Polyphenolic Nano-formulations: A New Avenue against Bacterial Infection


Cite item

Full Text

Abstract

:The gradual emergence of new bacterial strains impervious to one or more antibiotics necessitates discovering and applying natural alternatives. Among natural products, various polyphenols exhibit antibacterial activity. However, polyphenols with biocompatible and potent antibacterial characteristics are limited due to low aqueous solubility and bioavailability; therefore, recent studies are considering new polyphenol formulations. Nanoformulations of polyphenols, especially metal nanoparticles, are currently being investigated for their potential antibacterial activity. Nanonization of such products increases their solubility and helps attain a high surface-to-volume ratio and, therefore, a higher reactivity of the nanonized products with better remedial potential than nonnanonized products. Polyphenolic compounds with catechol and pyrogallol moieties efficiently bond with many metal ions, especially Au and Ag. These synergistic effects exhibit antibacterial pro-oxidant ROS generation, membrane damage, and biofilm eradication. This review discusses various nano-delivery systems for considering polyphenols as antibacterial agents.

About the authors

Faegheh Farhadi

Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences

Email: info@benthamscience.net

Samira Eghbali

Department of Pharmacognosy and Traditional Pharmacy, School of Pharmacy, Birgand University of Medical Science

Email: info@benthamscience.net

Sousan Torabi Parizi

Department of Biochemistry, Shahrood Branch Islamic Azad University

Email: info@benthamscience.net

Tannaz Jamialahmadi

Applied Biomedical Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Eric Gumpricht

