofsson Bagge, R.; Veppil Muralidharan, S.; Sharples, R.A.; Lässer, C.; Gho, Y.S.; Hill, A.F.; Nilsson, J.A.; Lötvall, J. BRAF V600 inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells. Proc. Natl. Acad. Sci. USA, 2017, 114(29), E5930-E5939. doi: 10.1073/pnas.1705206114 PMID: 28684402
- Chen, L.; Karisma, V.W.; Liu, H.; Zhong, L. MicroRNA-300: A transcellular mediator in exosome regulates melanoma progression. Front. Oncol., 2019, 9, 1005. doi: 10.3389/fonc.2019.01005 PMID: 31681565
- Zhuang, G.; Wu, X.; Jiang, Z.; Kasman, I.; Yao, J.; Guan, Y.; Oeh, J.; Modrusan, Z.; Bais, C.; Sampath, D.; Ferrara, N. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J., 2012, 31(17), 3513-3523. doi: 10.1038/emboj.2012.183 PMID: 22773185
- Flockhart, R.J.; Webster, D.E.; Qu, K.; Mascarenhas, N.; Kovalski, J.; Kretz, M.; Khavari, P.A. BRAF V600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res., 2012, 22(6), 1006-1014. doi: 10.1101/gr.140061.112 PMID: 22581800
- Li, R.; Zhang, L.; Jia, L.; Duan, Y.; Li, Y.; Bao, L.; Sha, N. Long non-coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation. PLoS One, 2014, 9(6), e100893. doi: 10.1371/journal.pone.0100893 PMID: 24967732
- Khaitan, D.; Dinger, M.E.; Mazar, J.; Crawford, J.; Smith, M.A.; Mattick, J.S.; Perera, R.J. The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res., 2011, 71(11), 3852-3862. doi: 10.1158/0008-5472.CAN-10-4460 PMID: 21558391
- Huang, S.; Lyu, S.; Gao, Z.; Zha, W.; Wang, P.; Shan, Y.; He, J.; Li, Y. m6A-Related lncRNAs are potential biomarkers for the prognosis of metastatic skin cutaneous melanoma. Front. Mol. Biosci., 2021, 8, 687760. doi: 10.3389/fmolb.2021.687760 PMID: 34026852
- Gezer, U.; Özgür, E.; Cetinkaya, M.; Isin, M.; Dalay, N. Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol. Int., 2014, 38(9), n/a. doi: 10.1002/cbin.10301 PMID: 24798520
- Wang, J.; Zhou, Y.; Lu, J.; Sun, Y.; Xiao, H.; Liu, M.; Tian, L. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med. Oncol., 2014, 31(9), 148. doi: 10.1007/s12032-014-0148-8 PMID: 25099764
- Wu, C.F.; Tan, G.H.; Ma, C.C.; Li, L. The non-coding RNA llme23 drives the malignant property of human melanoma cells. J. Genet. Genomics, 2013, 40(4), 179-188. doi: 10.1016/j.jgg.2013.03.001 PMID: 23618401
- Lessard, L.; Liu, M.; Marzese, D.M.; Wang, H.; Chong, K.; Kawas, N.; Donovan, N.C.; Kiyohara, E.; Hsu, S.; Nelson, N.; Izraely, S.; Sagi-Assif, O.; Witz, I.P.; Ma, X.J.; Luo, Y.; Hoon, D.S.B. The CASC15 long intergenic noncoding RNA locus is involved in melanoma progression and phenotype switching. J. Invest. Dermatol., 2015, 135(10), 2464-2474. doi: 10.1038/jid.2015.200 PMID: 26016895
- Wang, S.; Zhang, K.; Tan, S.; Xin, J.; Yuan, Q.; Xu, H.; Xu, X.; Liang, Q.; Christiani, D.C.; Wang, M.; Liu, L.; Du, M. Circular RNAs in body fluids as cancer biomarkers: The new frontier of liquid biopsies. Mol. Cancer, 2021, 20(1), 13. doi: 10.1186/s12943-020-01298-z PMID: 33430880
- Wang, H.; Tang, Z.; Duan, J.; Zhou, C.; Xu, K.; Mu, H. Cancer-released exosomal circular RNA circ_0008717 promotes cell tumorigenicity through microRNA-1287-5p/P21-activated kinase 2 (PAK2) axis in non-small cell lung cancer. Bioengineered, 2022, 13(4), 8937-8949. doi: 10.1080/21655979.2022.2056822 PMID: 35333693
