Differential Effect of 4H-Benzo[d] [1, 3]oxazines on the Proliferation of Breast Cancer Cell Lines


Cite item

Full Text

Abstract

Background:A family of 4H-benzo[d][1,3]oxazines were obtained from a group of N-(2-alkynyl)aryl benzamides precursors via gold(I) catalysed chemoselective 6-exo-dig C-O cyclization.

Methods:The precursors and oxazines obtained were studied in breast cancer cell lines MCF-7, CAMA-1, HCC1954 and SKBR-3 with differential biological activity showing various degrees of inhibition with a notable effect for those that had an aryl substituted at C-2 of the molecules. 4H-benzo[d][1,3]oxazines showed an IC50 rating from 0.30 to 157.4 µM in MCF-7, 0.16 to 139 in CAMA-1, 0.09 to 93.08 in SKBR-3, and 0.51 to 157.2 in HCC1954 cells.

Results:We observed that etoposide is similar to benzoxazines while taxol effect is more potent. Four cell lines responded to benzoxazines while SKBR-3 cell line responded to precursors and benzoxazines. Compounds 16, 24, 25 and 26 have the potent effect in cell proliferation inhibition in the 4 cell lines tested and correlated with oxidant activity suggesting a possible mechanism by ROS generation.

Conclusion:These compounds represent possible drug candidates for the treatment of breast cancer. However, further trials are needed to elucidate its full effect on cellular and molecular features of cancer.

About the authors

Ixamail Fraire-Soto

Laboratorio de MicroRNAs y Cáncer, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N

Email: info@benthamscience.net

Jorge Araujo-Huitrado

Laboratorio de MicroRNAs y Cáncer,, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N

Email: info@benthamscience.net

Angelica Granados-López

Laboratorio de MicroRNAs y Cáncer, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N

Email: info@benthamscience.net

Luis Segura-Quezada

Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, División de Ciencias Naturales y Exactas

Email: info@benthamscience.net

Rafael Ortiz-Alvarado

Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato

Email: info@benthamscience.net

Mayra Herrera

Laboratorio de MicroRNAs y Cáncer, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N

Email: info@benthamscience.net

Rosalinda Gutiérrez-Hernández

Laboratorio de MicroRNAs y Cáncer, Universidad Autónoma de Zacatecas

Email: info@benthamscience.net

Claudia Reyes-Hernández

Laboratorio de MicroRNAs y Cáncer, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N

Email: info@benthamscience.net

Yamilé López-Hernández

, Laboratorio de Metabolómica y Proteómica Universidad Autónoma de Zacatecas

Email: info@benthamscience.net

Melissa Tapia-Juárez

Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico Biológicas,, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria

Email: info@benthamscience.net

José Negrete-Díaz

Laboratory of Brain Plasticity and Integrative Neuroscience, Program of Clinical Psychology, University of Guanajuato

Email: info@benthamscience.net

Luis Chacón-García

Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria

Author for correspondence.
Email: info@benthamscience.net

César Solorio-Alvarado

Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato

Author for correspondence.
Email: info@benthamscience.net

Jesús López

Laboratorio de MicroRNAs y Cáncer, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N

Author for correspondence.
Email: info@benthamscience.net

References

  1. Zhang, Y.R.; Xie, J.W.; Huang, X.J.; Zhu, W.D. Construction of functionalized 2,3-dihydro-1,4-benzoxazines via 5 + 1 annulations of 2-halo-1,3-dicarbonyl compounds with imines. Org. Biomol. Chem., 2012, 10(32), 6554-6561. doi: 10.1039/c2ob25927c PMID: 22760526
  2. Sugimoto, Y.; Otani, T.; Oie, S.; Wierzba, K.; Yamada, Y. Mechanism of action of a new macromolecular antitumor antibiotic, C-1027. J. Antibiot., 1990, 43(4), 417-421. doi: 10.7164/antibiotics.43.417
  3. Liu, Y.L.; Hsu, C-W.; Chou, C-I. Silicon-containing benzoxazines and their polymers: Copolymerization and copolymer properties. J. Polym. Sci. A Polym. Chem., 2007, 45(6), 1007-1015. doi: 10.1002/pola.21853
  4. Zinad, D.S.; Mahal, A.; Mohapatra, R.K.; Sarangi, A.K.; Pratama, M.R.F. Medicinal chemistry of oxazines as promising agents in drug discovery. Chem. Biol. Drug Des., 2020, 95(1), 16-47. doi: 10.1111/cbdd.13633 PMID: 31583840
  5. Girard, C.; Liu, S.; Cadepond, F.; Adams, D.; Lacroix, C.; Verleye, M.; Gillardin, J.M.; Baulieu, E.E.; Schumacher, M.; Schweizer-Groyer, G. Etifoxine improves peripheral nerve regeneration and functional recovery. Proc. Natl. Acad. Sci. USA, 2008, 105(51), 20505-20510. doi: 10.1073/pnas.0811201106 PMID: 19075249
  6. Nahide, P.D.; Alba-Betancourt, C.; Chávez-Rivera, R.; Romo-Rodríguez, P.; Solís-Hernández, M.; Segura-Quezada, L.A.; Torres-Carbajal, K.R.; Gámez-Montaño, R.; Deveze-Álvarez, M.A.; Ramírez-Morales, M.A.; Alonso-Castro, A.J.; Zapata-Morales, J.R.; Ruiz-Padilla, A.J.; Mendoza-Macías, C.L.; Meza-Carmen, V.; Cortés-García, C.J.; Corrales-Escobosa, A.R.; Núñez-Anita, R.E.; Ortíz-Alvarado, R.; Chacón-García, L.; Solorio-Alvarado, C.R. Novel 2-aryl-4-aryloxyquinoline-based fungistatics for Mucor circinelloides. Biological evaluation of activity, QSAR and docking study. Bioorg. Med. Chem. Lett., 2022, 63, 128649. doi: 10.1016/j.bmcl.2022.128649 PMID: 35245665
  7. Torres-Carbajal, K.R.S-Q. Indomethacin synthesis, historical overview of their structural modifications. ChemistrySelect, 2022, 7, e202201897.
  8. Zhang, P.; Terefenko, E.A.; Fensome, A.; Wrobel, J.; Winneker, R.; Lundeen, S.; Marschke, K.B.; Zhang, Z. 6-Aryl-1,4-dihydro-benzod1,3oxazin- 2-ones: A novel class of potent, selective, and orally active nonsteroidal progesterone receptor antagonists. J. Med. Chem., 2002, 45(20), 4379-4382. doi: 10.1021/jm025555e PMID: 12238914
  9. Hays, S.J.; Caprathe, B.W.; Gilmore, J.L.; Amin, N.; Emmerling, M.R.; Michael, W.; Nadimpalli, R.; Nath, R.; Raser, K.J.; Stafford, D.; Watson, D.; Wang, K.; Jaen, J.C. 2-Amino-4 H -3,1-benzoxazin-4-ones as inhibitors of C1r serine protease. J. Med. Chem., 1998, 41(7), 1060-1067. doi: 10.1021/jm970394d PMID: 9544206
  10. Hernández, E.; Vélez, J.M.; Vlaar, C.P. Synthesis of 1,4-dihydro-benzod1,3oxazin-2-ones from phthalides via an aminolysis-Hofmann rearrangement protocol. Tetrahedron Lett., 2007, 48(51), 8972-8975. doi: 10.1016/j.tetlet.2007.10.114 PMID: 19096499