, Isagenix International LLC

Email: info@benthamscience.net

Amirhossein Sahebkar

Applied Biomedical Research Center, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sivasakthi, S.; Usharani, G.; Saranraj, P. Biocontrol potentiality of plant growth promoting bacteria (pgpr)-pseudomonas fluorescens and Bacillus subtilis: A review. Afr. J. Agric. Res., 2014, 9(16), 1265-1277.
  2. Li, J.; Huang, Q.; Zheng, X.; Ge, Z.; Lin, K.; Zhang, D.; Chen, Y.; Wang, B.; Shi, X. Investigation of the lactic acid bacteria in kazak cheese and their contributions to cheese fermentation. Front. Microbiol., 2020, 11, 228. doi: 10.3389/fmicb.2020.00228 PMID: 32226414
  3. Yamano, Y. In vitro activity of cefiderocol against a broad range of clinically important gram-negative bacteria. Clin. Infect. Dis., 2019, 69(Suppl. 7), S544-S551. doi: 10.1093/cid/ciz827 PMID: 31724049
  4. Ghosh, S.; Nandi, S.; Basu, T. Nano-Antibacterials using medicinal plant components: An overview. Front. Microbiol., 2021, 12, 768739. PMID: 35273578
  5. Crunkhorn, S. Predicting novel antibacterial agents. Nat. Rev. Drug Discov., 2020, 19(4), 238-239. PMID: 32152457
  6. Boy, H.I.A.; Rutilla, A.J.H.; Santos, K.A.; Ty, A.M.T.; Yu, A.I.; Mahboob, T.; Tangpoong, J.; Nissapatorn, V. Recommended medicinal plants as source of natural products: A review. DCM, 2018, 1(2), 131-142. doi: 10.1016/S2589-3777(19)30018-7
  7. Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop., 2017, 20(2), 1700-1741. doi: 10.1080/10942912.2017.1354017
  8. Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr., 2018, 5, 87. doi: 10.3389/fnut.2018.00087 PMID: 30298133
  9. Ahmadi, A.; Jamialahmadi, T.; Sahebkar, A. Polyphenols and atherosclerosis: A critical review of clinical effects on LDL oxidation. Pharmacol. Res., 2022, 184, 106414. doi: 10.1016/j.phrs.2022.106414 PMID: 36028188
  10. Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the phenol-explorer database. Eur. J. Clin. Nutr., 2010, 64(S3), S112-S120. doi: 10.1038/ejcn.2010.221 PMID: 21045839
  11. Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278. doi: 10.4161/oxim.2.5.9498 PMID: 20716914
  12. Polia, F.; Pastor-Belda, M.; Martínez-Blázquez, A.; Horcajada, M.N.; Tomás-Barberán, F.A.; García-Villalba, R. Technological and biotechnological processes to enhance the bioavailability of dietary (poly)phenols in humans. J. Agric. Food Chem., 2022, 70(7), 2092-2107. doi: 10.1021/acs.jafc.1c07198 PMID: 35156799
  13. Amawi, H.; Ashby, C., Jr; Samuel, T.; Peraman, R.; Tiwari, A. Polyphenolic nutrients in cancer chemoprevention and metastasis: Role of the epithelial-to-mesenchymal (EMT) pathway. Nutrients, 2017, 9(8), 911. doi: 10.3390/nu9080911 PMID: 28825675
  14. Carregosa, D.; Mota, S.; Ferreira, S.; Alves-Dias, B.; Loncarevic-Vasiljkovic, N.; Crespo, C.L.; Menezes, R.; Teodoro, R.; Santos, C.N. Overview of beneficial effects of (Poly)phenol metabolites in the context of neurodegenerative diseases on model organisms. Nutrients, 2021, 13(9), 2940. doi: 10.3390/nu13092940 PMID: 34578818
  15. Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop., 2017, 20(8), 1689-1699. doi: 10.1080/10942912.2016.1220393
  16. Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci., 2016, 17(2), 160. doi: 10.3390/ijms17020160 PMID: 26901191
  17. Niranjan, A.; Prakash, D. Chemical constituents and biological activities of turmeric (Curcuma longa l.)- A review. J. Food Sci. Technol., 2008, 45(2), 109.
  18. El Khawand, T.; Courtois, A.; Valls, J.; Richard, T.; Krisa, S. A review of dietary stilbenes: Sources and bioavailability. Phytochem. Rev., 2018, 17(5), 1007-1029. doi: 10.1007/s11101-018-9578-9
  19. Niesen, D.B.; Hessler, C.; Seeram, N.P. Beyond resveratrol: A review of natural stilbenoids identified from 2009–2013. J. Berry Res., 2013, 3(4), 181-196. doi: 10.3233/JBR-130062
  20. Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747. doi: 10.1093/ajcn/79.5.727 PMID: 15113710
  21. Brodowska, K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur. J. Biol. Res., 2017, 7(2), 108-123.
  22. Nagula, R.L.; Wairkar, S. Recent advances in topical delivery of flavonoids: A review. J. Control. Release, 2019, 296, 190-201. doi: 10.1016/j.jconrel.2019.01.029 PMID: 30682442
  23. Baião, D.; de Freitas, C.; Gomes, L.; da Silva, D.; Correa, A.; Pereira, P.; Aguila, E.; Paschoalin, V. Polyphenols from root, tubercles and grains cropped in Brazil: Chemical and nutritional characterization and their effects on human health and diseases. Nutrients, 2017, 9(9), 1044. doi: 10.3390/nu9091044 PMID: 28930173
  24. Xiao, J.; Kai, G.; Yamamoto, K.; Chen, X. Advance in dietary polyphenols as α-glucosidases inhibitors: A review on structure-activity relationship aspect. Crit. Rev. Food Sci. Nutr., 2013, 53(8), 818-836. doi: 10.1080/10408398.2011.561379 PMID: 23768145
  25. Kondratyuk, T.P.; Pezzuto, J.M. Natural product polyphenols of relevance to human health. Pharm. Biol., 2004, 42(1), 46-63.
  26. Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal., 2013, 18(14), 1818-1892. doi: 10.1089/ars.2012.4581 PMID: 22794138
  27. Yadav, A.K.; Thakur, J.; Prakash, O.; Khan, F.; Saikia, D.; Gupta, M.M. Screening of flavonoids for antitubercular activity and their structure–activity relationships. Med. Chem. Res., 2013, 22(6), 2706-2716. doi: 10.1007/s00044-012-0268-7
  28. Ya, C.; Gaffney, S.; Lilley, T.; Haslam, E. Carbohydrate polyphenol complexation. In: Chemistry and Significance of Condensed Tannins; Plenum Press: New York, USA, 1988.
  29. Cushnie, T.P.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents, 2011, 38(2), 99-107. doi: 10.1016/j.ijantimicag.2011.02.014 PMID: 21514796
  30. Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure–activity relationship) models. Front. Microbiol., 2019, 10, 829. doi: 10.3389/fmicb.2019.00829 PMID: 31057527
  31. Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res., 2019, 33(1), 13-40. doi: 10.1002/ptr.6208 PMID: 30346068
  32. Bjarnsholt, T. The role of bacterial biofilms in chronic infections. Acta Pathol. Microbiol. Scand. Suppl., 2013, 121(136), 1-58. doi: 10.1111/apm.12099 PMID: 23635385
  33. Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med., 2004, 10(S12), S122-S129. doi: 10.1038/nm1145 PMID: 15577930
  34. Taylor, D.W.; Hickey, L.J. An aptian plant with attached leaves and flowers: Implications for angiosperm origin. Science, 1990, 247(4943), 702-704. doi: 10.1126/science.247.4943.702 PMID: 17771888
  35. Soenen, S.J.; Rivera-Gil, P.; Montenegro, J.M.; Parak, W.J.; De Smedt, S.C.; Braeckmans, K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 2011, 6(5), 446-465. doi: 10.1016/j.nantod.2011.08.001
  36. Gibson, J.; Olivia, S.; Boe-Gibson, G. Night lights in economics: Sources and uses 1. J. Econ. Surv., 2020, 34(5), 955-980. doi: 10.1111/joes.12387
  37. Sarmukaddam, S.; Chopra, A.; Tillu, G. Efficacy and safety of Ayurvedic medicines: Recommending equivalence trial design and proposing safety index. Int. J. Ayurveda Res., 2010, 1(3), 175-180. doi: 10.4103/0974-7788.72491 PMID: 21170211
  38. Karas, D.; Ulrichová, J.; Valentová, K. Galloylation of polyphenols alters their biological activity. Food Chem. Toxicol., 2017, 105, 223-240. doi: 10.1016/j.fct.2017.04.021 PMID: 28428085
  39. Zanotti, I.; Dall’Asta, M.; Mena, P.; Mele, L.; Bruni, R.; Ray, S.; Del Rio, D. Atheroprotective effects of (poly)phenols: A focus on cell cholesterol metabolism. Food Funct., 2015, 6(1), 13-31. doi: 10.1039/C4FO00670D PMID: 25367393
  40. Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Res. Int., 2015, 2015, 905215. doi: 10.1155/2015/905215
  41. Ribeiro, D.; Proenca, C.; Rocha, S.; Lima, J.L.F.C.; Carvalho, F.; Fernandes, E.; Freitas, M. Immunomodulatory effects of flavonoids in the prophylaxis and treatment of inflammatory bowel diseases: A comprehensive review. Curr. Med. Chem., 2018, 25(28), 3374-3412. doi: 10.2174/0929867325666180214121734 PMID: 29446723
  42. Bowey, E.; Adlercreutz, H.; Rowland, I. Metabolism of isoflavones and lignans by the gut microflora: A study in germ-free and human flora associated rats. Food Chem. Toxicol., 2003, 41(5), 631-636. doi: 10.1016/S0278-6915(02)00324-1 PMID: 12659715
  43. D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the polyphenols: Status and controversies. Int. J. Mol. Sci., 2010, 11(4), 1321-1342. doi: 10.3390/ijms11041321 PMID: 20480022
  44. Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr., 2000, 130(8), 2073S-2085S. doi: 10.1093/jn/130.8.2073S PMID: 10917926
  45. Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 2005, 81(1), 230S-242S. doi: 10.1093/ajcn/81.1.230S PMID: 15640486
  46. Crozier, A.; Del Rio, D.; Clifford, M.N. Bioavailability of dietary flavonoids and phenolic compounds. Mol. Aspects Med., 2010, 31(6), 446-467. doi: 10.1016/j.mam.2010.09.007 PMID: 20854839
  47. Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med., 2006, 119(6), S3-S10. doi: 10.1016/j.amjmed.2006.03.011 PMID: 16735149
  48. Omosa, L.K.; Midiwo, J.O.; Mbaveng, A.T.; Tankeo, S.B.; Seukep, J.A.; Voukeng, I.K.; Dzotam, J.K.; Isemeki, J.; Derese, S.; Omolle, R.A.; Efferth, T.; Kuete, V. Antibacterial activities and structure–activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes. Springerplus, 2016, 5(1), 901. doi: 10.1186/s40064-016-2599-1 PMID: 27386347
  49. Borges, A; Ferreira, C; Saavedra, MJ; Simões, M Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial drug resistance, 2013, 19(4), 256-265. doi: 10.1089/mdr.2012.0244
  50. Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem., 2014, 22(1), 132-149. doi: 10.2174/0929867321666140916113443 PMID: 25245513
  51. Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control, 2019, 8(1), 118. doi: 10.1186/s13756-019-0559-6 PMID: 31346459
  52. Deng, J.; Yang, H.; Capanoglu, E.; Cao, H.; Xiao, J. 9 - Technological aspects and stability of polyphenols. In: Polyphenols: Properties, Recovery, and Applications; Elsevier, 2018; pp. 295-323.
  53. Tai, K.; Rappolt, M.; Mao, L.; Gao, Y.; Yuan, F. Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chem., 2020, 326, 126973. doi: 10.1016/j.foodchem.2020.126973 PMID: 32413757
  54. Qin, R.; Xiao, K.; Li, B.; Jiang, W.; Peng, W.; Zheng, J.; Zhou, H. The combination of catechin and epicatechin callate from Fructus Crataegi potentiates β-lactam antibiotics against methicillin-resistant staphylococcus aureus (MRSA) in vitro and in vivo. Int. J. Mol. Sci., 2013, 14(1), 1802-1821. doi: 10.3390/ijms14011802 PMID: 23325048
  55. Kesharwani, P.; Gorain, B.; Low, S.Y.; Tan, S.A.; Ling, E.C.S.; Lim, Y.K.; Chin, C.M.; Lee, P.Y.; Lee, C.M.; Ooi, C.H.; Choudhury, H.; Pandey, M. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res. Clin. Pract., 2018, 136, 52-77. doi: 10.1016/j.diabres.2017.11.018 PMID: 29196152
  56. Duncan, R.; Gaspar, R. Nanomedicine(s) under the microscope. Mol. Pharm., 2011, 8(6), 2101-2141. doi: 10.1021/mp200394t PMID: 21974749
  57. Drug Products, Including Biological Products, that Contain Nanomaterials - Guidance for Industry. 2017. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/drug-products-including-biological-products-contain-nanomaterials-guidance-industry
  58. Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71. doi: 10.1186/s12951-018-0392-8 PMID: 30231877
  59. Farjadian, F.; Ghasemi, A.; Gohari, O.; Roointan, A.; Karimi, M.; Hamblin, M.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine, 2019, 14(1), 93-126. doi: 10.2217/nnm-2018-0120 PMID: 30451076
  60. Hashemi Goradel, N.; Ghiyami-Hour, F.; Jahangiri, S.; Negahdari, B.; Sahebkar, A.; Masoudifar, A.; Mirzaei, H. Nanoparticles as new tools for inhibition of cancer angiogenesis. J. Cell. Physiol., 2018, 233(4), 2902-2910. doi: 10.1002/jcp.26029 PMID: 28543172
  61. Javid-Naderi, M.J.; Mahmoudi, A.; Kesharwani, P.; Jamialahmadi, T.; Sahebkar, A. Recent advances of nanotechnology in the treatment and diagnosis of polycystic ovary syndrome. J. Drug Deliv. Sci. Technol., 2023, 79, 104014. doi: 10.1016/j.jddst.2022.104014
  62. Moosavian, S.A.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. The emerging role of nanomedicine in the management of nonalcoholic fatty liver disease: A state-of-the-art review. Bioinorg. Chem. Appl., 2021, 4041415. doi: 10.1155/2021/4041415
  63. Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198. doi: 10.1111/jphp.13098 PMID: 31049986
  64. Tran, T.T.; Hadinoto, K. A Potential Quorum-sensing inhibitor for bronchiectasis therapy: Quercetin–chitosan nanoparticle complex exhibiting superior inhibition of biofilm formation and swimming motility of Pseudomonas aeruginosa to the native quercetin. Int. J. Mol. Sci., 2021, 22(4), 1541. doi: 10.3390/ijms22041541 PMID: 33546487
  65. Crisan, C.M.; Mocan, T.; Manolea, M.; Lasca, L.I.; Tăbăran, F.A.; Mocan, L. Review on silver nanoparticles as a novel class of antibacterial solutions. Appl. Sci., 2021, 11(3), 1120. doi: 10.3390/app11031120
  66. Clinical toxicities encountered with paclitaxel (Taxol). Rowinsky, E.; Eisenhauer, E.; Chaudhry, V.; Arbuck, S.; Donehower, R., Eds.; Semin Oncol, 1993, 20(4 Suppl. 3), 1-15.
  67. Yoon, H.S.; Cho, C.H.; Yun, M.S.; Jang, S.J.; You, H.J.; Kim, J.; Han, D.; Cha, K.H.; Moon, S.H.; Lee, K.; Kim, Y.J.; Lee, S.J.; Nam, T.W.; Ko, G. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol., 2021, 6(5), 563-573. doi: 10.1038/s41564-021-00880-5 PMID: 33820962
  68. Bhatia, E.; Banerjee, R. Hybrid silver–gold nanoparticles suppress drug resistant polymicrobial biofilm formation and intracellular infection. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(22), 4890-4898. doi: 10.1039/D0TB00158A PMID: 32285904
  69. Adnan, N.N.M.; Cheng, Y.Y.; Ong, N.M.N.; Kamaruddin, T.T.; Rozlan, E.; Schmidt, T.W.; Duong, H.T.T.; Boyer, C. Effect of gold nanoparticle shapes for phototherapy and drug delivery. Polym. Chem., 2016, 7(16), 2888-2903. doi: 10.1039/C6PY00465B
  70. Yougbaré, S.; Chou, H.L.; Yang, C.H.; Krisnawati, D.I.; Jazidie, A.; Nuh, M.; Kuo, T.R. Facet-dependent gold nanocrystals for effective photothermal killing of bacteria. J. Hazard. Mater., 2021, 407, 124617. doi: 10.1016/j.jhazmat.2020.124617 PMID: 33359972
  71. Alsamhary, K.; Al-Enazi, N.; Alshehri, W.A.; Ameen, F. Gold nanoparticles synthesised by flavonoid tricetin as a potential antibacterial nanomedicine to treat respiratory infections causing opportunistic bacterial pathogens. Microb. Pathog., 2020, 139, 103928. doi: 10.2217/fvl-2015-0010
  72. Richards, D.A.; Maruani, A.; Chudasama, V. Antibody fragments as nanoparticle targeting ligands: A step in the right direction. Chem. Sci., 2017, 8(1), 63-77. doi: 10.1039/C6SC02403C PMID: 28451149
  73. Kumar, A.; Mazinder Boruah, B. Liang, X-J Gold nanoparticles: Promising nanomaterials for the diagnosis of cancer and HIV/AIDS. J. Nanomater., 2011, 2011, 202187.
  74. Fan, F.R.F.; Bard, A.J. Chemical, electrochemical, gravimetric, and microscopic studies on antimicrobial silver films. J. Phys. Chem. B, 2002, 106(2), 279-287. doi: 10.1021/jp012548d
  75. Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.; Tam, P.K.H.; Chiu, J.F.; Che, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res., 2006, 5(4), 916-924. doi: 10.1021/pr0504079 PMID: 16602699
  76. Varaprasad, K.; Mohan, Y.M.; Vimala, K.; Mohana Raju, K. Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application. J. Appl. Polym. Sci., 2011, 121(2), 784-796. doi: 10.1002/app.33508
  77. Wu, Y.; Yang, Y.; Zhang, Z.; Wang, Z.; Zhao, Y.; Sun, L. A facile method to prepare size-tunable silver nanoparticles and its antibacterial mechanism. Adv. Powder Technol., 2018, 29(2), 407-415. doi: 10.1016/j.apt.2017.11.028
  78. Li, W.R.; Xie, X.B.; Shi, Q.S.; Duan, S.S.; Ouyang, Y.S.; Chen, Y.B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 2011, 24(1), 135-141. doi: 10.1007/s10534-010-9381-6 PMID: 20938718
  79. Tong, C.; Zhong, X.; Yang, Y.; Liu, X.; Zhong, G.; Xiao, C.; Liu, B.; Wang, W.; Yang, X.P.B. @PDA@Ag nanosystem for synergistically eradicating MRSA and accelerating diabetic wound healing assisted with laser irradiation. Biomaterials, 2020, 243, 119936. doi: 10.1016/j.biomaterials.2020.119936 PMID: 32171103
  80. Akintelu, S.A.; Bo, Y.; Folorunso, A.S. A review on synthesis, optimization, mechanism, characterization, and antibacterial application of silver nanoparticles synthesized from plants. J. Chem., 2020, 2020, 3189043. doi: 10.1155/2020/3189043
  81. Das, R.K.; Brar, S.K. Plant mediated green synthesis: Modified approaches. Nanoscale, 2013, 5(21), 10155-10162. doi: 10.1039/c3nr02548a PMID: 24056951
  82. Kim, J-H.; Eguchi, H.; Umemura, M.; Sato, I.; Yamada, S.; Hoshino, Y. Magnetic metal-complex-conducting copolymer core–shell nanoassemblies for a single-drug anticancer platform. NPG Asia Mater., 2017, 9(3), e367. doi: 10.1038/am.2017.29
  83. Aisida, S.O.; Ugwoke, E.; Uwais, A.; Iroegbu, C.; Botha, S.; Ahmad, I.; Maaza, M.; Ezema, F.I. Incubation period induced biogenic synthesis of PEG enhanced Moringa oleifera silver nanocapsules and its antibacterial activity. J. Polym. Res., 2019, 26(9), 225. doi: 10.1007/s10965-019-1897-z
  84. Xie, W.; Guo, Z.; Gao, F.; Gao, Q.; Wang, D.; Liaw, B.; Cai, Q.; Sun, X.; Wang, X.; Zhao, L. Shape, size and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics, 2018, 8(12), 3284-3307. doi: 10.7150/thno.25220 PMID: 29930730
  85. Tietze, R.; Zaloga, J.; Unterweger, H.; Lyer, S.; Friedrich, R.P.; Janko, C.; Pöttler, M.; Dürr, S.; Alexiou, C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun., 2015, 468(3), 463-470. doi: 10.1016/j.bbrc.2015.08.022 PMID: 26271592
  86. Igartúa, D.E.; Azcona, P.L.; Martinez, C.S.; Alonso, S.V.; Lassalle, V.L.; Prieto, M.J. Folic acid magnetic nanotheranostics for delivering doxorubicin: Toxicological and biocompatibility studies on Zebrafish embryo and larvae. Toxicol. Appl. Pharmacol., 2018, 358, 23-34. doi: 10.1016/j.taap.2018.09.009 PMID: 30205093
  87. Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387. doi: 10.1007/s11095-016-1958-5 PMID: 27299311
  88. Zhang, M.; Zheng, Y.; Jin, Y.; Wang, D.; Wang, G.; Zhang, X.; Li, Y.; Lee, S. Ag@MOF-loaded p-coumaric acid modified chitosan/chitosan nanoparticle and polyvinyl alcohol/starch bilayer films for food packing applications. Int. J. Biol. Macromol., 2022, 202, 80-90. doi: 10.1016/j.ijbiomac.2022.01.074 PMID: 35038467
  89. Ong, T.H.; Chitra, E.; Ramamurthy, S.; Siddalingam, R.P.; Yuen, K.H.; Ambu, S.P.; Davamani, F. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms. PLoS One, 2017, 12(3), e0174888. doi: 10.1371/journal.pone.0174888 PMID: 28362873
  90. Mirzahosseinipour, M.; Khorsandi, K.; Hosseinzadeh, R.; Ghazaeian, M.; Shahidi, F.K. Antimicrobial photodynamic and wound healing activity of curcumin encapsulated in silica nanoparticles. Photodiagn. Photodyn. Ther., 2020, 29, 101639. doi: 10.1016/j.pdpdt.2019.101639 PMID: 31899378
  91. Oves, M.; Rauf, M.A.; Ansari, M.O.; Aslam Parwaz Khan, A.; A Qari, H. Alajmi, M.F.; Sau, S.; Iyer, A.K. Graphene decorated zinc oxide and curcumin to disinfect the methicillin-resistant Staphylococcus aureus. Nanomaterials, 2020, 10(5), 1004. doi: 10.3390/nano10051004 PMID: 32466085
  92. Della Rocca, J.; Liu, D.; Lin, W. Are high drug loading nanoparticles the next step forward for chemotherapy? Nanomedicine, 2012, 7(3), 303-305. doi: 10.2217/nnm.11.191 PMID: 22385191
  93. Xu, L.; Liang, Y.; Chen, X.; Chen, B.; Han, Y.; Zhang, L. Hyperlipidemia affects the absorption, distribution and excretion of seven catechins in rats following oral administration of tea polyphenols. RSC Advances, 2015, 5(119), 97988-97994. doi: 10.1039/C5RA19699J
  94. Agrahari, V.; Agrahari, V. Facilitating the translation of nanomedicines to a clinical product: Challenges and opportunities. Drug Discov. Today, 2018, 23(5), 974-991. doi: 10.1016/j.drudis.2018.01.047 PMID: 29406263
  95. Raie, D.S.; Mhatre, E.; Thiele, M.; Labena, A.; El-Ghannam, G.; Farahat, L.A.; Youssef, T.; Fritzsche, W.; Kovács, Á.T. Application of quercetin and its bio-inspired nanoparticles as anti-adhesive agents against Bacillus subtilis attachment to surface. Mater. Sci. Eng. C, 2017, 70(Pt 1), 753-762. doi: 10.1016/j.msec.2016.09.038 PMID: 27770951
  96. Keihanian, F.; Saeidinia, A.; Bagheri, R.K.; Johnston, T.P.; Sahebkar, A. Curcumin, hemostasis, thrombosis, and coagulation. J. Cell Physiol., 2018, 233(6), 4497-4511. Epub 2017 Dec 26. doi: 10.1002/jcp.26249. PMID: 29052850
  97. Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: An inflammasome silencer. Pharmacol. Res., 2020, 159, 104921. doi: 10.1016/j.phrs.2020.104921 PMID: 32464325
  98. Heidari, H.; Bagherniya, M.; Majeed, M.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Curcumin‐piperine co‐supplementation and human health: A comprehensive review of preclinical and clinical studies. Phytother. Res., 2023, 37(4), 1462-1487. doi: 10.1002/ptr.7737 PMID: 36720711
  99. Momtazi, A.A.; Sahebkar, A. Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr Pharm Des., 2016, 22(28), 4386-97. doi: 10.2174/1381612822666160527113501 PMID: 27229723
  100. Sahebkar, A.; Takasaki, M.; Konoshima, T.; Tokuda, H. Cancer chemopreventive activity of the prenylated coumarin, umbelliprenin, in vivo. Eur. J. Cancer Prev., 2009, 18(5), 412-415. doi: 10.1097/CEJ.0b013e32832c389e PMID: 19531956
  101. Sahebkar, A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil. Steril., 2010, 94(5), e75-e77. doi: 10.1016/j.fertnstert.2010.07.1071
  102. Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135. doi: 10.1016/j.autrev.2017.11.016 PMID: 29180127
  103. Mohajeri, M.; Sahebkar, A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol., 2018, 122, 30-51. Epub 2017 Dec 14. doi: 10.1016/j.critrevonc.2017.12.005 PMID: 29458788
  104. Soltani, S.; Boozari, M.; Cicero, A.F.G.; Jamialahmadi, T.; Sahebkar, A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother. Res., 2021, 35(6), 2854-2878. doi: 10.1002/ptr.6991 PMID: 33464676
  105. Jaiswal, S.; Mishra, P. Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Med. Microbiol. Immunol., 2018, 207(1), 39-53. doi: 10.1007/s00430-017-0525-y PMID: 29081001
  106. Shome, S.; Talukdar, A.D.; Tewari, S.; Choudhury, S.; Bhattacharya, M.K.; Upadhyaya, H. Conjugation of micro/nanocurcumin particles to ZNO nanoparticles changes the surface charge and hydrodynamic size thereby enhancing its antibacterial activity against Escherichia Coli and Staphylococcus aureus. Biotechnol. Appl. Biochem., 2021, 68(3), 603-615. doi: 10.1002/bab.1968 PMID: 32533898
  107. Fogacci, F.; Tocci, G.; Presta, V.; Fratter, A.; Borghi, C.; Cicero, A.F.G. Effect of resveratrol on blood pressure: A systematic review and meta-analysis of randomized, controlled, clinical trials. Crit. Rev. Food Sci. Nutr., 2019, 59(10), 1605-1618. doi: 10.1080/10408398.2017.1422480 PMID: 29359958
  108. Haghighatdoost, F.; Hariri, M. Can resveratrol supplement change inflammatory mediators? A systematic review and meta-analysis on randomized clinical trials. Eur. J. Clin. Nutr., 2019, 73(3), 345-355. doi: 10.1038/s41430-018-0253-4 PMID: 30013206
  109. Singh, A.P.; Singh, R.; Verma, S.S.; Rai, V.; Kaschula, C.H.; Maiti, P.; Gupta, S.C. Health benefits of resveratrol: Evidence from clinical studies. Med. Res. Rev., 2019, 39(5), 1851-1891. doi: 10.1002/med.21565 PMID: 30741437
  110. Sahebkar, A. Effects of resveratrol supplementation on plasma lipids: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev., 2013, 71(12), 822-835. doi: 10.1111/nure.12081 PMID: 24111838
  111. Sahebkar, A.; Serban, C.; Ursoniu, S.; Wong, N.D.; Muntner, P.; Graham, I.M.; Mikhailidis, D.P.; Rizzo, M.; Rysz, J.; Sperling, L.S.; Lip, G.Y.H.; Banach, M. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors — Results from a systematic review and meta-analysis of randomized controlled trials. Int. J. Cardiol., 2015, 189(1), 47-55. doi: 10.1016/j.ijcard.2015.04.008 PMID: 25885871
  112. Park, S.; Cha, S.H.; Cho, I.; Park, S.; Park, Y.; Cho, S.; Park, Y. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Mater. Sci. Eng. C, 2016, 58, 1160-1169. doi: 10.1016/j.msec.2015.09.068 PMID: 26478416
  113. Shukla, S.P.; Roy, M.; Mukherjee, P.; Das, L.; Neogy, S.; Srivastava, D.; Adhikari, S. Size selective green synthesis of silver and gold nanoparticles: Enhanced antibacterial efficacy of resveratrol capped silver sol. J. Nanosci. Nanotechnol., 2016, 16(3), 2453-2463. doi: 10.1166/jnn.2016.10772 PMID: 27455655
  114. Riaz, S.; Fatima Rana, N.; Hussain, I.; Tanweer, T.; Nawaz, A.; Menaa, F.; Janjua, H.A.; Alam, T.; Batool, A.; Naeem, A.; Hameed, M.; Ali, S.M. Effect of flavonoid-coated gold nanoparticles on bacterial colonization in mice organs. Nanomaterials, 2020, 10(9), 1769. doi: 10.3390/nano10091769 PMID: 32906828

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers