A Novel Gene Signature based on Immune Cell Infiltration Landscape Predicts Prognosis in Lung Adenocarcinoma Patients


Cite item

Full Text

Abstract

Background:The tumor microenvironment (TME) is created by the tumor and dominated by tumor-induced interactions. Long-term survival of lung adenocarcinoma (LUAD) patients is strongly influenced by immune cell infiltration in TME. The current article intends to construct a gene signature from LUAD ICI for predicting patient outcomes.

Methods:For the initial phase of the study, the TCGA-LUAD dataset was chosen as the training group for dataset selection. We found two datasets named GSE72094 and GSE68465 in the Gene Expression Omnibus (GEO) database for model validation. Unsupervised clustering was performed on the training cohort patients using the ICI profiles. We employed Kaplan-Meier estimators and univariate Cox proportional-hazard models to identify prognostic differentially expressed genes in immune cell infiltration (ICI) clusters. These prognostic genes are then used to develop a LASSO Cox model that generates a prognostic gene signature. Validation was performed using Kaplan-Meier estimation, Cox, and ROC analysis. Our signature and vital immune-relevant signatures were analyzed. Finally, we performed gene set enrichment analysis (GSEA) and immune infiltration analysis on our finding gene signature to further examine the functional mechanisms and immune cellular interactions.

Results:Our study found a sixteen-gene signature (EREG, HPGDS, TSPAN32, ACSM5, SFTPD, SCN7A, CCR2, S100P, KLK12, MS4A1, INHA, HOXB9, CYP4B1, SPOCK1, STAP1, and ACAP1) to be prognostic based on data from the training cohort. This prognostic signature was certified by Kaplan-Meier, Cox proportional-hazards, and ROC curves. 11/15 immune-relevant signatures were related to our signature. The GSEA results indicated our gene signature strongly correlates with immune-related pathways. Based on the immune infiltration analysis findings, it can be deduced that a significant portion of the prognostic significance of the signature can be attributed to resting mast cells.

Conclusions:We used bioinformatics to determine a new, robust sixteen-gene signature. We also found that this signature's prognostic ability was closely related to the resting mast cell infiltration of LUAD patients.

About the authors

Chao Ma

Department of Thoracic Surgery, Fifth Affiliated Hospital of Zhengzhou University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Rocha, V.; Fraga, S.; Moreira, C.; Carmeli, C.; Lenoir, A.; Steptoe, A.; Giles, G.; Goldberg, M.; Zins, M.; Kivimäki, M.; Vineis, P.; Vollenweider, P.; Barros, H.; Stringhini, S.; Consortium, L. Life-course socioeconomic disadvantage and lung function: A multicohort study of 70 496 individuals. Eur. Respir. J., 2021, 57(3), 2001600. doi: 10.1183/13993003.01600-2020 PMID: 33214206
  2. Demir, Y.; Türkeş, C.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Molecular docking studies and the effect of fluorophenylthiourea derivatives on glutathione-dependent enzymes. Chem. Biodivers., 2023, 20(1), e202200656. doi: 10.1002/cbdv.202200656 PMID: 36538730
  3. Yıldız, M.L.; Demir, Y.; Küfrevioğlu, Ö.I. Screening of in vitro and in silico effect of Fluorophenylthiourea compounds on glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase enzymes. J. Mol. Recognit., 2022, 35(12), e2987. doi: 10.1002/jmr.2987 PMID: 36326002
  4. Uguz, H.; Avcı, B.; Palabıyık, E.; Nurseli Sulumer, A.; Kızıltunç Özmen, H.; Demir, Y.; Aşkın, H. Naringenin, hesperidin and quercetin ameliorate radiation-induced damage in rats: In vivo and in silico evaluations. Chem. Biodivers., 2024, 21(2), e202301613. doi: 10.1002/cbdv.202301613 PMID: 38105348
  5. Aslan, H.E.; Demir, Y.; Özaslan, M.S.; Türkan, F.; Beydemir, Ş.; Küfrevioğlu, Ö.I. The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity. Drug Chem. Toxicol., 2019, 42(6), 634-640. doi: 10.1080/01480545.2018.1463242 PMID: 29860891
  6. Altorki, N.K.; Markowitz, G.J.; Gao, D.; Port, J.L.; Saxena, A.; Stiles, B.; McGraw, T.; Mittal, V. The lung microenvironment: An important regulator of tumour growth and metastasis. Nat. Rev. Cancer, 2019, 19(1), 9-31. doi: 10.1038/s41568-018-0081-9 PMID: 30532012
  7. Schoenhals, J.E.; Seyedin, S.N.; Anderson, C.; Brooks, E.D.; Li, Y.R.; Younes, A.I.; Niknam, S.; Li, A.; Barsoumian, H.B.; Cortez, M.A.; Welsh, J.W. Uncovering the immune tumor microenvironment in non-small cell lung cancer to understand response rates to checkpoint blockade and radiation. Transl. Lung Cancer Res., 2007, 6(2), 148-158. doi: 10.21037/tlcr.2017.03.06 PMID: 28529897
  8. Newman, A.M.; Steen, C.B.; Liu, C.L.; Gentles, A.J.; Chaudhuri, A.A.; Scherer, F.; Khodadoust, M.S.; Esfahani, M.S.; Luca, B.A.; Steiner, D.; Diehn, M.; Alizadeh, A.A. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol., 2019, 37(7), 773-782. doi: 10.1038/s41587-019-0114-2 PMID: 31061481
  9. Ma, C.; Li, F.; Gu, Z.; Yang, Y.; Qi, Y. A novel defined risk signature of cuproptosis-related long non-coding RNA for predicting prognosis, immune infiltration, and immunotherapy response in lung adenocarcinoma. Front. Pharmacol., 2023, 14, 1146840. doi: 10.3389/fphar.2023.1146840 PMID: 37670938
  10. Zhang, K.; Shi, J.; Lin, F. Immunohistochemical evaluation of inhibin-alpha in non-small-cell lung carcinomas--a pitfall in diagnosing metastatic pulmonary carcinomas. Ann Clin Lab Sci, 2012, 42(2), 118-122.
  11. Huang, K.; Yuan, R.; Wang, K.; Hu, J.; Huang, Z.; Yan, C.; Shen, W.; Shao, J. Overexpression of HOXB9 promotes metastasis and indicates poor prognosis in colon cancer. Chin. J. Cancer Res., 2014, 26(1), 72-80. doi: 10.3978/j.issn.1000-9604.2014.01.11 PMID: 24653628
  12. Hsu, Y.L.; Hung, J.Y.; Liang, Y.Y.; Lin, Y.S.; Tsai, M.J.; Chou, S.H.; Lu, C.Y.; Kuo, P.L. S100P interacts with integrin α7 and increases cancer cell migration and invasion in lung cancer. Oncotarget, 2015, 6(30), 29585-29598. doi: 10.18632/oncotarget.4987 PMID: 26320193
  13. Sunaga, N.; Kaira, K. Epiregulin as a therapeutic target in non-small-cell lung cancer. Lung Cancer, 2015, 6, 91-98. doi: 10.2147/LCTT.S60427 PMID: 28210154
  14. Wang, T.; Liu, X.; Tian, Q.; Liang, T.; Chang, P. Reduced SPOCK1 expression inhibits non-small cell lung cancer cell proliferation and migration through Wnt/β-catenin signaling. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(3), 637-644. doi: 10.26355/eurrev_201802_14288 PMID: 29461591
  15. Cheng, W.L.; Feng, P.H.; Lee, K.Y.; Chen, K.Y.; Sun, W.L.; Van Hiep, N.; Luo, C.S.; Wu, S.M. The role of EREG/EGFR pathway in tumor progression. Int. J. Mol. Sci., 2021, 22(23), 12828. doi: 10.3390/ijms222312828 PMID: 34884633
  16. Umeda, Y.; Hasegawa, Y.; Otsuka, M.; Ariki, S.; Takamiya, R.; Saito, A.; Uehara, Y.; Saijo, H.; Kuronuma, K.; Chiba, H.; Ohnishi, H.; Sakuma, Y.; Takahashi, H.; Kuroki, Y.; Takahashi, M. Surfactant protein D inhibits activation of non-small cell lung cancer-associated mutant EGFR and affects clinical outcomes of patients. Oncogene, 2017, 36(46), 6432-6445. doi: 10.1038/onc.2017.253 PMID: 28745320
  17. Liu, Y.; Wang, L.; Lo, K.W.; Lui, V.W.Y. Omics-wide quantitative B-cell infiltration analyses identify GPR18 for human cancer prognosis with superiority over CD20. Commun. Biol., 2020, 3(1), 234. doi: 10.1038/s42003-020-0964-7 PMID: 32398659
  18. Zhang, J.; Zhang, Q.; Zhang, J.; Wang, Q. Expression of ACAP1 is associated with tumor immune infiltration and clinical outcome of ovarian cancer. DNA Cell Biol., 2020, 39(9), 1545-1557. doi: 10.1089/dna.2020.5596 PMID: 32456571
  19. Li, M.; Qiu, M.; Xu, Y.; Mao, Q.; Wang, J.; Dong, G.; Xia, W.; Yin, R.; Xu, L. Differentially expressed protein-coding genes and long noncoding RNA in early-stage lung cancer. Tumour Biol., 2015, 36(12), 9969-9978. doi: 10.1007/s13277-015-3714-6 PMID: 26178480
  20. Liu, X.; Jia, Y.; Shi, C.; Kong, D.; Wu, Y.; Zhang, T.; Wei, A.; Wang, D. CYP4B1 is a prognostic biomarker and potential therapeutic target in lung adenocarcinoma. PLoS One, 2021, 16(2), e0247020. doi: 10.1371/journal.pone.0247020 PMID: 33592039
  21. Lombardo, S.D.; Mazzon, E.; Basile, M.S.; Campo, G.; Corsico, F.; Presti, M.; Bramanti, P.; Mangano, K.; Petralia, M.C.; Nicoletti, F.; Fagone, P. Modulation of tetraspanin 32 (TSPAN32) expression in T cell-mediated immune responses and in multiple sclerosis. Int. J. Mol. Sci., 2019, 20(18), 4323. doi: 10.3390/ijms20184323 PMID: 31487788
  22. Murata, T.; Lin, M.I.; Aritake, K.; Matsumoto, S.; Narumiya, S.; Ozaki, H.; Urade, Y.; Hori, M.; Sessa, W.C. Role of prostaglandin D 2 receptor DP as a suppressor of tumor hyperpermeability and angiogenesis in vivo. Proc. Natl. Acad. Sci. USA, 2008, 105(50), 20009-20014. doi: 10.1073/pnas.0805171105 PMID: 19060214
  23. Ma, C.; Luo, H.; Cao, J.; Zheng, X.; Zhang, J.; Zhang, Y.; Fu, Z. Identification of a novel tumor microenvironment–associated eight-gene signature for prognosis prediction in lung adenocarcinoma. Front. Mol. Biosci., 2020, 7, 571641. doi: 10.3389/fmolb.2020.571641 PMID: 33102522
  24. Planque, C.; Li, L.; Zheng, Y.; Soosaipillai, A.; Reckamp, K.; Chia, D.; Diamandis, E.P.; Goodglick, L. A multiparametric serum kallikrein panel for diagnosis of non-small cell lung carcinoma. Clin. Cancer Res., 2008, 14(5), 1355-1362. doi: 10.1158/1078-0432.CCR-07-4117 PMID: 18316555
  25. An, J.; Xue, Y.; Long, M.; Zhang, G.; Zhang, J.; Su, H. Targeting CCR2 with its antagonist suppresses viability, motility and invasion by downregulating MMP-9 expression in non-small cell lung cancer cells. Oncotarget, 2017, 8(24), 39230-39240. doi: 10.18632/oncotarget.16837 PMID: 28424406
  26. Zhao, R.; Ding, D.; Yu, W.; Zhu, C.; Ding, Y. The lung adenocarcinoma microenvironment mining and its prognostic merit. Technol. Cancer Res. Treat., 2020, 19 doi: 10.1177/1533033820977547 PMID: 33280515
  27. Wright, C.M.; Savarimuthu Francis, S.M.; Tan, M.E.; Martins, M.U.; Winterford, C.; Davidson, M.R.; Duhig, E.E.; Clarke, B.E.; Hayward, N.K.; Yang, I.A.; Bowman, R.V.; Fong, K.M. MS4A1 dysregulation in asbestos-related lung squamous cell carcinoma is due to CD20 stromal lymphocyte expression. PLoS One, 2012, 7(4), e34943. doi: 10.1371/journal.pone.0034943 PMID: 22514692
  28. Wang, N.; Zhu, L.; Xu, X.; Yu, C.; Huang, X. Integrated analysis and validation reveal ACAP1 as a novel prognostic biomarker associated with tumor immunity in lung adenocarcinoma. Comput. Struct. Biotechnol. J., 2022, 20, 4390-4401. doi: 10.1016/j.csbj.2022.08.026 PMID: 36051873
  29. Yang, Y.; Yuan, S.; Yan, S.; Dong, K.; Yang, Y. Missense variants in CYP4B1 associated with increased risk of lung cancer among Chinese Han population. World J. Surg. Oncol., 2023, 21(1), 352. doi: 10.1186/s12957-023-03223-2 PMID: 37950293
  30. Kadomoto, S.; Izumi, K.; Mizokami, A. Roles of CCL2-CCR2 axis in the tumor microenvironment. Int. J. Mol. Sci., 2021, 22(16), 8530. doi: 10.3390/ijms22168530 PMID: 34445235
  31. Viale, P.H. The american cancer society’s facts & figures: 2020 edition. J. Adv. Pract. Oncol., 2020, 11(2), 135-136. doi: 10.6004/jadpro.2020.11.2.1 PMID: 33532112
  32. Xia, L.; Liu, Y.; Wang, Y. PD-1/PD-L1 blockade therapy in advanced non-small-cell lung cancer: Current status and future directions. Oncologist, 2019, 24(S1)(Suppl. 1), S31-S41. doi: 10.1634/theoncologist.2019-IO-S1-s05 PMID: 30819829
  33. Perets, R.; Bar, J.; Rasco, D.W.; Ahn, M.J.; Yoh, K.; Kim, D.W.; Nagrial, A.; Satouchi, M.; Lee, D.H.; Spigel, D.R.; Kotasek, D.; Gutierrez, M.; Niu, J.; Siddiqi, S.; Li, X.; Cyrus, J.; Chackerian, A.; Chain, A.; Altura, R.A.; Cho, B.C. Safety and efficacy of quavonlimab, a novel anti-CTLA-4 antibody (MK-1308), in combination with pembrolizumab in first-line advanced non-small-cell lung cancer. Ann. Oncol., 2021, 32(3), 395-403. doi: 10.1016/j.annonc.2020.11.020 PMID: 33276076
  34. Xiao, W.; Huang, H.; Zheng, P.; Liu, Y.; Chen, Y.; Chen, J.; Zheng, X.; Chen, L.; Jiang, J. The CXCL10/CXCR3 pathway contributes to the synergy of thermal ablation and PD-1 blockade therapy against tumors. Cancers, 2023, 15(5), 1427. doi: 10.3390/cancers15051427 PMID: 36900218
  35. Hong, S.; Kang, N.; Kim, O.; Hong, S.A.; Park, J.; Kim, J.; Lee, M.A.; Kang, J. EGFR-tyrosine kinase inhibitors induced activation of the autocrine CXCL10/CXCR3 pathway through crosstalk between the tumor and the microenvironment in EGFR-mutant lung cancer. Cancers, 2022, 15(1), 124. doi: 10.3390/cancers15010124 PMID: 36612121
  36. Tibbs, E.; Cao, X. Emerging canonical and non-canonical roles of granzyme B in health and disease. Cancers, 2022, 14(6), 1436. doi: 10.3390/cancers14061436 PMID: 35326588
  37. Krepela; Krepela, E. Granzyme B-induced apoptosis in cancer cells and its regulation (Review). Int. J. Oncol., 2010, 37(6), 1361-1378. doi: 10.3892/ijo_00000788 PMID: 21042704
  38. Hurkmans, D.P.; Basak, E.A.; Schepers, N.; Oomen-De Hoop, E.; Van der Leest, C.H.; El Bouazzaoui, S.; Bins, S.; Koolen, S.L.W.; Sleijfer, S.; Van der Veldt, A.A.M.; Debets, R.; Van Schaik, R.H.N.; Aerts, J.G.J.V.; Mathijssen, R.H.J. Granzyme B is correlated with clinical outcome after PD-1 blockade in patients with stage IV non-small-cell lung cancer. J. Immunother. Cancer, 2020, 8(1), e000586. doi: 10.1136/jitc-2020-000586 PMID: 32461348
  39. Champhekar, A.; Heymans, R.; Saco, J.; Turon Font, G.; Gonzalez, C.; Gao, A.; Pham, J.; Lee, J.; Maryoung, R.; Medina, E.; Campbell, K.M.; Karin, D.; Austin, D.; Damioseaux, R.; Ribas, A. ERK mediates interferon gamma-induced melanoma cell death. Mol. Cancer, 2023, 22(1), 165. doi: 10.1186/s12943-023-01868-x PMID: 37803324
  40. Song, M.; Ping, Y.; Zhang, K.; Yang, L.; Li, F.; Zhang, C.; Cheng, S.; Yue, D.; Maimela, N.R.; Qu, J.; Liu, S.; Sun, T.; Li, Z.; Xia, J.; Zhang, B.; Wang, L.; Zhang, Y. Low-dose IFNγ induces tumor cell stemness in tumor microenvironment of non-small cell lung cancer. Cancer Res., 2019, 79(14), 3737-3748. doi: 10.1158/0008-5472.CAN-19-0596 PMID: 31085700
  41. Casey, S.C.; Baylot, V.; Felsher, D.W. The MYC oncogene is a global regulator of the immune response. Blood, 2018, 131(18), 2007-2015. doi: 10.1182/blood-2017-11-742577 PMID: 29514782
  42. Ireland, A.S.; Micinski, A.M.; Kastner, D.W.; Guo, B.; Wait, S.J.; Spainhower, K.B.; Conley, C.C.; Chen, O.S.; Guthrie, M.R.; Soltero, D.; Qiao, Y.; Huang, X.; Tarapcsák, S.; Devarakonda, S.; Chalishazar, M.D.; Gertz, J.; Moser, J.C.; Marth, G.; Puri, S.; Witt, B.L.; Spike, B.T.; Oliver, T.G. MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Cancer Cell, 2020, 38(1), 60-78.e12. doi: 10.1016/j.ccell.2020.05.001 PMID: 32473656
  43. Soto-Heredero, G.; Gómez de las Heras, M.M.; Gabandé-Rodríguez, E.; Oller, J.; Mittelbrunn, M. Glycolysis - a key player in the inflammatory response. FEBS J., 2020, 287(16), 3350-3369. doi: 10.1111/febs.15327 PMID: 32255251
  44. Cascone, T.; McKenzie, J.A.; Mbofung, R.M.; Punt, S.; Wang, Z.; Xu, C.; Williams, L.J.; Wang, Z.; Bristow, C.A.; Carugo, A.; Peoples, M.D.; Li, L.; Karpinets, T.; Huang, L.; Malu, S.; Creasy, C.; Leahey, S.E.; Chen, J.; Chen, Y.; Pelicano, H.; Bernatchez, C.; Gopal, Y.N.V.; Heffernan, T.P.; Hu, J.; Wang, J.; Amaria, R.N.; Garraway, L.A.; Huang, P.; Yang, P.; Wistuba, I.I.; Woodman, S.E.; Roszik, J.; Davis, R.E.; Davies, M.A.; Heymach, J.V.; Hwu, P.; Peng, W. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab., 2018, 27(5), 977-987.e4. doi: 10.1016/j.cmet.2018.02.024 PMID: 29628419
  45. Wang, H.; Wang, X.; Xu, L.; Zhang, J.; Cao, H. Integrated analysis of the E2F transcription factors across cancer types. Oncol. Rep., 2020, 43(4), 1133-1146. doi: 10.3892/or.2020.7504 PMID: 32323836
  46. Sun, C.C.; Zhou, Q.; Hu, W.; Li, S.J.; Zhang, F.; Chen, Z.L.; Li, G.; Bi, Z.Y.; Bi, Y.Y.; Gong, F.Y.; Bo, T.; Yuan, Z.P.; Hu, W.D.; Zhan, B.T.; Zhang, Q.; Tang, Q.Z.; Li, D.J. Transcriptional E2F1/2/5/8 as potential targets and transcriptional E2F3/6/7 as new biomarkers for the prognosis of human lung carcinoma. Aging, 2018, 10(5), 973-987. doi: 10.18632/aging.101441 PMID: 29754146
  47. Zhang, H.; Sun, L.; Hu, X. Mast cells resting-related prognostic signature in hepatocellular carcinoma. J. Oncol., 2021, 2021, 1-9. doi: 10.1155/2021/4614257 PMID: 34840569

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers