Drug Repurposing against Novel Therapeutic Targets in Plasmodium falciparum for Malaria: The Computational Perspective


Cite item

Full Text

Abstract

:Malaria remains one of the most challenging tropical diseases. Since malaria cases are reportedly alarming in terms of infections and mortality, urgent attention is needed for addressing the issues of drug resistance in falciparum malaria. High throughput screening methods have paved way for rapid identification of anti-malarial. Furthermore, drug repurposing helps in shortening the time required for drug safety approvals. Hence, discovery of new antimalarials by drug repurposing is a promising approach for combating the disease. This article summarizes the recent computational approaches used for identifying novel antimalarials by using drug target interaction tools followed by pharmacokinetic studies.

About the authors

Shweta Rai

Department of Biotechnology, Motilal Nehru National Institute of Technology

Email: info@benthamscience.net

Shruti Shukla

Department of Biotechnology, Motilal Nehru National Institute of Technology

Email: info@benthamscience.net

Luciana Scotti

Postgraduate Programa in Natural and Synthetic Bioactive Compounds, University Hospital, Federal University of Paraíba-Campus I

Email: info@benthamscience.net

Ashutosh Mani

Department of Biotechnology, Motilal Nehru National Institute of Technology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Burchard, G.D. Treatment of illnesses acquired during long-distance travel. Internist., 2014, 55(9), 1100-1107, 1012. doi: 10.1007/s00108-014-3546-2 PMID: 25070614
  2. White, N.J. Antimalarial drug resistance. J. Clin. Invest., 2004, 113(8), 1084-1092. doi: 10.1172/JCI21682 PMID: 15085184
  3. World Health Organization. WHO briefing on Malaria Treatment Guidelines and artemisinin monotherapies; WHO: Geneva, 2006, pp. 1-28.
  4. Herlekar, I. The resistance gene in malaria parasite identified. Curr. Sci., 2014, 106(3), 345-345.
  5. Beare, N.A.; Harding, S.P.; Lewallen, S.; Molyneux, M.; Taylor, T. Malarial retinopathy: A newly established diagnostic sign in severe malaria. Am. J. Trop. Med. Hyg., 2006, 75(5), 790-797. doi: 10.4269/ajtmh.2006.75.790 PMID: 17123967
  6. Bartoloni, A.; Zammarchi, L. Clinical aspects of uncomplicated and severe malaria. Mediterr. J. Hematol. Infect. Dis., 2012, 4(1), e2012026. doi: 10.4084/mjhid.2012.026 PMID: 22708041
  7. Schlagenhauf-Lawlor P, ed. Travelers’ malaria. Hamilton, Ontario: BC Decker Inc; 2001.
  8. Castelli, F.; Odolini, S.; Autino, B.; Foca, E.; Russo, R. Malaria prophylaxis: A comprehensive review. Pharmaceuticals., 2010, 3(10), 3212-3239. doi: 10.3390/ph3103212
  9. Mueller, I.; Shakri, A.R.; Chitnis, C.E. Development of vaccines for Plasmodium vivax malaria. Vaccine, 2015, 33(52), 7489-7495. doi: 10.1016/j.vaccine.2015.09.060 PMID: 26428453
  10. Kokwaro, G. Ongoing challenges in the management of malaria. Malar. J., 2009, 8(S1), S2. doi: 10.1186/1475-2875-8-S1-S2 PMID: 19818169
  11. Manyando, C.; Kayentao, K.; D’Alessandro, U.; Okafor, H.U.; Juma, E.; Hamed, K. A systematic review of the safety and efficacy of artemether-lumefantrine against uncomplicated Plasmodium falciparum malaria during pregnancy. Malar. J., 2012, 11(1), 141. doi: 10.1186/1475-2875-11-141 PMID: 22548983
  12. Waters, C.N.; Edstein, M.D. 8-Aminoquioones:Primaquine and Tafenoquine. In: Prevention of Malaria: Antimalarial Drug Chemistry, Action and Use; Staines HM, K.S., Ed., 2012.
  13. Sinha, S.; Medhi, B.; Sehgal, R. Challenges of drug-resistant malaria. Parasite, 2014, 21, 61. doi: 10.1051/parasite/2014059 PMID: 25402734
  14. Newman, R.D. Relegating malaria resurgences to history. Malar. J., 2012, 11(1), 123. doi: 10.1186/1475-2875-11-123 PMID: 22531295
  15. Flannery, E.L.; Chatterjee, A.K.; Winzeler, E.A. Antimalarial drug discovery — approaches and progress towards new medicines. Nat. Rev. Microbiol., 2013, 11(12), 849-862. doi: 10.1038/nrmicro3138 PMID: 24217412
  16. Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.S.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W.; Schopfer, U.; Sittampalam, G.S. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov., 2011, 10(3), 188-195. doi: 10.1038/nrd3368 PMID: 21358738
  17. Sharma, R.; Lawrenson, A.S.; Fisher, N.E.; Warman, A.J.; Shone, A.E.; Hill, A.; Mbekeani, A.; Pidathala, C.; Amewu, R.K.; Leung, S.; Gibbons, P.; Hong, D.W.; Stocks, P.; Nixon, G.L.; Chadwick, J.; Shearer, J.; Gowers, I.; Cronk, D.; Parel, S.P.; O’Neill, P.M.; Ward, S.A.; Biagini, G.A.; Berry, N.G. Identification of novel antimalarial chemotypes via chemoinformatic compound selection methods for a high-throughput screening program against the novel malarial target, PfNDH2: increasing hit rate via virtual screening methods. J. Med. Chem., 2012, 55(7), 3144-3154. doi: 10.1021/jm3001482 PMID: 22380711
  18. Werbovetz, K.A. Target-based drug discovery for malaria, leishmaniasis, and trypanosomiasis. Curr. Med. Chem., 2000, 7(8), 835-860. doi: 10.2174/0929867003374615 PMID: 10828290
  19. Gurard-Levin, Z.A.; Scholle, M.D.; Eisenberg, A.H.; Mrksich, M. High-throughput screening of small molecule libraries using SAMDI mass spectrometry. ACS Comb. Sci., 2011, 13(4), 347-350. doi: 10.1021/co2000373 PMID: 21639106
  20. Schweitzer, B.I.; Dicker, A.P.; Bertino, J.R. Dihydrofolate reductase as a therapeutic target. FASEB J., 1990, 4(8), 2441-2452. doi: 10.1096/fasebj.4.8.2185970 PMID: 2185970
  21. Verma, S.; Prabhakar, Y. Target based drug design - a reality in virtual sphere. Curr. Med. Chem., 2015, 22(13), 1603-1630. doi: 10.2174/0929867322666150209151209 PMID: 25666805
  22. Tang, Y.; Dong, Y.; Vennerstrom, J.L. Synthetic peroxides as antimalarials. Med. Res. Rev., 2004, 24(4), 425-448. doi: 10.1002/med.10066 PMID: 15170591
  23. Cechinel-Filho, V. Plant bioactives and drug discovery: principles, practice, and perspectives; John Wiley & Sons, 2012. doi: 10.1002/9781118260005
  24. Talele, T.; Khedkar, S.; Rigby, A. Successful applications of computer aided drug discovery: Moving drugs from concept to the clinic. Curr. Top. Med. Chem., 2010, 10(1), 127-141. doi: 10.2174/156802610790232251 PMID: 19929824
  25. Prachayasittikul, V.; Worachartcheewan, A.; Shoombuatong, W.; Songtawee, N.; Simeon, S.; Prachayasittikul, V.; Nantasenamat, C. Computer-aided drug design of bioactive natural products. Curr. Top. Med. Chem., 2015, 15(18), 1780-1800. doi: 10.2174/1568026615666150506151101 PMID: 25961523
  26. Talevi, A.; Bellera, C.L. Challenges and opportunities with drug repurposing: Finding strategies to find alternative uses of therapeutics. Expert Opin. Drug Discov., 2020, 15(4), 397-401. doi: 10.1080/17460441.2020.1704729 PMID: 31847616
  27. Dondorp, A.M.; Fairhurst, R.M.; Slutsker, L.; Macarthur, J.R.; Breman, J.G.; Guerin, P.J.; Wellems, T.E.; Ringwald, P.; Newman, R.D.; Plowe, C.V. The threat of artemisinin-resistant malaria. N. Engl. J. Med., 2011, 365(12), 1073-1075. doi: 10.1056/NEJMp1108322 PMID: 21992120
  28. Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; Ringwald, P.; Silamut, K.; Imwong, M.; Chotivanich, K.; Lim, P.; Herdman, T.; An, S.S.; Yeung, S.; Singhasivanon, P.; Day, N.P.J.; Lindegardh, N.; Socheat, D.; White, N.J. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med., 2009, 361(5), 455-467. doi: 10.1056/NEJMoa0808859 PMID: 19641202
  29. Noedl, H.; Se, Y.; Schaecher, K.; Smith, B.L.; Socheat, D.; Fukuda, M.M. Evidence of artemisinin-resistant malaria in Western Cambodia. N. Engl. J. Med., 2008, 359(24), 2619-2620. doi: 10.1056/NEJMc0805011 PMID: 19064625
  30. Mbengue, A.; Bhattacharjee, S.; Pandharkar, T.; Liu, H.; Estiu, G.; Stahelin, R.V.; Rizk, S.S.; Njimoh, D.L.; Ryan, Y.; Chotivanich, K.; Nguon, C.; Ghorbal, M.; Lopez-Rubio, J.J.; Pfrender, M.; Emrich, S.; Mohandas, N.; Dondorp, A.M.; Wiest, O.; Haldar, K. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature, 2015, 520(7549), 683-687. doi: 10.1038/nature14412 PMID: 25874676
  31. Ariey, F.; Witkowski, B.; Amaratunga, C.; Beghain, J.; Langlois, A.C.; Khim, N.; Kim, S.; Duru, V.; Bouchier, C.; Ma, L.; Lim, P.; Leang, R.; Duong, S.; Sreng, S.; Suon, S.; Chuor, C.M.; Bout, D.M.; Ménard, S.; Rogers, W.O.; Genton, B.; Fandeur, T.; Miotto, O.; Ringwald, P.; Le Bras, J.; Berry, A.; Barale, J.C.; Fairhurst, R.M.; Benoit-Vical, F.; Mercereau-Puijalon, O.; Ménard, D. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature, 2014, 505(7481), 50-55. doi: 10.1038/nature12876 PMID: 24352242
  32. Uwimana, A.; Legrand, E.; Stokes, B.H.; Ndikumana, J.L.M.; Warsame, M.; Umulisa, N.; Ngamije, D.; Munyaneza, T.; Mazarati, J.B.; Munguti, K.; Campagne, P.; Criscuolo, A.; Ariey, F.; Murindahabi, M.; Ringwald, P.; Fidock, D.A.; Mbituyumuremyi, A.; Menard, D. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat. Med., 2020, 26(10), 1602-1608. doi: 10.1038/s41591-020-1005-2 PMID: 32747827
  33. Zhang, D.D.; Lo, S.C.; Cross, J.V.; Templeton, D.J.; Hannink, M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol., 2004, 24(24), 10941-10953. doi: 10.1128/MCB.24.24.10941-10953.2004 PMID: 15572695
  34. Coppée, R.; Jeffares, D.C.; Sabbagh, A.; Clain, J. Structural evolutionary analysis predicts functional sites in the artemisinin resistance malaria protein K13. bioRxiv, 2018, 346668. doi: 10.1101/346668
  35. Malaria, G.E.N. Plasmodium falciparum Community Project. Genomic epidemiology of artemisinin resistant malaria. eLife, 2016, 08714.
  36. Straimer, J.; Gnädig, N.F.; Witkowski, B.; Amaratunga, C.; Duru, V.; Ramadani, A.P.; Dacheux, M.; Khim, N.; Zhang, L.; Lam, S.; Gregory, P.D.; Urnov, F.D.; Mercereau-Puijalon, O.; Benoit-Vical, F.; Fairhurst, R.M.; Ménard, D.; Fidock, D.A. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science, 2015, 347(6220), 428-431. doi: 10.1126/science.1260867 PMID: 25502314
  37. Dogovski, C.; Xie, S.C.; Burgio, G.; Bridgford, J.; Mok, S.; McCaw, J.M.; Chotivanich, K.; Kenny, S.; Gnädig, N.; Straimer, J.; Bozdech, Z.; Fidock, D.A.; Simpson, J.A.; Dondorp, A.M.; Foote, S.; Klonis, N.; Tilley, L. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance. PLoS Biol., 2015, 13(4), e1002132. doi: 10.1371/journal.pbio.1002132 PMID: 25901609
  38. Witkowski, B.; Amaratunga, C.; Khim, N.; Sreng, S.; Chim, P.; Kim, S.; Lim, P.; Mao, S.; Sopha, C.; Sam, B.; Anderson, J.M.; Duong, S.; Chuor, C.M.; Taylor, W.R.J.; Suon, S.; Mercereau-Puijalon, O.; Fairhurst, R.M.; Menard, D. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in vitro and ex vivo drug-response studies. Lancet Infect. Dis., 2013, 13(12), 1043-1049. doi: 10.1016/S1473-3099(13)70252-4 PMID: 24035558
  39. Karuppasamy, R.; Verma, K.; Sequeira, V.M.; Basavanna, L.N.; Veerappapillai, S. An Integrative drug repurposing pipeline: Switching viral drugs to breast cancer. J. Cell. Biochem., 2017, 118(6), 1412-1422. doi: 10.1002/jcb.25799 PMID: 27859674
  40. Strittmatter, S.M. Overcoming drug development bottlenecks with repurposing: Old drugs learn new tricks. Nat. Med., 2014, 20(6), 590-591. doi: 10.1038/nm.3595 PMID: 24901567
  41. Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683. doi: 10.1038/nrd1468 PMID: 15286734
  42. Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58. doi: 10.1038/nrd.2018.168 PMID: 30310233
  43. Bertolini, F.; Sukhatme, V.P.; Bouche, G. Drug repurposing in oncology—patient and health systems opportunities. Nat. Rev. Clin. Oncol., 2015, 12(12), 732-742. doi: 10.1038/nrclinonc.2015.169 PMID: 26483297
  44. Verma, K.; Lahariya, A.K.; Dubey, S.; Verma, A.K.; Das, A.; Schneider, K.A.; Bharti, P.K. An integrated virtual screening and drug repurposing strategy for the discovery of new antimalarial drugs against Plasmodium falciparum phosphatidylinositol 3-kinase. J. Cell. Biochem., 2021, 122(10), 1326-1336. doi: 10.1002/jcb.29954 PMID: 33998049
  45. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082. doi: 10.1093/nar/gkx1037 PMID: 29126136
  46. Yang, J.; Anishchenko, I.; Park, H.; Peng, Z.; Ovchinnikov, S.; Baker, D. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl. Acad. Sci., 2020, 117(3), 1496-1503. doi: 10.1073/pnas.1914677117 PMID: 31896580
  47. Laskowski, R.A.; Hutchinson, E.G.; Michie, A.D.; Wallace, A.C.; Jones, M.L.; Thornton, J.M. PDBsum: A web-based database of summaries and analyses of all PDB structures. Trends Biochem. Sci., 1997, 22(12), 488-490. doi: 10.1016/S0968-0004(97)01140-7 PMID: 9433130
  48. Bwire, G.M.; Ngasala, B.; Mikomangwa, W.P.; Kilonzi, M.; Kamuhabwa, A.A.R. Detection of mutations associated with artemisinin resistance at k13-propeller gene and a near complete return of chloroquine susceptible falciparum malaria in Southeast of Tanzania. Sci. Rep., 2020, 10(1), 3500. doi: 10.1038/s41598-020-60549-7 PMID: 32103124
  49. Shoichet, B.K. Virtual screening of chemical libraries. Nature, 2004, 432(7019), 862-865. doi: 10.1038/nature03197 PMID: 15602552
  50. Verma, K.; Kannan, K.; v, S.; R, S.; v, K.; K, R. Exploring β-tubulin inhibitors from plant origin using computational approach. Phytochem. Anal., 2017, 28(3), 230-241. doi: 10.1002/pca.2665 PMID: 28008675
  51. Wang, J.; Huang, L.; Li, J.; Fan, Q.; Long, Y.; Li, Y.; Zhou, B. Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One, 2010, 5(3), e9582. doi: 10.1371/journal.pone.0009582 PMID: 20221395
  52. Ramanathan, K.; Verma, K.; Gupta, N.; Shanthi, V. Discovery of therapeutic lead molecule against β-tubulin using computational approach. Interdiscip. Sci., 2018, 10(4), 734-747. doi: 10.1007/s12539-017-0233-8 PMID: 28488218
  53. Hu, Q.; Feng, M.; Lai, L.; Pei, J. Prediction of drug-likeness using deep autoencoder neural networks. Front. Genet., 2018, 9, 585. doi: 10.3389/fgene.2018.00585 PMID: 30538725
  54. Tondi, D.; Slomczynska, U.; Costi, M.P.; Watterson, D.M.; Ghelli, S.; Shoichet, B.K. Structure-based discovery and in-parallel optimization of novelcompetitive inhibitors of thymidylate synthase. Chem. Biol., 1999, 6(5), 319-331. doi: 10.1016/S1074-5521(99)80077-5 PMID: 10322126
  55. Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model., 2015, 55(2), 460-473. doi: 10.1021/ci500588j PMID: 25558886
  56. von Korff, M.; Sander, T. Toxicity-indicating structural patterns. J. Chem. Inf. Model., 2006, 46(2), 536-544. doi: 10.1021/ci050358k PMID: 16562981
  57. Pu, L.; Naderi, M.; Liu, T.; Wu, H.C.; Mukhopadhyay, S.; Brylinski, M. eToxPred: A machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol. Toxicol., 2019, 20(1), 2. doi: 10.1186/s40360-018-0282-6 PMID: 30621790
  58. Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J. Biomol. Struct. Dyn., 2021, 39(9), 3092-3098. PMID: 32329419
  59. Pratap Singh, H.; Sharma, C.S.; Mishra, S.S.; Pandiya, H.; Kumar, N. In silico ADME, bioactivity and toxicity prediction of some selected anti-Parkinson agents. Int J Pharm Phytopharmacol Res., 2017, 6(3), 64-67. doi: 10.24896/eijppr.2016631
  60. Mazzatorta, P.; Estevez, M.D.; Coulet, M.; Schilter, B. Modeling oral rat chronic toxicity. J. Chem. Inf. Model., 2008, 48(10), 1949-1954. doi: 10.1021/ci8001974 PMID: 18803370
  61. Sarkar, P.; Alheety, M.A.; Srivastava, V. Molecular docking and ADMET study of spice-derived potential phytochemicals against human DNA topoisomerase III alpha. Macromol. Symp., 2023, 407(1), 2200108. doi: 10.1002/masy.202200108
  62. Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: predicting small- molecule pharmacokinetic and toxicity properties using graph- based signatures. J. Med. Chem., 2015, 58(9), 4066-4072. doi: 10.1021/acs.jmedchem.5b00104 PMID: 25860834
  63. Stowers, A.W.; Cioce, V.; Shimp, R.L.; Lawson, M.; Hui, G.; Muratova, O.; Kaslow, D.C.; Robinson, R.; Long, C.A.; Miller, L.H. Efficacy of two alternate vaccines based on Plasmodium falciparum merozoite surface protein 1 in an Aotus challenge trial. Infect. Immun., 2001, 69(3), 1536-1546. doi: 10.1128/IAI.69.3.1536-1546.2001 PMID: 11179324
  64. Mogire, R.M.; Akala, H.M.; Macharia, R.W.; Juma, D.W.; Cheruiyot, A.C.; Andagalu, B.; Brown, M.L.; El-Shemy, H.A.; Nyanjom, S.G. Target-similarity search using Plasmodium falciparum proteome identifies approved drugs with anti-malarial activity and their possible targets. PLoS One, 2017, 12(10), e0186364. doi: 10.1371/journal.pone.0186364 PMID: 29088219
  65. Malhotra, H.; Kumar, A.; Afaq, Y. Molecular docking analysis of FDA approved drugs with the glycoprotein from Junin and Machupo viruses. Bioinformation, 2022, 18(2), 119-126. doi: 10.6026/97320630018119 PMID: 36420432
  66. Hsu, K.C.; Chen, Y.F.; Lin, S.R.; Yang, J.M. iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 2011, 12(S1), S33. doi: 10.1186/1471-2105-12-S1-S33 PMID: 21342564
  67. Guedes, I.A.; Costa, L.S.C.; dos Santos, K.B.; Karl, A.L.M.; Rocha, G.K.; Teixeira, I.M.; Galheigo, M.M.; Medeiros, V.; Krempser, E.; Custódio, F.L.; Barbosa, H.J.C.; Nicolás, M.F.; Dardenne, L.E. Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Sci. Rep., 2021, 11(1), 5543. doi: 10.1038/s41598-021-84700-0 PMID: 33692377
  68. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
  69. Wagener, M.; van Geerestein, V.J. Potential drugs and nondrugs: Prediction and identification of important structural features. J. Chem. Inf. Comput. Sci., 2000, 40(2), 280-292. doi: 10.1021/ci990266t PMID: 10761129
  70. Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J. Chem. Inf. Comput. Sci., 2003, 43(6), 1882-1889. doi: 10.1021/ci0341161 PMID: 14632437
  71. Soliman, M.E.; Adewumi, A.T.; Akawa, O.B.; Subair, T.I.; Okunlola, F.O.; Akinsuku, O.E.; Khan, S. Simulation models for prediction of bioavailability of medicinal drugs—the interface between experiment and computation. AAPS PharmSciTech, 2022, 23(3), 86. doi: 10.1208/s12249-022-02229-5 PMID: 35292867
  72. Walum, E. Acute oral toxicity. Environ. Health Perspect., 1998, 106(S2), 497-503. doi: 10.1289/ehp.98106497 PMID: 9599698
  73. Erhirhie, E.O.; Ihekwereme, C.P.; Ilodigwe, E.E. Advances in acute toxicity testing: Strengths, weaknesses and regulatory acceptance. Interdiscip. Toxicol., 2018, 11(1), 5-12. doi: 10.2478/intox-2018-0001 PMID: 30181707
  74. Xu, Y.; Pei, J.; Lai, L. Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. J. Chem. Inf. Model., 2017, 57(11), 2672-2685. doi: 10.1021/acs.jcim.7b00244 PMID: 29019671
  75. Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics., 2019, 35(6), 1067-1069. doi: 10.1093/bioinformatics/bty707 PMID: 30165565
  76. Nations, U. Globally harmonized system of classification and labelling of chemicals (GHS); United Nations: New York, NY, USA, 2011. doi: 10.18356/4255cc90-en
  77. Cournia, Z.; Allen, B.; Sherman, W. Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. J. Chem. Inf. Model., 2017, 57(12), 2911-2937. doi: 10.1021/acs.jcim.7b00564 PMID: 29243483
  78. Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem. Rev., 2019, 119(16), 9478-9508. doi: 10.1021/acs.chemrev.9b00055 PMID: 31244000
  79. Biovia, D.S. Discovery Studio Modeling Environment, Release, 4; Dassault Systèmes: San Diego, 2017.
  80. Balmforth, G.V.; Samuel, R.K. Controlled trial of oxethazaine as an analgesic in duodenal ulcer. BMJ, 1964, 1(5379), 355-356. doi: 10.1136/bmj.1.5379.355 PMID: 14079039
  81. Moghadasian, M.H. Clinical pharmacology of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Life Sci., 1999, 65(13), 1329-1337. doi: 10.1016/S0024-3205(99)00199-X PMID: 10503952
  82. Massi-Benedetti, M.; Damsbo, P. Pharmacology and clinical experience with repaglinide. Expert Opin. Investig. Drugs, 2000, 9(4), 885-898. doi: 10.1517/13543784.9.4.885 PMID: 11060717
  83. Cazzola, M.; Rogliani, P.; Matera, M.G. Aclidinium bromide/formoterol fumarate fixed-dose combination for the treatment of chronic obstructive pulmonary disease. Expert Opin. Pharmacother., 2013, 14(6), 775-781. doi: 10.1517/14656566.2013.776539 PMID: 23472632
  84. Connolly, S.J.; Kates, R.E.; Lebsack, C.S.; Harrison, D.C.; Winkle, R.A. Clinical pharmacology of propafenone. Circulation, 1983, 68(3), 589-596. doi: 10.1161/01.CIR.68.3.589 PMID: 6872170
  85. Boruta, T.; Bizukojc, M. Production of lovastatin and itaconic acid by Aspergillus terreus: A comparative perspective. World J. Microbiol. Biotechnol., 2017, 33(2), 34. doi: 10.1007/s11274-017-2206-9 PMID: 28102516
  86. Wong, R.P.M.; Davis, T.M.E. Statins as potential antimalarial drugs: Low relative potency and lack of synergy with conventional antimalarial drugs. Antimicrob. Agents Chemother., 2009, 53(5), 2212-2214. doi: 10.1128/AAC.01469-08 PMID: 19258270
  87. Grellier, P.; Valentin, A.; Millerioux, V.; Schrevel, J.; Rigomier, D. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors lovastatin and simvastatin inhibit in vitro development of Plasmodium falciparum and Babesia divergens in human erythrocytes. Antimicrob. Agents Chemother., 1994, 38(5), 1144-1148. doi: 10.1128/AAC.38.5.1144 PMID: 8067753
  88. Diallo, B.N.; Swart, T.; Hoppe, H.C.; Tastan Bishop, Ö.; Lobb, K. Potential repurposing of four FDA approved compounds with antiplasmodial activity identified through proteome scale computational drug discovery and in vitro assay. Sci. Rep., 2021, 11(1), 1413. doi: 10.1038/s41598-020-80722-2 PMID: 33446838
  89. Painter, H.J.; Morrisey, J.M.; Vaidya, A.B. Mitochondrial electron transport inhibition and viability of intraerythrocytic Plasmodium falciparum. Antimicrob. Agents Chemother., 2010, 54(12), 5281-5287. doi: 10.1128/AAC.00937-10 PMID: 20855748
  90. Gomez-Lorenzo, M.G.; Rodríguez-Alejandre, A.; Martínez-Hoyos, M.; Bahamontes-Rosa, N.; Gonzalez Del Rio, R.; Carolina, R.; de la Fuente, J.; Jose, L.L.; García-Bustos, J.F.; Mendoza-Losana, A. Functional screening of selective mitochondrial inhibitors of Plasmodium. Int J Parasitol Drugs Drug Resist., 2018, 8(2), 295-303. doi: 10.1016/j.ijpddr.2018.04.007

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers