Fragment-based Drug Discovery Strategy and its Application to the Design of SARS-CoV-2 Main Protease Inhibitor
- Authors: Jiang Y.1, Wu Y.2, Wang J.2, Ma Y.2, Yu H.3, Wang Z.4
-
Affiliations:
- The Second Affiliated Hospital, Baotou Medical College
- College of Pharmacy, Inner Mongolia Medical University
- School of Basic Medicine, Baotou Medical College
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, Baotou Medical College
- Issue: Vol 31, No 38 (2024)
- Pages: 6204-6226
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645098
- DOI: https://doi.org/10.2174/0109298673294251240229070740
- ID: 645098
Cite item
Full Text
Abstract
:Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) emerged at the end of 2019, causing a highly infectious and pathogenic disease known as 2019 coronavirus disease. This disease poses a serious threat to human health and public safety. The SARS-CoV-2 main protease (Mpro) is a highly sought-after target for developing drugs against COVID-19 due to its exceptional specificity. Its crystal structure has been extensively documented. Numerous strategies have been employed in the investigation of Mpro inhibitors. This paper is primarily concerned with Fragment-based Drug Discovery (FBDD), which has emerged as an effective approach to drug design in recent times. Here, we summarize the research on the approach of FBDD and its application in developing inhibitors for SARS-CoV-2 Mpro.
About the authors
Yu Jiang
The Second Affiliated Hospital, Baotou Medical College
Email: info@benthamscience.net
Yingnan Wu
College of Pharmacy, Inner Mongolia Medical University
Email: info@benthamscience.net
Jing Wang
College of Pharmacy, Inner Mongolia Medical University
Email: info@benthamscience.net
Yuheng Ma
College of Pharmacy, Inner Mongolia Medical University
Email: info@benthamscience.net
Hui Yu
School of Basic Medicine, Baotou Medical College
Author for correspondence.
Email: info@benthamscience.net
Zhanli Wang
Inner Mongolia Key Laboratory of Disease-Related Biomarkers, Baotou Medical College
Author for correspondence.
Email: info@benthamscience.net
References
- World health organization. Number of COVID-19 cases reported to WHO. Available from: https://covid19.who.int/
- Moshkovits, I.; Shepshelovich, D. Emergency use authorizations of COVID-19-related medical products. JAMA Intern. Med., 2022, 182(2), 228-229. doi: 10.1001/jamainternmed.2021.7257 PMID: 34928303
- Nutho, B.; Mahalapbutr, P.; Hengphasatporn, K.; Pattaranggoon, N.C.; Simanon, N.; Shigeta, Y.; Hannongbua, S.; Rungrotmongkol, T. Why are lopinavir and ritonavir effective against the newly emerged coronavirus 2019? Atomistic insights into the inhibitory mechanisms. Biochemistry, 2020, 59(18), 1769-1779. doi: 10.1021/acs.biochem.0c00160 PMID: 32293875
- Macías, J.; Pinilla, A.; Dominguez, L.F.A.; Corma, A.; Macias, C.E.; Serna, G.A.; Pizarraya, G.A.; Fuertes, F.M.; Verdugo, M.R.; Trigo, M.; Real, L.M.; Pineda, J.A. High rate of major drug-drug interactions of lopinavir-ritonavir for COVID-19 treatment. Sci. Rep., 2020, 10(1), 20958. doi: 10.1038/s41598-020-78029-3 PMID: 33262433
- Bolcato, G.; Bissaro, M.; Pavan, M.; Sturlese, M.; Moro, S. Targeting the coronavirus SARS-CoV-2: Computational insights into the mechanism of action of the protease inhibitors lopinavir, ritonavir and nelfinavir. Sci. Rep., 2020, 10(1), 20927. doi: 10.1038/s41598-020-77700-z PMID: 33262359
- Agostini, M.L.; Andres, E.L.; Sims, A.C.; Graham, R.L.; Sheahan, T.P.; Lu, X.; Smith, E.C.; Case, J.B.; Feng, J.Y.; Jordan, R.; Ray, A.S.; Cihlar, T.; Siegel, D.; Mackman, R.L.; Clarke, M.O.; Baric, R.S.; Denison, M.R. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio, 2018, 9(2), e00221-18. doi: 10.1128/mBio.00221-18 PMID: 29511076
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271. doi: 10.1038/s41422-020-0282-0 PMID: 32020029
- Liu, X.; Li, Z.; Liu, S.; Sun, J.; Chen, Z.; Jiang, M.; Zhang, Q.; Wei, Y.; Wang, X.; Huang, Y.Y.; Shi, Y.; Xu, Y.; Xian, H.; Bai, F.; Ou, C.; Xiong, B.; Lew, A.M.; Cui, J.; Fang, R.; Huang, H.; Zhao, J.; Hong, X.; Zhang, Y.; Zhou, F.; Luo, H.B. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm. Sin. B, 2020, 10(7), 1205-1215. doi: 10.1016/j.apsb.2020.04.008 PMID: 32318327
- Singh, R.; Vijayan, V. Chloroquine: A potential drug in the COVID-19 scenario. INAE Letters, 2020, 5(2), 399-410. doi: 10.1007/s41403-020-00114-w
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293. doi: 10.1038/s41586-020-2223-y PMID: 32272481