- Zheng, P.; Gao, H.; Xie, X.; Lu, P. Plasma exosomal hsa_circ_0015286 as a potential diagnostic and prognostic biomarker for gastric cancer. Pathol. Oncol. Res., 2022, 28, 1610446. doi: 10.3389/pore.2022.1610446 PMID: 35755416
- Hong, L.; Xu, L.; Jin, L.; Xu, K.; Tang, W.; Zhu, Y.; Qiu, X.; Wang, J. Exosomal circular RNA hsa_circ_0006220, and hsa_circ_0001666 as biomarkers in the diagnosis of pancreatic cancer. J. Clin. Lab. Anal., 2022, 36(6), e24447. doi: 10.1002/jcla.24447 PMID: 35446993
- Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782. doi: 10.1038/nrd2614 PMID: 18758474
- Pan, J.; Ruan, W.; Qin, M.; Long, Y.; Wan, T.; Yu, K.; Zhai, Y.; Wu, C.; Xu, Y. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci. Rep., 2018, 8(1), 1117. doi: 10.1038/s41598-018-19463-2 PMID: 29348670
- Zhang, X.; Cai, A.; Gao, Y.; Zhang, Y.; Duan, X.; Men, K. Treatment of melanoma by nano-conjugate-delivered wee1 siRNA. Mol. Pharm., 2021, 18(9), 3387-3400. doi: 10.1021/acs.molpharmaceut.1c00316 PMID: 34375118
- Stremersch, S.; Vandenbroucke, R.E.; Van Wonterghem, E.; Hendrix, A.; De Smedt, S.C.; Raemdonck, K. Comparing exosome-like vesicles with liposomes for the functional cellular delivery of small RNAs. J. Control. Release, 2016, 232, 51-61. doi: 10.1016/j.jconrel.2016.04.005 PMID: 27072025
- Wang, Z.; Song, L.; Liu, Q.; Tian, R.; Shang, Y.; Liu, F.; Liu, S.; Zhao, S.; Han, Z.; Sun, J.; Jiang, Q.; Ding, B. A tubular DNA nanodevice as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy. Angew. Chem. Int. Ed., 2021, 60(5), 2594-2598. doi: 10.1002/anie.202009842 PMID: 33089613
- Thyagarajan, A.; Shaban, A.; Sahu, R.P. MicroRNA-directed cancer therapies: Implications in melanoma intervention. J. Pharmacol. Exp. Ther., 2018, 364(1), 1-12. doi: 10.1124/jpet.117.242636 PMID: 29054858
- Fattore, L.; Costantini, S.; Malpicci, D.; Ruggiero, C.F.; Ascierto, P.A.; Croce, C.M.; Mancini, R.; Ciliberto, G. MicroRNAs in melanoma development and resistance to target therapy. Oncotarget, 2017, 8(13), 22262-22278. doi: 10.18632/oncotarget.14763 PMID: 28118616
- Ryu, B.; Hwang, S.; Alani, R.M. MicroRNAs as an emerging target for melanoma therapy. J. Invest. Dermatol., 2013, 133(5), 1137-1139. doi: 10.1038/jid.2012.505 PMID: 23594536
- Jiang, L.; Lv, X.; Li, J.; Li, J.; Li, X.; Li, W.; Li, Y. The status of microRNA-21 expression and its clinical significance in human cutaneous malignant melanoma. Acta Histochem., 2012, 114(6), 582-588. doi: 10.1016/j.acthis.2011.11.001 PMID: 22130252
- Mishra, P.J.; Mishra, P.J.; Merlino, G. Integrated genomics identifies miR-32/MCL-1 pathway as a critical driver of melanomagenesis: Implications for miR-replacement and combination therapy. PLoS One, 2016, 11(11), e0165102. doi: 10.1371/journal.pone.0165102 PMID: 27846237
- Ling, H.; Fabbri, M.; Calin, G.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov., 2013, 12(11), 847-865. doi: 10.1038/nrd4140 PMID: 24172333
- Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA therapeutics - challenges and potential solutions. Nat. Rev. Drug Discov., 2021, 20(8), 629-651. doi: 10.1038/s41573-021-00219-z PMID: 34145432
- Arun, G.; Diermeier, S.D.; Spector, D.L. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol. Med., 2018, 24(3), 257-277. doi: 10.1016/j.molmed.2018.01.001 PMID: 29449148
