Drug Repurposing against Novel Therapeutic Targets in Plasmodium falciparum for Malaria: The Computational Perspective
- Authors: Rai S.1, Shukla S.1, Scotti L.2, Mani A.1
-
Affiliations:
- Department of Biotechnology, Motilal Nehru National Institute of Technology
- Postgraduate Programa in Natural and Synthetic Bioactive Compounds, University Hospital, Federal University of Paraíba-Campus I
- Issue: Vol 31, No 38 (2024)
- Pages: 6272-6287
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645101
- DOI: https://doi.org/10.2174/0929867331666230807151708
- ID: 645101
Cite item
Full Text
Abstract
:Malaria remains one of the most challenging tropical diseases. Since malaria cases are reportedly alarming in terms of infections and mortality, urgent attention is needed for addressing the issues of drug resistance in falciparum malaria. High throughput screening methods have paved way for rapid identification of anti-malarial. Furthermore, drug repurposing helps in shortening the time required for drug safety approvals. Hence, discovery of new antimalarials by drug repurposing is a promising approach for combating the disease. This article summarizes the recent computational approaches used for identifying novel antimalarials by using drug target interaction tools followed by pharmacokinetic studies.
About the authors
Shweta Rai
Department of Biotechnology, Motilal Nehru National Institute of Technology
Email: info@benthamscience.net
Shruti Shukla
Department of Biotechnology, Motilal Nehru National Institute of Technology
Email: info@benthamscience.net
Luciana Scotti
Postgraduate Programa in Natural and Synthetic Bioactive Compounds, University Hospital, Federal University of Paraíba-Campus I
Email: info@benthamscience.net
Ashutosh Mani
Department of Biotechnology, Motilal Nehru National Institute of Technology
Author for correspondence.
Email: info@benthamscience.net
References
- Burchard, G.D. Treatment of illnesses acquired during long-distance travel. Internist., 2014, 55(9), 1100-1107, 1012. doi: 10.1007/s00108-014-3546-2 PMID: 25070614
- White, N.J. Antimalarial drug resistance. J. Clin. Invest., 2004, 113(8), 1084-1092. doi: 10.1172/JCI21682 PMID: 15085184
- World Health Organization. WHO briefing on Malaria Treatment Guidelines and artemisinin monotherapies; WHO: Geneva, 2006, pp. 1-28.
- Herlekar, I. The resistance gene in malaria parasite identified. Curr. Sci., 2014, 106(3), 345-345.
- Beare, N.A.; Harding, S.P.; Lewallen, S.; Molyneux, M.; Taylor, T. Malarial retinopathy: A newly established diagnostic sign in severe malaria. Am. J. Trop. Med. Hyg., 2006, 75(5), 790-797. doi: 10.4269/ajtmh.2006.75.790 PMID: 17123967
- Bartoloni, A.; Zammarchi, L. Clinical aspects of uncomplicated and severe malaria. Mediterr. J. Hematol. Infect. Dis., 2012, 4(1), e2012026. doi: 10.4084/mjhid.2012.026 PMID: 22708041
- Schlagenhauf-Lawlor P, ed. Travelers malaria. Hamilton, Ontario: BC Decker Inc; 2001.
- Castelli, F.; Odolini, S.; Autino, B.; Foca, E.; Russo, R. Malaria prophylaxis: A comprehensive review. Pharmaceuticals., 2010, 3(10), 3212-3239. doi: 10.3390/ph3103212
- Mueller, I.; Shakri, A.R.; Chitnis, C.E. Development of vaccines for Plasmodium vivax malaria. Vaccine, 2015, 33(52), 7489-7495. doi: 10.1016/j.vaccine.2015.09.060 PMID: 26428453
- Kokwaro, G. Ongoing challenges in the management of malaria. Malar. J., 2009, 8(S1), S2. doi: 10.1186/1475-2875-8-S1-S2 PMID: 19818169
- Manyando, C.; Kayentao, K.; DAlessandro, U.; Okafor, H.U.; Juma, E.; Hamed, K. A systematic review of the safety and efficacy of artemether-lumefantrine against uncomplicated Plasmodium falciparum malaria during pregnancy. Malar. J., 2012, 11(1), 141. doi: 10.1186/1475-2875-11-141 PMID: 22548983
- Waters, C.N.; Edstein, M.D. 8-Aminoquioones:Primaquine and Tafenoquine. In: Prevention of Malaria: Antimalarial Drug Chemistry, Action and Use; Staines HM, K.S., Ed., 2012.
- Sinha, S.; Medhi, B.; Sehgal, R. Challenges of drug-resistant malaria. Parasite, 2014, 21, 61. doi: 10.1051/parasite/2014059 PMID: 25402734
- Newman, R.D. Relegating malaria resurgences to history. Malar. J., 2012, 11(1), 123. doi: 10.1186/1475-2875-11-123 PMID: 22531295
- Flannery, E.L.; Chatterjee, A.K.; Winzeler, E.A. Antimalarial drug discovery approaches and progress towards new medicines. Nat. Rev. Microbiol., 2013, 11(12), 849-862. doi: 10.1038/nrmicro3138 PMID: 24217412
- Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.S.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W.; Schopfer, U.; Sittampalam, G.S. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov., 2011, 10(3), 188-195. doi: 10.1038/nrd3368 PMID: 21358738
- Sharma, R.; Lawrenson, A.S.; Fisher, N.E.; Warman, A.J.; Shone, A.E.; Hill, A.; Mbekeani, A.; Pidathala, C.; Amewu, R.K.; Leung, S.; Gibbons, P.; Hong, D.W.; Stocks, P.; Nixon, G.L.; Chadwick, J.; Shearer, J.; Gowers, I.; Cronk, D.; Parel, S.P.; ONeill, P.M.; Ward, S.A.; Biagini, G.A.; Berry, N.G. Identification of novel antimalarial chemotypes via chemoinformatic compound selection methods for a high-throughput screening program against the novel malarial target, PfNDH2: increasing hit rate via virtual screening methods. J. Med. Chem., 2012, 55(7), 3144-3154. doi: 10.1021/jm3001482 PMID: 22380711
- Werbovetz, K.A. Target-based drug discovery for malaria, leishmaniasis, and trypanosomiasis. Curr. Med. Chem., 2000, 7(8), 835-860. doi: 10.2174/0929867003374615 PMID: 10828290
- Gurard-Levin, Z.A.; Scholle, M.D.; Eisenberg, A.H.; Mrksich, M. High-throughput screening of small molecule libraries using SAMDI mass spectrometry. ACS Comb. Sci., 2011, 13(4), 347-350. doi: 10.1021/co2000373 PMID: 21639106
- Schweitzer, B.I.; Dicker, A.P.; Bertino, J.R. Dihydrofolate reductase as a therapeutic target. FASEB J., 1990, 4(8), 2441-2452. doi: 10.1096/fasebj.4.8.2185970 PMID: 2185970
- Verma, S.; Prabhakar, Y. Target based drug design - a reality in virtual sphere. Curr. Med. Chem., 2015, 22(13), 1603-1630. doi: 10.2174/0929867322666150209151209 PMID: 25666805
- Tang, Y.; Dong, Y.; Vennerstrom, J.L. Synthetic peroxides as antimalarials. Med. Res. Rev., 2004, 24(4), 425-448. doi: 10.1002/med.10066 PMID: 15170591
- Cechinel-Filho, V. Plant bioactives and drug discovery: principles, practice, and perspectives; John Wiley & Sons, 2012. doi: 10.1002/9781118260005
- Talele, T.; Khedkar, S.; Rigby, A. Successful applications of computer aided drug discovery: Moving drugs from concept to the clinic. Curr. Top. Med. Chem., 2010, 10(1), 127-141. doi: 10.2174/156802610790232251 PMID: 19929824
- Prachayasittikul, V.; Worachartcheewan, A.; Shoombuatong, W.; Songtawee, N.; Simeon, S.; Prachayasittikul, V.; Nantasenamat, C. Computer-aided drug design of bioactive natural products. Curr. Top. Med. Chem., 2015, 15(18), 1780-1800. doi: 10.2174/1568026615666150506151101 PMID: 25961523
- Talevi, A.; Bellera, C.L. Challenges and opportunities with drug repurposing: Finding strategies to find alternative uses of therapeutics. Expert Opin. Drug Discov., 2020, 15(4), 397-401. doi: 10.1080/17460441.2020.1704729 PMID: 31847616
- Dondorp, A.M.; Fairhurst, R.M.; Slutsker, L.; Macarthur, J.R.; Breman, J.G.; Guerin, P.J.; Wellems, T.E.; Ringwald, P.; Newman, R.D.; Plowe, C.V. The threat of artemisinin-resistant malaria. N. Engl. J. Med., 2011, 365(12), 1073-1075. doi: 10.1056/NEJMp1108322 PMID: 21992120
- Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; Ringwald, P.; Silamut, K.; Imwong, M.; Chotivanich, K.; Lim, P.; Herdman, T.; An, S.S.; Yeung, S.; Singhasivanon, P.; Day, N.P.J.; Lindegardh, N.; Socheat, D.; White, N.J. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med., 2009, 361(5), 455-467. doi: 10.1056/NEJMoa0808859 PMID: 19641202
- Noedl, H.; Se, Y.; Schaecher, K.; Smith, B.L.; Socheat, D.; Fukuda, M.M. Evidence of artemisinin-resistant malaria in Western Cambodia. N. Engl. J. Med., 2008, 359(24), 2619-2620. doi: 10.1056/NEJMc0805011 PMID: 19064625
- Mbengue, A.; Bhattacharjee, S.; Pandharkar, T.; Liu, H.; Estiu, G.; Stahelin, R.V.; Rizk, S.S.; Njimoh, D.L.; Ryan, Y.; Chotivanich, K.; Nguon, C.; Ghorbal, M.; Lopez-Rubio, J.J.; Pfrender, M.; Emrich, S.; Mohandas, N.; Dondorp, A.M.; Wiest, O.; Haldar, K. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature, 2015, 520(7549), 683-687. doi: 10.1038/nature14412 PMID: 25874676
- Ariey, F.; Witkowski, B.; Amaratunga, C.; Beghain, J.; Langlois, A.C.; Khim, N.; Kim, S.; Duru, V.; Bouchier, C.; Ma, L.; Lim, P.; Leang, R.; Duong, S.; Sreng, S.; Suon, S.; Chuor, C.M.; Bout, D.M.; Ménard, S.; Rogers, W.O.; Genton, B.; Fandeur, T.; Miotto, O.; Ringwald, P.; Le Bras, J.; Berry, A.; Barale, J.C.; Fairhurst, R.M.; Benoit-Vical, F.; Mercereau-Puijalon, O.; Ménard, D. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature, 2014, 505(7481), 50-55. doi: 10.1038/nature12876 PMID: 24352242
- Uwimana, A.; Legrand, E.; Stokes, B.H.; Ndikumana, J.L.M.; Warsame, M.; Umulisa, N.; Ngamije, D.; Munyaneza, T.; Mazarati, J.B.; Munguti, K.; Campagne, P.; Criscuolo, A.; Ariey, F.; Murindahabi, M.; Ringwald, P.; Fidock, D.A.; Mbituyumuremyi, A.; Menard, D. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat. Med., 2020, 26(10), 1602-1608. doi: 10.1038/s41591-020-1005-2 PMID: 32747827
- Zhang, D.D.; Lo, S.C.; Cross, J.V.; Templeton, D.J.; Hannink, M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol., 2004, 24(24), 10941-10953. doi: 10.1128/MCB.24.24.10941-10953.2004 PMID: 15572695
- Coppée, R.; Jeffares, D.C.; Sabbagh, A.; Clain, J. Structural evolutionary analysis predicts functional sites in the artemisinin resistance malaria protein K13. bioRxiv, 2018, 346668. doi: 10.1101/346668
- Malaria, G.E.N. Plasmodium falciparum Community Project. Genomic epidemiology of artemisinin resistant malaria. eLife, 2016, 08714.
- Straimer, J.; Gnädig, N.F.; Witkowski, B.; Amaratunga, C.; Duru, V.; Ramadani, A.P.; Dacheux, M.; Khim, N.; Zhang, L.; Lam, S.; Gregory, P.D.; Urnov, F.D.; Mercereau-Puijalon, O.; Benoit-Vical, F.; Fairhurst, R.M.; Ménard, D.; Fidock, D.A. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science, 2015, 347(6220), 428-431. doi: 10.1126/science.1260867 PMID: 25502314
- Dogovski, C.; Xie, S.C.; Burgio, G.; Bridgford, J.; Mok, S.; McCaw, J.M.; Chotivanich, K.; Kenny, S.; Gnädig, N.; Straimer, J.; Bozdech, Z.; Fidock, D.A.; Simpson, J.A.; Dondorp, A.M.; Foote, S.; Klonis, N.; Tilley, L. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance. PLoS Biol., 2015, 13(4), e1002132. doi: 10.1371/journal.pbio.1002132 PMID: 25901609
- Witkowski, B.; Amaratunga, C.; Khim, N.; Sreng, S.; Chim, P.; Kim, S.; Lim, P.; Mao, S.; Sopha, C.; Sam, B.; Anderson, J.M.; Duong, S.; Chuor, C.M.; Taylor, W.R.J.; Suon, S.; Mercereau-Puijalon, O.; Fairhurst, R.M.; Menard, D. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in vitro and ex vivo drug-response studies. Lancet Infect. Dis., 2013, 13(12), 1043-1049. doi: 10.1016/S1473-3099(13)70252-4 PMID: 24035558
- Karuppasamy, R.; Verma, K.; Sequeira, V.M.; Basavanna, L.N.; Veerappapillai, S. An Integrative drug repurposing pipeline: Switching viral drugs to breast cancer. J. Cell. Biochem., 2017, 118(6), 1412-1422. doi: 10.1002/jcb.25799 PMID: 27859674
- Strittmatter, S.M. Overcoming drug development bottlenecks with repurposing: Old drugs learn new tricks. Nat. Med., 2014, 20(6), 590-591. doi: 10.1038/nm.3595 PMID: 24901567
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683. doi: 10.1038/nrd1468 PMID: 15286734
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58. doi: 10.1038/nrd.2018.168 PMID: 30310233
- Bertolini, F.; Sukhatme, V.P.; Bouche, G. Drug repurposing in oncologypatient and health systems opportunities. Nat. Rev. Clin. Oncol., 2015, 12(12), 732-742. doi: 10.1038/nrclinonc.2015.169 PMID: 26483297
- Verma, K.; Lahariya, A.K.; Dubey, S.; Verma, A.K.; Das, A.; Schneider, K.A.; Bharti, P.K. An integrated virtual screening and drug repurposing strategy for the discovery of new antimalarial drugs against Plasmodium falciparum phosphatidylinositol 3-kinase. J. Cell. Biochem., 2021, 122(10), 1326-1336. doi: 10.1002/jcb.29954 PMID: 33998049
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082. doi: 10.1093/nar/gkx1037 PMID: 29126136
- Yang, J.; Anishchenko, I.; Park, H.; Peng, Z.; Ovchinnikov, S.; Baker, D. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl. Acad. Sci., 2020, 117(3), 1496-1503. doi: 10.1073/pnas.1914677117 PMID: 31896580
- Laskowski, R.A.; Hutchinson, E.G.; Michie, A.D.; Wallace, A.C.; Jones, M.L.; Thornton, J.M. PDBsum: A web-based database of summaries and analyses of all PDB structures. Trends Biochem. Sci., 1997, 22(12), 488-490. doi: 10.1016/S0968-0004(97)01140-7 PMID: 9433130
- Bwire, G.M.; Ngasala, B.; Mikomangwa, W.P.; Kilonzi, M.; Kamuhabwa, A.A.R. Detection of mutations associated with artemisinin resistance at k13-propeller gene and a near complete return of chloroquine susceptible falciparum malaria in Southeast of Tanzania. Sci. Rep., 2020, 10(1), 3500. doi: 10.1038/s41598-020-60549-7 PMID: 32103124
- Shoichet, B.K. Virtual screening of chemical libraries. Nature, 2004, 432(7019), 862-865. doi: 10.1038/nature03197 PMID: 15602552
- Verma, K.; Kannan, K.; v, S.; R, S.; v, K.; K, R. Exploring β-tubulin inhibitors from plant origin using computational approach. Phytochem. Anal., 2017, 28(3), 230-241. doi: 10.1002/pca.2665 PMID: 28008675
- Wang, J.; Huang, L.; Li, J.; Fan, Q.; Long, Y.; Li, Y.; Zhou, B. Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One, 2010, 5(3), e9582. doi: 10.1371/journal.pone.0009582 PMID: 20221395
- Ramanathan, K.; Verma, K.; Gupta, N.; Shanthi, V. Discovery of therapeutic lead molecule against β-tubulin using computational approach. Interdiscip. Sci., 2018, 10(4), 734-747. doi: 10.1007/s12539-017-0233-8 PMID: 28488218
- Hu, Q.; Feng, M.; Lai, L.; Pei, J. Prediction of drug-likeness using deep autoencoder neural networks. Front. Genet., 2018, 9, 585. doi: 10.3389/fgene.2018.00585 PMID: 30538725
- Tondi, D.; Slomczynska, U.; Costi, M.P.; Watterson, D.M.; Ghelli, S.; Shoichet, B.K. Structure-based discovery and in-parallel optimization of novelcompetitive inhibitors of thymidylate synthase. Chem. Biol., 1999, 6(5), 319-331. doi: 10.1016/S1074-5521(99)80077-5 PMID: 10322126
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model., 2015, 55(2), 460-473. doi: 10.1021/ci500588j PMID: 25558886
- von Korff, M.; Sander, T. Toxicity-indicating structural patterns. J. Chem. Inf. Model., 2006, 46(2), 536-544. doi: 10.1021/ci050358k PMID: 16562981
- Pu, L.; Naderi, M.; Liu, T.; Wu, H.C.; Mukhopadhyay, S.; Brylinski, M. eToxPred: A machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol. Toxicol., 2019, 20(1), 2. doi: 10.1186/s40360-018-0282-6 PMID: 30621790
- Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J. Biomol. Struct. Dyn., 2021, 39(9), 3092-3098. PMID: 32329419
- Pratap Singh, H.; Sharma, C.S.; Mishra, S.S.; Pandiya, H.; Kumar, N. In silico ADME, bioactivity and toxicity prediction of some selected anti-Parkinson agents. Int J Pharm Phytopharmacol Res., 2017, 6(3), 64-67. doi: 10.24896/eijppr.2016631
- Mazzatorta, P.; Estevez, M.D.; Coulet, M.; Schilter, B. Modeling oral rat chronic toxicity. J. Chem. Inf. Model., 2008, 48(10), 1949-1954. doi: 10.1021/ci8001974 PMID: 18803370
- Sarkar, P.; Alheety, M.A.; Srivastava, V. Molecular docking and ADMET study of spice-derived potential phytochemicals against human DNA topoisomerase III alpha. Macromol. Symp., 2023, 407(1), 2200108. doi: 10.1002/masy.202200108
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: predicting small- molecule pharmacokinetic and toxicity properties using graph- based signatures. J. Med. Chem., 2015, 58(9), 4066-4072. doi: 10.1021/acs.jmedchem.5b00104 PMID: 25860834
- Stowers, A.W.; Cioce, V.; Shimp, R.L.; Lawson, M.; Hui, G.; Muratova, O.; Kaslow, D.C.; Robinson, R.; Long, C.A.; Miller, L.H. Efficacy of two alternate vaccines based on Plasmodium falciparum merozoite surface protein 1 in an Aotus challenge trial. Infect. Immun., 2001, 69(3), 1536-1546. doi: 10.1128/IAI.69.3.1536-1546.2001 PMID: 11179324
- Mogire, R.M.; Akala, H.M.; Macharia, R.W.; Juma, D.W.; Cheruiyot, A.C.; Andagalu, B.; Brown, M.L.; El-Shemy, H.A.; Nyanjom, S.G. Target-similarity search using Plasmodium falciparum proteome identifies approved drugs with anti-malarial activity and their possible targets. PLoS One, 2017, 12(10), e0186364. doi: 10.1371/journal.pone.0186364 PMID: 29088219
- Malhotra, H.; Kumar, A.; Afaq, Y. Molecular docking analysis of FDA approved drugs with the glycoprotein from Junin and Machupo viruses. Bioinformation, 2022, 18(2), 119-126. doi: 10.6026/97320630018119 PMID: 36420432
- Hsu, K.C.; Chen, Y.F.; Lin, S.R.; Yang, J.M. iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 2011, 12(S1), S33. doi: 10.1186/1471-2105-12-S1-S33 PMID: 21342564
- Guedes, I.A.; Costa, L.S.C.; dos Santos, K.B.; Karl, A.L.M.; Rocha, G.K.; Teixeira, I.M.; Galheigo, M.M.; Medeiros, V.; Krempser, E.; Custódio, F.L.; Barbosa, H.J.C.; Nicolás, M.F.; Dardenne, L.E. Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Sci. Rep., 2021, 11(1), 5543. doi: 10.1038/s41598-021-84700-0 PMID: 33692377
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
- Wagener, M.; van Geerestein, V.J. Potential drugs and nondrugs: Prediction and identification of important structural features. J. Chem. Inf. Comput. Sci., 2000, 40(2), 280-292. doi: 10.1021/ci990266t PMID: 10761129
- Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J. Chem. Inf. Comput. Sci., 2003, 43(6), 1882-1889. doi: 10.1021/ci0341161 PMID: 14632437
- Soliman, M.E.; Adewumi, A.T.; Akawa, O.B.; Subair, T.I.; Okunlola, F.O.; Akinsuku, O.E.; Khan, S. Simulation models for prediction of bioavailability of medicinal drugsthe interface between experiment and computation. AAPS PharmSciTech, 2022, 23(3), 86. doi: 10.1208/s12249-022-02229-5 PMID: 35292867
- Walum, E. Acute oral toxicity. Environ. Health Perspect., 1998, 106(S2), 497-503. doi: 10.1289/ehp.98106497 PMID: 9599698
- Erhirhie, E.O.; Ihekwereme, C.P.; Ilodigwe, E.E. Advances in acute toxicity testing: Strengths, weaknesses and regulatory acceptance. Interdiscip. Toxicol., 2018, 11(1), 5-12. doi: 10.2478/intox-2018-0001 PMID: 30181707
- Xu, Y.; Pei, J.; Lai, L. Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. J. Chem. Inf. Model., 2017, 57(11), 2672-2685. doi: 10.1021/acs.jcim.7b00244 PMID: 29019671
- Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics., 2019, 35(6), 1067-1069. doi: 10.1093/bioinformatics/bty707 PMID: 30165565
- Nations, U. Globally harmonized system of classification and labelling of chemicals (GHS); United Nations: New York, NY, USA, 2011. doi: 10.18356/4255cc90-en
- Cournia, Z.; Allen, B.; Sherman, W. Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. J. Chem. Inf. Model., 2017, 57(12), 2911-2937. doi: 10.1021/acs.jcim.7b00564 PMID: 29243483
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem. Rev., 2019, 119(16), 9478-9508. doi: 10.1021/acs.chemrev.9b00055 PMID: 31244000
- Biovia, D.S. Discovery Studio Modeling Environment, Release, 4; Dassault Systèmes: San Diego, 2017.
- Balmforth, G.V.; Samuel, R.K. Controlled trial of oxethazaine as an analgesic in duodenal ulcer. BMJ, 1964, 1(5379), 355-356. doi: 10.1136/bmj.1.5379.355 PMID: 14079039
- Moghadasian, M.H. Clinical pharmacology of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Life Sci., 1999, 65(13), 1329-1337. doi: 10.1016/S0024-3205(99)00199-X PMID: 10503952
- Massi-Benedetti, M.; Damsbo, P. Pharmacology and clinical experience with repaglinide. Expert Opin. Investig. Drugs, 2000, 9(4), 885-898. doi: 10.1517/13543784.9.4.885 PMID: 11060717
- Cazzola, M.; Rogliani, P.; Matera, M.G. Aclidinium bromide/formoterol fumarate fixed-dose combination for the treatment of chronic obstructive pulmonary disease. Expert Opin. Pharmacother., 2013, 14(6), 775-781. doi: 10.1517/14656566.2013.776539 PMID: 23472632
- Connolly, S.J.; Kates, R.E.; Lebsack, C.S.; Harrison, D.C.; Winkle, R.A. Clinical pharmacology of propafenone. Circulation, 1983, 68(3), 589-596. doi: 10.1161/01.CIR.68.3.589 PMID: 6872170
- Boruta, T.; Bizukojc, M. Production of lovastatin and itaconic acid by Aspergillus terreus: A comparative perspective. World J. Microbiol. Biotechnol., 2017, 33(2), 34. doi: 10.1007/s11274-017-2206-9 PMID: 28102516
- Wong, R.P.M.; Davis, T.M.E. Statins as potential antimalarial drugs: Low relative potency and lack of synergy with conventional antimalarial drugs. Antimicrob. Agents Chemother., 2009, 53(5), 2212-2214. doi: 10.1128/AAC.01469-08 PMID: 19258270
- Grellier, P.; Valentin, A.; Millerioux, V.; Schrevel, J.; Rigomier, D. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors lovastatin and simvastatin inhibit in vitro development of Plasmodium falciparum and Babesia divergens in human erythrocytes. Antimicrob. Agents Chemother., 1994, 38(5), 1144-1148. doi: 10.1128/AAC.38.5.1144 PMID: 8067753
- Diallo, B.N.; Swart, T.; Hoppe, H.C.; Tastan Bishop, Ö.; Lobb, K. Potential repurposing of four FDA approved compounds with antiplasmodial activity identified through proteome scale computational drug discovery and in vitro assay. Sci. Rep., 2021, 11(1), 1413. doi: 10.1038/s41598-020-80722-2 PMID: 33446838
- Painter, H.J.; Morrisey, J.M.; Vaidya, A.B. Mitochondrial electron transport inhibition and viability of intraerythrocytic Plasmodium falciparum. Antimicrob. Agents Chemother., 2010, 54(12), 5281-5287. doi: 10.1128/AAC.00937-10 PMID: 20855748
- Gomez-Lorenzo, M.G.; Rodríguez-Alejandre, A.; Martínez-Hoyos, M.; Bahamontes-Rosa, N.; Gonzalez Del Rio, R.; Carolina, R.; de la Fuente, J.; Jose, L.L.; García-Bustos, J.F.; Mendoza-Losana, A. Functional screening of selective mitochondrial inhibitors of Plasmodium. Int J Parasitol Drugs Drug Resist., 2018, 8(2), 295-303. doi: 10.1016/j.ijpddr.2018.04.007
Supplementary files