  11. Zhang, P.; Terefenko, E.A.; Fensome, A.; Zhang, Z.; Zhu, Y.; Cohen, J.; Winneker, R.; Wrobel, J.; Yardley, J. Potent nonsteroidal progesterone receptor agonists: Synthesis and SAR study of 6-aryl benzoxazines. Bioorg. Med. Chem. Lett., 2002, 12(5), 787-790. doi: 10.1016/S0960-894X(02)00025-2 PMID: 11859003
  12. Yarim, M.; Koksal, M.; Durmaz, I.; Atalay, R. Cancer cell cytotoxicities of 1-(4-substitutedbenzoyl)-4-(4-chlorobenzhydryl)piperazine derivatives. Int. J. Mol. Sci., 2012, 13(7), 8071-8085. doi: 10.3390/ijms13078071 PMID: 22942690
  13. Ataollahi, M.R.; Sharifi, J.; Paknahad, M.R.; Paknahad, A. Breast cancer and associated factors: A review. J Med Life, 2015, 8(Spec Iss 4), 6-11.
  14. Ramadoss, V.; Alonso-Castro, A.J.; Campos-Xolalpa, N.; Solorio-Alvarado, C.R. Protecting-group-free total synthesis and biological evaluation of 3-methylkealiiquinone and structural analogues. J. Org. Chem., 2018, 83(17), 10627-10635. doi: 10.1021/acs.joc.8b01436 PMID: 30091606
  15. Bhat, M.; Al-Dhfyan, A.; Naglah, A.; Khan, A.; Al-Omar, M. Lead optimization of 2-Cyclohexyl-N- (Z)-(3-methoxyphenyl/3-hydroxyphenyl) methylidenehydrazinecarbothioamides for targeting the HER-2 overexpressed breast cancer cell line SKBr-3. Molecules, 2015, 20(10), 18246-18263. doi: 10.3390/molecules201018246 PMID: 26457700
  16. Ramadoss, V.; Alonso-Castro, A.J.; Campos-Xolalpa, N.; Ortiz-Alvarado, R.; Yahuaca-Juárez, B.; Solorio-Alvarado, C.R. Total synthesis of kealiiquinone: The regio-controlled strategy for accessing its 1-methyl-4-arylbenzimidazolone core. RSC Advances, 2018, 8(54), 30761-30776. doi: 10.1039/C8RA06676K PMID: 35548717
  17. Ramadoss, V.G-M. Solorio-Alvarado, C.R.; Ramadoss, V.; Gámez-Montaño, R.; Zapata-Morales, J.R.; and Alonso-Castro, A.J.; Total synthesis of the linear and angular 3-methylated regioisomers of the marine natural product Kealiiquinone and biological evaluation of related Leucetta sp. alkaloids on human breast cancer Med. Chem. Res., 2019, 28, 473-484.
  18. Sharma, G.N.; Dave, R.; Sanadya, J.; Sharma, P.; Sharma, K.K. Various types and management of breast cancer: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(2), 109-126. PMID: 22247839
  19. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953. doi: 10.1002/ijc.31937 PMID: 30350310
  20. Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 1-23. doi: 10.1186/s40659-017-0140-9 PMID: 28969709
  21. Comşa, Ş.; Cîmpean, A.M.; Raica, M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res., 2015, 35(6), 3147-3154. PMID: 26026074
  22. Booms, A.; Coetzee, G.A.; Pierce, S.E. MCF-7 as a model for functional analysis of breast cancer risk variants. Cancer Epidemiol. Biomarkers Prev., 2019, 28(10), 1735-1745. doi: 10.1158/1055-9965.EPI-19-0066 PMID: 31292138
  23. Gazdar, A.F.; Kurvari, V.; Virmani, A.; Gollahon, L.; Sakaguchi, M.; Westerfield, M.; Kodagoda, D.; Stasny, V.; Cunningham, H.T.; Wistuba, I.I.; Tomlinson, G.; Tonk, V.; Ashfaq, R.; Leitch, A.M.; Minna, J.D.; Shay, J.W. Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer. Int. J. Cancer, 1998, 78(6), 766-774. doi: 10.1002/(SICI)1097-0215(19981209)78:63.0.CO;2-L PMID: 9833771
  24. Fogh, J.; Wright, W.C.; Loveless, J.D. Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J. Natl. Cancer Inst., 1977, 58(2), 209-214. doi: 10.1093/jnci/58.2.209 PMID: 833871
  25. Lal, K.; Yadav, P. Recent advancements in 1,4-disubstituted 1H-1,2,3-triazoles as potential anticancer agents. Anticancer. Agents Med. Chem., 2018, 18(1), 21-37. doi: 10.2174/1871520616666160811113531 PMID: 27528183
  26. Córdova-Rivas, S.; Araujo-Huitrado, J.G.; Rivera-Avalos, E.; Escalante-García, I.L.; Durón-Torres, S.M.; López-Hernández, Y.; Hernández-López, H.; López, L.; de Loera, D.; López, J.A. Differential proliferation effect of the newly synthesized valine, tyrosine and tryptophan–naphthoquinones in immortal and tumorigenic cervical cell lines. Molecules, 2020, 25(9), 2058. doi: 10.3390/molecules25092058 PMID: 32354078
  27. Segura-Quezada, L.A.; Torres-Carbajal, K.R.; Mali, N.; Patil, D.B.; Luna-Chagolla, M.; Ortiz-Alvarado, R.; Tapia-Juárez, M.; Fraire-Soto, I.; Araujo-Huitrado, J.G.; Granados-López, A.J.; Gutiérrez-Hernández, R.; Reyes-Estrada, C.A.; López-Hernández, Y.; López, J.A.; Chacón-García, L.; Solorio-Alvarado, C.R. Gold(I)-catalyzed synthesis of 4 H -Benzo d 1,3oxazines and biological evaluation of activity in breast cancer cells. ACS Omega, 2022, 7(8), 6944-6955. doi: 10.1021/acsomega.1c06637 PMID: 35252686
  28. Managa, M.G.; Sultanbawa, Y.; Sivakumar, D. Effects of different drying methods on untargeted phenolic metabolites, and antioxidant activity in chinese cabbage (Brassica rapa L. subsp. chinensis) and nightshade (Solanum retroflexum Dun.). Molecules, 2020, 25(6), 1326. doi: 10.3390/molecules25061326 PMID: 32183223
  29. Xu, B.J.; Chang, S.K.C. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci., 2007, 72(2), S159-S166. doi: 10.1111/j.1750-3841.2006.00260.x PMID: 17995858
  30. Nahide, P.D.; Jiménez-Halla, J.O.C.; Wrobel, K.; Solorio-Alvarado, C.R.; Ortiz Alvarado, R.; Yahuaca-Juárez, B. Gold( I )-catalysed high-yielding synthesis of indenes by direct C sp3 –H bond activation. Org. Biomol. Chem., 2018, 16(40), 7330-7335. doi: 10.1039/C8OB02056F PMID: 30259052
  31. Mato, M.; Franchino, A.; García-Morales, C.; Echavarren, A.M. Gold-catalyzed synthesis of small rings. Chem. Rev., 2021, 121(14), 8613-8684. doi: 10.1021/acs.chemrev.0c00697 PMID: 33136374
  32. Brandes, L.J.; Hermonat, M.W. Receptor status and subsequent sensitivity of subclones of MCF-7 human breast cancer cells surviving exposure to diethylstilbestrol. Cancer Res., 1983, 43(6), 2831-2835. PMID: 6850594
  33. Lewandowski, M.; Gwozdzinski, K. Nitroxides as antioxidants and anticancer drugs. Int. J. Mol. Sci., 2017, 18(11), 2490. doi: 10.3390/ijms18112490 PMID: 29165366
  34. Winter, J.M.; Yadav, T.; Rutter, J. Stressed to death: Mitochondrial stress responses connect respiration and apoptosis in cancer. Mol. Cell, 2022, 82(18), 3321-3332. doi: 10.1016/j.molcel.2022.07.012 PMID: 35961309
  35. Valabrega, G.; Berrino, G.; Milani, A.; Aglietta, M.; Montemurro, F. A retrospective analysis of the activity and safety of oral Etoposide in heavily pretreated metastatic breast cancer patients. Breast J., 2015, 21(3), 241-245. doi: 10.1111/tbj.12398 PMID: 25772707
  36. Gottesman, M.M.; Pastan, I.; Ambudkar, S.V. P-glycoprotein and multidrug resistance. Curr. Opin. Genet. Dev., 1996, 6(5), 610-617. doi: 10.1016/S0959-437X(96)80091-8 PMID: 8939727
  37. Mbaba, M.; Dingle, L.M.K.; Cash, D.; Mare, J.A.; Laming, D.; Taylor, D.; Hoppe, H.C.; Edkins, A.L.; Khanye, S.D. Repurposing a polymer precursor: Synthesis and in vitro medicinal potential of ferrocenyl 1,3-benzoxazine derivatives. Eur. J. Med. Chem., 2020, 187, 111924. doi: 10.1016/j.ejmech.2019.111924 PMID: 31855792
  38. Bollu, R.; Palem, J.D.; Bantu, R.; Guguloth, V.; Nagarapu, L.; Polepalli, S.; Jain, N. Rational design, synthesis and anti-proliferative evaluation of novel 1,4-benzoxazine-1,2,3triazole hybrids. Eur. J. Med. Chem., 2015, 89, 138-146. doi: 10.1016/j.ejmech.2014.10.051 PMID: 25462234
  39. de Brito, M.R.M.; Peláez, W.J.; Faillace, M.S.; Militão, G.C.G.; Almeida, J.R.G.S.; Argüello, G.A.; Szakonyi, Z.; Fülöp, F.; Salvadori, M.C.; Teixeira, F.S.; Freitas, R.M.; Pinto, P.L.S.; Mengarda, A.C.; Silva, M.P.N.; Da Silva Filho, A.A.; de Moraes, J. Cyclohexene-fused 1,3-oxazines with selective antibacterial and antiparasitic action and low cytotoxic effects. Toxicol. In vitro, 2017, 44, 273-279. doi: 10.1016/j.tiv.2017.07.021 PMID: 28755871
  40. Nishiyama, T.; Hatae, N.; Yoshimura, T.; Takaki, S.; Abe, T.; Ishikura, M.; Hibino, S.; Choshi, T. Concise synthesis of carbazole-1,4-quinones and evaluation of their antiproliferative activity against HCT-116 and HL-60 cells. Eur. J. Med. Chem., 2016, 121, 561-577. doi: 10.1016/j.ejmech.2016.05.065 PMID: 27318980
  41. Choi, S.J.; Lee, J.E.; Jeong, S.Y.; Im, I.; Lee, S.D.; Lee, E.J.; Lee, S.K.; Kwon, S.M.; Ahn, S.G.; Yoon, J.H.; Han, S.Y.; Kim, J.I.; Kim, Y.C. 5,5′-substituted indirubin-3′-oxime derivatives as potent cyclin-dependent kinase inhibitors with anticancer activity. J. Med. Chem., 2010, 53(9), 3696-3706. doi: 10.1021/jm100080z PMID: 20361800
  42. Tercel, M.; Lee, H.H.; Mehta, S.Y.; Youte Tendoung, J.J.; Bai, S.Y.; Liyanage, H.D.S.; Pruijn, F.B. Influence of a basic side chain on the properties of hypoxia-selective nitro analogues of the duocarmycins: Demonstration of substantial anticancer activity in combination with irradiation or chemotherapy. J. Med. Chem., 2017, 60(13), 5834-5856. doi: 10.1021/acs.jmedchem.7b00563 PMID: 28644035
  43. Muthu Ramalingam, B.; Dhatchana Moorthy, N.; Chowdhury, S.R.; Mageshwaran, T.; Vellaichamy, E.; Saha, S.; Ganesan, K.; Rajesh, B.N.; Iqbal, S.; Majumder, H.K.; Gunasekaran, K.; Siva, R.; Mohanakrishnan, A.K. Synthesis and biological evaluation of calothrixins B and their deoxygenated analogues. J. Med. Chem., 2018, 61(3), 1285-1315. doi: 10.1021/acs.jmedchem.7b01797 PMID: 29313676
  44. Beck, D.E.; Abdelmalak, M.; Lv, W.; Reddy, P.V.N.; Tender, G.S.; O’Neill, E.; Agama, K.; Marchand, C.; Pommier, Y.; Cushman, M. Discovery of potent indenoisoquinoline topoisomerase I poisons lacking the 3-nitro toxicophore. J. Med. Chem., 2015, 58(9), 3997-4015. doi: 10.1021/acs.jmedchem.5b00303 PMID: 25909279
  45. Dhatchana Moorthy, N.; Muthu Ramalingam, B.; Iqbal, S.; Mohanakrishnan, A.K.; Gunasekaran, K.; Vellaichamy, E. Novel isothiacalothrixin B analogues exhibit cytotoxic activity on human colon cancer cells in vitro by inducing irreversible DNA damage. PLoS One, 2018, 13(9), e0202903. doi: 10.1371/journal.pone.0202903 PMID: 30188913
  46. Qiu, G.L.; He, S.S.; Chen, S.C.; Li, B.; Wu, H.H.; Zhang, J.; Tang, W.J. Design, synthesis and biological evaluation of tricyclic pyrazolo1,5- c 1,3benzoxazin-5(5 H )-one scaffolds as selective BuChE inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1506-1515. doi: 10.1080/14756366.2018.1488696 PMID: 30284486
  47. Jalili-Baleh, L.; Nadri, H.; Moradi, A.; Bukhari, S.N.A.; Shakibaie, M.; Jafari, M.; Golshani, M.; Homayouni Moghadam, F.; Firoozpour, L.; Asadipour, A.; Emami, S.; Khoobi, M.; Foroumadi, A. New racemic annulated pyrazolo1,2-bphthalazines as tacrine-like AChE inhibitors with potential use in Alzheimer’s disease. Eur. J. Med. Chem., 2017, 139, 280-289. doi: 10.1016/j.ejmech.2017.07.072 PMID: 28803044
  48. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
  49. Tanos, T.; Rojo, L.J.; Echeverria, P.; Brisken, C. ER and PR signaling nodes during mammary gland development. Breast Cancer Res., 2012, 14(4), 210. doi: 10.1186/bcr3166 PMID: 22809143
  50. Hilton, H.N.; Doan, T.B.; Graham, J.D.; Oakes, S.R.; Silvestri, A.; Santucci, N.; Kantimm, S.; Huschtscha, L.I.; Ormandy, C.J.; Funder, J.W.; Simpson, E.R.; Kuczek, E.S.; Leedman, P.J.; Tilley, W.D.; Fuller, P.J.; Muscat, G.E.O.; Clarke, C.L. Acquired convergence of hormone signaling in breast cancer: ER and PR transition from functionally distinct in normal breast to predictors of metastatic disease. Oncotarget, 2014, 5(18), 8651-8664. doi: 10.18632/oncotarget.2354 PMID: 25261374
  51. Diep, C.H.; Ahrendt, H.; Lange, C.A. Progesterone induces progesterone receptor gene (PGR) expression via rapid activation of protein kinase pathways required for cooperative estrogen receptor alpha (ER) and progesterone receptor (PR) genomic action at ER/PR target genes. Steroids, 2016, 114, 48-58. doi: 10.1016/j.steroids.2016.09.004 PMID: 27641443
  52. Du, Z.; Gao, W.; Sun, J.; Li, Y.; Sun, Y.; Chen, T.; Ge, S.; Guo, W. Identification of long non-coding RNA-mediated transcriptional dysregulation triplets reveals global patterns and prognostic biomarkers for ER+/PR+, HER2- and triple negative breast cancer. Int. J. Mol. Med., 2019, 44(3), 1015-1025. doi: 10.3892/ijmm.2019.4261 PMID: 31257479
  53. Radojicic, J.; Zaravinos, A.; Vrekoussis, T.; Kafousi, M.; Spandidos, D.A.; Stathopoulos, E.N. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle, 2011, 10(3), 507-517. doi: 10.4161/cc.10.3.14754 PMID: 21270527
  54. Zhao, Y.G.; Chen, Y.; Miao, G.; Zhao, H.; Qu, W.; Li, D.; Wang, Z.; Liu, N.; Li, L.; Chen, S.; Liu, P.; Feng, D.; Zhang, H. The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation. Mol. Cell, 2017, 67(6), 974-989. doi: 10.1016/j.molcel.2017.08.005 PMID: 28890335
  55. Kolesnikov, N.N.; Veryaskina, Y.A.; Titov, S.E.; Rodionov, V.V.; Gening, T.P.; Abakumova, T.V.; Kometova, V.V.; Torosyan, M.K.; Zhimulev, I.F. Expression of micrornas in molecular genetic breast cancer subtypes. Cancer Treat. Res. Commun., 2019, 20, 100026. doi: 10.1016/j.ctarc.2016.08.006 PMID: 31255253
  56. Kundu, T.; Bhattacharjee, B.; Hazra, S.; Ghosh, A.K.; Bandyopadhyay, D.; Pramanik, A. Synthesis and biological assessment of pyrrolobenzoxazine scaffold as a potent antioxidant. J. Med. Chem., 2019, 62(13), 6315-6329. doi: 10.1021/acs.jmedchem.9b00717 PMID: 31246452
  57. Kavalappa, Y.P.; Gopal, S.S.; Ponesakki, G. Lutein inhibits breast cancer cell growth by suppressing antioxidant and cell survival signals and induces apoptosis. J. Cell. Physiol., 2021, 236(3), 1798-1809. doi: 10.1002/jcp.29961 PMID: 32710479
  58. Sowmya Shree, G.; Yogendra Prasad, K.; Arpitha, H.S.; Deepika, U.R.; Nawneet Kumar, K.; Mondal, P.; Ganesan, P. β-carotene at physiologically attainable concentration induces apoptosis and down-regulates cell survival and antioxidant markers in human breast cancer (MCF-7) cells. Mol. Cell. Biochem., 2017, 436(1-2), 1-12. doi: 10.1007/s11010-017-3071-4 PMID: 28550445
  59. Sharma, P.; Kumar, S. Metformin inhibits human breast cancer cell growth by promoting apoptosis via a ROS-independent pathway involving mitochondrial dysfunction: pivotal role of superoxide dismutase (SOD). Cell Oncol., 2018, 41(6), 637-650. doi: 10.1007/s13402-018-0398-0 PMID: 30088260
  60. Firpo, G.; Ramírez, M.L.; Faillace, M.S.; de Brito, M.R.M.; e Silva, A.P.S.C.L.; Costa, J.P.; Rodríguez, M.C.; Argüello, G.A.; Szakonyi, Z.; Fülöp, F.; Peláez, W.J. Evaluation of the antioxidant activity of Cis/Trans-N-Phenyl-1,4,4a,5,8,8a-Hexahydro-3,1-Benzoxazin-2-Imines. Antioxidants, 2019, 8(6), 197. doi: 10.3390/antiox8060197 PMID: 31242617
  61. Castelli, S.; Ciccarone, F.; Tavian, D.; Ciriolo, M.R. ROS-dependent HIF1α activation under forced lipid catabolism entails glycolysis and mitophagy as mediators of higher proliferation rate in cervical cancer cells. J. Exp. Clin. Cancer Res., 2021, 40(1), 94. doi: 10.1186/s13046-021-01887-w PMID: 33706793
  62. Hou, X.; Yang, S.; Yin, J. Blocking the REDD1/TXNIP axis ameliorates LPS-induced vascular endothelial cell injury through repressing oxidative stress and apoptosis. Am. J. Physiol. Cell Physiol., 2019, 316(1), C104-C110. doi: 10.1152/ajpcell.00313.2018 PMID: 30485138
  63. Wu, Z.; Wang, H.; Fang, S.; Xu, C. Roles of endoplasmic reticulum stress and autophagy on H2O2-induced oxidative stress injury in HepG2 cells. Mol. Med. Rep., 2018, 18(5), 4163-4174. doi: 10.3892/mmr.2018.9443 PMID: 30221706
  64. Luo, Y.; Ma, J.; Lu, W. The significance of mitochondrial dysfunction in cancer. Int. J. Mol. Sci., 2020, 21(16), 5598. doi: 10.3390/ijms21165598 PMID: 32764295
  65. Holenya, P.; Can, S.; Rubbiani, R.; Alborzinia, H.; Jünger, A.; Cheng, X.; Ott, I.; Wölfl, S. Detailed analysis of pro-apoptotic signaling and metabolic adaptation triggered by a N-heterocyclic carbene–gold( I ) complex. Metallomics, 2014, 6(9), 1591-1601. doi: 10.1039/C4MT00075G PMID: 24777153
  66. Zeng, C.; Lin, J.; Zhang, K.; Ou, H.; Shen, K.; Liu, Q.; Wei, Z.; Dong, X.; Zeng, X.; Zeng, L.; Wang, W.; Yao, J. SHARPIN promotes cell proliferation of cholangiocarcinoma and inhibits ferroptosis via p53/SLC7A11/GPX4 signaling. Cancer Sci., 2022, 113(11), 3766-3775. doi: 10.1111/cas.15531 PMID: 35968603
  67. Purohit, P.K.; Edwards, R.; Tokatlidis, K.; Saini, N. MiR-195 regulates mitochondrial function by targeting mitofusin-2 in breast cancer cells. RNA Biol., 2019, 16(7), 918-929. doi: 10.1080/15476286.2019.1600999 PMID: 30932749
  68. Yang, A.J.; Shi, W.W.; Li, Y.; Wang, Z.; Shao, R.G.; Li, D.D.; He, Q.Y. Role of prosurvival molecules in the action of lidamycin toward human tumor cells. Biomed. Environ. Sci., 2009, 22(3), 244-252. doi: 10.1016/S0895-3988(09)60052-0 PMID: 19725468
  69. Wei, R.; Zhao, Y.; Wang, J.; Yang, X.; Li, S.; Wang, Y.; Yang, X.; Fei, J.; Hao, X.; Zhao, Y.; Gui, L.; Ding, X. Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. Int. J. Biol. Sci., 2021, 17(11), 2703-2717. doi: 10.7150/ijbs.59404 PMID: 34345202
  70. Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell. Mol. Life Sci., 2016, 73(17), 3221-3247. doi: 10.1007/s00018-016-2223-0 PMID: 27100828
  71. Facchinetti, M.M. Heme-Oxygenase-1. Antioxid. Redox Signal., 2020, 32(17), 1239-1242. doi: 10.1089/ars.2020.8065 PMID: 32148070
  72. Son, Y.; Kim, S.; Chung, H.T.; Pae, H.O. Reactive oxygen species in the activation of MAP kinases. Methods Enzymol., 2013, 528, 27-48. doi: 10.1016/B978-0-12-405881-1.00002-1 PMID: 23849857
  73. Torres, M.; Forman, H.J. Redox signaling and the MAP kinase pathways. Biofactors, 2003, 17(1-4), 287-296. doi: 10.1002/biof.5520170128 PMID: 12897450
  74. Kma, L.; Baruah, T.J. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol. Appl. Biochem., 2022, 69(1), 248-264. doi: 10.1002/bab.2104 PMID: 33442914
  75. Deng, S.; Dai, G.; Chen, S.; Nie, Z.; Zhou, J.; Fang, H.; Peng, H. Dexamethasone induces osteoblast apoptosis through ROS-PI3K/AKT/GSK3β signaling pathway. Biomed. Pharmacother., 2019, 110, 602-608. doi: 10.1016/j.biopha.2018.11.103 PMID: 30537677
  76. Morgan, M.J.; Liu, Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res., 2011, 21(1), 103-115. doi: 10.1038/cr.2010.178 PMID: 21187859

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers