In Silico Screening and Molecular Dynamics Simulations against Tyrosine-protein Kinase Fyn Reveal Potential Novel Therapeutic Candidates for Bovine Papillomatosis
- Authors: Barros G.1, Barreto D.1, Cavalcanti S.1, Oliveira T.2, Rodrigues R.3, de Aragão Batista M.1
-
Affiliations:
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe
- Department of Pharmacy, Center for Biological and Health Sciences, Federal University of Sergipe
- Laboratory of Pharmacognosy, Federal University of Espirito Santo
- Issue: Vol 31, No 37 (2024)
- Pages: 6172-6186
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645096
- DOI: https://doi.org/10.2174/0109298673263039231009101133
- ID: 645096
Cite item
Full Text
Abstract
Background:Decreased beef productivity due to papillomatosis has led to the development and identification of novel targets and molecules to treat the disease. Protein kinases are promising targets for the design of numerous chemotherapy drugs.
Objective:This study aimed to screen and design new inhibitors of bovine Fyn, a protein kinase, using structure-based computational methods, such as molecular docking and molecular dynamics simulation (MDS).
Methods:To carry out the molecular docking analysis, five ligands obtained through structural similarity between active compounds along with the cross-inhibition function between the ChEMBL and Drugbank databases were used. Molecular modeling was performed, and the generated models were validated using PROCHECK and Verify 3D. Molecular docking was performed using Autodock Vina. The complexes formed between Fyn and the three best ligands had their stability assessed by MDS. In these simulations, the complexes were stabilized for 100 ns in relation to a pressure of 1 atm, with an average temperature of 300 k and a potential energy of 1,145,336 kJ/m converged in 997 steps.
Results:Docking analyses showed that all selected ligands had a high binding affinity with Fyn and presented hydrogen bonds at important active sites. MDS results support the docking results, as the ligand showed similar and stable interactions with amino acids present at the binding site of the protein. In all simulations, sorafenib obtained the best results of interaction with the bovine Fyn.
Conclusion:The results highlight the identification of possible bovine Fyn inhibitors; however, further studies are important to confirm these results experimentally.
Keywords
About the authors
Gerlane Barros
Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe
Email: info@benthamscience.net
Débora Barreto
Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe
Email: info@benthamscience.net
Sandy Cavalcanti
Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe
Email: info@benthamscience.net
Tiago Oliveira
Department of Pharmacy, Center for Biological and Health Sciences, Federal University of Sergipe
Email: info@benthamscience.net
Ricardo Rodrigues
Laboratory of Pharmacognosy, Federal University of Espirito Santo
Email: info@benthamscience.net
Marcus de Aragão Batista
Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe
Author for correspondence.
Email: info@benthamscience.net
References
- Borzacchiello, G.; Roperto, F. Bovine papillomaviruses, papillomas and cancer in cattle. Vet. Res., 2008, 39(5), 45. doi: 10.1051/vetres:2008022 PMID: 18479666
- Medeiros-Fonseca, B.; Abreu-Silva, A.L.; Medeiros, R.; Oliveira, P.A.; Gil da Costa, R.M. Pteridium spp. and bovine papillomavirus: Partners in cancer. Front. Vet. Sci., 2021, 8, 758720. doi: 10.3389/fvets.2021.758720 PMID: 34796228
- Kono, T.; Laimins, L. Genomic instability and DNA damage repair pathways induced by human papillomaviruses. Viruses, 2021, 13(9), 1821. doi: 10.3390/v13091821 PMID: 34578402
- Moody, C.A. Regulation of the innate immune response during the human papillomavirus life cycle. Viruses, 2022, 14(8), 1797. doi: 10.3390/v14081797 PMID: 36016419
- Gallina, L.; Savini, F.; Canziani, S.; Frasnelli, M.; Lavazza, A.; Scagliarini, A.; Lelli, D. Bovine papillomatosis hiding a zoonotic infection: Epitheliotropic viruses in bovine skin lesions. Pathogens, 2020, 9(7), 583. doi: 10.3390/pathogens9070583 PMID: 32709033
- Ugochukwu, I.C.I.; Aneke, C.I.; Idoko, I.S.; Sani, N.A.; Amoche, A.J.; Mshiela, W.P.; Ede, R.E.; Ibrahim, N.D.G.; Njoku, C.I.O.; Sackey, A.K.B. Bovine papilloma: Aetiology, pathology, immunology, disease status, diagnosis, control, prevention and treatment: A review. Comp. Clin. Pathol., 2019, 28(3), 737-745. doi: 10.1007/s00580-018-2785-3
- Daudt, C.; Da Silva, F.R.C.; Lunardi, M.; Alves, C.B.D.T.; Weber, M.N.; Cibulski, S.P.; Alfieri, A.F.; Alfieri, A.A.; Canal, C.W. Papillomaviruses in ruminants: An update. Transbound. Emerg. Dis., 2018, 65(5), 1381-1395. doi: 10.1111/tbed.12868 PMID: 29603890
- Lunardi, M.; de Camargo Tozato, C.; Alfieri, A.F.; de Alcântara, B.K.; Vilas-Boas, L.A.; Otonel, R.A.A.; Headley, S.A.; Alfieri, A.A. Genetic diversity of bovine papillomavirus types, including two putative new types, in teat warts from dairy cattle herds. Arch. Virol., 2016, 161(6), 1569-1577. doi: 10.1007/s00705-016-2820-0 PMID: 26997614
- Bauermann, F.V.; Joshi, L.R.; Mohr, K.A.; Kutish, G.F.; Meier, P.; Chase, C.; Christopher-Hennings, J.; Diel, D.G. A novel bovine papillomavirus type in the genus Dyokappapapillomavirus. Arch. Virol., 2017, 162(10), 3225-3228. doi: 10.1007/s00705-017-3443-9 PMID: 28616671
- SantAna, F.J.F.; Leal, F.A.A.; Rabelo, R.E.; Vulcani, V.A.S.; Moreira, C.A., Jr; Cargnelutti, J.F.; Flores, E.F. Coinfection by Vaccinia virus and an Orf virus like parapoxvirus in an outbreak of vesicular disease in dairy cows in midwestern Brazil. J. Vet. Diagn. Invest., 2013, 25(2), 267-272. doi: 10.1177/1040638713475799 PMID: 23404478
- Turk, N.; upančić, .; Stareina, V.; Kovač, S.; Babić, T.; Kreszinger, M.; Milas, Z. Severe bovine papillomatosis: detection of bovine papillomavirus in tumour tissue and efficacy of treatment using autogenous vaccine and parammunity inducer. Veterinarski arhiv, 2005, 75(5), 391-397. Available from: https://hrcak.srce.hr/31727
- Celegato, M.; Messa, L.; Goracci, L.; Mercorelli, B.; Bertagnin, C.; Spyrakis, F.; Suarez, I.; Cousido-Siah, A.; Travé, G.; Banks, L.; Cruciani, G.; Palù, G.; Loregian, A. A novel small-molecule inhibitor of the human papillomavirus E6-p53 interaction that reactivates p53 function and blocks cancer cells growth. Cancer Lett., 2020, 470, 115-125. doi: 10.1016/j.canlet.2019.10.046 PMID: 31693922
- Soumia, M.; Hajji, H.; El Mzibri, M.; Younes, F.Z.; Mohammed, B.; Mohamed, B.; Benaissa, M. In silico molecular modeling studies to identify novel potential inhibitors of HPV E6 protein. Vaccines, 2022, 10(9), 1452. doi: 10.3390/vaccines10091452 PMID: 36146532
- Sepehri, S.; Razzaghi-Asl, N.; Mirzayi, S.; Mahnam, K.; Adhami, V. In silico screening and molecular dynamics simulations toward new human papillomavirus 16 type inhibitors. Res. Pharm. Sci., 2022, 17(2), 189-208. doi: 10.4103/1735-5362.335177 PMID: 35280831
- Krug, S.; Parveen, S.; Bishai, W.R. Host-directed therapies: Modulating inflammation to treat tuberculosis. Front. Immunol., 2021, 12, 660916. doi: 10.3389/fimmu.2021.660916 PMID: 33953722
- Kaufmann, S.H.E.; Dorhoi, A.; Hotchkiss, R.S.; Bartenschlager, R. Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov., 2018, 17(1), 35-56. doi: 10.1038/nrd.2017.162 PMID: 28935918
- Eguchi, R.; Kubo, S.; Takeda, H.; Ohta, T.; Tabata, C.; Ogawa, H.; Nakano, T.; Fujimori, Y. Deficiency of Fyn protein is prerequisite for apoptosis induced by Src family kinase inhibitors in human mesothelioma cells. Carcinogenesis, 2012, 33(5), 969-975. doi: 10.1093/carcin/bgs109 PMID: 22354875
- Barreto, D.M.; Barros, G.S.; Santos, L.A.B.O.; Soares, R.C.; Batista, M.V.A. Comparative transcriptomic analysis of bovine papillomatosis. BMC Genomics, 2018, 19(1), 949. doi: 10.1186/s12864-018-5361-y PMID: 30567500
- Li, S.; Liu, C.; Tang, Y. Role of Fyn in hematological malignancies. J. Cancer Res. Clin. Oncol., 2023, 149(9), 6759-6767. doi: 10.1007/s00432-023-04608-2 PMID: 36754870
- Ninio-Many, L.; Grossman, H.; Levi, M.; Zilber, S.; Tsarfaty, I.; Shomron, N.; Tuvar, A.; Chuderland, D.; Stemmer, S.M.; Ben-Aharon, I.; Shalgi, R. MicroRNA miR-125a-3p modulates molecular pathway of motility and migration in prostate cancer cells. Oncoscience, 2014, 1(4), 250-261. doi: 10.18632/oncoscience.30 PMID: 25594017
- Nisar, A.; Kayani, M.A.; Nasir, W.; Mehmood, A.; Ahmed, M.W.; Parvez, A.; Mahjabeen, I. Fyn and Lyn gene polymorphisms impact the risk of thyroid cancer. Mol. Genet. Genomics, 2022, 297(6), 1649-1659. doi: 10.1007/s00438-022-01946-7 PMID: 36058999
- Elias, D.; Vever, H.; Lænkholm, A.V.; Gjerstorff, M.F.; Yde, C.W.; Lykkesfeldt, A.E.; Ditzel, H.J. Correction: Gene expression profiling identifies FYN as an important molecule in tamoxifen resistance and a predictor of early recurrence in patients treated with endocrine therapy. Oncogene, 2018, 37(41), 5585-5586. doi: 10.1038/s41388-018-0495-6 PMID: 30242243
- Yu, B.; Xu, L.; Chen, L.; Wang, Y.; Jiang, H.; Wang, Y.; Yan, Y.; Luo, S.; Zhai, Z. FYN is required for ARHGEF16 to promote proliferation and migration in colon cancer cells. Cell Death Dis., 2020, 11(8), 652. doi: 10.1038/s41419-020-02830-1 PMID: 32811808
- Xie, Y.G.; Yu, Y.; Hou, L.K.; Wang, X.; Zhang, B.; Cao, X.C. FYN promotes breast cancer progression through epithelial-mesenchymal transition. Oncol. Rep., 2016, 36(2), 1000-1006. doi: 10.3892/or.2016.4894 PMID: 27349276
- Polanco, J.C.; Li, C.; Bodea, L.G.; Martinez-Marmol, R.; Meunier, F.A.; Götz, J. Amyloid-β and tau complexity : Towards improved biomarkers and targeted therapies. Nat. Rev. Neurol., 2018, 14(1), 22-39. doi: 10.1038/nrneurol.2017.162 PMID: 29242522
- Angelopoulou, E.; Paudel, Y.N.; Julian, T.; Shaikh, M.F.; Piperi, C. Pivotal role of Fyn kinase in parkinsons disease and levodopa-induced dyskinesia: A novel therapeutic target? Mol. Neurobiol., 2021, 58(4), 1372-1391. doi: 10.1007/s12035-020-02201-z PMID: 33175322
- Löwenberg, M.; Tuynman, J.; Bilderbeek, J.; Gaber, T.; Buttgereit, F.; van Deventer, S.; Peppelenbosch, M.; Hommes, D. Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood, 2005, 106(5), 1703-1710. doi: 10.1182/blood-2004-12-4790 PMID: 15899916
- Marotta, G.; Basagni, F.; Rosini, M.; Minarini, A. Role of Fyn kinase inhibitors in switching neuroinflammatory pathways. Curr. Med. Chem., 2022, 29(27), 4738-4755. doi: 10.2174/0929867329666211221153719 PMID: 34939537
- Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M.P.; Overington, J.P.; Papadatos, G.; Smit, I.; Leach, A.R. The ChEMBL database in 2017. Nucleic Acids Res., 2017, 45(D1), D945-D954. doi: 10.1093/nar/gkw1074 PMID: 27899562
- Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform., 2015, 7(1), 20. doi: 10.1186/s13321-015-0069-3 PMID: 26052348
- Webb, B.; Sali, A. Comparative protein structure modeling using modeller. Curr. prot. bioinform., 2016, 54, 5.6.1-5.6.37. doi: 10.1002/cpbi.3
- Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc., 2021, 16(12), 5634-5651. doi: 10.1038/s41596-021-00628-9 PMID: 34759384
- Capriles, P.V.S.Z.; Baptista, L.P.R.; Guedes, I.A.; Guimarães, A.C.R.; Custódio, F.L.; Alves-Ferreira, M.; Dardenne, L.E. Structural modeling and docking studies of ribose 5-phosphate isomerase from Leishmania major and Homo sapiens: A comparative analysis for Leishmaniasis treatment. J. Mol. Graph. Model., 2015, 55, 134-147. doi: 10.1016/j.jmgm.2014.11.002 PMID: 25528729
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods, 2011, 8(10), 785-786. doi: 10.1038/nmeth.1701 PMID: 21959131
- Colovos, C.; Yeates, T. O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci, 1993, 2(9), 1511-1519. doi: 10.1002/pro.5560020916
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291. doi: 10.1107/S0021889892009944
- Xu, D.; Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J., 2011, 101(10), 2525-2534. doi: 10.1016/j.bpj.2011.10.024 PMID: 22098752
- Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res., 2016, 44(W1), W344-W350. doi: 10.1093/nar/gkw408 PMID: 27166375
- Hao, G.; Xu, Z.P.; Li, L. Manipulating extracellular tumour pH: An effective target for cancer therapy. RSC Adv., 2018, 8(39), 22182-22192. doi: 10.1039/C8RA02095G PMID: 35541713
- Dolinsky, T. J.; Czodrowski, P.; Li, H.; Nielsen, J. E.; Jensen, J. H.; Klebe, G.; Baker, N. A. PDB2PQR:Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucl. acid. res., 2007, 35(Web Server issue), W522-W525. doi: 10.1093/nar/gkm276
- Li, H.; Robertson, A.D.; Jensen, J.H. Very fast empirical prediction and rationalization of protein pKa values. Proteins, 2005, 61(4), 704-721. doi: 10.1002/prot.20660 PMID: 16231289
- MacKerell, A.D., Jr; Bashford, D.; Bellott, M.; Dunbrack, R.L., Jr; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.T.K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.T.; Prodhom, B.; Reiher, W.E.; Roux, B.; Schlenkrich, M.; Smith, J.C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B, 1998, 102(18), 3586-3616. doi: 10.1021/jp973084f PMID: 24889800
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. doi: 10.1002/jcc.21256 PMID: 19399780
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), NA. doi: 10.1002/jcc.21334 PMID: 19499576
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250. doi: 10.1007/978-1-4939-2269-7_19 PMID: 25618350
- Hennequin, L.F.; Allen, J.; Breed, J.; Curwen, J.; Fennell, M.; Green, T.P.; Lambert-van der Brempt, C.; Morgentin, R.; Norman, R.A.; Olivier, A.; Otterbein, L.; Plé, P.A.; Warin, N.; Costello, G. N -(5-Chloro-1,3-benzodioxol-4-yl)-7-2-(4-methylpiperazin-1-yl)ethoxy-5- (tetrahydro-2 H -pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl Kinase Inhibitor. J. Med. Chem., 2006, 49(22), 6465-6488. doi: 10.1021/jm060434q PMID: 17064066
- Kinoshita, T.; Matsubara, M.; Ishiguro, H.; Okita, K.; Tada, T. Structure of human Fyn kinase domain complexed with staurosporine. Biochem. Biophys. Res. Commun., 2006, 346(3), 840-844. doi: 10.1016/j.bbrc.2006.05.212 PMID: 16782058
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, 26(16), 1781-1802. doi: 10.1002/jcc.20289 PMID: 16222654
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmüller, H.; MacKerell, A.D., Jr CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods, 2017, 14(1), 71-73. doi: 10.1038/nmeth.4067 PMID: 27819658
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; Jo, S.; Pande, V.S.; Case, D.A.; Brooks, C.L., III; MacKerell, A.D., Jr; Klauda, J.B.; Im, W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput., 2016, 12(1), 405-413. doi: 10.1021/acs.jctc.5b00935 PMID: 26631602
- Lee, J.; Hitzenberger, M.; Rieger, M.; Kern, N.R.; Zacharias, M.; Im, W. CHARMM-GUI supports the amber force fields. J. Chem. Phys., 2020, 153(3), 035103. doi: 10.1063/5.0012280 PMID: 32716185
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem., 2008, 29(11), 1859-1865. doi: 10.1002/jcc.20945 PMID: 18351591
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935. doi: 10.1063/1.445869
- Davidchack, R.L.; Handel, R.; Tretyakov, M.V. Langevin thermostat for rigid body dynamics. J. Chem. Phys., 2009, 130(23), 234101. doi: 10.1063/1.3149788 PMID: 19548705
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38, 27-28. doi: 10.1016/0263-7855(96)00018-5 PMID: 8744570
- Senapathi, T.; Bray, S.; Barnett, C.B.; Grüning, B.; Naidoo, K.J. Biomolecular reaction and interaction dynamics global environment (BRIDGE). Bioinformatics, 2019, 35(18), 3508-3509. doi: 10.1093/bioinformatics/btz107 PMID: 30759217
- Grant, B.J.; Rodrigues, A.P.C.; ElSawy, K.M.; McCammon, J.A.; Caves, L.S.D. Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 2006, 22(21), 2695-2696. doi: 10.1093/bioinformatics/btl461 PMID: 16940322
- Jensen, A.R.; David, S.Y.; Liao, C.; Dai, J.; Keller, E.T.; Al-Ahmadie, H.; Dakin-Haché, K.; Usatyuk, P.; Sievert, M.F.; Paner, G.P.; Yala, S.; Cervantes, G.M.; Natarajan, V.; Salgia, R.; Posadas, E.M. Fyn is downstream of the HGF/MET signaling axis and affects cellular shape and tropism in PC3 cells. Clin. Cancer Res., 2011, 17(10), 3112-3122. doi: 10.1158/1078-0432.CCR-10-1264 PMID: 21364031
- Druker, B.J.; Sawyers, C.L.; Kantarjian, H.; Resta, D.J.; Reese, S.F.; Ford, J.M.; Capdeville, R.; Talpaz, M. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med., 2001, 344(14), 1038-1042. doi: 10.1056/NEJM200104053441402 PMID: 11287973
- Boggon, T.J.; Eck, M.J. Structure and regulation of Src family kinases. Oncogene, 2004, 23(48), 7918-7927. doi: 10.1038/sj.onc.1208081 PMID: 15489910
- Musacchio, A.; Noble, M.; Pauptit, R.; Wierenga, R.; Saraste, M. Crystal structure of a Src-homology 3 (SH3) domain. Nature, 1992, 359(6398), 851-855. doi: 10.1038/359851a0 PMID: 1279434
- Dalal, V.; Dhankhar, P.; Singh, V.; Singh, V.; Rakhaminov, G.; Golemi-Kotra, D.; Kumar, P. Structure-based identification of potential drugs against FmtA of staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM. Protein J., 2021, 40(2), 148-165. doi: 10.1007/s10930-020-09953-6 PMID: 33421024
- Jensen, B.C.; Parry, T.L.; Huang, W.; Beak, J.Y.; Ilaiwy, A.; Bain, J.R.; Newgard, C.B.; Muehlbauer, M.J.; Patterson, C.; Johnson, G.L.; Willis, M.S. Effects of the kinase inhibitor sorafenib on heart, muscle, liver and plasma metabolism in vivo using non-targeted metabolomics analysis. Br. J. Pharmacol., 2017, 174(24), 4797-4811. doi: 10.1111/bph.14062 PMID: 28977680
- Motzer, R.J.; Escudier, B.; Gannon, A.; Figlin, R.A. Sunitinib: Ten years of successful clinical use and study in advanced renal cell carcinoma. Oncologist, 2017, 22(1), 41-52. doi: 10.1634/theoncologist.2016-0197 PMID: 27807302
- Draghiciu, O.; Boerma, A.; Hoogeboom, B.N.; Nijman, H.W.; Daemen, T. A rationally designed combined treatment with an alphavirus-based cancer vaccine, sunitinib and low-dose tumor irradiation completely blocks tumor development. OncoImmunology, 2015, 4(10), e1029699. doi: 10.1080/2162402X.2015.1029699 PMID: 26451295
- Amir, M.; Mohammad, T.; Kumar, V.; Alajmi, M.F.; Rehman, M.T.; Hussain, A.; Alam, P.; Dohare, R.; Islam, A.; Ahmad, F.; Hassan, M.I. Structural analysis and conformational dynamics of STN1 gene mutations involved in coat plus syndrome. Front. Mol. Biosci., 2019, 6, 41. doi: 10.3389/fmolb.2019.00041 PMID: 31245382
- Hong, L.; Jain, N.; Cheng, X.; Bernal, A.; Tyagi, M.; Smith, J.C. Determination of functional collective motions in a protein at atomic resolution using coherent neutron scattering. Sci. Adv., 2016, 2(10), e1600886. doi: 10.1126/sciadv.1600886 PMID: 27757419
Supplementary files