- Patel, J.; Berezowski, I.; Abdelmonem, A.; Taylor, D.; Pourmand, A. Azithromycin for mild-to-moderate COVID-19. Lancet Respir. Med., 2021, 9(10), e99. doi: 10.1016/S2213-2600(21)00379-9 PMID: 34509194
- Annane, D. Corticosteroids for COVID-19. J. Intensive Care Med., 2021, 1(1), 14-25. doi: 10.1016/j.jointm.2021.01.002 PMID: 36943816
- Jin, Z.; Zhao, Y.; Sun, Y.; Zhang, B.; Wang, H.; Wu, Y.; Zhu, Y.; Zhu, C.; Hu, T.; Du, X.; Duan, Y.; Yu, J.; Yang, X.; Yang, X.; Yang, K.; Liu, X.; Guddat, L.W.; Xiao, G.; Zhang, L.; Yang, H.; Rao, Z. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat. Struct. Mol. Biol., 2020, 27(6), 529-532. doi: 10.1038/s41594-020-0440-6 PMID: 32382072
- Wang, R.; Hu, Q.; Wang, H.; Zhu, G.; Wang, M.; Zhang, Q.; Zhao, Y.; Li, C.; Zhang, Y.; Ge, G.; Chen, H.; Chen, L. Identification of vitamin K3 and its analogues as covalent inhibitors of SARS-CoV-2 3CLpro. Int. J. Biol. Macromol., 2021, 183, 182-192. doi: 10.1016/j.ijbiomac.2021.04.129 PMID: 33901557
- Hu, Y.; Ma, C.; Szeto, T.; Hurst, B.; Tarbet, B.; Wang, J. Boceprevir, calpain inhibitors II and XII, and GC-376 have broad-spectrum antiviral activity against coronaviruses. ACS Infect. Dis., 2021, 7(3), 586-597. doi: 10.1021/acsinfecdis.0c00761 PMID: 33645977
- Laplantine, E.; Chable-Bessia, C.; Oudin, A.; Swain, J.; Soria, A.; Merida, P.; Gourdelier, M.; Mestiri, S.; Besseghe, I.; Bremaud, E.; Neyret, A.; Lyonnais, S.; Favard, C.; Benaroch, P.; Hubert, M.; Schwartz, O.; Guerin, M.; Danckaert, A.; Del Nery, E.; Muriaux, D.; Weil, R. The FDA-approved drug Auranofin has a dual inhibitory effect on SARS-CoV-2 entry and NF-κB signaling. iScience, 2022, 25(10), 105066. doi: 10.1016/j.isci.2022.105066 PMID: 36093378
- Teli, D.M.; Shah, M.B.; Chhabria, M.T. In silico screening of natural compounds as potential inhibitors of SARS-CoV-2 main protease and Spike RBD: Targets for COVID-19. Front. Mol. Biosci., 2021, 7, 599079. doi: 10.3389/fmolb.2020.599079 PMID: 33542917
- Zhang, Z.; Shen, Q.; Chang, H. Vaccines for COVID-19: A systematic review of immunogenicity, current development, and future prospects. Front. Immunol., 2022, 13, 843928. doi: 10.3389/fimmu.2022.843928 PMID: 35572592
- Zhang, J.; Zeng, H.; Gu, J.; Li, H.; Zheng, L.; Zou, Q. Progress and prospects on vaccine development against SARS-CoV-2. Vaccines, 2020, 8(2), 153. doi: 10.3390/vaccines8020153 PMID: 32235387
- Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; OMeara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; ONeal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; dEnfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; Sastre, G.A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468. doi: 10.1038/s41586-020-2286-9 PMID: 32353859
- Ahmad, S.; Mirza, U.M.; Yean Kee, L.; Nazir, M.; Rahman, A.N.; Trant, J.F.; Abdullah, I. Fragment-based in silico design of SARS-CoV-2 main protease inhibitors. Chem. Biol. Drug Des., 2021, 98(4), 604-619. doi: 10.1111/cbdd.13914 PMID: 34148292
- Parker, M.R.; Feng, D.; Chamuris, B.; Margolskee, R.F. Expression and nuclear translocation of glucocorticoid receptors in type 2 taste receptor cells. Neurosci. Lett., 2014, 571, 72-77. doi: 10.1016/j.neulet.2014.04.047 PMID: 24814581
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733. doi: 10.1056/NEJMoa2001017 PMID: 31978945
- Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192. doi: 10.1038/s41579-018-0118-9 PMID: 30531947
- Hasöksüz, M.; Kiliç, S.; Saraç, F. Coronaviruses and SARS-COV-2. Turk. J. Med. Sci., 2020, 50(SI-1), 549-556. doi: 10.3906/sag-2004-127 PMID: 32293832
- Corman, V.M.; Muth, D.; Niemeyer, D.; Drosten, C. Hosts and sources of endemic human coronaviruses. Adv. Virus Res., 2018, 100, 163-188. doi: 10.1016/bs.aivir.2018.01.001 PMID: 29551135
- Schirtzinger, E.E.; Kim, Y.; Davis, A.S. Improving human coronavirus OC43 (HCoV-OC43) research comparability in studies using HCoV-OC43 as a surrogate for SARS-CoV-2. J. Virol. Methods, 2022, 299, 114317. doi: 10.1016/j.jviromet.2021.114317 PMID: 34634321
- Stadler, K.; Masignani, V.; Eickmann, M.; Becker, S.; Abrignani, S.; Klenk, H.D.; Rappuoli, R. SARS - beginning to understand a new virus. Nat. Rev. Microbiol., 2003, 1(3), 209-218. doi: 10.1038/nrmicro775 PMID: 15035025
- Kesheh, M.M.; Hosseini, P.; Soltani, S.; Zandi, M. An overview on the seven pathogenic human coronaviruses. Rev. Med. Virol., 2022, 32(2), e2282. doi: 10.1002/rmv.2282 PMID: 34339073
- Woo, P.C.Y.; Lau, S.K.P.; Chu, C.; Chan, K.; Tsoi, H.; Huang, Y.; Wong, B.H.L.; Poon, R.W.S.; Cai, J.J.; Luk, W.; Poon, L.L.M.; Wong, S.S.Y.; Guan, Y.; Peiris, J.S.M.; Yuen, K. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol., 2005, 79(2), 884-895. doi: 10.1128/JVI.79.2.884-895.2005 PMID: 15613317
- Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 2012, 367(19), 1814-1820. doi: 10.1056/NEJMoa1211721 PMID: 23075143
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. Author Correction: A new coronavirus associated with human respiratory disease in China. Nature, 2020, 580(7803), E7-E7. doi: 10.1038/s41586-020-2202-3 PMID: 32296181
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; Penzar, D.; Perlman, S.; Poon, L.L.M.; Samborskiy, D.V.; Sidorov, I.A.; Sola, I.; Ziebuhr, J. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544. doi: 10.1038/s41564-020-0695-z PMID: 32123347
- Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; Zhang, Q.; Wu, J. Coronavirus infections and immune responses. J. Med. Virol., 2020, 92(4), 424-432. doi: 10.1002/jmv.25685 PMID: 31981224
- Graham, R.L.; Donaldson, E.F.; Baric, R.S. A decade after SARS: Strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol., 2013, 11(12), 836-848. doi: 10.1038/nrmicro3143 PMID: 24217413
- Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, 203(2), 631-637. doi: 10.1002/path.1570 PMID: 15141377
- Raj, V.S.; Mou, H.; Smits, S.L.; Dekkers, D.H.W.; Müller, M.A.; Dijkman, R.; Muth, D.; Demmers, J.A.A.; Zaki, A.; Fouchier, R.A.M.; Thiel, V.; Drosten, C.; Rottier, P.J.M.; Osterhaus, A.D.M.E.; Bosch, B.J.; Haagmans, B.L. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495(7440), 251-254. doi: 10.1038/nature12005 PMID: 23486063
- Huang, J.; Song, W.; Huang, H.; Sun, Q. Pharmacological therapeutics targeting RNA-dependent RNA polymerase, proteinase and Spike protein: From mechanistic studies to clinical trials for COVID-19. J. Clin. Med., 2020, 9(4), 1131. doi: 10.3390/jcm9041131 PMID: 32326602
- Mirza, M.U.; Froeyen, M. Structural elucidation of SARS- CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J. Pharm. Anal., 2020, 10(4), 320-328. doi: 10.1016/j.jpha.2020.04.008 PMID: 32346490
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574. doi: 10.1016/S0140-6736(20)30251-8 PMID: 32007145
- Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(4), 418-423. doi: 10.1002/jmv.25681 PMID: 31967327
- Hussain, S.; Pan, J.; Chen, Y.; Yang, Y.; Xu, J.; Peng, Y.; Wu, Y.; Li, Z.; Zhu, Y.; Tien, P.; Guo, D. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J. Virol., 2005, 79(9), 5288-5295. doi: 10.1128/JVI.79.9.5288-5295.2005 PMID: 15827143
- Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol., 2015, 1282, 1-23. doi: 10.1007/978-1-4939-2438-7_1 PMID: 25720466
- Xia, B.; Kang, X. Activation and maturation of SARS- CoV main protease. Protein Cell, 2011, 2(4), 282-290. doi: 10.1007/s13238-011-1034-1 PMID: 21533772
- Alhayali, A.; Vuddanda, P.R.; Velaga, S. Silodosin oral films: Development, physico-mechanical properties and in vitro dissolution studies in simulated saliva. J. Drug Deliv. Sci. Technol., 2019, 53, 101122. doi: 10.1016/j.jddst.2019.06.019
- Goyal, B.; Goyal, D. Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Comb. Sci., 2020, 22(6), 297-305. doi: 10.1021/acscombsci.0c00058 PMID: 32402186
- Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 2020, 30(17), 127377. doi: 10.1016/j.bmcl.2020.127377 PMID: 32738988
- Fu, L.; Ye, F.; Feng, Y.; Yu, F.; Wang, Q.; Wu, Y.; Zhao, C.; Sun, H.; Huang, B.; Niu, P.; Song, H.; Shi, Y.; Li, X.; Tan, W.; Qi, J.; Gao, G.F. Both boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat. Commun., 2020, 11(1), 4417. doi: 10.1038/s41467-020-18233-x PMID: 32887884
- Su, H.; Yao, S.; Zhao, W.; Li, M.; Liu, J.; Shang, W.; Xie, H.; Ke, C.; Hu, H.; Gao, M.; Yu, K.; Liu, H.; Shen, J.; Tang, W.; Zhang, L.; Xiao, G.; Ni, L.; Wang, D.; Zuo, J.; Jiang, H.; Bai, F.; Wu, Y.; Ye, Y.; Xu, Y. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sin., 2020, 41(9), 1167-1177. doi: 10.1038/s41401-020-0483-6 PMID: 32737471
- Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science, 2003, 300(5626), 1763-1767. doi: 10.1126/science.1085658 PMID: 12746549
- Fan, K.; Ma, L.; Han, X.; Liang, H.; Wei, P.; Liu, Y.; Lai, L. The substrate specificity of SARS coronavirus 3C-like proteinase. Biochem. Biophys. Res. Commun., 2005, 329(3), 934-940. doi: 10.1016/j.bbrc.2005.02.061 PMID: 15752746
- Ramajayam, R.; Tan, K.P.; Liang, P.H. Recent development of 3C and 3CL protease inhibitors for anti-coronavirus and anti-picornavirus drug discovery. Biochem. Soc. Trans., 2011, 39(5), 1371-1375. doi: 10.1042/BST0391371 PMID: 21936817
- Berry, M.; Fielding, B.; Gamieldien, J. Potential broad spectrum inhibitors of the coronavirus 3CLpro: A virtual screening and structure-based drug design study. Viruses, 2015, 7(12), 6642-6660. doi: 10.3390/v7122963 PMID: 26694449
- Xiong, M.; Su, H.; Zhao, W.; Xie, H.; Shao, Q.; Xu, Y. What coronavirus 3C-like protease tells us: From structure, substrate selectivity, to inhibitor design. Med. Res. Rev., 2021, 41(4), 1965-1998. doi: 10.1002/med.21783 PMID: 33460213
- Cui, W.; Yang, K.; Yang, H. Recent progress in the drug development targeting SARS-CoV-2 main protease as treatment for COVID-19. Front. Mol. Biosci., 2020, 7, 616341. doi: 10.3389/fmolb.2020.616341 PMID: 33344509
- Wildes, J.E.; Marcus, M.D. Weight suppression as a predictor of weight gain and response to intensive behavioral treatment in patients with anorexia nervosa. Behav. Res. Ther., 2012, 50(4), 266-274. doi: 10.1016/j.brat.2012.02.006 PMID: 22398152
- Fattori, D. Molecular recognition: The fragment approach in lead generation. Drug Discov. Today, 2004, 9(5), 229-238. doi: 10.1016/S1359-6446(03)03007-1 PMID: 14980541
- Hajduk, P.J.; Greer, J. A decade of fragment-based drug design: Strategic advances and lessons learned. Nat. Rev. Drug Discov., 2007, 6(3), 211-219. doi: 10.1038/nrd2220 PMID: 17290284
- Loging, W.; Harland, L.; Jones, W.B. High-throughput electronic biology: mining information for drug discovery. Nat. Rev. Drug Discov., 2007, 6(3), 220-230. doi: 10.1038/nrd2265 PMID: 17330071
- Orita, M.; Ohno, K.; Niimi, T. Two Golden Ratio indices in fragment-based drug discovery. Drug Discov. Today, 2009, 14(5-6), 321-328. doi: 10.1016/j.drudis.2008.10.006 PMID: 19028598
- Scott, D.E.; Coyne, A.G.; Hudson, S.A.; Abell, C. Fragment-based approaches in drug discovery and chemical biology. Biochemistry, 2012, 51(25), 4990-5003. doi: 10.1021/bi3005126 PMID: 22697260
- Hall, R.J.; Mortenson, P.N.; Murray, C.W. Efficient exploration of chemical space by fragment-based screening. Prog. Biophys. Mol. Biol., 2014, 116(2-3), 82-91. doi: 10.1016/j.pbiomolbio.2014.09.007 PMID: 25268064
- Joseph-McCarthy, D.; Campbell, A.J.; Kern, G.; Moustakas, D. Fragment-based lead discovery and design. J. Chem. Inf. Model., 2014, 54(3), 693-704. doi: 10.1021/ci400731w PMID: 24490951
- Congreve, M.; Carr, R.; Murray, C.; Jhoti, H. A Rule of Three for fragment-based lead discovery? Drug Discov. Today, 2003, 8(19), 876-877. doi: 10.1016/S1359-6446(03)02831-9 PMID: 14554012
- Erlanson, D.A.; Fesik, S.W.; Hubbard, R.E.; Jahnke, W.; Jhoti, H. Twenty years on: the impact of fragments on drug discovery. Nat. Rev. Drug Discov., 2016, 15(9), 605-619. doi: 10.1038/nrd.2016.109 PMID: 27417849
- Leach, A.R.; Hann, M.M.; Burrows, J.N.; Griffen, E.J. Fragment screening: An introduction. Mol. Biosyst., 2006, 2(9), 429. doi: 10.1039/b610069b PMID: 17153140
- Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740. doi: 10.1021/jm901137j PMID: 20131845
- Morley, A.D.; Pugliese, A.; Birchall, K.; Bower, J.; Brennan, P.; Brown, N.; Chapman, T.; Drysdale, M.; Gilbert, I.H.; Hoelder, S.; Jordan, A.; Ley, S.V.; Merritt, A.; Miller, D.; Swarbrick, M.E.; Wyatt, P.G. Fragment-based hit identification: Thinking in 3D. Drug Discov. Today, 2013, 18(23-24), 1221-1227. doi: 10.1016/j.drudis.2013.07.011 PMID: 23906694
- Over, B.; Wetzel, S.; Grütter, C.; Nakai, Y.; Renner, S.; Rauh, D.; Waldmann, H. Natural-product-derived fragments for fragment-based ligand discovery. Nat. Chem., 2013, 5(1), 21-28. doi: 10.1038/nchem.1506 PMID: 23247173
- Vulpetti, A.; Dalvit, C. Design and generation of highly diverse fluorinated fragment libraries and their efficient screening with improved (19) F NMR methodology. ChemMedChem, 2013, 8(12), 2057-2069. doi: 10.1002/cmdc.201300351 PMID: 24127294
- Shuker, S.B.; Hajduk, P.J.; Meadows, R.P.; Fesik, S.W. Discovering high-affinity ligands for proteins: SAR by NMR. Science, 1996, 274(5292), 1531-1534. doi: 10.1126/science.274.5292.1531 PMID: 8929414
- Jhoti, H.; Cleasby, A.; Verdonk, M.; Williams, G. Fragment-based screening using X-ray crystallography and NMR spectroscopy. Curr. Opin. Chem. Biol., 2007, 11(5), 485-493. doi: 10.1016/j.cbpa.2007.07.010 PMID: 17851109
- Lepre, C.A. Practical aspects of NMR-based fragment screening. In: Methods in Enzymology; Elsevier, 2011; 493, pp. 219-239.
- Stockman, B.J.; Dalvit, C. NMR screening techniques in drug discovery and drug design. Prog. Nucl. Magn. Reson. Spectrosc., 2002, 41(3-4), 187-231. doi: 10.1016/S0079-6565(02)00049-3
- Haselhorst, T.; Lamerz, A.C.; Itzstein, M. v. Saturation transfer difference NMR spectroscopy as a technique to investigate protein-carbohydrate interactions in solution. Methods Mol Biol, 2009, 534, 375-386.
- Dalvit, C.; Fogliatto, G.; Stewart, A.; Veronesi, M.; Stockman, B. WaterLOGSY as a method for primary NMR screening: Practical aspects and range of applicability. J. Biomol. NMR, 2001, 21(4), 349-359. doi: 10.1023/A:1013302231549 PMID: 11824754
- Dalvit, C.; Fagerness, P.E.; Hadden, D.T.A.; Sarver, R.W.; Stockman, B.J. Fluorine-NMR experiments for high-throughput screening: Theoretical aspects, practical considerations, and range of applicability. J. Am. Chem. Soc., 2003, 125(25), 7696-7703. doi: 10.1021/ja034646d PMID: 12812511
- Cala, O.; Krimm, I. Ligand-orientation based fragment selection in STD NMR screening. J. Med. Chem., 2015, 58(21), 8739-8742. doi: 10.1021/acs.jmedchem.5b01114 PMID: 26492576
- Berg, H.; Wirtz Martin, M.A.; Altincekic, N.; Alshamleh, I.; Kaur Bains, J.; Blechar, J.; Ceylan, B.; de Jesus, V.; Dhamotharan, K.; Fuks, C.; Gande, S.L.; Hargittay, B.; Hohmann, K.F.; Hutchison, M.T.; Marianne Korn, S.; Krishnathas, R.; Kutz, F.; Linhard, V.; Matzel, T.; Meiser, N.; Niesteruk, A.; Pyper, D.J.; Schulte, L.; Trucks, S.; Azzaoui, K.; Blommers, M.J.J.; Gadiya, Y.; Karki, R.; Zaliani, A.; Gribbon, P.; da Silva Almeida, M.; Dinis Anobom, C.; Bula, A.L.; Bütikofer, M.; Caruso, P.Í.; Felli, C.I.; Da Poian, A.T.; de Amorim, C.G.; Fourkiotis, N.K.; Gallo, A.; Ghosh, D.; Neto, G.F.; Gorbatyuk, O.; Hao, B.; Kurauskas, V.; Lecoq, L.; Li, Y.; Antunes, C.M.N.; Mompeán, M.; Martins, C.N.T.; Pedrosa, N.M.; Pinheiro, A.S.; Pontoriero, L.; Pustovalova, Y.; Riek, R.; Robertson, A.J.; Saad, J.A.M.; Treviño, M.Á.; Tsika, A.C.; Almeida, F.C.L.; Bax, A.; Wildman, H.K.; Hoch, J.C.; Jaudzems, K.; Laurents, D.V.; Orts, J.; Pierattelli, R.; Spyroulias, G.A.; Ferner, D.E.; Ferner, J.; Fürtig, B.; Hengesbach, M.; Löhr, F.; Qureshi, N.; Richter, C.; Saxena, K.; Schlundt, A.; Sreeramulu, S.; Wacker, A.; Weigand, J.E.; Bartoschek, W.J.; Wöhnert, J.; Schwalbe, H. Comprehensive fragment screening of the SARS-CoV-2 proteome explores novel chemical space for drug development. Angew. Chem. Int. Ed., 2022, 61(46), e202205858. doi: 10.1002/anie.202205858
- Geschwindner, S.; Carlsson, J.F.; Knecht, W. Application of optical biosensors in small-molecule screening activities. Sensors, 2012, 12(4), 4311-4323. doi: 10.3390/s120404311 PMID: 22666031
- Nylander, C.; Liedberg, B.; Lind, T. Gas detection by means of surface plasmon resonance. Sens. Actuators, 1982, 3, 79-88. doi: 10.1016/0250-6874(82)80008-5
- Liedberg, B.; Nylander, C.; Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators, 1983, 4, 299-304. doi: 10.1016/0250-6874(83)85036-7
- Neumann, T.; Junker, H-D.; Schmidt, K.; Sekul, R. SPR-based fragment screening: Advantages and applications. Curr. Top. Med. Chem., 2007, 7(16), 1630-1642. doi: 10.2174/156802607782341073 PMID: 17979772
- Danielson, U.H. Integrating surface plasmon resonance biosensor-based interaction kinetic analyses into the lead discovery and optimization process. Future Med. Chem., 2009, 1(8), 1399-1414. doi: 10.4155/fmc.09.100 PMID: 21426056
- Giannetti, A.M. From experimental design to validated hits: A comprehensive walk-through of fragment lead identification using surface plasmon resonance. In: Methods in Enzymology; Elsevier, 2011; 493, pp. 169-218.
- Löfås, S.; Malmqvist, M.; Rönnberg, I.; Stenberg, E.; Liedberg, B.; Lundström, I. Bioanalysis with surface plasmon resonance. Sens. Actuators B Chem., 1991, 5(1-4), 79-84. doi: 10.1016/0925-4005(91)80224-8
- Day, Y.S.N.; Baird, C.L.; Rich, R.L.; Myszka, D.G. Direct comparison of binding equilibrium, thermodynamic, and rate constants determined by surface- and solution-based biophysical methods. Protein Sci., 2002, 11(5), 1017-1025. doi: 10.1110/ps.4330102 PMID: 11967359
- Albert, J.; Blomberg, N.; Breeze, A.; Brown, A.; Burrows, J.; Edwards, P.; Folmer, R.; Geschwindner, S.; Griffen, E.; Kenny, P.; Nowak, T.; Olsson, L.L.; Sanganee, H.; Shapiro, A. An integrated approach to fragment-based lead generation: Philosophy, strategy and case studies from Astra Zenecas drug discovery programmes. Curr. Top. Med. Chem., 2007, 7(16), 1600-1629. doi: 10.2174/156802607782341091 PMID: 17979771
- Nienaber, V.L.; Richardson, P.L.; Klighofer, V.; Bouska, J.J.; Giranda, V.L.; Greer, J. Discovering novel ligands for macromolecules using X-ray crystallographic screening. Nat. Biotechnol., 2000, 18(10), 1105-1108. doi: 10.1038/80319 PMID: 11017052
- Hartshorn, M.J.; Murray, C.W.; Cleasby, A.; Frederickson, M.; Tickle, I.J.; Jhoti, H. Fragment-based lead discovery using X-ray crystallography. J. Med. Chem., 2005, 48(2), 403-413. doi: 10.1021/jm0495778 PMID: 15658854
- Davies, T.G.; Wixted, W.E.; Coyle, J.E.; Jones, G.C.; Hearn, K.; McMenamin, R.; Norton, D.; Rich, S.J.; Richardson, C.; Saxty, G.; Willems, H.M.G.; Woolford, A.J.A.; Cottom, J.E.; Kou, J.P.; Yonchuk, J.G.; Feldser, H.G.; Sanchez, Y.; Foley, J.P.; Bolognese, B.J.; Logan, G.; Podolin, P.L.; Yan, H.; Callahan, J.F.; Heightman, T.D.; Kerns, J.K. Monoacidic inhibitors of the Kelch-like ECH-associated protein 1: Nuclear factor erythroid 2-related factor 2 (KEAP1: NRF2) proteinprotein interaction with high cell potency identified by fragment-based discovery. J. Med. Chem., 2016, 59(8), 3991-4006. doi: 10.1021/acs.jmedchem.6b00228 PMID: 27031670
- Skarzynski, T.; Thorpe, J. Industrial perspective on X-ray data collection and analysis. Acta Crystallogr. D Biol. Crystallogr., 2006, 62(1), 102-107. doi: 10.1107/S0907444905034281 PMID: 16369099
- Lo, M.C.; Aulabaugh, A.; Jin, G.; Cowling, R.; Bard, J.; Malamas, M.; Ellestad, G. Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal. Biochem., 2004, 332(1), 153-159. doi: 10.1016/j.ab.2004.04.031 PMID: 15301960
- Vedadi, M.; Niesen, F.H.; Hassani, A.A.; Fedorov, O.Y.; Finerty, P.J., Jr; Wasney, G.A.; Yeung, R.; Arrowsmith, C.; Ball, L.J.; Berglund, H.; Hui, R.; Marsden, B.D.; Nordlund, P.; Sundstrom, M.; Weigelt, J.; Edwards, A.M. Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc. Natl. Acad. Sci., 2006, 103(43), 15835-15840. doi: 10.1073/pnas.0605224103 PMID: 17035505
- Mashalidis, E.H.; Śledź, P.; Lang, S.; Abell, C. A three-stage biophysical screening cascade for fragment-based drug discovery. Nat. Protoc., 2013, 8(11), 2309-2324. doi: 10.1038/nprot.2013.130 PMID: 24157549
- Willemsen, J.M.; Wienken, C.J.; Braun, D.; Baaske, P.; Duhr, S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol., 2011, 9(4), 342-353. doi: 10.1089/adt.2011.0380 PMID: 21812660
- Meiby, E.; Simmonite, H.; le Strat, L.; Davis, B.; Matassova, N.; Moore, J.D.; Mrosek, M.; Murray, J.; Hubbard, R.E.; Ohlson, S. Fragment screening by weak affinity chromatography: Comparison with established techniques for screening against HSP90. Anal. Chem., 2013, 85(14), 6756-6766. doi: 10.1021/ac400715t PMID: 23806099
- Sheng, C.; Zhang, W. Fragment informatics and computational fragment-based drug design: An overview and update. Med. Res. Rev., 2013, 33(3), 554-598. doi: 10.1002/med.21255 PMID: 22430881
- Wielens, J.; Headey, S.J.; Rhodes, D.I.; Mulder, R.J.; Dolezal, O.; Deadman, J.J.; Newman, J.; Chalmers, D.K.; Parker, M.W.; Peat, T.S.; Scanlon, M.J. Parallel screening of low molecular weight fragment libraries: Do differences in methodology affect hit identification? SLAS Discov., 2013, 18(2), 147-159. doi: 10.1177/1087057112465979 PMID: 23139382
- Congreve, M.; Chessari, G.; Tisi, D.; Woodhead, A.J. Recent developments in fragment-based drug discovery. J. Med. Chem., 2008, 51(13), 3661-3680. doi: 10.1021/jm8000373 PMID: 18457385
- Howard, N.; Abell, C.; Blakemore, W.; Chessari, G.; Congreve, M.; Howard, S.; Jhoti, H.; Murray, C.W.; Seavers, L.C.A.; van Montfort, R.L.M. Application of fragment screening and fragment linking to the discovery of novel thrombin inhibitors. J. Med. Chem., 2006, 49(4), 1346-1355. doi: 10.1021/jm050850v PMID: 16480269
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623. doi: 10.1021/jm020017n PMID: 12036371
- Potter, A.; Oldfield, V.; Nunns, C.; Fromont, C.; Ray, S.; Northfield, C.J.; Bryant, C.J.; Scrace, S.F.; Robinson, D.; Matossova, N.; Baker, L.; Dokurno, P.; Surgenor, A.E.; Davis, B.; Richardson, C.M.; Murray, J.B.; Moore, J.D. Discovery of cell-active phenyl-imidazole Pin1 inhibitors by structure-guided fragment evolution. Bioorg. Med. Chem. Lett., 2010, 20(22), 6483-6488. doi: 10.1016/j.bmcl.2010.09.063 PMID: 20932746
- Erlanson, D.A. Introduction to fragment-based drug discovery. Top. Curr. Chem., 2012, 317, 1-32. PMID: 21695633
- Lewis, W.G.; Green, L.G.; Grynszpan, F.; Radić, Z.; Carlier, P.R.; Taylor, P.; Finn, M.G.; Sharpless, K.B. Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew. Chem. Int. Ed., 2002, 41(6), 1053-1057. doi: 10.1002/1521-3773(20020315)41:63.0.CO;2-4 PMID: 12491310
- Bourne, Y.; Kolb, H.C.; Radić, Z.; Sharpless, K.B.; Taylor, P.; Marchot, P. Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation. Proc. Natl. Acad. Sci., 2004, 101(6), 1449-1454. doi: 10.1073/pnas.0308206100 PMID: 14757816
- Edink, E.; Rucktooa, P.; Retra, K.; Akdemir, A.; Nahar, T.; Zuiderveld, O.; van Elk, R.; Janssen, E.; van Nierop, P.; van Koezen, M.J.; Smit, A.B.; Sixma, T.K.; Leurs, R.; de Esch, I.J.P. Fragment growing induces conformational changes in acetylcholine-binding protein: A structural and thermodynamic analysis. J. Am. Chem. Soc., 2011, 133(14), 5363-5371. doi: 10.1021/ja110571r PMID: 21322593
- Wang, Z.Z.; Shi, X.X.; Huang, G.Y.; Hao, G.F.; Yang, G.F. Fragment-based drug design facilitates selective kinase inhibitor discovery. Trends Pharmacol. Sci., 2021, 42(7), 551-565. doi: 10.1016/j.tips.2021.04.001 PMID: 33958239
- Guillon, R.; Rahimova, R.; Preeti; Egron, D.; Rouanet, S.; Dumontet, C.; Aghajari, N.; Jordheim, L.P.; Chaloin, L.; Peyrottes, S. Lead optimization and biological evaluation of fragment-based cN-II inhibitors. Eur. J. Med. Chem., 2019, 168, 28-44. doi: 10.1016/j.ejmech.2019.02.040 PMID: 30798051
- Shi, X.X.; Li, J.Y.; Chen, Q.; Zhu, X.L.; Hao, G.F.; Yang, G.F. Development of a web-based laboratory class to reduce the challenges in teaching fragment-based drug design. J. Chem. Educ., 2020, 97(2), 427-436. doi: 10.1021/acs.jchemed.9b00198
- Mannhold, R.; Kubinyi, H.; Folkers, G. Fragment-based drug discovery: lessons and outlook; John Wiley & Sons, 2015.
- Bollag, G.; Tsai, J.; Zhang, J.; Zhang, C.; Ibrahim, P.; Nolop, K.; Hirth, P. Vemurafenib: The first drug approved for BRAF-mutant cancer. Nat. Rev. Drug Discov., 2012, 11(11), 873-886. doi: 10.1038/nrd3847 PMID: 23060265
- Deeks, E.D. Venetoclax: First global approval. Drugs, 2016, 76(9), 979-987. doi: 10.1007/s40265-016-0596-x PMID: 27260335
- Markham, A. Erdafitinib: First global approval. Drugs, 2019, 79(9), 1017-1021. doi: 10.1007/s40265-019-01142-9 PMID: 31161538
- Li, X.; Song, Y. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Eur. J. Med. Chem., 2023, 260, 115772. doi: 10.1016/j.ejmech.2023.115772 PMID: 37659195
- Alamri, M.A.; Qamar, T.M.; Mirza, M.U.; Alqahtani, S.M.; Froeyen, M.; Chen, L.L. Discovery of human coronaviruses pan-papain-like protease inhibitors using computational approaches. J. Pharm. Anal., 2020, 10(6), 546-559. doi: 10.1016/j.jpha.2020.08.012 PMID: 32874702
- Ikram, N.; Mirza, M.U.; Vanmeert, M.; Froeyen, M.; Salo-Ahen, O.M.H.; Tahir, M.; Qazi, A.; Ahmad, S. Inhibition of oncogenic kinases: An in vitro validated computational approach identified potential multi-target anticancer compounds. Biomolecules, 2019, 9(4), 124. doi: 10.3390/biom9040124 PMID: 30925835
- Khalid, H.; Landry, K.B.; Ijaz, B.; Ashfaq, U.A.; Ahmed, M.; Kanwal, A.; Froeyen, M.; Mirza, M.U. Discovery of novel hepatitis C virus inhibitor targeting multiple allosteric sites of NS5B polymerase. Infect. Genet. Evol., 2020, 84, 104371. doi: 10.1016/j.meegid.2020.104371 PMID: 32485331
- Mirza, M.; Ikram, N. Integrated computational approach for virtual hit identification against ebola viral proteins VP35 and VP40. Int. J. Mol. Sci., 2016, 17(11), 1748. doi: 10.3390/ijms17111748 PMID: 27792169
- Salo-Ahen, O.M.H.; Alanko, I.; Bhadane, R.; Bonvin, A.M.J.J.; Honorato, R.V.; Hossain, S.; Juffer, A.H.; Kabedev, A.; Kakkonen, L.M.; Larsen, A.S.; Lescrinier, E.; Marimuthu, P.; Mirza, M.U.; Mustafa, G.; Nunes-Alves, A.; Pantsar, T.; Saadabadi, A.; Singaravelu, K.; Vanmeert, M. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes, 2020, 9(1), 71. doi: 10.3390/pr9010071
- Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. An updated review of computer-aided drug design and its application to COVID-19. BioMed Res. Int., 2021, 2021, 1-18. doi: 10.1155/2021/8853056 PMID: 34258282
- Choudhury, C. Fragment tailoring strategy to design novel chemical entities as potential binders of novel corona virus main protease. J. Biomol. Struct. Dyn., 2021, 39(10), 3733-3746. doi: 10.1080/07391102.2020.1771424 PMID: 32452282
- Hatada, R.; Okuwaki, K.; Mochizuki, Y.; Handa, Y.; Fukuzawa, K.; Komeiji, Y.; Okiyama, Y.; Tanaka, S. Fragment molecular orbital based interaction analyses on COVID-19 main protease-inhibitor N3 complex (PDB ID: 6LU7). J. Chem. Inf. Model., 2020, 60(7), 3593-3602. doi: 10.1021/acs.jcim.0c00283 PMID: 32539372
- Coutard, B.; Decroly, E.; Li, C.; Sharff, A.; Lescar, J.; Bricogne, G.; Barral, K. Assessment of dengue virus helicase and methyltransferase as targets for fragment-based drug discovery. Antiviral Res., 2014, 106, 61-70. doi: 10.1016/j.antiviral.2014.03.013 PMID: 24704437
- Hoffer, L.; Renaud, J.P.; Horvath, D. Fragment-based drug design: Computational & experimental state of the art. Comb. Chem. High Throughput Screen., 2011, 14(6), 500-520. doi: 10.2174/138620711795767884 PMID: 21521152
- Loving, K.; Alberts, I.; Sherman, W. Computational approaches for fragment-based and de novo design. Curr. Top. Med. Chem., 2010, 10(1), 14-32. doi: 10.2174/156802610790232305 PMID: 19929832
- Kanakaveti, V.; Shanmugam, A.; Ramakrishnan, C.; Anoosha, P.; Sakthivel, R.; Rayala, S.K.; Gromiha, M.M. Computational approaches for identifying potential inhibitors on targeting protein interactions in drug discovery. Adv. Protein Chem. Struct. Biol., 2020, 121, 25-47. doi: 10.1016/bs.apcsb.2019.11.013 PMID: 32312424
- Bung, N.; Krishnan, S.R.; Bulusu, G.; Roy, A. De novo design of new chemical entities for SARS-CoV-2 using artificial intelligence. Future Med. Chem., 2021, 13(6), 575-585. doi: 10.4155/fmc-2020-0262 PMID: 33590764
- Khan, R.J.; Jha, R.K.; Amera, G.M.; Jain, M.; Singh, E.; Pathak, A.; Singh, R.P.; Muthukumaran, J.; Singh, A.K. Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. J. Biomol. Struct. Dyn., 2021, 39(8), 2679-2692. doi: 10.1080/07391102.2020.1753577 PMID: 32266873
- Pant, S.; Singh, M.; Ravichandiran, V.; Murty, U.S.N.; Srivastava, H.K. Peptide-like and small-molecule inhibitors against Covid-19. J. Biomol. Struct. Dyn., 2021, 39(8), 2904-2913. doi: 10.1080/07391102.2020.1757510 PMID: 32306822
- Aanouz, I.; Belhassan, A.; El-Khatabi, K.; Lakhlifi, T.; El-ldrissi, M.; Bouachrine, M. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. J. Biomol. Struct. Dyn., 2021, 39(8), 2971-2979. doi: 10.1080/07391102.2020.1758790 PMID: 32306860
- Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J. Biomol. Struct. Dyn., 2021, 39(9), 3092-3098. PMID: 32329419
- Islam, R.; Parves, M.R.; Paul, A.S.; Uddin, N.; Rahman, M.S.; Mamun, A.A.; Hossain, M.N.; Ali, M.A.; Halim, M.A. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, 39(9), 3213-3224. PMID: 32340562
- Kiss, R.; Sandor, M.; Szalai, F.A. A public web service for drug discovery. J. Cheminform., 2012, 4(1), 1-1. PMID: 22236646
- Schrödinger, L. Schrödinger release 2018-4: Desmond molecular dynamics system. In: Maestro-Desmond Interoperability Tools; DE Shaw Research: New York, NY, 2018.
- Singh, N.; Pydi, S.P.; Upadhyaya, J.; Chelikani, P. Structural basis of activation of bitter taste receptor T2R1 and comparison with Class A G-protein-coupled receptors (GPCRs). J. Biol. Chem., 2011, 286(41), 36032-36041. doi: 10.1074/jbc.M111.246983 PMID: 21852241
- Di Pizio, A.; Niv, M.Y. Promiscuity and selectivity of bitter molecules and their receptors. Bioorg. Med. Chem., 2015, 23(14), 4082-4091. doi: 10.1016/j.bmc.2015.04.025 PMID: 25934224
- Pydi, S.P.; Jaggupilli, A.; Nelson, K.M.; Abrams, S.R.; Bhullar, R.P.; Loewen, M.C.; Chelikani, P. Abscisic acid acts as a blocker of the bitter taste G protein-coupled receptor T2R4. Biochemistry, 2015, 54(16), 2622-2631. doi: 10.1021/acs.biochem.5b00265 PMID: 25844797
- Floriano, W.B.; Hall, S.; Vaidehi, N.; Kim, U.; Drayna, D.; Goddard, W.A., III Modeling the human PTC bitter-taste receptor interactions with bitter tastants. J. Mol. Model., 2006, 12(6), 931-941. doi: 10.1007/s00894-006-0102-6 PMID: 16607493
- Biarnés, X.; Marchiori, A.; Giorgetti, A.; Lanzara, C.; Gasparini, P.; Carloni, P.; Born, S.; Brockhoff, A.; Behrens, M.; Meyerhof, W. Insights into the binding of Phenyltiocarbamide (PTC) agonist to its target human TAS2R38 bitter receptor. PLoS One, 2010, 5(8), e12394. doi: 10.1371/journal.pone.0012394 PMID: 20811630
- Miguet, L.; Zhang, Z.; Grigorov, M.G. Computational studies of ligand-receptor interactions in bitter taste receptors. J. Recept. Signal Transduct. Res., 2006, 26(5-6), 611-630. doi: 10.1080/10799890600928210 PMID: 17118801
- Tan, J.; Abrol, R.; Trzaskowski, B.; Goddard, W.A., III 3D structure prediction of TAS2R38 bitter receptors bound to agonists phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP). J. Chem. Inf. Model., 2012, 52(7), 1875-1885. doi: 10.1021/ci300133a PMID: 22656649
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
- Andola, P.; Pagag, J.; Laxman, D.; Guruprasad, L. Fragment-based inhibitor design for SARS-CoV2 main protease. Struct. Chem., 2022, 33(5), 1467-1487. doi: 10.1007/s11224-022-01995-z PMID: 35811782
- Kumari, R.; Kumar, R.; Lynn, A.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962. doi: 10.1021/ci500020m PMID: 24850022
- Bakan, A.; Meireles, L.M.; Bahar, I. ProDy: Protein dynamics inferred from theory and experiments. Bioinformatics, 2011, 27(11), 1575-1577. doi: 10.1093/bioinformatics/btr168 PMID: 21471012
- Eyal, E.; Yang, L.W.; Bahar, I. Anisotropic network model: Systematic evaluation and a new web interface. Bioinformatics, 2006, 22(21), 2619-2627. doi: 10.1093/bioinformatics/btl448 PMID: 16928735
- Ross, C.; Nizami, B.; Glenister, M.; Amamuddy, S.O.; Atilgan, A.R.; Atilgan, C.; Bishop, T.Ö. MODE-TASK: Large-scale protein motion tools. Bioinformatics, 2018, 34(21), 3759-3763. doi: 10.1093/bioinformatics/bty427 PMID: 29850770
- Hubbard, R.E. Fragment approaches in structure-based drug discovery. J. Synchrotron Radiat., 2008, 15(3), 227-230. doi: 10.1107/S090904950705666X PMID: 18421145
- Palmer, N.; Peakman, T.M.; Norton, D.; Rees, D.C. Design and synthesis of dihydroisoquinolones for fragment-based drug discovery (FBDD). Org. Biomol. Chem., 2016, 14(5), 1599-1610. doi: 10.1039/C5OB02461G PMID: 26741115
Supplementary files