- Qu, S.; Jiao, Z.; Lu, G.; Yao, B.; Wang, T.; Rong, W.; Xu, J.; Fan, T.; Sun, X.; Yang, R.; Wang, J.; Yao, Y.; Xu, G.; Yan, X.; Wang, T.; Liang, H.; Zen, K. PD-L1 lncRNA splice isoform promotes lung adenocarcinoma progression via enhancing c-Myc activity. Genome Biol., 2021, 22(1), 104. doi: 10.1186/s13059-021-02331-0 PMID: 33849634
- Shi, L.; Yang, Y.; Li, M.; Li, C.; Zhou, Z.; Tang, G.; Wu, L.; Yao, Y.; Shen, X.; Hou, Z.; Jia, H. LncRNA IFITM4P promotes immune escape by up-regulating PD-L1 via dual mechanism in oral carcinogenesis. Mol. Ther., 2022, 30(4), 1564-1577. doi: 10.1016/j.ymthe.2022.01.003 PMID: 35051616
- Charpentier, M.; Dupré, E.; Fortun, A.; Briand, F.; Maillasson, M.; Com, E.; Pineau, C.; Labarrière, N.; Rabu, C.; Lang, F. hnRNP-A1 binds to the IRES of MELOE-1 antigen to promote MELOE-1 translation in stressed melanoma cells. Mol. Oncol., 2022, 16(3), 594-606. doi: 10.1002/1878-0261.13088 PMID: 34418284
- Dai, S.; Wei, D.; Wu, Z.; Zhou, X.; Wei, X.; Huang, H.; Li, G. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther., 2008, 16(4), 782-790. doi: 10.1038/mt.2008.1 PMID: 18362931
- Xu, S.; Wang, H.; Pan, H.; Shi, Y.; Li, T.; Ge, S.; Jia, R.; Zhang, H.; Fan, X. ANRIL lncRNA triggers efficient therapeutic efficacy by reprogramming the aberrant INK4-hub in melanoma. Cancer Lett., 2016, 381(1), 41-48. doi: 10.1016/j.canlet.2016.07.024 PMID: 27461581
- Luan, W.; Li, L.; Shi, Y.; Bu, X.; Xia, Y.; Wang, J.; Djangmah, H.S.; Liu, X.; You, Y.; Xu, B. Long non-coding RNA MALAT1 acts as a competing endogenous RNA to promote malignant melanoma growth and metastasis by sponging miR-22. Oncotarget, 2016, 7(39), 63901-63912. doi: 10.18632/oncotarget.11564 PMID: 27564100
- Tang, L.; Zhang, W.; Su, B.; Yu, B. Long noncoding RNA HOTAIR is associated with motility, invasion, and metastatic potential of metastatic melanoma. BioMed Res. Int., 2013, 2013, 1-7. doi: 10.1155/2013/251098 PMID: 23862139
- Lin, Q.; Jiang, H.; Lin, D.; Circular, R.N.A. Circular RNA ITCH downregulates GLUT1 and suppresses glucose uptake in melanoma to inhibit cancer cell proliferation. J. Dermatolog. Treat., 2021, 32(2), 231-235. doi: 10.1080/09546634.2019.1654069 PMID: 31403357
- Zhang, L.; Li, Y.; Liu, W.; Li, H.; Zhu, Z. Analysis of the complex interaction of CDR1as-miRNA-protein and detection of its novel role in melanoma. Oncol. Lett., 2018, 16(1), 1219-1225. doi: 10.3892/ol.2018.8700 PMID: 29963195
- Ray, A.; Kunhiraman, H.; Perera, R.J. The paradoxical behavior of microRNA-211 in melanomas and other human cancers. Front. Oncol., 2021, 10, 628367. doi: 10.3389/fonc.2020.628367 PMID: 33628737
- Tang, H.; Ma, M.; Dai, J.; Cui, C.; Si, L.; Sheng, X.; Chi, Z.; Xu, L.; Yu, S.; Xu, T.; Yan, J.; Yu, H.; Yang, L.; Kong, Y.; Guo, J. miR-let-7b and miR-let-7c suppress tumourigenesis of human mucosal melanoma and enhance the sensitivity to chemotherapy. J. Exp. Clin. Cancer Res., 2019, 38(1), 212. doi: 10.1186/s13046-019-1190-3 PMID: 31118065
- Melnik, B.C. MiR-21: An environmental driver of malignant melanoma? J. Transl. Med., 2015, 13(1), 202. doi: 10.1186/s12967-015-0570-5 PMID: 26116372
- Han, Y.; Fang, J.; Xiao, Z.; Deng, J.; Zhang, M.; Gu, L. Downregulation of lncRNA TSLNC8 promotes melanoma resistance to BRAF inhibitor PLX4720 through binding with PP1α to re-activate MAPK signaling. J. Cancer Res. Clin. Oncol., 2021, 147(3), 767-777. doi: 10.1007/s00432-020-03484-4 PMID: 33389075
- Leucci, E.; Vendramin, R.; Spinazzi, M.; Laurette, P.; Fiers, M.; Wouters, J.; Radaelli, E.; Eyckerman, S.; Leonelli, C.; Vanderheyden, K.; Rogiers, A.; Hermans, E.; Baatsen, P.; Aerts, S.; Amant, F.; Van Aelst, S.; van den Oord, J.; de Strooper, B.; Davidson, I.; Lafontaine, D.L.J.; Gevaert, K.; Vandesompele, J.; Mestdagh, P.; Marine, J.C. Melanoma addiction to the long non-coding RNA SAMMSON. Nature, 2016, 531(7595), 518-522. doi: 10.1038/nature17161 PMID: 27008969
- Han, S.; Yan, Y.; Ren, Y.; Hu, Y.; Wang, Y.; Chen, L.; Zhi, Z.; Zheng, Y.; Shao, Y.; Liu, J. LncRNA SAMMSON mediates adaptive resistance to RAF inhibition in braf-mutant melanoma cells. Cancer Res., 2021, 81(11), 2918-2929. doi: 10.1158/0008-5472.CAN-20-3145 PMID: 34087780
- Sanlorenzo, M.; Vujic, I.; Esteve-Puig, R.; Lai, K.; Vujic, M.; Lin, K.; Posch, C.; Dimon, M.; Moy, A.; Zekhtser, M.; Johnston, K.; Gho, D.; Ho, W.; Gajjala, A.; Oses Prieto, J.; Burlingame, A.; Daud, A.; Rappersberger, K.; Ortiz-Urda, S. The lincRNA MIRAT binds to IQGAP1 and modulates the MAPK pathway in NRAS mutant melanoma. Sci. Rep., 2018, 8(1), 10902. doi: 10.1038/s41598-018-27643-3 PMID: 30026510
- Wu, K.; Wang, Q.; Liu, Y.L.; Xiang, Z.; Wang, Q.Q.; Yin, L.; Liu, S.L. LncRNA POU3F3 contributes to dacarbazine resistance of human melanoma through the MiR-650/MGMT axis. Front. Oncol., 2021, 11, 643613. doi: 10.3389/fonc.2021.643613 PMID: 33816296
- Long, J.; Pi, X. lncRNA-MEG3 suppresses the proliferation and invasion of melanoma by regulating CYLD expression mediated by sponging miR-499-5p. BioMed Res. Int., 2018, 2018, 1-15. doi: 10.1155/2018/2086564 PMID: 29808164
- Pan, B.; Lin, X.; Zhang, L.; Hong, W.; Zhang, Y. Long noncoding RNA X-inactive specific transcript promotes malignant melanoma progression and oxaliplatin resistance. Melanoma Res., 2019, 29(3), 254-262. doi: 10.1097/CMR.0000000000000560 PMID: 30640294
- An, L.; Huang, J.; Han, X.; Wang, J. Downregulation of lncRNA H19 sensitizes melanoma cells to cisplatin by regulating the miR-18b/IGF1 axis. Anticancer Drugs, 2020, 31(5), 473-482. doi: 10.1097/CAD.0000000000000888 PMID: 32265386
- Wu, L.; Li, K.; Lin, W.; Liu, J.; Qi, Q.; Shen, G.; Chen, W.; He, W. Long noncoding RNA LINC01291 promotes the aggressive properties of melanoma by functioning as a competing endogenous RNA for microRNA-625-5p and subsequently increasing IGF-1R expression. Cancer Gene Ther., 2022, 29(3-4), 341-357. doi: 10.1038/s41417-021-00313-9 PMID: 33674778
- Melixetian, M.; Bossi, D.; Mihailovich, M.; Punzi, S.; Barozzi, I.; Marocchi, F.; Cuomo, A.; Bonaldi, T.; Testa, G.; Marine, J.C.; Leucci, E.; Minucci, S.; Pelicci, P.G.; Lanfrancone, L. Long non-coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation. EMBO Rep., 2021, 22(3), e50852. doi: 10.15252/embr.202050852 PMID: 33586907
- Caporali, S.; Amaro, A.; Levati, L.; Alvino, E.; Lacal, P.M.; Mastroeni, S.; Ruffini, F.; Bonmassar, L.; Antonini Cappellini, G.C.; Felli, N.; Carè, A.; Pfeffer, U.; DAtri, S. miR-126-3p down-regulation contributes to dabrafenib acquired resistance in melanoma by up-regulating ADAM9 and VEGF-A. J. Exp. Clin. Cancer Res., 2019, 38(1), 272. doi: 10.1186/s13046-019-1238-4 PMID: 31227006
- Zheng, Y.; Sun, Y.; Liu, Y.; Zhang, X.; Li, F.; Li, L.; Wang, J. The miR-31-SOX10 axis regulates tumor growth and chemotherapy resistance of melanoma via PI3K/AKT pathway. Biochem. Biophys. Res. Commun., 2018, 503(4), 2451-2458. doi: 10.1016/j.bbrc.2018.06.175 PMID: 29969627
- Koetz-Ploch, L.; Hanniford, D.; Dolgalev, I.; Sokolova, E.; Zhong, J.; Díaz-Martínez, M.; Bernstein, E.; Darvishian, F.; Flaherty, K.T.; Chapman, P.B.; Tawbi, H.; Hernando, E. Micro RNA -125a promotes resistance to BRAF inhibitors through suppression of the intrinsic apoptotic pathway. Pigment Cell Melanoma Res., 2017, 30(3), 328-338. doi: 10.1111/pcmr.12578 PMID: 28140520
- Díaz-Martínez, M.; Benito-Jardón, L.; Teixidó, J. New insights in melanoma resistance to BRAF inhibitors: A role for microRNAs. Oncotarget, 2018, 9(83), 35374-35375. doi: 10.18632/oncotarget.26244 PMID: 30459929
- Huber, V.; Vallacchi, V.; Fleming, V.; Hu, X.; Cova, A.; Dugo, M.; Shahaj, E.; Sulsenti, R.; Vergani, E.; Filipazzi, P.; De Laurentiis, A.; Lalli, L.; Di Guardo, L.; Patuzzo, R.; Vergani, B.; Casiraghi, E.; Cossa, M.; Gualeni, A.; Bollati, V.; Arienti, F.; De Braud, F.; Mariani, L.; Villa, A.; Altevogt, P.; Umansky, V.; Rodolfo, M.; Rivoltini, L. Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. J. Clin. Invest., 2018, 128(12), 5505-5516. doi: 10.1172/JCI98060 PMID: 30260323
- Gao, M.; Li, C.; Xiao, H.; Dong, H.; Jiang, S.; Fu, Y.; Gong, L. hsa_circ_0007841: A novel potential biomarker and drug resistance for multiple myeloma. Front. Oncol., 2019, 9, 1261. doi: 10.3389/fonc.2019.01261 PMID: 31803627
- Hanniford, D.; Ulloa-Morales, A.; Karz, A.; Berzoti-Coelho, M.G.; Moubarak, R.S.; Sánchez-Sendra, B.; Kloetgen, A.; Davalos, V.; Imig, J.; Wu, P.; Vasudevaraja, V.; Argibay, D.; Lilja, K.; Tabaglio, T.; Monteagudo, C.; Guccione, E.; Tsirigos, A.; Osman, I.; Aifantis, I.; Hernando, E. Epigenetic silencing of CDR1as drives iGF2BP3-mediated melanoma invasion and metastasis. Cancer Cell, 2020, 37(1), 55-70.e15. doi: 10.1016/j.ccell.2019.12.007 PMID: 31935372
- Zhou, X.; Yan, T.; Huang, C.; Xu, Z.; Wang, L.; Jiang, E.; Wang, H.; Chen, Y.; Liu, K.; Shao, Z.; Shang, Z. Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. J. Exp. Clin. Cancer Res., 2018, 37(1), 242. doi: 10.1186/s13046-018-0911-3 PMID: 30285793
- Bae, I.S.; Kim, S.H. Milk exosome-derived MicroRNA-2478 suppresses melanogenesis through the Akt-GSK3β pathway. Cells, 2021, 10(11), 2848. doi: 10.3390/cells10112848 PMID: 34831071
- Luan, W.; Ding, Y.; Xi, H.; Ruan, H.; Lu, F.; Ma, S.; Wang, J. Exosomal miR-106b-5p derived from melanoma cell promotes primary melanocytes epithelial-mesenchymal transition through targeting EphA4. J. Exp. Clin. Cancer Res., 2021, 40(1), 107. doi: 10.1186/s13046-021-01906-w PMID: 33741023
- Chen, Y.; Fang, Y.; Li, L.; Luo, H.; Cao, T.; Tu, B. Exosomal miR-22-3p from Mesenchymal Stem Cells Inhibits the Epithelial-Mesenchymal Transition (EMT) of melanoma cells by regulating LGALS1. Front. Biosci.-Landmark, 2022, 27(9), 275. doi: 10.31083/j.fbl2709275 PMID: 36224027
- Zeng, B.; Chen, Y.; Chen, H.; Zhao, Q.; Sun, Z.; Liu, D.; Li, X.; Zhang, Y.; Wang, J.; Xing, H.R. Exosomal miR-211-5p regulates glucose metabolism, pyroptosis, and immune microenvironment of melanoma through GNA15. Pharmacol. Res., 2023, 188, 106660. doi: 10.1016/j.phrs.2023.106660 PMID: 36642112
- Liu, D.; Li, X.; Zeng, B.; Zhao, Q.; Chen, H.; Zhang, Y.; Chen, Y.; Wang, J.; Xing, H.R. Exosomal microRNA-4535 of melanoma stem cells promotes metastasis by inhibiting autophagy pathway. Stem Cell Rev. Rep., 2023, 19(1), 155-169. doi: 10.1007/s12015-022-10358-4 PMID: 35296991
- Byrnes, C.C.; Jia, W.; Alshamrani, A.A.; Kuppa, S.S.; Murph, M.M. miR-122-5p expression and secretion in melanoma cells is amplified by the lpar3 sh3binding domain to regulate Wnt1. Mol. Cancer Res., 2019, 17(1), 299-309. doi: 10.1158/1541-7786.MCR-18-0460 PMID: 30266753
- Li, J.; Chen, J.; Wang, S.; Li, P.; Zheng, C.; Zhou, X.; Tao, Y.; Chen, X.; Sun, L.; Wang, A.; Cao, K.; Tang, S.; Zhou, J. Blockage of transferred exosome-shuttled miR-494 inhibits melanoma growth and metastasis. J. Cell. Physiol., 2019, 234(9), 15763-15774. doi: 10.1002/jcp.28234 PMID: 30723916
- Chen, H.; Zeng, B.; Li, X.; Zhao, Q.; Liu, D.; Chen, Y.; Zhang, Y.; Wang, J.; Xing, H.R. High-metastatic melanoma cells promote the metastatic capability of low-metastatic melanoma cells via exosomal transfer of miR-411-5p. Front. Oncol., 2022, 12, 895164. doi: 10.3389/fonc.2022.895164 PMID: 35669425
- Zhao, Q.; Chen, H.; Li, X.; Zeng, B.; Sun, Z.; Liu, D.; Chen, Y.; Zhang, Y.; Rosie Xing, H.; Wang, J. Low-metastatic melanoma cells acquire enhanced metastatic capability via exosomal transfer of miR-199a-1-5p from highly metastatic melanoma cells. Cell Death Discov., 2022, 8(1), 188. doi: 10.1038/s41420-022-00993-8 PMID: 35397647
- Wang, X.; Cui, Z.; Zeng, B.; Qiong, Z.; Long, Z. Human mesenchymal stem cell derived exosomes inhibit the survival of human melanoma cells through modulating miR-138-5p/SOX4 pathway. Cancer Biomark., 2022, 34(4), 533-543. doi: 10.3233/CBM-210409 PMID: 35275523
- Hu, T.; Hu, J. Melanoma-derived exosomes induce reprogramming fibroblasts into cancer-associated fibroblasts via Gm26809 delivery. Cell Cycle, 2019, 18(22), 3085-3094. doi: 10.1080/15384101.2019.1669380 PMID: 31544590
- Wang, X.; Cheng, Q. Suppression of exosomal hsa_circ_0001005 eliminates the Vemurafenib resistance of melanoma. J. Cancer Res. Clin. Oncol., 2023, 149(9), 5921-5936. doi: 10.1007/s00432-022-04434-y PMID: 36598578
- Wei, C.Y.; Zhu, M.X.; Lu, N.H.; Liu, J.Q.; Yang, Y.W.; Zhang, Y.; Shi, Y.D.; Feng, Z.H.; Li, J.X.; Qi, F.Z.; Gu, J.Y. Circular RNA circ_0020710 drives tumor progression and immune evasion by regulating the miR-370-3p/CXCL12 axis in melanoma. Mol. Cancer, 2020, 19(1), 84. doi: 10.1186/s12943-020-01191-9 PMID: 32381016
- Alegre, E.; Sanmamed, M.F.; Rodriguez, C.; Carranza, O.; Martín-Algarra, S.; González, Á. Study of circulating microRNA-125b levels in serum exosomes in advanced melanoma. Arch. Pathol. Lab. Med., 2014, 138(6), 828-832. doi: 10.5858/arpa.2013-0134-OA PMID: 24878024
- Zhong, D.; Wu, C.; Xu, D.; Bai, J.; Wang, Q.; Zeng, X. Plasma-Derived Exosomal hsa-miR-4488 and hsa-miR-1228-5p: Novel biomarkers for dermatomyositis-associated interstitial lung disease with anti-melanoma differentiation-associated protein 5 antibody-positive subset. BioMed Res. Int., 2021, 2021, 1-16. doi: 10.1155/2021/6676107 PMID: 34368354
- Guo, Y.; Zhang, X.; Wang, L.; Li, M.; Shen, M.; Zhou, Z.; Zhu, S.; Li, K.; Fang, Z.; Yan, B.; Zhao, S.; Su, J.; Chen, X.; Peng, C. The plasma exosomal miR-1180-3p serves as a novel potential diagnostic marker for cutaneous melanoma. Cancer Cell Int., 2021, 21(1), 487. doi: 10.1186/s12935-021-02164-8 PMID: 34544412
- Dejima, H.; Iinuma, H.; Kanaoka, R.; Matsutani, N.; Kawamura, M. Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol. Lett., 2017, 13(3), 1256-1263. doi: 10.3892/ol.2017.5569 PMID: 28454243
- Tamiya, H.; Mitani, A.; Saito, A.; Ishimori, T.; Saito, M.; Isago, H.; Jo, T.; Yamauchi, Y.; Tanaka, G.; Nagase, T. Exosomal MicroRNA expression profiling in patients with lung adenocarcinoma-associated malignant pleural effusion. Anticancer Res., 2018, 38(12), 6707-6714. doi: 10.21873/anticanres.13039 PMID: 30504380
- Wu, H.; Zhou, J.; Mei, S.; Wu, D.; Mu, Z.; Chen, B.; Xie, Y.; Ye, Y.; Liu, J. Circulating exosomal microRNA-96 promotes cell proliferation, migration and drug resistance by targeting LMO7. J. Cell. Mol. Med., 2017, 21(6), 1228-1236. doi: 10.1111/jcmm.13056 PMID: 28026121
- Aushev, V.N.; Zborovskaya, I.B.; Laktionov, K.K.; Girard, N.; Cros, M.P.; Herceg, Z.; Krutovskikh, V. Comparisons of microRNA patterns in plasma before and after tumor removal reveal new biomarkers of lung squamous cell carcinoma. PLoS One, 2013, 8(10), e78649. doi: 10.1371/journal.pone.0078649 PMID: 24130905
- Zhou, W.; Fong, M.Y.; Min, Y.; Somlo, G.; Liu, L.; Palomares, M.R.; Yu, Y.; Chow, A.; OConnor, S.T.F.; Chin, A.R.; Yen, Y.; Wang, Y.; Marcusson, E.G.; Chu, P.; Wu, J.; Wu, X.; Li, A.X.; Li, Z.; Gao, H.; Ren, X.; Boldin, M.P.; Lin, P.C.; Wang, S.E. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 2014, 25(4), 501-515. doi: 10.1016/j.ccr.2014.03.007 PMID: 24735924
- Eichelser, C.; Stückrath, I.; Müller, V.; Milde-Langosch, K.; Wikman, H.; Pantel, K.; Schwarzenbach, H. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget, 2014, 5(20), 9650-9663. doi: 10.18632/oncotarget.2520 PMID: 25333260
- Bryant, R.J.; Pawlowski, T.; Catto, J.W.F.; Marsden, G.; Vessella, R.L.; Rhees, B.; Kuslich, C.; Visakorpi, T.; Hamdy, F.C. Changes in circulating microRNA levels associated with prostate cancer. Br. J. Cancer, 2012, 106(4), 768-774. doi: 10.1038/bjc.2011.595 PMID: 22240788
- Liu, M.X.; Liao, J.; Xie, M.; Gao, Z.K.; Wang, X.H.; Zhang, Y.; Shang, M.H.; Yin, L.H.; Pu, Y.P.; Liu, R. miR-93-5p transferred by exosomes promotes the proliferation of esophageal cancer cells via intercellular communication by targeting PTEN. Biomed. Environ. Sci., 2018, 31(3), 171-185. PMID: 29673440
- Hornick, N.I.; Huan, J.; Doron, B.; Goloviznina, N.A.; Lapidus, J.; Chang, B.H.; Kurre, P. Serum exosome MicroRNA as a minimally-invasive early biomarker of AML. Sci. Rep., 2015, 5(1), 11295. doi: 10.1038/srep11295 PMID: 26067326
- Taylor, D.D.; Gercel-Taylor, C. RETRACTED: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol., 2008, 110(1), 13-21. doi: 10.1016/j.ygyno.2008.04.033 PMID: 18589210
- Akers, J.C.; Ramakrishnan, V.; Kim, R.; Skog, J.; Nakano, I.; Pingle, S.; Kalinina, J.; Hua, W.; Kesari, S.; Mao, Y.; Breakefield, X.O.; Hochberg, F.H.; Van Meir, E.G.; Carter, B.S.; Chen, C.C. MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): A platform for glioblastoma biomarker development. PLoS One, 2013, 8(10), e78115. doi: 10.1371/journal.pone.0078115 PMID: 24205116
- Shi, R.; Wang, P.Y.; Li, X.Y.; Chen, J.X.; Li, Y.; Zhang, X.Z.; Zhang, C.G.; Jiang, T.; Li, W.B.; Ding, W.; Cheng, S.J. Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget, 2015, 6(29), 26971-26981. doi: 10.18632/oncotarget.4699 PMID: 26284486
- Zeng, A.; Wei, Z.; Yan, W.; Yin, J.; Huang, X.; Zhou, X.; Li, R.; Shen, F.; Wu, W.; Wang, X.; You, Y. Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma. Cancer Lett., 2018, 436, 10-21. doi: 10.1016/j.canlet.2018.08.004 PMID: 30102952
- Manterola, L.; Guruceaga, E.; Pérez-Larraya, J.G.; González-Huarriz, M.; Jauregui, P.; Tejada, S.; Diez-Valle, R.; Segura, V.; Samprón, N.; Barrena, C.; Ruiz, I.; Agirre, A.; Ayuso, Á.; Rodríguez, J.; González, Á.; Xipell, E.; Matheu, A.; López de Munain, A.; Tuñón, T.; Zazpe, I.; García-Foncillas, J.; Paris, S.; Delattre, J.Y.; Alonso, M.M. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro-oncol., 2014, 16(4), 520-527. doi: 10.1093/neuonc/not218 PMID: 24435880
- Yang, J.K.; Yang, J.P.; Tong, J.; Jing, S.Y.; Fan, B.; Wang, F.; Sun, G.Z.; Jiao, B.H. Exosomal miR-221 targets DNM3 to induce tumor progression and temozolomide resistance in glioma. J. Neurooncol., 2017, 131(2), 255-265. doi: 10.1007/s11060-016-2308-5 PMID: 27837435
- Lan, F.; Qing, Q.; Pan, Q.; Hu, M.; Yu, H.; Yue, X. Serum exosomal miR-301a as a potential diagnostic and prognostic biomarker for human glioma. Cell Oncol., 2018, 41(1), 25-33. doi: 10.1007/s13402-017-0355-3 PMID: 29076027
- Cai, Q.; Zhu, A.; Gong, L. Exosomes of glioma cells deliver miR-148a to promote proliferation and metastasis of glioblastoma via targeting CADM1. Bull. Cancer, 2018, 105(7-8), 643-651. doi: 10.1016/j.bulcan.2018.05.003 PMID: 29921422
- Santangelo, A.; Imbrucè, P.; Gardenghi, B.; Belli, L.; Agushi, R.; Tamanini, A.; Munari, S.; Bossi, A.M.; Scambi, I.; Benati, D.; Mariotti, R.; Di Gennaro, G.; Sbarbati, A.; Eccher, A.; Ricciardi, G.K.; Ciceri, E.M.; Sala, F.; Pinna, G.; Lippi, G.; Cabrini, G.; Dechecchi, M.C. A microRNA signature from serum exosomes of patients with glioma as complementary diagnostic biomarker. J. Neurooncol., 2018, 136(1), 51-62. doi: 10.1007/s11060-017-2639-x PMID: 29076001
- Liu, L.; Meng, T.; Yang, X.H.; Sayim, P.; Lei, C.; Jin, B.; Ge, L.; Wang, H.J. Prognostic and predictive value of long non-coding RNA GAS5 and mircoRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion. Cancer Biomark., 2018, 22(2), 283-299. doi: 10.3233/CBM-171011 PMID: 29630521
- Pan, L.; Liang, W.; Fu, M.; Huang, Z.; Li, X.; Zhang, W.; Zhang, P.; Qian, H.; Jiang, P.; Xu, W.; Zhang, X. Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression. J. Cancer Res. Clin. Oncol., 2017, 143(6), 991-1004. doi: 10.1007/s00432-017-2361-2 PMID: 28285404
- Li, Q.; Shao, Y.; Zhang, X.; Zheng, T.; Miao, M.; Qin, L.; Wang, B.; Ye, G.; Xiao, B.; Guo, J. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol., 2015, 36(3), 2007-2012. doi: 10.1007/s13277-014-2807-y PMID: 25391424
Supplementary files
